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Abstract

We study properties of resource— and otherwise bounded reductions and corresponding
completeness notions on nondeterministic time classes which contain exponential time. As
it turns out most of these reductions can be separated in the sense that their corresponding
completeness notions are different. There is one notable exception. On nondeterministic
exponential time 1-truth table and many-one completeness is the same notion.






1 Introduction

Efficient reducibilities and completeness are two of the central concepts of complexity
theory. Since the first use of polynomial time bounded Turing reductions by Cook [4]
and the introduction of polynomial time bounded many-one reductions by Karp[6], con-
siderable effort has been put in the investigation of properties and the relative strengths
of different reductions and corresponding completeness notions. In 1975 Ladner, Lynch
and Selman [8] gave an extensive survey of different types of reductions and differences
between these reductions on E (= U.e wDTIME (2°)). However, they did not present any
conclusions concerning any differences in complete sets for these various reductions. In
particular they left open the question of whether these different reductions yield differ-
ent complete sets. In 1987, Watanabe [10] building upon earlier work of L. Berman [1],
proved almost all possible differences between the polynomial-time completeness notions
on E and larger deterministic time classes.

The question of differentiating between complete sets for nondeterministic time classes
with respect to various bounded reductions was considered by Buhrman, Homer and Toren-
vliet in [2]. This paper however concentrates on differentiating on completeness notions
defined by standard many-one, bounded truth-table and Turing reductions in both the
polynomial time and logarithmic space case on nondeterministic time and space classes.
A comparison of unbounded polynomial time and logarithmic space bounded reductions
is given in [3] which involves an interesting conflict between the different interpretations of
resource bounded truth table reducibilities. If defined as a bounded branching program,
bounded truth table reducibilities ar as powerful as bounded Turing reductions (As can be
found in [7]). If defined as bounded boolean formulae then logspace bounded truth-table
reductions are identical to logspace bounded Turing reductions only if NC;=LOGSPACE.

In the present paper we concentrate on the remaining open problems between notions
of bounded reducibilities, and the corresponding completeness notions on E, NE, EXP
and NEXP (and solve all of these).

o In section 3, we prove that k-conjunctive and k-disjunctive truth-table completeness
are incomparable.

e In section 4, we show that many-one completeness is the same as 1-truth table
completeness.

¢ In section 5, we give a precise relation between k-Turing and m-truth-table complete-
ness: for k > 1: k-Turing completeness strictly contains k-truth-table completeness,
and for k < m < 2F — 1, k-Turing completeness and m-truth-table completeness are
incomparable.

As all of the considered reductions are bounded by a constant number of queries, the
proofs are independent of the specific model for truth-table reducibilities.

2 Preliminaries

2.1 Machines and languages

Let ¥ = {0,1}. Strings are elements of £*, and are denoted by small letters z,y,u,v,....
For any string  the length of a string is denoted by |z|. Languages are subsets of £*, and



are denoted by capital letters A4, B,C, S, .... For any set S the cardinality of S is denoted
by |S|. We fix a pairing function Azy.<x,y> computable in polynomial time from £* x X*
to B*. We assume that the reader is familiar with the standard Turing machine model.
An oracle machine is a multi-tape Turing machine with an input tape, an output tape,
work tapes, and a query tape. Oracle machines have three distinguished states QUERY,
YES and NO, which are explained as follows: at some stage(s) in the computation the
machine may enter the state QUERY and then goes to the state YES or goes to the state
NO depending on the membership of the string currently written on the query tape in a
fixed oracle set.

Oracle machines appear in the paper in two flavors: adaptive and non-adaptive. For a
non-adaptive machine queries may not be interdependent, whereas an adaptive machine
may compute a next query depending on the answer to previous queries.

Whenever it is obvious that a universal recognizing or transducing machine exists for a
class of languages (i.e. the class is recursively presentable), we will assume an enumeration
of the acceptors and/or transducers and denote this enumeration by M;, M, .... For a
Turing machine M, L(M) denotes the set of strings accepted by M.

2.2 Time classes

Let DTIME (2°*) be the class of sets such that A € DTIME (2°") iff there exists a Turing
machine M whose running time is bounded by 2°™ for n — oo (7 is the length of the input)
and A = L(M). Let NTIME (2°") be the corresponding nondeterministic class. We define

the following classes:

NEXP

D NTIME (2")

=1
o0 .
EXP = |JDTIME (2)
z:‘ol
NE = |JNTIME (2)

c=1

E = |JDTIME(2")

c=1
2.3 Truth tables
The ordered pair <<ay,...,ar>,a> (k > 0) is called a truth-table condition of norm
kif <ai,...,ar> is a k-tuple of strings, and « is a k-ary Boolean function [8]. The set

{a1,...,ax} is called the associated set of the tt-condition. A function f is a truth-table
function if f is total and f(z) is a truth-table condition for every z in ¥*. If, for all z,
f(z) has norm less than or equal to k, then f is called a k-truth-table (k — tt) function.
We say that a tt-function f is a disjunctive (conjunctive) truth-table (dtt (ctt)) function
if f is a truth-table condition whose Boolean function is always disjunctive (conjunctive).

2.4 Reductions, reducibilities and completeness

Let Ay, Ay C ¥*. We say that:



1. A; is polynomial-time many-one reducible to Ay (<? -reducible) iff there exists a
function f computable within polynomial-time such that ¢ € A, iff f(z) € As.

2. A; is polynomial-time k-truth-table reducible to A (Sz_tt-reducible) iff there exists
a polynomial-time bounded ktt-function f such that a(x4,(a1),...,Xx4,(ax)) = true
iff z € Ay, where f(z)is <<ay,...,ax>,a> and x4, is the characteristic function
of the set A,.

3. A, is polynomial-time Turing reducible to A; (<f-reducible) to A, if there exists a
polynomial-time bounded deterministic oracle machine such that A; = L(M, Ay).

4. A is polynomial-time disjunctive (conjunctive) reducible (<% (<2) -reducible) to A,
if Ay <%, A, by some dtt(ctt)-function. For k > 0, A; is k-disjunctive(conjunctive)
reducible (<§_,(<h_.)) to Ay, if A;<};A> by some dtt(ctt)-function of norm k.

Let <P be any of the above reductions

1. A set A is <P hard for some complexity class C iff for all B € C, B is <f reducible
to A.

2. A set A is <P complete for some complexity class C' iff A is <P hard for C and
AeC.

For NEXP we use a standard many-one complete set K. K = {<1,z,l>| machine ¢
has an accepting computation on input z within < [ steps}. Note that this set can be
recognized in 2" steps and is also complete for NE. For EXP we use K = {<1,z,l>|
machine ¢ accepts z within [ steps}.

3 Disjunctive versus Conjunctive Truth-table Reductions

Theorem 1 there exists a set A € NEXP such that A is <b_,-complete but not <§_-
complete.

Proof: Let K be the standard <P -complete set for NE as defined above. To achieve
the separation we construct a set W € E and a set A € NEXP such that W £5__A
but K <) _,A. We assume an enumeration of polynomial time 2-conjunctive truth-table
reductions My, M, ... where M; runs in time n'. We need a set of elements on which to
diagonalize. To do this we define a sequence of integers {b(n)}:

ifn<1
+ 1 otherwise

1
b(n) = { 2b(n—l)n_1

We construct A and W in stages; A = Un—g An

In stage 0 Ag = W = 0.

stage n:

Let A, = {<i,z>| z€ K and b(n — 1) < |<i,2>| < b(n)" and i € {0,1}}
Simulate M,, on input 0°("), M,, queries two strings z and y, w.l.o.g. let z be the largest



(in lexicographic order) of the two. M, accepts iff z and y are both in the oracle set.
There are two cases:

1. |z| < b(n—1)""1
2. b(n—1)""1 < |z| < b(n)"

In case 1 compute the answers relative to A<, of both z and y and put 0" e W iff
M, rejects. Let A, = A:l

In case 2 put 0°(") € W and let A, = A,\{z}. This ensures that M2 rejects on input
0b(n),

end of stage n

We now show that A € NEXP. To decide <%,z> € A (i = 0,1) compute n such that
b(n)™ > |<4,2>| > b(n—1)""1. Simulate machine M, on input 0%(") and compute = and
y. If <i,2> = =z reject, else accept iff z € K. All this can be done in nondeterministic
exponential time, since simulation of machine M, on input 0b(") takes time b(n)™ <
on(b(n—1)""141) < o|<%, 2>

Next we show that W € E . On input 0°(®) simulate M,, on input 0°(") and compute z
and y. If |z] > b(n—1)""! we accept, else we must decide membership of z and y to A. To
compute if ¢ € A, determine n’ < n such that b(n' — )Vl < lg| < b(n')". z € Aiff z is
not the largest query asked by M, and z € K. This takes deterministic time 227! < 9b(n),

Now assume for a contradiction that A is <}_ -complete. Note that 0b(™) € W iff M,
rejects. Then there must be a 2-conjunctive truth-table reduction from W to A. Let M; be
the machine witnessing this reduction. But 0b(4) is in W iff M. ; on input 0%(4) rejects. This
contradicts the fact that M; reduces W to A. This proves that A is not <,__-complete.

Finally we give the <}_,reduction from K to A. Since in every step only one of the
pairs <1,z > or <0,z > can be deleted, z € K iff <0,z>€ Aor <1l,z> € A. Therefore,
the following reduction reduces K to A:

g(z)={<0,z>Vv <1,z>}

Almost the same proof technique yields the following theorem.

Theorem 2 there ezists a set A € NEXP such that A is <5__-complete but not <§_,-
complete.

Proof: The proof is almost the same as the previous one. It differs in case 2 in the
diagonalization. Here we put 0%(") not in W and add z to A;. In this way we ensure
that 0°(") ¢ W iff M2 accepts. Note that z € K iff <0,z> € A and <1,2> € A. The
<P_.reduction from K to A becomes:

g(z) = {<0,z>A<1,z>}
X

It is easy to see that the proofs generalize to <} _, -complete sets v.s. Sz_c -complete
sets (for k > 2). The theorems solve an open problem from Watanabe [10].

4



Corollary 3 For all k > 2 there exists a set A that is <r_,; -complete for NE but not
<P _4 (<h_.) -complete for NE .

This corollary can be strengthened. We are now able to construct a set that is <b
-complete but neither <¥_, -complete nor <r_. -complete.

Corollary 4 For all k > 2 there exists a set A that is <},_,, -complete for NE but neither
<P _, -complete nor <} __ -complete for NE

Proof: To do this we use the constructions of theorem 1 at the even stages and the
constructions of theorem 2 at the odd stages ®

Corollary 5 For all k > 2 there ezists a set A that is <h_; -complete for NE but neither

<EB_,; -complete nor <L_,,-complete.

Clearly all the results in this section go through for E , EXP, and NEXP

4 1-Truth-Table versus Many-One

Another question concerning reductions on E and NE is the following: do the notions
of <P_,,and <2, differ for complete sets. From recursion theory it is known (and easy to
prove) that these two reductions are the same with respect to RE sets. Recently Homer
et. al. [5] showed that these two notions are also the same for E -complete sets. They left
open however the question for NE . We solve this question here. The idea is to first prove
for sets € NE N co-NE that are <f_,,-reducible to a complete set are also <P -reducible
to this set. This can be done using a similar technique as in [5]. Once this is done we are
able to reduce the general case (when this is necessary) to this special case.

Lemma 6 Let T be a <8_,,-complete set for NE . For every set A € NEN co-NE,
ALPT,

Proof: We assume a standard enumeration of polynomial time 1-truth-table reductions
My, M,,...where M, runs in time nt. Let A be any set in NE N co-NE. Now we are going
to construct a set D € NE . We simulate M; on input <%,z> and let z be the string
queried by M;. Now there are 4 possible cases that can occur:

1. M; accepts iff z is in the oracle set.

2. M; accepts iff z is not in the oracle set.
3. M; accepts. (M; is not a 1tt reduction)
4. M; rejects. (M; is not a 1tt reduction)

In case 1 we put the pair <7,z>in Diffz € A

In case 2 we put <7,z>in Diffc ¢ A

In case 3 we put <t¢,z> not in D

In case 4 we put <¢,z>in D

Disin NE . To compute if <4,z > is in D, simulate machine M; on input <<,z > and find
out in which case M; ends up. The only problem is case 2 but since 4 is in NE N co-NE



we can compute if z is in the complement of A. Since D is in NE , D is 1-truth-table
reducible to 7. Let machine M}, witness this reduction and let z be the string queried by
machine M}y, on input <h,z>. Now we can construct the many one reduction f from A
to T

f(z) ==

Since machine M}, runs in polynomial time this reduction also runs in polynomial time.
Machine M}, can not end up in case 3 or 4, since this would contradict the fact the Mj, is
a 1-truth-table reduction from D to T. The following two cases remain possible:

e Machine My, isin case 1: z € A iff <h,z> € D iff M} acceptsift z € T'.
e Machine My, is in case 2: ¢ € A iff <h,z> ¢ D iff My rejects iff 2 € T.
Soinboth casesz € Aiff z € T. K

Now for all sets in NFE if a set is 1-truth-table reducible to a complete set T via say
machine M; there are strings that are accepted if the query is in T'. Those strings are
already many-one reducible to 7. The other strings (i.e. the strings that get accepted by
a query in the complement of T') form a set that is in NE N co-NE and by lemma 6 they
are many-one reducible to T via some other reduction. More formally:

Theorem 7 Every <}_,,-complete set for NE is also <I -complete.

Proof: Let Abeasetin NE , T a 1-truth-table complete set in NE and let M; witness the
reduction from A to T. On any input M; can end up in one of the following four situations:

[y

. M; queries z and accepts iff z € T

2. M; queries z and accepts iff 2 ¢ T

w

. M; accepts

'

. M; rejects
We now split set A in two subsets A; and A,.
Ay = {z | z € A and machine M is not in case 2}
Ay = {z | = € A and machine M; is in case 2}
CLAIM 8 A, isin NEN co-NE.
Proof: We need to show that there is a NE predicate for A, and for the complement of A,.

z € A, iff machine Mj in case 2 and z € A
z ¢ A, iff machine M; not in case 2or z € T



It is clear that both predicates are NE . X

Now we can construct the many-one reduction from A to T': On input z simulate
machine M; on input . If Mj is in case 1 then output z. If M; in case 2 then z is in A
iff z is in As. Since A, is in NE N co-NE there is by lemma 6 a many-one reduction from
A, to T say g. Now output g(z). If M; is in case 3 output a fixed element to € T' and if
M; is in case 4 output a fixed element ¢; ¢ T'. The entire construction can be carried out
in polynomial time. &

The construction can be generalized to a recursion theoretic setting. We relax the time
bounds and end up with recursive reductions. We now have the following equivalent re-
ductions <7¢¢ for a many-one reduction and <7%, for a 1-truth-table reduction in exactly

the same way as the above theorem was proven we can prove the following:

Corollary 9 let £ be the k" level of the arithmetic hierarchy as defined in [9]. For all
k if A is <7, -complete for Ty then A is <[5¢ -complete for Tk.

It would be interesting to prove the same result for the class NP. The problem is
that the technique used in lemma 6 is not applicable for sets in NP. Under the strong
assumption that P = NP N co-NPhowever, we can prove it.

Corollary 10 If P = NP N co-NPthen every <}_,,-complete set for NP is <b, -complete

5 Bounded Turing versus bounded Truth-Table

We now turn our attention to bounded Turing reductions. Informally, these are Turing
reductions where for any input z, the number of queries asked is bounded by a constant
k. Note that by definition, every k-truth table reduction is a k-Turing reduction. It
is well known that every k-Turing reduction can be simulated by (2% — 1)-truth-table
reduction. A natural question one can ask is: “What is the relation between k-Turing re-
ductions versus m-truth-table reductions?” In the previous section, it was proven that for
nondeterministic-exponential-time complete sets: many-one = 1-truth-table = 1-Turing.
In this section we prove that k-Turing reductions are more powerful than k-truth-table
reductions for k > 1, and that for ¥ < m < 2F — 1, k-Turing and m-truth table reductions
are incomparable. These results hold even for the corresponding completeness notions on
NEXP.

Definition 11 Let Q(M,z, A) be the set of strings, queried in the computation of poly-
nomial time oracle machine M with oracle A on input z. We say that B<Y_r A if
there exists a polynomial time oracle machine M such that B = L(M,A) and for all
z,|Q(M,z,A)| < k.

Theorem 12 For every k there exists a set D in NEXP that is <}_p-complete but not
Sz()2k—2)—tt -complete.

As an example of the techniques used, we first prove the degenerate case k = 2, i.e. we
will construct a set D € NEXP such that D is <)_,-complete but not <%_,,-complete.



Proof: Let My, Mo, ..., be an enumeration of the 2-truth-table reductions, where M; runs
in time n¢. Let K be the standard <P, -complete set for NE and let {b(n)}. the sequence
defined in the proof of theorem 1. We will construct sets D and W € NEXP such that
W £P_,, D,and K <5_r D. W and D will be constructed in stages, D = U,Zo Dn-

To ensure that K <) ;. D, we have to exploit the fact that a 2-Turing reduction can
ask 3 queries in its entire oracle tree, while a 2-truth-table reduction can ask at most
2 queries in its entire oracle tree. We will ensure that D C {0,1,2} x K, and use the
following 2-Turing reduction Mr to reduce K to D:

On input z, first query <0,z >. If the answer is YES, query <1,z >, and accept iff
the answer is YES. If the answer to query <0,z > is NO, query <2,z > and accept iff the
answer is YES.

For every 2-truth-table reduction, and for every «, there exists a copy of z that is not
queried. This provides enough freedom to diagonalize against the 2-truth-table reductions,
while still keeping K <) _, D by Mr.

In stage 0 Do =W =0

stage n:
Let D, = {<i,z2>| z € K and b(n — 1)"! < |<4,2>| < b(n)" and 0 < 4 < 2}
Simulate M, on input 0°("). If M, queries strings of length < b(n — 1)(”‘1) compute
the answers to those strings.
Let Q be the set of queries € {0, 1,2} X Z* with length > b(n— 1)("=1), Let i € {0,1,2}
be a number such that Q contains no string of the form <ip,2>. Now we take the
following action, depending on the value of o:

19 = 0: For every y occurring as second member in a pair of @ do
D, = (D \{<2,y>})U{<L,y>}

19 = 1: For every y occurring as second member in a pair of @ do
D, = (D, \{<2,y>})U{<0,y>}

19 = 2: For every vy occurring as second member in a pair of @ do

D, := (Da\ {<0,y>})U{<1,y>}

Now we are able to compute if M,, accepts or rejects.
Put 0°(") in W iff M, rejects on input 0b(r),

end of stage n

We can use a similar argument as in the proof of theorem 1, to prove that D € NEXP,
W € E and W is not <5_,,D.

Our 2-Turing reduction Mr accepts z iff either {<0,2>,<1,2>} C Dor <2,2> € D
and <0,z> ¢ D.

We have the following possibilities for D N {<0,z>,<1,z>,<2,z>}
teK: {<0,z>,<1,z>,<2,z>}or {<0,2>,<1l,z>}or {<1,2>,<2,z>}.
z@€K: Qor{<0,z>}or{<1,z>}.

Thus, Mt accepts z iff € K as required. X



For this proof, it was essential that a 2-Turing reduction can ask more queries in its

entire oracle tree than can a 2-truth-table reduction. Since a k-Turing reduction can ask
2k _ 1 queries in its entire oracle tree, while a 2k _ 2 truth-table reduction can ask at
most 2F — 2 queries in its entire oracle tree, we can use a generalization of the previous
construction to obtain a set D that is SZ_T-complete, but not szk-z)-— tt-complete, thus
proving theorem 12.
Proof: Let My, M, ..., be an enumeration of the 2k _ 2-truth-table reductions, where M;
runs in time n’. Let K be a standard <P,-complete set for NE and let {8(n)}n the sequence
defined in the proof of theorem 1. We construct set D and W in stages; D = UpZo Dn.-
We will ensure that D C {0,...,2*¥ — 2}, and use The following k-Turing reduction Mt to
reduce K to D.

On input z, first query <0,z >. For each query <4,z > at depth < k do the following:
if the answer is YES, query <2i + 1,z >, else query <2¢ + 2,z >. Accept iff the last query
asked gets answer YES.

In stage 0 Do =W =0

stage n:
Let D, = {<i,z>|z € K and b(n — 1)*"! < |<i,2>| < b(n)" and 0 < ¢ < 2k — 2}.
Simulate M,, on input 0°("), If M, queries strings of length < b(n — 1)("‘1) compute
the answers to those strings.
Let Q be the set of queries € {0,...,2% — 2} x £* with length > b(n — 1)1, Let
io € {0,...,2F — 2} be such that Q contains no string of the form <4,z >.
Consider the following tree of depth k, where the nodes are labeled 0, .. ., 2k — 2: the
root has label 0, and for each node at depth < k with label 7, the left child has label
2¢ + 1, and the right child label 22 4 2.

For every y that occurs as second member in a pair of @ and and for every 7 € {0, .. 2k
2},1 # 1o, we take the following action:

1. if 7 occurs on the path from the root to iy then
if ig is in the left subtree of i then D,, := D,, U {<%,y>}
if 4o is in the right subtree of ¢ then D, := D, \ {<%,y>}

2. if 5 occurs to the left of the path from the root to 7o then D, := D, U {<i,y>}
3. if 1 occurs to the right of the path from the root to g then D, := D, \ {<,y>}
4. if 1 is in the left subtree of 7o then D, := D, U {<%,y>}

5. if 4 is in the right subtree of 49 then D, := D, \ {<,y>}

Now we are able to compute if M,, accepts or rejects.
Put 0%(") in W iff M,, rejects on input 0°(").

end of stage n

We can use a similar argument as in the proof of theorem 1, to prove that D € NEXP,

W € E and W is not S€2k—2)—ttD'



Recall that our k-Turing reduction My works as follows: on input z, first query
<0,z >. For each query <3,z > at depth < k do the following: if the answer is YES, query
<2i+1,2>, else query <2i+ 2,z>. Accept iff the last query asked gets answer YES.
View this reduction as a tree of depth k, where the nodes are labelled by the queries, and
a YES (resp. NO) answer to a query corresponds to taking the left (resp. right) branch.

If z € K, M7 on input z takes either the leftmost path in its oracle tree, or the leftmost
path through <ig,z >. In either case we accept.

If ¢ ¢ K, Mr on input z takes either the rightmost path in its oracle tree, or the
rightmost path through <ig,z >. In either case we reject.

Thus, Mr is a reduction from K to D. K

Now we will construct a set D in NEXP that is S’(”k _H)_tt-complete but not <§_,-
complete. A <}_,. reduction can be represented as a binary tree of depth k. Where every
node in the tree represents a query and if the answer to the query is yes we proceed to the
left branch otherwise to the right branch. The idea is to force the <§_; reduction into one
branch by leaving out all the queries (if possible) of that branch. Since there are only k
queries on one branch there remains the freedom to code an extra pair of K into D that
can be queried by a S’(’k +1)- reduction.

Theorem 13 There ezists a set D in NEXP that is S’(’k +1)—t ,-complete but not <P _pcomplete.

Proof: We only give the proof for ¥ = 4. Let K be the standard <P -complete set for
NE and {b(n)}, the sequence defined in the proof of theorem 1. Again we use a stage
construction.

stage n:
D! :={<i,z>| z € K and b(n— 1)("") < |z| < b(n)" and 0 < 7 < 5}
Simulate M,, on input 0%("), compute the answers to the queries that are small i.e.
< b(n - 1)("‘1). Now evaluate the branch where all the other queries receive the
answer NO. Let Q' be the set of the queries that are big (> b(n — 1)(n-1)),
Put 0%(") in W iff M,, rejects
= D;\Q’

end of stage n

Note that for every z : = € K iff <i,z2> € D for some ¢. The 5-truth-table reduction
from K to D becomes:
g(z) ={<0,2>V...<4,z>}

X

Corollary 14 Ifk < m < 2F — 1, then <b_rand <V _,, are incomparable with respect to
complete sets for NEXP.

As before the results also go through for NE ,E and EXP.
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6 Conclusions

In the previous sections we proved that almost reductions on NE, E, EXP and NEXP
are incomparable except those where inclusion is trivial. As a consequence the extended
Berman Hartmanis conjecture for those reductions fails. It follows that for example the
degree of 2-truth-table complete sets are not p-isomorphic. An interesting step would be
to disprove the extended conjecture for the degree of many-one complete sets. Perhaps
the techniques discussed here could lead towards results in that direction.

The proof of the non-separation of many-one and 1-truth-table reductions fails for
NP. The problem is that it is not known if the universal polynomial time function is
computable in NP. For all well behaved classes that contain the universal polynomial
time function, this non-separation result is true.

One area of great interest would be to separate the various polynomial time reductions
on classes between P and PSPACE, and in particular to do this for NP.

All the previous obtained results go through with respect to logspace reductions for
nondeterministic and deterministic space classes that contain that universal logspace func-
tion. Interesting would be to prove similar result for NLOGSPACE.

Acknowledgements We would like to thank Steven Homer and Peter van Emde Boas
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