Institute for Language, Logic and Information

GENERALIZED KOLMOGOROV COMPLEXITY
IN RELATIVIZED SEPARATIONS

Ricard Gavalda
Leen Torenvliet
Osamu Watanabe
José L. Balcdzar

ITLI Prepublication Series
for Computation and Complexity Theory CT-90-03

%
&
%

University of Amsterdam

Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and Information

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)
Plantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam 1012CP Amsterdam

GENERALIZED KOLMOGOROV COMPLEXITY
IN RELATIVIZED SEPARATIONS

Ricard Gavalda José L. Balcazar
Departement de Llenuaguatges i Sistemes Informatics
Univ. Politécnica de Catalunya, Barcelona
Leen Torenvliet
Department of Mathematics and Computer Science
University of Amsterdam
Osamu Watanabe
Department of Computer Science
Tokyo Institute of Technology, Tokyo

ITLI Prepublication Series
for Computation and Complexity Theory The work of R. Gavalda and J.L.Balcézar
ISSN 0924-8374 was partially supported by the ESPRIT 1

Basic Research Actions Program of the EC
Received June 1990 under contract no. 3075 (project ALCOM).

GENERALIZED KOLMOGOROV COMPLEXITY
IN RELATIVIZED SEPARATIONS i

Ricard Gavalda *, Leen Torenvliet **, Osamu Watanabe ***, and José L. Balcizar *

Abstract.We describe several developments of a technique, due to Hartmanis,
that uses Kolmogorov complexity to prove the existence of relativizations separating
complexity classes. The main advantage of these proofs is that they clearly show the
limitations of certain classes of oracle machines and the relevance of these limitations
for the proof. Such limitations refer to the extent to which the machines defining
the class are able to process Kolmogorov-complex structures.

1. Introduction

We describe several applications of generalized Kolmogorov complexity to show
separations of relativized complexity classes. Our emphasis is not so much on the results,
which can be obtained by more usual techniques like slow diagonalizations, but in the clear
explanation provided by the techniques used here: each proof makes apparent a weakness
in the computational power of a class of oracle machines.

We follow Hartmanis’ [8] definition of resource-bounded Kolmogorov complexity.
The use of this concept to prove relativized separation results is very advantageous: the
power of a class of oracle machines can be clearly described by the extent to which these

t The work of R. Gavalda and J.L. Balcdzar was partially supported by the ESPRIT 11
Basic Research Actions Program of the EC under contract No. 3075 (project ALCOM).
Authors’ adresses:

* Departament de Llenguatges i Sistemes Informatics, Univ. Politécnica de Catalunya.
08028 Barcelona, Spain.

** Department of Mathematics and Computer Science, Universiteit van Amsterdam. Plan-
tage Muidergracht 24, 1018 TV Amsterdam.

*** Department of Computer Science, Tokyo Institute of Technology. Meguro-ku, Ookayama,
Tokyo, Japan 152.

machines are able to create and process random structures. This idea is already used in
Hartmanis’ paper, in which a relativized separation P # NP is described.

For completeness, we begin by describing the use made by Hartmanis of this tech-
nique, providing another example. Then we present some further developments of this
technique. First, we study oracles that give information on how to create complex queries.
This allows us to distinguish between adaptive and nonadaptive machines, showing certain
limitations of nonadaptive oracle access. We also consider the ability to record all queries
and oracle answers on work tapes. This will show certain limitations of space-bounded
machines. Finally, we indicate how the oracle can contain additional information that can
be retrieved only if a complex string (the “password”) is previously found, and how this
idea combines with the abilities just enumerated.

For each technique, we give an intuitive explanation and some examples of appli-
cation, all related to the space-bounded classes PSPACE and NPSPACE and the time-
bounded class EXPTIME. Relativized comparisons of these classes may be obtained
by more traditional techniques like ad-hoc diagonalizations, although to our knowledge
not many of such constructions have been published. A forthcoming publication [7] will
show how to combine these techniques with other structural properties such as printability
to show that all the noncontradictory relationships between PSPACE, NPSPACE, and
EXPTIME hold in the adequate relativization. Results using similar techniques can be
found in [5] and [14]. Generalized Kolmogorov complexity is also used in [1] and [2] to
achieve separations between relativized complexity classes.

2. Preliminaries

Our computational model is the multitape oracle Turing machine with distinguished
QUERY, YES, and NO states. We will consider only time and space bounded machines.
In the case of space bounds, the oracle tape is not considered to be bounded. This un-
boundedness of the oracle tape is important since otherwise most of our results are easily
seen to hold for simple reasons; even stronger results for such a model appear in [12]. In
deterministic machines the oracle tape is bounded a fortiori by the time bound, which is
at most exponential on the space bound. In the nondeterministic case, we explicitly rule
out unbounded computations and force the same exponential bound.

Define EXPTIME as the class of languages that can be recognized in deterministic
2" 4+ O(1) time. Definitions of PSPACE and NPSPACE are standard. For undefined
concepts and notations see [3]. Related background notions will appear in [4].

o(1)

We assume an encoding of instantaneous descriptions (i.d.’s) of machines such that
the length of the input to an i.d. is always visible. The oracle tape of a space bounded
machine is not included in its i.d.’s. The i.d.’s with state QUERY are called query i.d.’s.
Let M be an oracle machine, ¢; any i.d. and ¢; a query i.d. of M. For a word u we say
that (c1,c2) generates u if M can go from i.d. ¢; to i.d. ¢ writing u on the oracle tape
without going through the QUERY state (except in cz).

2

We say that a set is spaced out by a function between natural numbers s(n) if it is
empty at lengths that are not of the form s(n) for any n.

For a natural n, let bin(n) be the binary representation of n. For a string w € {0,1}*,
 is the string that results from doubling each bit of w. The string w' = bin(|w|)01w is
called the self-delimiting version of w. We will denote with z#y the string z'y', and use
4 as a pairing function. It can be seen that |z#y| = |z| + |y| + O(log |zyl).

Generalized or resource bounded Kolmogorov complexity was introduced by several
authors in slightly different ways; see [11] for a complete survey. We will follow the defini-
tion of Hartmanis [8]; some results related to this concept will be presented also in [4]. We
will use the space bounded version. Fix some universal machine U. For any two natural
numbers n, m, a string is in the (finite) set K S[n, m]if U with some description of length
at most n as input and running in space m gives = as output. We will say that a string
of length n is random if it is not in K S[n — 1,m] for some m that will be clear from the
context.

Let w(n) denote the first string of length » in the lexicographical order that is not in
K S[n—1,2"]. The 2™ space bound is not critical: it is only used to ensure that words w(n)
can be found recursively if necessary. In fact, it can be seen that by exhaustive search,
w(n) can be found from input n in space O(2").

3. The ability to create complex queries

In this section we discuss the technique already used in [8] to distinguish between
determinism and nondeterminism, giving a different example of application. The key idea
is that nondeterministic machines can construct complex queries by exploiting nondeter-
minism, but a deterministic machine cannot generate complex queries by itself: each query
is generated in a deterministic computation and can be uniquely reconstructed from the
i.d. of the machine when it starts to compute it. This is the weakness we will use.

We present an oracle for which NPSPACE ¢ EXPTIME; this also means that
PSPACE # NPSPACE for this particular oracle, and is another example of a known fact:
Savitch’s theorem does not relativize with unbounded oracle tape.

To construct the oracle, take some tally set that is too difficult for EXPTIME
machines, but easy enough to be decided if more resources are allowed. The oracle will
tell whether a certain word is in the tally set only if we know a word of related length
that indicates it. If this word is complex, and cannot be constructed from the answers
to other queries, a deterministic machine will not be able to manufacture it. It will then
be as helpless as a non-oracle machine. To ensure that other, smaller, queries do not give
much information, we will keep words in the oracle largely separated.

1. Theorem. There is an oracle A such that NPSPACE(4) ¢ EXPTIME(A).

Proof. Construct by diagonalization a tally set T ¢ EXPTIME, but decidable within
some larger time bound, for instance double exponential time. At the same time, make
T spaced out by some function s(.) much larger than a double exponential, i.e., T' only
contains words of the form 0°(™). If s(.) grows fast enough, a machine on input 0°(™
can perform the construction of T' up to length s(m — 1) in o(log (s(m))) space. Define
A={w(2™) |0 €T }.

Notice first that ' € NPSPACE(A) by the following algorithm: On input 0", guess
a word of length 2™ and accept iff it is in the oracle.

We claim that T ¢ EXPTIME(A): Assume that an EXPTIME machine E running
in time 2 decides T' with oracle A. We will give a deterministic machine for T' that skips
all oracle queries.

On input 0, with n = s(m), simulate E(0™) solving oracle queries as follows: for a
query u of length 2%, with I < s(m — 1), test that 0' € T' (with a slow algorithm for T') and
that u = w(2') (using a slow algorithm to generate w(2')). For longer queries, assume a
NO answer.

It is clear that this procedure answers “small” queries correctly. For other queries,
it could only be mistaken if it queried precisely for w(2"), which only has descriptions of
size at least 2. We show that all queries of length 2™ have much smaller complexity, so
the algorithm correctly assumes a NO answer. Let ¢ be a table of A up to length s(m —1).
Then the I-th query of E(0™) can be reconstructed from the descriptions of n, ¢, and I: Run
the computation of E(0™) up to the l-th query using ¢ to answer the other queries. Since
t has size smaller than n and E can make at most 2" queries, |[n#t#l| < n+n+n' < 2"
(if n is somewhat large).

This procedure does not query any oracle and, if s(.) grows fast enough, works in
exponential time. This means that T' € EXPTIME, which is in contradiction to the way
T was chosen. n

4. The ability to create complex queries with oracle guidance

The technique discussed in this section allows us to separate relativized complexity
classes using adaptiveness properties. There is no formal definition of the concept of
“adaptiveness”. Intuitively, an adaptive machine is able to ask queries that inherently
depend on the answers to previous queries. For instance, polynomial time truth-table
reducibility [10] is nonadaptive by definition, since it corresponds to querying the oracle
after deciding all the queries to be made (such a behavior has been called also “parallel
queries”). On the other hand, polynomial time Turing reducibility is adaptive, since it can
ask queries that depend of previous answers, and this fact allows one to prove that it differs
from polynomial time truth-table reducibility [10]. On the contrary, nondeterministic
polynomial time Turing reducibility is nonadaptive, since it coincides with nondeterministic

4

polynomial time truth-table reducibility [10]. The reason is that nondeterminism allows
the machine to figure out the answers in advance, and to compute the queries using the
guessed answers.

The fact that space-bounded machines suffer from a lack of adaptiveness (or at least
from a limitation on their adaptiveness) due to the impossibility of recording many answers
has been observed before; e.g. Wagner [13] shows that logarithmic space Turing reducibility
to NP is the same as polynomial time truth-table reducibility to NP. Discussions on the
adaptiveness of logspace machines and its relationship to circuit classes and nonuniformity
can be found in [6]. Here we use generalized Kolmogorov complexity to make apparent the
weakness that arises from lack of adaptiveness.

The general idea of these results is the following: suppose that acceptance depends
on a particular word that is hard to construct. If the oracle gives enough information
on how to find this word, and a machine can record all the answers, it will be able to
find it. In other words, a machine can construct long random structures because it can
“extract complexity” from the oracle piece by piece. But a space bounded machine is
weaker because it cannot build the complex word to be queried.

The example we present here is a separation of EXPTIME from PSPACE. This
result also follows from a construction in [9]. They give a tally set in P — DLOG (rela-
tivized), so the set of indexes of that tally set is in EXPTIME — PSPACE (relativized). In
our construction, the set in EXPTIME — PSPACE is itself a tally set.

As in the last section, we will take a tally set that is too difficult for PSPACE and
encode it with some complex words in the oracle. Now, the oracle will also contain all
the prefixes of these words. An EXPTIME machine can find the word because it can
follow all the prefixes, but a PSPACE machine, that can only remember a small amount of
information between queries, cannot build complex queries using little space. The idea of

including in the oracle the prefixes of complex words is used in [14] to show that polynomial
time Turing and truth-table reducibilities differ in EXPTIME.

2. Theorem. There is an oracle B such that PSPACE(B) 2 EXPTIME(B).

Proof. Define the set PREF = {0"#v | v is a prefix of w(n) }. Since words w(n) can
be found in O(2") space, PREF can be decided in O(2"™) space by exhaustive search.
Construct by diagonalization a tally set 7 ¢ EXPTIME(PREF), that should be decidable,
for instance, within quadruple exponential time by reconstructing PREF. Also make T
spaced out more than a quadruple exponential. Define B = PREF @ {w(2") | 0" € T }.

With the help of PREF, T € EXPTIME(B): On input 0", expand bitwise 02" 4
to find w(2™) and accept iff it is in the oracle.

However, T is not in PSPACE(B). To show this, assume that a PSPACE machine M
that works in n* space decides T with oracle B. On input 0™, every query that M constructs
is uniquely determined by the contents of its work tapes after the previous oracle query
(or at the beginning of the computation). Since it uses no more than n' space and no

5

description of w(2™) can be so short, M cannot construct and query w(2™).

Now it is possible to give a PSPACE algorithm that only queries PREF and de-
cides T, giving a contradiction. This is done like in the previous theorem. [

5. The ability to create complex queries and know it

We have seen in section 3 that nondeterministic machines can generate complex
queries. Take for instance the set not in PSPACE that we constructed in the last section.
This set is in fact in NPSPACE, because a nondeterministic machine can find the coding
word without following the prefixes. Yet, the exponential time machine in the construction
has an advantage over any nondeterministic polynomial space machine: it can keep the
complex query stored in worktape and thereby perform a deterministic construction, so
that the machine knows that the construction succeeded. The nondeterministic machine
can find it nondeterministically, but cannot distinguish it from other queries, and cannot
be sure of whether the construction succeeded.

In this section we exploit this limitation of nondeterministic machines: when they
try to generate a complex query they may succeed, but they cannot know whether they
succeed. More precisely, they can guess and ask a very long and difficult query, but only at
the price of confusing it with many more different queries. We prove this fact in a technical
lemma.

3. Lemma. Let N be a NPSPACE machine that works in space n’, and let ¢;, ¢z bei.d.’s
of N over the same input of length n. Suppose (c1,c2) generates some word u of length
2" not in KS[2" —1,22"]. Then (c1,cz) generates at least 22" 3™ words of length 2™.

Proof. Suppose that there are k such words and that u is the I-th of them in lexicographical
order (I < k). Then, from description c; #ca#1, we can recover u: For every word of length
2", explore the whole computation tree of N between ¢; and ¢z, and find whether the word
is generated; stop when the [-th word that satisfies this condition is found. All this can
be done in space 22”. Since, by the hypothesis on u it must be that 2™ < [ci#fca#fl| <
les #eo#tk| < 3n* + |k|, we have k > 22" —37,]

Now the main point is the following: using oracle guidance, an exponential time
machine can find the long complex string that must be asked, and it knows that the string
is the correct one. On the other hand, a nondeterministic machine can guess the complex
string and trust a YES answer, but cannot trust a NO answer since it may have failed
to guess the right string. So if one bit is encoded in the oracle as the absence of the
complex string, instead of encoding it as its presence, this bit is no longer accessible to
nondeterministic space-bounded machines.

4. Theorem. There is an oracle C such that EXPTIME(C) ¢ NPSPACE(C).

Proof. Define the set PREF as in the last section, and construct by diagonalization a tally
set T that is not in NPSPACE(PREF). Again, make sure that T can be decided within
some large time bound and that it is spaced out by a larger function s(.), so that small words
in T can be found easily enough. The oracle C is defined as PREF & {w(2™) | 0" ¢ T }.

The set T' is in EXPTIME(C), because an EXPTIME machine can find w(2"), query
it and then accept iff it receives a NO answer.

We show now that T ¢ NPSPACE(C). Suppose to the contrary that T is accepted
by machine N with oracle C in space n‘. We claim that N would not really need w(2")
in the oracle to decide 0™. Call w = w(2") for simplicity.

Claim: For n large, N(0™) accepts with oracle CU{1w} iff it accepts with oracle C — {1w}.

Proof of the Claim. From left to right, since N accepts T, if 1w € C, N cannot accept
0" with oracle C = C U {lw}. If 1w ¢ C, it is true that N accepts 0™ with oracle
C =C —{1lw}.

(From right to left: Suppose N(0™) accepts with oracle C — {1w}. If there is an
accepting computation path that does not query lw, this path still accepts with oracle
C U {1w}. Otherwise, choose an accepting path and let (c1,c2) be the pair of i.d.’s that
generates w the first time that 1w is queried on this path. Since w has length 2™ and is
random, by lemma 3, there are many other words v that are also generated from (c;, ¢2).

But N gets a NO answer both from 1w and 1v (because none of them is in C—{1w}),
so after these queries N is exactly in the same configuration. This means that the path
that generates lv is also accepting. Repeating this argument for all queries to 1w along
the path, we get an accepting path that does not query 1w. This path will accept even if
1w is added later to the oracle.]

Consider now the following NPSPACE machine N', that behaves like NC but skips
all queries to the oracle:

On input 07, for n large, test first that n = s(m). Simulate N until it queries its
oracle on a word lu. If s(m — 1) > |ul, then u is so small that 1u € C can be decided
directly by the algorithm for T' in space polynomial in n. Otherwise, 1u could be in C
only if u = w(2"™). Assume a NO answer without even asking the query to the oracle.

N' with oracle PREF thus simulates N with oracle C — {1w}, which by the claim
is equivalent to using oracle C. We have a NPSPACE machine that accepts T' with oracle
PREF, which is in contradiction to the way T' was constructed.]

Note that the set T' is however in coNPSPACE(C), and so NPSPACE(C) is not
closed under complements. This is also true if the set of prefixes is not added to the
oracle. So, NPSPACE # coNPSPACE in a relativized world does not imply in itself
that EXPTIME ¢ NPSPACE in that world, because in the given example the set T' €
coNPSPACE is not in EXPTIME without the guiding prefixes.

7

6. Complex strings as “passwords”

The preceding constructions can be understood as encoding a tally set into the
oracle, protecting each bit of the characteristic function of the tally set by a complex
“password” that only certain machines can find. Similarly, other information can be en-
coded in the oracle protected by a complex prefix. As an example, we use this fact to give
an oracle that makes PSPACE g NPSPACE = EXPTIME.

In this case, we will add an EXPTIME-complete set to a set that makes PSPACE ;Cﬁ
EXPTIME. Every word of the complete set will be prefixed by a complex word. The words
in the complete set will then be “hidden” from all PSPACE machines. Since they will not
be able to access the set (except on small lengths), we will keep PSPACE ;C.g EXPTIME. On
the other hand, NPSPACE machines can guess any word they need to solve any EXPTIME
predicate.

5. Theorem. Thereis aset D such that PSPACE(D) & NPSPACE(D) = EXPTIME(D).

Proof. Take the set B in section 4 such that PSPACE(B) & EXPTIME(B). Recall
that B was the join of PREF with another set, and that there was a tally set T €
EXPTIME(B) — PSPACE(B).

To construct a complete set, fix an effective enumeration of clocked EXPTIME
machines, { E;}, such that any E; runs in time at most 2" on inputs of size n. Define D
as B ® {w(m)#i#z | m = 2/°" and EP accepts z (in time m) }.

We show first that, still, T ¢ PSPACE(D). Suppose, to the contrary, that a
PSPACE machine M accepts T' with D as an oracle, and runs in space n’. Consider
the simulation of this machine on input 0™, with oracle B instead of D and solving queries
to the second part of D as follows:

- Queries of the form u#j#y to D, with |u| < n’. Then it is possible to simulate
E?(y) in O(n‘) additional time (and space). With the help of PREF, test also that

u = w(2lv").
- Queries of the form u#j#y to D, with |u| > n'. A NO answer can be assumed
since u cannot be w(2/¥’): it has been generated from an i.d. of M of size n < |u].

So, T can be decided by a PSPACE machine that only uses B as an oracle. This is
not possible by the assumptions about T' and B. Since T € EXPTIME(B) and B is one
of the components of D, we have shown that PSPACE(D) # EXPTIME(D).

Now we prove that NPSPACE(D) can decide any EXPTIME(D) predicate. First
note that EXPTIME(D) = EXPTIME(B): If a machine has time enough to query
w(212)#i#z to oracle D, the query can be solved in time O(2!*I') with oracle B, and
so writing a query down takes roughly as much time as solving it. Now it is clear that
EXPTIME(B) C NPSPACE(D): To solve whether E;(z) accepts with oracle B, a nonde-
terministic machine guesses the word w(2/®I") on the oracle tape, writes #i#z and finally
accepts iff it gets a YES answer from D.

It remains to show that NPSPACE(D) C EXPTIME(D). Consider any nondeter-
ministic machine N that runs in space n’ on inputs of size n, and so can query words of
length up to 2™, We claim that there is an EXPTIME(D) machine that, on input 0%,
builds a sorted table of D up to length 2™'.

This is easy for B since it is closed under prefixes. The other component of D
contains words of the form w(2™)#j#y, with |w(2™)| = 2™ and |j#y| < m. So, for any
m there are at most 2™ words of the form 1w(2™)#j#y in D.

The claimed machine, on input n and for all m < n’: 1) Finds w(2™) using PREF,
2) scans all words 1w(2™)#j#y and adds to the table those that arein D and have length
< 2™, and 3) sorts the resulting table. This procedure captures all D and some routine
calculations show that it runs in time polynomial in 2.

Define now the set
Ly = {z#I#0™ | m = 2lel’ and N accepts z using the sorted list [as an oracle }

With a little care, words in Ly can be decided in nondeterministic logspace: On input
z#1#0™, test first that [is a sorted list Iy #I># ... #l, (this can be done in logspace) and
simulate N(z); whenever N starts writing on its oracle tape, guess nondeterministically an
index u < k. We will test that the query word that N is going to write is lexicographically
between I, and l,+1.

When N writes a new bit on the oracle tape, test that the query that N is writing
can still be between I, and l,4;. If this is not true, abort the computation and reject (u
was a wrong guess). When N finally enters its QUERY state, assume a YES answer if it
has exactly written either I, or l,+;. Otherwise, since the query is strictly between I, and
ly+1, it is not in ! and a NO answer can be assumed.

All these tests can be done locally and there is no need to keep the whole query, so
this simulation uses the same space as N plus some pointers to the list [. This is about
|z|* + O(log |I|) = O(log |z#I#0™|), which means Ly € NLOG C P. Then, for every
N, the following EXPTIME(D) machine accepts exactly the same language as NP: On
input z, obtain the accessible part of oracle D, [/, and run the P algorithm for Ly on
z#IF#0™, with m = 2121, N

See [7] for a more general discussion of the oracles such that NPSPACE C EXPTIME,
as well as some conditions that make Savitch’s theorem work.

7. Acknowledgement

The interchange of ideas that finally crystallized in this paper began at a workshop
organized by Ron Book at UCSB in june 1987. Thanks are due to him for providing two
of the authors with periodic opportunities to discuss about research.

8. References

[1] E. Allender: “Limitations of the upward separation technique”. In: Proc. 16th Int.
Coll. Automata, Languages, and Programming (1989), 18-30. Springer-Verlag Lec-
ture Notes in Computer Science 372.

[2] E. Allender and C. Wilson: “Downward translations of equality”. Rutgers University
Technical Report DCS-TR-258, 1989.

[3] J.L.Balcézar, J. Diaz, and J. Gabarré: Structural Complezity I. EATCS Monographs
on Theoretical Computer Science, vol. 11 (1988), Springer-Verlag.

[4] J.L. Balcdzar, J. Diaz, and J. Gabarré: Structural Complezity II. EATCS Mono-
graphs on Theoretical Computer Science, vol. 22 (1990), Springer-Verlag (in press).

[5] R.Book, P. Orponen, D. Russo, and O. Watanabe: “On exponential lowness”. STAM
Journal on Computing 17 (1988), 504-520.

[6] H. Buhrman, E. Spaan, and L. Torenvliet: “On adaptive resource bounded compu-
tations” (submitted for publication).

[7] R. Gavalda: “Separations of exponential time and polynomial space”. Research re-
port, LSI Department, Univ. Politécnica de Catalunya (in preparation).

[8] J. Hartmanis: “Generalized Kolmogorov complexity and the structure of feasible
computations”. In: Proc. 24th IEEE Symposium on Foundations of Computer Sci-
ence (1983), 439445,

[9] R. Ladner and N. Lynch: “Relativization of questions about log space computabil-
ity”. Mathematical Systems Theory 10 (1976), 19-32.

[10] R. Ladner, N. Lynch, and A. Selman: “A comparison of polynomial time reducibil-
ities”. Theoretical Computer Science 1 (1975), 103-123.

[11] M. Li and P.M.B. Vitanyi: “Two decades of applied Kolmogorov complexity”. In:
Proc. 8rd Structure in Complezity Theory Conference (1988), 80-101.

[12] P. Orponen: “Complexity classes of alternating machines with oracles”. In: Proc.
10th Int. Coll. Automata, Languages, and Programming (1983), 573-584. Springer-
Verlag Lecture Notes in Computer Science 154.

[13] K. Wagner: “Bounded query computations”. In: Proc. 3rd Structure in Complezity
Theory Conference (1988), 260-277.

[14] O. Watanabe: “A comparison of polynomial time completeness notions”. Theoretical
Computer Science 54 (1987), 249-265.

10

The ITLI Prepublication Series

1990
Logic, Semantics and Philosophy of Language
LP-90-01 Jaap van der Does, .
LP-90-02 Jeroen Groenendijk, Martin Stokhof
LP-90-03 Renate Bartsch
LP-90-04 Aarne Ranta
Mathematical Logic and Foundations
ML-90-01 Harold Schellinx
ML-90-02 Jaap van Oosten
ML-90-03 Yde Venema
ML-90-04 Maarten de Rijke
Computation and Complexity Theory
CT-90-01 John Tromp, Peter van Emde Boas
CT-90-02 Sieger van Denneheuvel
Gerard R. Renardel de Lavalette
CT-90-03 Ricard Gavalda, Leen Torenvliet
Osamu Watanabe, José L. Balcazar
Other Prepublications
X-90-01 A.S. Troelstra

X-90-02 Maarten de Rijke
X-90-03 L.D. Beklemishev

X-90-04
X-90-05 Valentin Shehtman

A Generalized Quantifier Logic for Naked Infinitives
Dynamic Montague Grammar

Concept Formation and Concept Composition
Intuitionistic Categorial Grammar

Isomorphisms and Non-Isomorphisms of Graph Models
A Semantical Proof of De Jongh's Theorem

Relational Games

Unary Interpretability Logic

Associative Storage Modification Machines
A Normal Form for PCSJ Expressions

Generalized Kolmogorov Complexity
in Relativized Separations

Remarks on Intuitionism and the Philosophy of Mathematics,
Revised Version

Some Chapters on Interpretability Logic .

On the Complexng of Arithmetical Interpretations of Modal Formulae
Annual Report 1989

Derived Sets in Euclidean Spaces and Modal Logic

