Institute for Language, Logic and Information

A NORMAL FORM FOR PCSJ EXPRESSIONS

Sieger van Denneheuvel
Gerard R. Renardel de Lavalette

ITLI Prepublication Series
for Computation and Complexity Theory CT-90-02

%
&
%

University of Amsterdam

A normal form for PCSJ expressions

Sieger van Denneheuvel
Department of Mathematics and Computer Science
University of Amsterdam

Gerard R. Renardel de Lavalette
Department of Philosophy
University of Utrecht

February 9, 1990

Abstract

In this paper we construct a normal form for a relational algebra, consisting
of Projection, Selection and Join, extended with Calculation and define a cor-
responding language PCSJL. An operator for renaming of attributes is also im-
plicitly available in this algebra, since renaming can be defined directly in terms
of calculation and projection. Moreover, the normal form can be extended easily
to include the union operator. PCSJL plays a role in the implementation of
the Rule Language RL; the normalization is to be used for query optimisation.

1 Introduction

PSJ expressions are relational algebra expressions containing only project, select and
join operators. This restricted class of expressions is commonly used in relational
databases. PSJ expressions are studied in [YAN87] and [LARS85], where it is men-
tioned without proof (which is not very difficult) that they can be transformed into
a normal form where first the join operators are applied, then selection and finally
projection. Such normalization procedures play an important role in query optimi-
sation: see [ULL89] Ch. 11 and [YAN87]. Standard optimization techniques can be
used to further optimize PSJ normal form expressions: e.g. in special circumstances
the ‘selection before join’ heuristic can be applied to push selection down to the
relational database tables ([ULL89]).

In this paper we add the relational operator calculate to the above mentioned
relational operators, thus obtaining the language PCSJL of PCSJ expressions. The
question arises whether PCSJ expressions also can be brought into a normal form.
It is shown in Section 4 that a normal form exists where the joins are followed by
selection, then calculate and finally projection; moreover, the proof (which is quite
technical) yields an easy construction that has been converted into an implemented

algorithm in Section 5. This PCSJ normal form procedure already provides opti-
mization, and the normal form it yields can serve as the starting point for further
optimization (just as for PSJ normal forms). The proof and the construction can
be extended to include the union operator (see [DEN89]). In addition renaming for
attributes can be incorporated in the normal form without extra effort since it can
be defined directly in terms of the calculate and projection operators.

Our interest for PCSJ expressions lies in its role in the integration of relational
databases and constraint solving. This integration is one of the aims of the declara-
tive Rule Language RL. The potential for such an integration has been investigated
in the context of the Rules Technology project led by Peter Lucas at the IBM San
Jose Research Center: see e.g. [HANS89],[HANS88]. RL was defined by Peter van
Emde Boas in [VEMD86a], where a relational semantic model is given to interpret
RL (see also [VEMDS86b],[VEMD86¢c]). A considerable part of this language has
been implemented by the first author of this paper: see [DEN88a] and [DEN88b].

RL can be considered as an extension of SQL with existential quantification over
variables occurring in constraints but not necessarily in relations (as is required in
SQL, where all variables in the WHERE clause have to be present in the FROM
clause; see [DATE87],[DATE89]). As a consequence, not all expressions in RL can
be evaluated: imagine what happens when the existential quantifier ranges over
an infinite domain. To be able to deal with these problems, the above-mentioned
implementation of RL is equipped with a constraint solver. This constraint solver
transforms evaluable RL-expressions into expressions of PCSJL, which corresponds
to the fragment of RL without existential quantification.

Outline of the rest of this paper. In Section 2 we introduce the constraint lan-
guage CL which serves as a parameter of the language PCSJL, defined in Section 3;
Section 4 contains the normalization procedure, in Section 5 we shortly mention its
implementation and finally in Section 6 we present conclusions and a perspective on
future research.

Acknowledgements. The authors thank Peter van Emde Boas, Karen Kwast and
Edith Spaan (all University of Amsterdam) for useful criticism and remarks.

2 The constraint language CL

We begin with the definition of the constraint language CL: it will act as a parameter
of the language PCSJL defined in Section 3. CL is a many-sorted language contain-
ing variables (denoted by the metavariables z,y, ..., also called attributes), constants
(c,d,..., also called values), functions (f,g,...), = (the equality predicate), pred-
icates, propositional connectives (-, A,V,—) and the propositional constant true.
Terms (s,t,...) and assertions (4, B, ..., also called constraints or conditions) are

defined as usual.

If I is any of the items defined above (or a collection of these), then var(I) is the
set of variables occurring in I. Furthermore, we assume some evaluation mechanism
|.| for CL to be given, which evaluates closed terms (terms without variables) to
constants and closed assertions to truth values.

We give an example language for CL, defined by the following sorts constants,
functions and predicates:

sorts: NUM (natural numbers), STR (strings of characters)
constants: 0,1,2,...in NUM, all finite strings in STR

functions:
*,+: NUM x NUM — NUM
cat: STR x STR — STR (concatenation)
length: STR — NUM (length of a string)

digits: NUM — STR (converts a number to its string representation)

predicates: <,>,<,>,# (binary predicates, both on NUM and on STR)

3 The language PCSJL

Before we define the sorts of the language PCSJL, we introduce the following.
Definition 1 A solution is a constraint of the form = =t with ¢ ¢ var(t).

Definition 2 A solution set is a finite set {z; = t1,...,2, = t,}, satisfying:
1. |[{z1,-..,2.}|| = n, (the variables are distinct)
2. {z1,...,zo} Nvar({t1,...,t.}) =0

A tuple (denoted by ¢,1,...) is a solution set of the form {z; = ¢n,..., %, = cn}.
For tuples ¢, we often write atir(¢) instead of var($). Tuples are called similar if
they have the same attributes. A relation R is a pair < X, R’ > of a finite collection
of attributes X and a finite collection of similar tuples, satisfying:

Ve € R attr(¢) = X

If R' is non-empty then X can be obtained from R'; since most relations are
nonempty, we shall allow ourselves to be a bit sloppy and identify R and R'; i.e.
consider a base relation to be a collection of similar tuples.

Example 1 (solution sets and tuples)

{name = ‘bob’, age = 55, dep = ‘toy’} (a tuple)
{z =1,y =2,z = 3} (a tuple)

{x =u+2,y=v+2} (a solution set)

Assume that an instance of CL is given, i.e. some language with sorts, vari-
ables, constants, etc. We now present the definition of the language PCSJL =
PCSJL(CL); the interpretation of the language is given together with its defini-
tion. PCSJL is a four-sorted language with expressions (thus named to distinguish
them from CL-terms) and equations. The sorts are:

V (finite sets of CL-variables)

e C (constraints, i.e. CL-assertions)

S (solutions sets)

R (relations)

We let X,Y, Z range over V; A, B,C over C; ®,¥ over S; R, S over R. Next we
present the functions of PCSJL. They are grouped according to their range.

3.1 Functions with range V

Besides the usual set operations U,N and —, we have:

Definition 3 (variables and attributes)
var :C —V
attr : R -V

Definition 4 (head and tail variables)

hvar : S -V

tvar : S — VY

hvar({z1 = t1,...,Zn = ta}) = {21,...,2n}
tvar({z1 = t1,...,2n = ta}) = var({t1,...,ta})

3.2 Functions with range C

Besides A (conjunction), we have the merge of two solution sets, yielding a constraint.
The merge function is defined as follows:

Definition 5 _®_:S xS - C
® @ U = (the conjunction of {s=1t|z=s€ @,z =t € ¥})

Example 2 (merging solution sets)
{z = bob’ } & {zx = y cat 2z} = {‘bob’ =y cat z}
{z=u+2,y=3}d{z=v+2}={u+2=v+2}

Solution sets ® = {z; = t1,...,2, = t,} can be interpreted as substitutions
[#1 :=tp,...,2n := t,] which can be applied to (collections of) items. So we have an
operation apply:

Definition 6 (.):SxC—C
®(A) = (P considered as a substitution, applied to A)

Example 3 (substitution on constraints)
{z=u+2}{z=u+1})={u+2=u+1}
{e=u+2,2y=v+2}{z>y})={v+2>v+2}

3.3 Functions with range §

Here, too, we have the usual set operations U,N and —; besides, we introduce the
restrict and delete functions:

Definition 7 []:SxV =S
o[X]={z=te®|zeX}

Definition 8 (_) : SxV = S
PX)={z=tec®|z¢ X}

Example 4 (restriction and deletion)

{z=z+lLy=z+2l[{z}] ={z=2+1}
{z=z+Ly=z+2}{z}) ={y=2+2}
{z=1,y=2,z=3}{=z}{{s}] ={y =2}

Further we also have substitution on solutions:

Definition 9 (()): S x8— S
(V) ={z=2() |z =te ¥}

Example 5 (substitution on solution sets)
{z=v+2}{z=v+1})={z=u+1}
fe—ut2y=vt2}(fe=utl,3=g})={e=ut1,3=0+2)

3.4 Functions with range R

Here we find the usual projection, selection and join operators on relations, together
with the calculate operator. The definitions are:

Definition 10 7 : R xV - R
m(R,X) = {¢[X] | ¢ € R} if X C attr(R)

Definition 11 ¢ : R xC—> R
o(R,X) ={¢ € R||¢(A4)| = true} if var(A) C attr(R)

Definition 12 k : R xS - R
x(R,®) = {4 Uy(®)) | ¥ € R} if tvar(®) C atir(R) and hvar(®) N attr(R) =0

Definition 13 _ X _: RXR - R
RS ={pU% | b€ R,% € S,Vz € attr() N attr(y) (¢[z] = ¥[z])}

One readily observes that the project, select and calculate operators are par-
tial since they are only defined when certain conditions on the arguments are met.
These condition are referred to as definedness conditions. They are quite reasonable:
the definedness condition for projection ensures that a relation is not projected on
attributes that are not part of the relation; the definedness condition for selection
takes care that the constraint A can indeed be evaluated to true or false; the first
part of the definedness condition for the calculate operator ensures that the tails of
solutions in ® can be evaluated, the second part rules out the possibility that the
head of a solution is also determined directly by an attribute of the relation R.

Example 6 (eztending tuples with the calculate operator)

r(z,y) :{{z=17y=2}}
k(r(z,y),{u =z +y,v= bob’ }) = {{z =1,y =2,u = 3,v = ‘bob’ }}

An operator for attribute renaming can be defined with use of the project and
calculate operators in the following way:

Definition 14 p: R xS =R
p(R,®) = n(x(R, ®), attr(R) U hvar(®) — tvar(®))
if tvar(®) C attr(R) and hvar(®) Natir(R) =0

Note that the defined renaming operator is slightly more general than usual
attribute renaming, since in the tails of ® terms are allowed. The renaming operator
is invoked with the renaming given in the solution set ®. The solution set contains
elements of the form ¢ = y such that y is among the attributes of R and z is not:

Example 7 (renaming an attribute)
r(:c,y) = {{z = l,y = 2}}
p(r(z,y){z =y} ={{z =1,z =2}}

The functions defined in this section can be represented as in Figure 1. Functions
not listed in the diagram are (_) and _((_)).

4 Normal forms

In this section, we define normal forms and show that every expression of sort R is
equivalent to an expression in normal form. We call two expressions equivalent if
they refer to the same object (for expressions of sort R this means that they refer
to the same relation).

Definition 15 A normal form is an ezpression of the form
m(k(o(R1 X ... X R,, A),®),X) where R,,...,R, are atomic ezpressions.

NF is the collection of normal forms.

Proposition 16 The normal form m(k(o(R1 X ... X R,, A), ®),X) is defined iff:
1. var(A) C attr(Ry @ ... X R,)

2. tvar(®) C attr(R; X ... X R,)

3. X C attr(Ry X ... X R,) U hvar(®)

4. attr(Ry ¥ ... X R,)U hvar(®) =0

Proof: Follows directly from the definedness conditions.
O

Proposition 17 Consequences of definedness of m(k(o(Ry ™ ... X R,, A),®), X):
1. tvar(®) N hvar(®) =0

2. var(A) N hvar(®) =0

3. hvar(®) = (var(A) Uvar(®)) — attr(Ry M ... X R,)

Proof: Follows directly from the definedness conditions and Proposition 16.
a

Theorem 18 Every defined ezpression in PCSJL of sort R can be transformed
into an equivalent defined normal form.

Proof: Let NF be the collection of all expressions equivalent to a normal form (in
other words, NF is the closure of NF under equivalence). It suffices to show the
following statements:

1. All atomic expressions of sort R are in NF (case (1))

2. NF is closed under projection, selection, calculation and join.
(cases (2.7),(2.0),(2.£) and (2.x) respectively)

This is done as follows:
¢ (1): An atomic expression R can be rewritten in normal form by:

R = n(k(o(R, true),0), attr(R))
In the remaining cases we use the following abbreviations:
R:=R;x...xR,, S:=5X...x8S,
¢ (2.7): This is easy: we have to show
n(n(x(c(R,A),®),X),Y)E NF
and this follows from

W(W(K(J(R, A)7 Q)’ X)’ Y) = W(K(U(Rv A), §)7 Y)

for it follows from the definedness conditions that Y C X.

e (2.0): This case is slightly more complex. We must show:
o(n(x((R, 4),8), X), B) € NF

To obtain a defined normal form for this expression, we have to use substitution.
The critical point in the construction is that variables from hvar(®) may be present
in the constraint B. If B were added straightaway to the solution part of the new
normal form, an undefined normal form would be constructed. Therefore the vari-
ables in hvar(®) are substituted by the substitution in &(B), resulting in a defined
normal form:

o(n(x(o(R, A),®),X), B) = n(x(os(R,A A ®(B)), ®),X)
¢ (2.x): Here we want:
k(m(x(oc(R,A),®),X),¥) e NF
We begin with assuming that the following condition holds:
hvar(¥) N (attr(R) U hvar(®)) — X =0 (1)

For this case we can show that under assumption of (1) the next condition is true
so that ® U ¥ (and consequently also & U &((¥))) is a solution set:

hvar(®) N hvar(¥) =0 (2)

For suppose z € hvar(®) N hvar(¥). Then eitherz € X orz ¢ X. If z € X,
the definedness conditions are violated since z is both determined by a head of a
solution in ¥ and the relation 7(x(c(R, 4), ®), X). On the other hand, if z ¢ X then
(1) does not hold, contrary to our assumption. So it must be that the assumption
z € hvar(®) N hvar(¥) was false and hence (2) holds.

A second reason for adopting (1) is to ensure that the variables projected away by
the projection on X, should be different from hvar(¥), the new variables introduced
by ¥. But this is already the case since we have assumed (1) to hold. The resulting
normal form is:

w(m(x(o(R, A),®),X),¥) = n(x(os(R,A),® U 2(¥)),X U hvar(¥))

If (1) does not hold, then in R, A and & the variables in (attr(R)U hvar(®)) - X
have to be renamed in order to make them different from those in hvar(¥). After
the renaming (1) holds and the rest of the argument runs analogously.

e (2.%): This last case is the most complex. What we want is:

n(k(o(R, A),®),X) x n(k(c(S,B),¥),Y)e NF

8

The condition to prevent an undesired clash of variables now reads:
(attr(R) U hvar(®)) N (attr(S) U hvar(¥)) — (X NY) =0 (3)

We start with assuming that (3) holds. Then ® U ¥ is, in general, not a solution
set. The merge function @ in the construction below handles this case. Also another
case needs to be checked. Suppose there is a solution z =t € ® with z € attr(S). If
this solution were put in the calculate part of the new normal form, then the resulting
expression would be undefined. The problem can be handled by recognizing that
z = t now satisfies the definedness conditions of the select operator, viz. var(z =
t) C attr(R)Uattr(S). So the restriction operator below inserts the solution z = ¢ in
the select condition C of the new normal form below and the delete operator deletes
it from the calculate part ©. The symmetric case that there is a solution z =t € ¥
so that = € attr(R), is handled in the same way. The resulting normal form, which
is defined, now reads:

W(KI}([G(R, A)’Q)’X) M 1!'(}6(0(5, B)"I’)’Y) = m(s(oc(R ® S, C)a G)aX uY)
wit
C =AANBA®DY A B[atir(S)] A ¥(hvar(®))[attr(R))

and

O = ®(attr(S)) U ¥(hvar(®))(atir(R))

The above construction can be explained in the following way. The solution
sets ® and ¥ are first transformed into the constraints ® & ¥ and the solution sets
U(hvar(®)) and ®. Next ® @ ¥ is put directly into the select condition C; the
remaining pair of solution sets ¥(hvar(®)) and & needs to be processed further.
On both solution sets restrictions are applied to see whether more solutions can be
turned into select conditions. The applied restrictions are compensated by the delete
operators in the calculate part.

It should be noted that in the above construction, the expression

U (hvar(®))[attr(R))

can be replaced by the more simple expression ¥[attr(R)]. However this could lead
to duplicate use of solutions from ¥ in the condition of the resulting normal form
and since normal forms are to be used for query optimisation we want to avoid this
duplication.

If (3) does not hold then we are going to rename variables. The condition (3) is
equivalent with the conjunction of the following two conditions:

((attr(R) U hvar(®)) — X) N (attr(S) U hvar(¥)) =0 (4)
(attr(R) U hvar(®)) N ((attr(S) U hvar(¥)) - Y) =0 (5)

First we rename in R, A and ® the variables in (attr(R) U hvar(®)) — X in order
to make them different from the variables attr(S) U hvar(¥). After renaming (4)

holds. In a similar way the offending variables for condition (5) are renamed in S, B
and ¥. After these renamings both (4) and (5) hold, so also (3) holds. The rest of
the argument runs analogously.

This ends the proof of Theorem 18.

O
The standard normalization construction for PSJ expressions can be obtained
from the above normalization construction for PCSJ expressions by taking both
® — 0 and ¥ = 0. The calculate rule is dropped from the normalization construction.
Union can be included in the normalization process (see [DEN89]). In the normal
form the union operator is added as the outermost operator, having as arguments
the PCSJ normal forms described in this paper.

5 Implementation

The normalization procedure of the previous section has been implemented in Prolog.
The sample problems listed below were run on this prototype. Output was adapted
to the notation of this paper and the listed problems illustrate the use of the join
rule (2.x).

Example 8 (Conditions and solutions are combined directly)

71'(&(0'(1'(0,, b),a > b {zx=a+ b}),{a, b,z})

x m(k(o(s(c,d),¢ > d),{y = ¢+ d}),{c,d,y})

— m(k(o(r(a,d) X s(c,d),a >bAc>d),{z =a+by=c+d}),{a,bz,cd,y})

Example 9 (A4 solution is used as a condition in the new normal form)
r(x((r(a,b),a > b),{z = o + b}), {a,b,2})

M m(k(o(s(z,d),z > d),{y = =z + d}),{=,d,y})

— m(k(a(r(a,b) s(z,d),a >bAz >dAz=a+b),{y =z +d}),{a,b,z,d,y})

Example 10 (A variable needs to be renamed)

m(k(a(r(a,b),a > b),{z = a +b}),{a,b,z})

s w((o(s(2d),2 >)y {y = = + d}), {d,y})

— m(k(o(r(a,b) ™ s(u1,d),a >bAuy >d),{z =a+by=u +d}),{a,b,z,d,y})

Example 11 (A variable occurs as a head in both solution sets)

m(k(o(r(a,b),a > b),{z = a — b}),{a,b,2})

 w(k(a(s(c,d),c > d),{z = c —d}),{c, d,z})

— m(k(o(r(a,b) ™ s(c,d),a >bAc>dAa—b=c—d),{z =a—0b}){ad,z,c,d})

6 Conclusions

In this paper we have defined PCSJL, a language with expressions built up using
the operations projection, selection, join and calculate. We have shown that a Nor-
mal Form Theorem for this language exists, by giving a construction to transform

10

arbitrary relational expressions into normal form. Since renaming for attributes can
be directly defined in terms of the above relational operators, it is included in the
normalization construction. Also the union operator can be added to this framework
without difficulty, as we outlined before. Finally we mentioned a prototype system
to demonstrate that the construction can be practically implemented.

There are several directions for further research in this area. First of all the
translation of RL-expressions into PCSJL-expressions is to be worked out, making
use of a constraint solver: this is currently investigated by the authors. Another
interesting point is the existence of a normal form that includes the difference oper-
ator. However there seems to be no easy normal form for this case since in general
projection does not commute with set difference.

References

[DATE87] Date, C.J., A Guide to the SQL Standard, Addison-Wesley Publishing
Company 1987.

[DATES89] Date, C.J. & White, C.J., A Guide to DB2, (Third Edition), Addison-
Wesley Publishing Company 1989.

[DEN88a] van Denneheuvel, S. & van Emde Boas, P., Constraint solving for
databases, Proc. of NAIC 1, Apr. 1988

[DEN88b] van Denneheuvel, S. & van Emde Boas, P., Towards implementing RL,
Preprint CT-88-11, Institute for Language, Logic and Information,
University of Amsterdam, 1988

[DEN89] van Denneheuvel, S. & Renardel de Lavalette, G. R., Normalisation
of Database ezxpressions involving Calculations, Logic Group Preprint
Series No.45, Department of Philosophy, University of Utrecht, 1989

[HANS88] Hansen, M.R., Algebraic Optimization of Recursive Database Queries,
Information Systems and Operations Research 26 (1988) 286-298

[HANS89] Hansen, M.R., Hansen, B.S., Lucas, P. & van Emde Boas, P., Inte-
grating Relational Databases and Constraint Languages, in Comput.
Lang. Vol. 14, No. 2, 63-82, 1989.

[LARS5] Larson, P.A., Yang, H.Z., Computing Queries from Derived Relations,
Proc. of the 11th Intl. Conf. on VLDB, 259-269, (1985).

[ULL89] Ullman, J.D., Principles of Data and Knowledge - Base Systems, Vol-
ume II: The New Technologies, Computer Science Press, 1989.

[VEMDS86a] van Emde Boas, P., RL, a Language for Enhanced Rule Bases Database
Processing, Working Document, Rep IBM Research, RJ 4869 (51299)

11

[VEMDS86b] van Emde Boas, P., A semantical model for the integration and mod-

[VEMD86c]

[YANST]

ularization of rules, Proceedings MFCS 12, Bratislava, August 1986,
Springer Lecture Notes in Computer Science 233 (1986), 78-92

van Emde Boas, H. & van Emde Boas, P., Storing and Evaluating
Horn-Clause Rules in a Relational Database, IBM J. Res. Develop. 30
(1), (1986), 80-92

Yang, H. Z., Larson, P. A., Query Transformations for PSJ-queries,
Proc. of the 13th Int. Conf. on VLDB, Brighton, 245-254, (1987)

12

attr

The ITLI Prepublication Series

1990

Logic, Semantics and Philosophy of Language
LP-90-01 Jaap van der Does .
LP-90-02 Jeroen Groenendijk, Martin Stokhof
LP-90-03 Renate Bartsch
Mathematical Logic and Foundations
ML-90-01 Harold Schellinx
ML-90-02 Jaap van Oosten
ML-90-03 Yde Venema
Computation and Complexity Theory
CT-90-01 John Tromp, Peter van Emde Boas
CT-90-02 Sieger van Denneheuvel

Gerard R. Renardel de Lavalette
Other Prepublications
X-90-01 A.S. Troelstra

X-90-02 Maarten de Rijke
X-90-03 L.D. Beklemishev
X-90-04

X-90-05 Valentin Shehtman

A Generalized Quantifier Logic for Naked Infinitives
Dynamic Montague Grammar
Concept Formation and Concept Composition

Isomorphisms and Non-Isomorphisms of Graph Models
A Semantical Proof of De Jongh's Theorem
Relational Games

Associative Storage Modification Machines
A Normal Form for PCSJ Expressions

Remarks on Intuitionism and the Philosophy of Mathematics,
Revised Version

Some Chapters on Interpretability Logic

On the Complexx% of Arithmetical Interpretations of Modal Formulae
Annual Report 1939

Derived Sets in Euclidean Spaces and Mcdal Logic

| Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and Information

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)

Plantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam 1012CP Amsterdam

A NORMAL FORM FOR PCSJ EXPRESSIONS

Sieger van Denneheuvel
Department of Mathematics and Computer Science
University of Amsterdam

Gerard R. Renardel de Lavalette
Department of Philosophy
University of Utrecht

Received April 1990

1986 The ITLI Prepublication Series

86-01 The Institute of Language, Logic and Information

86-02 Peter van Emde Boas A Scmantical Model for Integration and Modularization of Rules

86-03 Johan van Benthem Categorial Grammar and Lambda Calculus

86-04 Reinhard Muskens A Relational Formulation of the Theory of Types

86-05 Kenneth A. Bowen, Dick de Jongh Some Complete Logics for Branched Time, Part I Well-founded Time,

i6- Johan van Benthem Logical Syntax Forward looking Operators
987 87-01 Jeroen Groenendijk, Martin Stokhof Type shifting Rules and the Semantics of Interrogatives

87-02 Renate Bartsch Frame Representations and Discourse Representations

87-03 Jan Willem Klop, Roel de Vrijer Unique Normal Forms for Lambda Calculus with Surjective Pairing

87-04 Johan van Benthem Polyadic quantifiers :

87-05 Victor Sénchez Valencia Traditional Logicians and de Mo;gan's Example

87-06 Eleonore Oversteegen Temporal Adverbials in the Two Track Theory of Time

87-07 Johan van Benthem Categorial Grammar and Type .Theory

87-08 Renate Bartsch The Construction of Properties under Perspectives

87-09 Herman Hendriks Type Change in Semantics: The Scope of tification and Coordination

1988 | p_83.01 Michiel van Lambalgen Logic, Semantics and Philosophy of Language: Algorithmic Information Theory

LP-88-02 Yde Venema Expressiveness and Completeness of an Interval Tense Logic

LP-88-03 Year Report 1987

LP-88-04 Reinhard Muskens Going partial in Montague Grammar

LP-88-05 Johan van Benthem Logical Constants across Vu{ing Types

LP-88-06 Johan van Benthem Semantic Parallels in Natural Language and Computation

LP-88-07 Renate Bartsch Tenses, Aspects, and their Scopes in Discourse

LP-88-08 Jeroen Groenendijk, Martin Stokhof Context and Information in Dynamic Semantics

LP-88-09 Theo M.V. Janssen A mathematical model for the CAT framework of Eurotra

LP-88-10 Anncke Kleppe . . A Blissymbolics Translation Program

ML-88-01 Jaap van Oosten Mathematical Logic and Foundations: | jfschitz' Realizabiility

ML-88-02 M.D.G. Swaen The Arithmetical Fragment of Martin L&f's Type Theories with weak Z-elimination

ML-88-03 Dick de Jongh, Frank Veltman Provability Lo?ics for Relative Interpretability

ML-88-04 A.S. Troelstra On the Early History of Intuitionistic Logic

ML-88-05 A.S. Troelstra . Remarks on Intuitionism and the Philosophy of Mathematics

CT-88-01 Ming Li, Paul M.B.Vitanyi Computation and Complexity Theory: Two Decades of A,;pﬁed Kolmogorov Complexity

CT-88-02 Micﬁiel H.M. Smid General Lower Bounds for the Partitioning of Range Trees

CT-88-03 Michiel H.M. Smid, Mark H. Overmars Maintaining Multiple Representations of
Leen Torenvliet, Peter van Emde Boas Dynamic Data Structures

CT-88-04 Dick de Jongh, Lex Hendriks Computations in Fragments of Intuitionistic Propositional Logic
Gerard R. Renardel de Lavalette

CT-88-05 Peter van Emde Boas Machine Modcls and Simulations (revised version)

CT-88-06 Michiel H.M. Smid A Data Structure for the Union-find Problem having good Single-Operation Complexity

CT-88-07 Johan van Benthem Time, Logic and Computation

CT-88-08 Michicl H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures
Leen Torenvliet, Peter van Emde Boas
CT-88-09 Theo M.V. Janssen Towards a Universal Parsing Algorithm for Functional Grammar

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy
CT-88-11 Sicger van Denncheuvel, Peter van Emde Boas Towards implementing RL
X-88-01 Marc Jumelet Other prepublications: On Solovay's Completeness Theorem

9 LP-89-01 Johan van Benthemlogic. Semantics and Philosophy of Language:The Fine-Structure of Categorial Semantics

LP-89-02 Jeroen Groenendijk, Martin Stokhof = Dynamic Predicate Logic, towards a compositional,
non-representational semantics of discourse

LP-89-03 Yde Venema Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-04 Johan van Benthem La:g‘u‘a e in Action

LP-89-05 Johan van Benthem M ic as a Theory of Information

LP-89-06 Andreja Prijatelj Intension‘ﬁ Lambek Calculi: Theory and Application

LP-89-07 Heinrich Wansin The Adea'uacy Problem for Sequential Propositional Logic

LP-89-08 Victor Sénchez Valencia Peirce’s Propositional ic: From Algebra to Graphs

LP-89-09 Zhisheng Huang Dependency of Belief in Distributed Systems

ML-89-01 Dick de Jongh, Albert Visser Mathematical Logic and Foundations: Explicit Fixed Points for Interpretability Logic
ML-89-02 Roel de Vrijer Extending the Lambda Calculus with Surjective Pairing is conservative

ML-89-03 Dick de Jongh, Franco Montagna Rosser Orderings and Free Variables
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna On the Proof of Solovay's Theorem

ML-89-05 Rincke Verbrugge Z-complcteness and Bounded Arithmetic

ML-89-06 Michiel van Lambalgen The Axiomatization of Randomness

ML-89-07 Dirk Roorda Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
ML-89-08 Dirk Roorda Investigations into Classical Linear Logic

ML-89-09 Alessandra Carbone . Provable Fixed points in 149+Qy

CT-89-01 Michiel H.M. Smid Computation and Complexity Theory: Dynamic Deferred Data Structures

CT-89-02 Peter van Emde Boas Machine Modcls and Simulations

CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvliet, Peter van Emde Boas ~ On Space Efficient Simulations

CT-89-04 Harry Buhrman, Leen Torenvliet A Comparison of Reductions on Nondeterministic Space

CT-89-05 Picter H. Hartel, Michiel HM. Smid A P | Functional Implementation of Ra i
Leen Torenvliet, Willem G. Vree wmilel Hane P on nge Querics

CT-89-06 H.W. Lenstra, Jr. Finding Isomorphisms between Finite Ficlds .
CT-89-07 Ming Li, Paul M.B. Vitanyi A Theory of Lcaminf Simple Concepts under Simple Distributions and
Average Casec Complexity Tor the Universal Distn'gution (Prel. Version)
CT-89-08 Harry Buhrman, Steven Homer Honest Reductions, Completeness and
Leen Torenvliet Nondeterminstic Complexity Classes

CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet On Adaptive Resource Bounded Computations
CT-89-10 Sieger van Denncheuvel The Rule Language RL/1
CT-89-11 Zhisheng Huang, Sieger van Denncheuvel Towards Functional Classification of Recursive Query Processing

Peter van Emde Boas L
X-89-01 Marianne Kalsbeek Other Prepublications: An Orey Sentence for Predicative Arithmetic

X-89-02 G. Wagemakers New Foundations: a Survey of Quine's Set Theory
X-89-03 A.S. Troelstra Index of the lleyting Nachlass
X-89-04 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar, a first sketch
X-§9—gg ywten dle; R‘;iijk?3 TEche lh{Aodal Theory of Inequality
-89- eter van Emde Boas n Relationcle Scmantick voor Conceptueel Modelleren: Het RL-proj
’1(9 0 SEE INSIDE BACK COVER ® crierems Het Toproject

