Institute for Language, Logic and Information

EFFICIENT NORMALIZATION OF
DATABASE AND CONSTRAINT EXPRESSIONS

Sieger van Denneheuvel
Karen Kwast

ITLI Prepublication Series
for Computation and Complexity Theory CT-90-05

University of Amsterdam

%
&
%

1986 The ITLI Prepublication Series

86-01 The Institute of Language, Logic and Information

86-02 Pecter van Emde Boas A Semantical Model for Integration and Modularization of Rules

86-03 Johan van Benthem Categorial Grammar and Lambda Calculus

86-04 Reinhard Muskens A Relational Formulation of the Theory of Types

86-05 Kenneth A. Bowen, Dick de Jongh Some Complete Logics for Branched Time, Part I Well-founded Time,

86-06 Johan van Benthem Logical Syntax Porward looking Operators
87-01 Jeroen Grocnendijk, Martin Stokhof Type shifting Rules and the Semantics of Interrogatives

87-02 Renate Bartsch Frame Representations and Discourse Representations

87-03 Jan Willem Klop, Roel de Vrijer Unique Normal Forms for Lambda Calculus with Surjective Pairing

87-04 Johan van Benthem Polyadic quantifiers

87-05 Victor Sdnchez Valencia Traditional Logicians and de Morgan's Example

87-06 Eleonore Overstecgen Temporal Adverbials in the Two Track Theory of Time

87-07 Johan van Benthem Categorial Grammar and Type Theory

87-08 Renate Bartsch The Construction of Properties under Perspectives

87-09 Herman Hendriks Type Change in Semantics: The Scope of Quantification and Coordination

1988 1 p.83-01 Michiel van Lambalgen Logic, Semantics and Philosophy of Language: Algorithmic Information Theory

LP-88-02 Yde Venema Expressiveness and Completeness of an Interval Tense Logic

LP-88-03 Year Report 1987

LP-88-04 Reinhard Muskens Going partial in Montague Grammar

LP-88-05 Johan van Benthem LogicaFConstants across Varying Types

LP-88-06 Johan van Benthem Semanti: Parallels in Natural Langvage and Computation

LP-88-07 Renate Bartsch Tenses, Aspects, and their Scopes in Discourse

LP-88-08 Jeroen Groenendijk, Martin Stokhof ~ Context and Information in Dynamic Semantics

LP-88-09 Theo M.V. Janssen A mathematical model for the CAT framework of Eurotra

LP-88-10 Anneke Kleppe . . A Blissymbolics Translation Program

ML-88-01 Jaap van Oosten Mathematical Logic and Fourdations: | jfschitz' Realizabiility

ML-88-02 M.D.G. Swaen The Arithmetical Fragment of Martin Lofs Type Theories with weak X-elimination

ML-88-03 Dick de Jongh, Frank Veltman Provability Logics for Relative Interpretability

ML-88-04 A.S. Troclstra On the Early l§islory of Intuitionistic Logic

ML-88-05 A.S. Troelstra . Remarks on Intuitionism and the Philosophy of Mathematics

CT-88-01 Ming Li, Paul M.B.Vitanyi Computation and Complexity Theory: Tyo Decades of Applied Kolmogorov Complexity

CT-88-02 Micl%icl H.M. Smid General Lower Bounds for the Partitioning of Range Trees

CT-88-03 Michiel H.M. Smid, Mark H. Overmars Maintaining Multiple Representations of
Leen Torenvliet, Peter van Emde Boas Dynamic Data Structures

CT-88-04 Dick de Jongh, Lex Hendriks Computations in Fragments of Intuitionistic Propositional Logic
Gerard R. Renardel de Lavalette

CT-88-05 Peter van Emde Boas Machine Models and Simulations (revised version)

CT-88-06 Michiel H.M. Smid A Data Structure for the Union-find Problem having good Single-Opcration Complexity

CT-88-07 Johan van Benthem Time, Logic and Computation

CT-88-08 Michicl H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas
CT-88-09 Theo M.V. Janssen Towards a Universal Parsing Algorithm for Functional Grammar

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondcterminism, Fairness and a Fundaméental Analogy
CT-88-11 Sieger van Denncheuvel, Peter van Emde Boas Towards implementing RL
X-88-01 Marc Jumeler Other prepublications: Op Solovay's Compleicness Theorem

9 LP.89.01 Johan van BenthemLogic, Semantics and Philosophy of Language:The Fine-Structure of Categorial Semantics

LP-89-02 Jeroen Groenendijk, Martin Stokhof ~ Dynamic Predicate Logic, towards a compositional,
non-representational semantics of discourse

LP-89-03 Ydec Venema Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-04 Johan van Benthem Language in Action

LP-89-05 Johan van Benthem Modal Logic as a Theory of Information

LP-89-06 Andreja Prijatelj lnlcnsiona% Lambek Calculi: Theory and Application

LP-89-07 Heinnch Wansin The Adequacy Problem for Sequential Propositional Logic

LP-89-08 Victor Sénchez \Falcncia Peirce's Propositional Logic: ?rom Algebra to Graphs

LP-89-09 Zhisheng Huang Dependency of Belief in %)istn'buled Systems

ML-89-01 Dick de Jongh, Albert Visser Mathematical Logic and Foundations: Explicit Fixed Points for Interpretability Logic
ML-89-02 Roel de Vrijer Extending the Lambda Calculus with Surjective Pairing is conservative

ML-§9-03 Dick de Jongh, Franco Montagna Rosser Orderings and Free Variables
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna On the Proof of Solovay's Theorem

ML-89-05 Rincke Verbrugge X-completencss and Bounded Arithmetic

MI.-89-06 Michiel van Lambalgen The Axiomatization of Randomness

ML -89-07 Dirk Roorda Elcmentary Inductive Definitions in HA: from Strictly Positive towards Monotone
ML-89-08 Dirk Roorda Investigations into Classical Lincar Logic

ML-89-09 Alessandra Carbone . Provable Fixed points in 1A¢+£2;

CT-89-01 Michicl HM. Smid Computation and Complexity Theory: Dynamic Deferred Data Structures

CT-89-02 Peter van Emde Boas Machine Modecls and Simulations

CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvliet, Peter van Emde Boas On Space Efficient Simulations
CT-89-04 Harry Buhrman, Leen Torenvliet A Comparison of Reductions on Nondcterministic Space

CT-89-05 Picter H. Hartel, Michiel H.M. Smid A Parallel Functional Implementation of Range Queries
Leen Torenvlict, Willem G. Vree .

CT-89-06 H.W, Lenstra, Jr. - Finding Isomorphisms between Finite Fields
CT-89-07 Ming Li, Paul M.B. Vitanyi A Theory of Learning Simple Concepts under Simple Distributions and
Average Case Compl%,xity or the Universal Distribution (Prel. Version)
CT-89-08 Harry Buhrman, Steven Homer Honest Reductions, Completeness and
Leen Torenvliet Nondeterminstic Complexity Classes
CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet ~ On Adaptive Resource Bounded Computations
CT-89-10 Sieger van Dennchcuvel The Rule Langnage RL/1

CT-89-11 Zhisheng Huang, Sieger van Denncheuvel Towards Functional Classification of Recursive Query Processing
Peter van Emde Boas

X-89-01 Marianne Kalsbeck Other Prepublications: Ap Orey Sentence for Predicative Arithmetic

X-89-02 G. Wagemakers New Foundations: a Survey of Quine's Set Theory

X-89-03 A.S. Troelstra Index of the Heyting Nachlass

X-89-04 Jeroen Groerendijk, Martin Stokhof Dynamic Montague Grammar, a first sketch

X-89-05 Maarten de Rijke The Modal Theory of Incquality

{»83-06 Peter van Emde Boas Een Relationele lg'ﬁmantick voor Conceptucel Modelleren: Het RL-project
0 SEE INSIDE BACK COVER

Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and
Information

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)
Plantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam 1012CP Amsterdam

EFFICIENT NORMALIZATION OF
DATABASE AND CONSTRAINT EXPRESSIONS

Sieger van Denneheuvel
Karen Kwast
Department of Mathematics and Computer Science
University of Amsterdam

ITLI Prepublication Series

for Computation and Complexity Theory
ISSN 0924-8374

Received October 1990

Efficient normalization of
database and constraint expressions

Sieger van Denneheuvel

Karen Kwast

Department of Mathematics and Computer Science
University of Amsterdam

October 12, 1990

Abstract

In this paper we present a normal form for a relational algebra, consisting of Projection, Selection
and Join, extended with Calculation and Union. The construction of this normal form, using uncon-
ditional rewrite rules, already provides some optimization. Further optimization can be achieved effi-
ciently by applying conditional rewrite rules that directly operate on the normal form. This approach
is compared to more traditional query optimization techniques that do not apply normalization.

Contents
1 Introduction
2 The data language DL

3 Functions of the languages in RELALG
3.1 Functions withrange V
3.2 Functions withrange C oo
3.3 Functions withrange S o
3.4 Functions withrange R o oottt

4 Relational rewrite rules
4.1 Projection, selection and calculationo
4.2 Join and UNION oo e e e e e e e e e
4.3 Generalized relational rules oL

5 The languages PSJL, PCSJL and UPCSJL
51 Thelanguage PSIL
5.2 Adding calculation: PCSJIL
5.3 Adding union: UPCSJIL

6 The languages (PS)JL, (PCS)JL and U(PCS)JL
6.1 Combining projection and selection: (PS)JL
6.2 Adding calculation: (PCS)JL
6.3 Adding union: U(PCS)JL

7 Query optimization of UPCSJL normal forms
8 The language CONSL

9 Conclusions

1 Introduction

PSJ expressions are relational algebra expressions containing only project, select and join operators. This
restricted class of expressions, called PSJL in the sequel, is commonly used in relational databases. PSJL
expressions are studied in [YAN87] and [LARS5], where it is mentioned without proof (which is not very
difficult) that they can be reduced into a normal form where first the join operators are applied, then
selection and finally projection. We give the rules needed to derive the PSJL normal form in Section 5.1.
Such normalization procedures play an important role in query optimization: see [ULL89] and [YANS8T].
Standard optimization techniques can be used to further optimize PSJL normal form expressions: e.g.
in special circumstances the ‘selection before join’ heuristic can be applied to push selection down to the
relational database tables ([ULL89]).

There are several reasons to apply normalization before optimization. Firstly, normalization reduces
the number of relational operators in a relational expression. As a consequence, optimization after
normalization can be more efficient since the number of reducible subexpressions (redexes) on which
optimization rules are applied is also reduced. Moreover the optimization rules can benefit from the fixed
structure of a normal form.

Secondly there is a functional difference between rules used for normalization and rules used for
optimization: the former are unconditional whereas the latter are conditional. A normalization rule
should always be applicable on a subexpression of the proper syntactical format or else a normal form
could not be obtained. On the other hand optimization rules only rewrite if in addition to a proper
format also a condition involving the subexpression is satisfied. Therefore optimization is in general more
expensive than normalization, since applications of optimization rules may fail.

In Section 5.2 we add the relational operator calculate to the above mentioned relational operators,
thus obtaining the language of PCSJL expressions. The question arises whether PCSJL expressions also
can be reduced into a normal form. We prove the existence of a normal form, where the joins are followed
by selection, then calculate and finally projection; moreover, our proof yields a direct construction. This
PCSJL normal form already performs some optimization, but the normal form procedure can serve as the
starting point for further optimization (just as for PSJL normal forms). The proof and the construction
for normal forms can be extended to include the union operator yielding the language UPCSJL in
Section 5.3. In addition renaming for attributes can be incorporated in the normal form without extra
effort since it can be defined directly in terms of the calculate and projection operators. '

The languages PSJL, PCSJL and UPCSJL have in common that they contain operators that can
be combined efficiently into a single operator. Employing such a single operator leads to a more efficient
normalization procedure. We define the corresponding languages (PS)JL, (PCS)JL, U(PCS)JL in
Section 6.1, Section 6.2 and Section 6.3 respectively. In Section 7 we discuss optimization of normal
forms.

Finally in Section 8 we introduce the language CONSL which allows variables that are not bound
by a base relation. Our interest for CONSL expressions lies in its role in the integration of relational
databases and constraint solving. This integration is one of the aims of the declarative Rule Language
RL. The potential for such an integration has been investigated in the context of the Rules Technology
project led by Peter Lucas at the IBM San Jose Research Center: see e.g. [HANS89], [HANS88]. RL was
defined by Peter van Emde Boas in [VEMDS86a], where a relational semantic model is given to interpret
RL (see also [VEMDS86b], [VEMDS86¢]). A considerable part of this language has been implemented by
the first author of this paper: see [DEN8S].

RL can be considered as an extension of SQL with existential quantification over variables occurring
in constraints but not necessarily in relations (as is required in SQL, where all variables in the WHERE
clause have to be present in the FROM clause; see [DATE87],[DATES9]). As a consequence, not all
expressions in RL can be evaluated: imagine what happens when the existential quantifier ranges over
an infinite domain. To be able to deal with these problems, the above-mentioned implementation of
RL is equipped with a constraint solver, which transforms evaluable RL expressions into expressions of
UPCSJL.

Acknowledgements. The authors thank Gerard R. Renardel de Lavalette (University of Utrecht),
Edith Spaan and Peter van Emde Boas (both University of Amsterdam) for useful criticism and remarks.

2 The data language DL
In the sequel we abbreviate the set of relational languages mentioned in the introduction as follows:
RELALG = {PSJL,PCSJL, UPCSJL, (PS)JL, (PCS)JL, U(PCS)JL, CONSL}

We begin with the definition of the data language DL: it will act as a parameter for each of the lan-
guages in RELALG. DL is a many-sorted language containing variables (denoted by the metavariables

z,9, ..., also called attributes), constants (¢, d, ..., also called values), functions (f, g,...), = (the equality
predicate), predicates, propositional connectives (-, A, V, —) and the propositional constant true. Terms
(s,t,...) and assertions (A, B, ..., also called constraints or conditions) are defined as usual.

If E is any of the items defined above (or a collection of these), then var(E) is the set of variables
occurring in E. Furthermore, we assume some evaluation mechanism eval(-) for DL to be given, which
evaluates closed terms (terms without variables) to constants and closed assertions to truth values.

We give an example language for DL, defined by the following sorts, constants, functions and predi-
cates:

sorts: NUM (natural numbers), STR (strings of characters)
constants: 0,1,2,...in NUM, all finite strings in STR

functions:
*,+: NUM x NUM — NUM
cat: STR x STR — STR (concatenation)
length: STR — NUM (length of a string)
digits: NUM — STR (converts a number to its string representation)

predicates: <,>,<,>,# (binary predicates, both on NUM and on STR)

3 Functions of the languages in RELALG

Before we define the sorts of the languages in RELALG, we introduce the following.
Definition 1 A solution is a constraint of the form z =t with x & var(t).

Definition 2 A solution set is a finite set {1 = t1,...,&n = tn}, satisfying:
1. |{z1,...,2n}|| = n, (the variables are distinct)
2. {z1,...,za} Nvar({ts,...,t}) = 1]

A tuple (denoted by ¢,%,...) is a solution set of the form {z; = ¢1,...,Zn = ¢n} such that the sort
of a variable z; is the same as the sort of the constant ¢;. For tuples ¢, we often write attr(¢) instead of
var(¢). Tuples are called similar if they have the same attributes. A relation R is a pair < X, R’ > of a
finite collection of attributes X and a finite collection of similar tuples, satisfying:

V¢ € R atir(¢) = X

If R’ is non-empty then X can be obtained from R’; since most relations are nonempty, we shall allow
ourselves to be a bit sloppy and identify R and R'; i.e. consider a base relation to be a collection of
similar tuples. Also we have two relational constants yes and no. The former denotes the relation with
no attributes consisting of a single tuple ({#}) and the latter the relation with no attributes and no tuples

().

Example 1 (solution sets and tuples)

{name = ‘bob’, age = 55, dep = ‘toy’} (a tuple)
{z=1,y=2,2=3} (a tuple)
{z=u+2,y="v+2} (asolution set)

Assume that an instance of DL is given, i.e. some language with sorts, variables, constants, etc.
We now present the functions used in the definition of the languages in RELALG. The languages in
RELALG are four-sorted languages with expressions (thus named to distinguish them from DL-terms)
and equations. The sorts are:

o V (finite sets of DL-variables)

o C (constraints, i.e. DL-assertions)
e S (solutions sets)

e R (relations)

We let X,Y, Z range over V; A, B,C over C; ®, ¥ over S; R, S over R. An expression of sort R is
also called a relational expression. A base relation is sometimes followed by a bracketed list denoting all
its attributes.

In the sequel we use the notation EX for renaming an expression E with respect to a variable set X.
This renaming will be used to avoid clashing of variables in application of rewrite rules.

Definition 3
EX = E' where E’ is obtained by renaming all variables var(E) — X to arbitrary new variables.

To allow a brief notation, a renaming ()X can be applied at several places in an expression. In that
case all occurrences of (-)X denote the same renaming:

Example 2 (renaming variables in ezpressions with X = {z},Y = {y})
o((r(z, v)* Ms(y,2)Y, (2> ¥ Ay > 2)¥) — o(r(z, ur) X s(y, uz), 2 > ur Ay > ug)

Next we present the functions used to define the languages in RELALG. They are grouped according
to their range.

3.1 Functions with range V

Besides the usual set operations U, N and —, we have:

Definition 4 var(-) :CURUS =V
var(E) = {z | z is a variable in E}

Definition 5 (head and tail variables)
hvar(l) : S =V

tvar(-) : S =V ,

hvar({z1 = t1,...,Tn =tn}) = {Z1,..., Zn}
tvar({z1 = t1,...,2n = ta}) = var(ty,..., tn)

The attributes of relational expressions are defined inductively on the structure of relational expres-
sions:

Definition 6 attr(-) : R =V

attr(R) = X if R is a base relation and X 1s the set of atiributes of R.
atir(n(R, X)) = X

attr(o(R, A)) = attr(R)

attr(k(R, ®)) = attr(R) U hvar(P)

attr(R™ S) = attr(R) U attr(S)

atir(RU S) = attr(R)

S Srds o to =

Put otherwise, the attributes of a relational expression are the free variables. The expression atir(R) is
only defined if R is a wellformed relational expression, which we will define later on.

Example 3 (difference between variables and attributes)
var(r(o(r(z,y), z > y), {z})) = {=, y}
attr(n(o(r(z,y), z > y), {z})) = {z}

The difference between var(R) and attr(R) will become relevant when we introduce the relational
projection operator.

3.2 Functions with range C

Besides A (conjunction), we have the merge of two solution sets, yielding a constraint. In the sequel it will
be used for the construction of new constraints from the tails of two solution sets. The merge function is
defined as follows:

Definition 7 : S xS —C
POV ={s=t|lz=s€P,z=tecV}

Example 4 (merging solution sets)

{e = bob’}®{z =y cat z} = {bob’ =y cat z}
{e=u+2,y=3td{e=v+2}={u+2=v+2}
{e=y+2}{e=zy=2%2}={y+2=12}
{e=y+2}@{z=2,y=2%2}=0

Solution sets ® = {1 = t1,...,Zn = t,} can be interpreted as substitutions [z = t1,...,Zn = tn]
which can be applied to (collections of) items. So we have an operation apply:

Definition 8 () : SxC—C
B(A) = Alzy :=1t1,...,2n =1, with® = {z1=t1,...,2n =15}

Example 5 (substitution on constraints)
{:l::u+2}({:c=u+l}): {u+2:u+1}
{r=u+2,y=v+2}({z>y})={u+2>v+2}

3.3 Functions with range S

Here, too, we have the usual set operations U, N and —; besides, we define the restrict and delete functions:

Definition 9 (restricting and deleting solutions)
1 []:8§xV—=38

P[X]={z=te®|ze X}

2. ():8SxV =S

¥X)={z=te®|z¢ X}

Instead of ®(X) we could also write ®[X]. Further we also have substitution on solutions:

Definition 10 (L)) : S xS — S
O(P) = {z = eval(®(t)) [z =t € ¥} of hvar(¥)Ntvar(®) =10

Example 6 (substitution on solution sets)
fe=ut2({o=ut1})={z=u+1)
fu=2)({z=u+1})={c=3)
{t=u+2,y=v+2}{z=uv+1,3=y})={c=uv+1,3=v+2}

Note that there is actually no need for a merge operator since it can be defined in terms of the other
operators (but nevertheless we will use it as an abbreviation in the sequel):

Proposition 11 ® ® ¥ = ®[hvar(¥)}(¥[hvar(P)])

The proposition can be explained in the following way. In the expression ®(¥[hvar(®)]) the solutions
in ¥ that have heads in ® are subject to the substitution ®. As a consequence the head variables in ¥
are replaced by the corresponding terms in @ as required. This is allright except that now also the tail
variables in ¥ may be subject to substitution which is not what we want. The problem is circumvented by
replacing the substitution ® by ®[hvar(¥)] which yields the defining expression for the merge operator.
We then have:

hvar(®[hvar(¥)]) C hvar(¥) & tvar(¥) N hvar(¥) =0
= twar(¥) N hvar(®[hvar(¥)]) =0

3.4 Functions with range R

Here we find the usual operators on relations, together with the calculate operator. The definitions are:

Definition 12 (primitive relational operators)

1. m:RxV—-=TR

(R, X)={¢[X]| 4 € R} if X Cattr(R)

2.0 : RxC—>TR

o(R,A) = {¢ € R| eval(¢(A)) = true} if wvar(A) C atir(R)

3 kK:RxS—=R

k(R,®)={pUy(®) |v €R} if tvar(®)C attr(R) and hvar(®) N attr(R) =0
4. - X_:RXxR—-R

RWS=1{$U% |6 € R ¥ € S,Ve € attr($) N attr(y) (4a] = ¥le])}
J _U_:RXxR—=R

RUS={¢|p€RVHeS} if attr(R)= attr(S)

One readily observes that the project, select, calculate and union operators are partial since they
are only defined when certain conditions on the arguments are met. These conditions are referred to
as wellformedness conditions. They are quite reasonable: the wellformedness condition for projection
ensures that a relation is not projected on attributes that are not part of the relation; the wellformedness
condition for selection takes care that the constraint A can indeed be evaluated to true or false; the first
part of the wellformedness condition for the calculate operator ensures that the tails of solutions in @
can be evaluated, the second part rules out the possibility that the head of a solution is also determined
directly by an attribute of the relation R.

The constraint set A in o(R, A) is the condition of the select operator and the solution set ® in x(R, ®)
is the instruction of the calculate operator.

Example 7 (eztending tuples with the calculate operator)

r(z,y) = {{z=1y=2}}
k(r(z,y),{fu=z+y,v= Db’ })={{z=1,y=2,u=3,v= ‘bob’ }}

An operator for attribute renaming can be defined with use of the project and calculate operators in
the following way:

Definition 13 p: R xS —=R
(R, ®) = n(k(R, ®), attr(R) U hvar(®) — tvar(P))
if tvar(®) C attr(R) and hvar(®) N atir(R) =0

Note that the defined renaming operator is slightly more general than usual attribute renaming, since
in the tails of ® terms are allowed. The renaming operator is invoked with the renaming given in the
solution set ®. The solution set contains elements of the form = = y such that y is among the attributes
of R and z is not:

Example 8 (renaming an attribute)
r(:c,y) = {{IB =ly= 2}}
plr(z,y){z =v}) ={{z=1,2=2}}

Another use of the calculate operator is in the creation of relations that have attributes but no tuples.
The calculate operator can extend the empty set with arbitrary attributes:

Example 9 (an empty relation with attributes ‘z’ and ‘y’)

k(0,{z=1y= ‘bob’})=10

Cartesian product and intersection of relational expressions can be defined directly in terms of the
join operator:

Definition 14 x : R xR —= R
RxS=RXS if attr(R)Natir(S)=10

Definition 15 N: R xR — R
RNS=RNXS if attr(R)= atir(S)

In the sequel we also need an operator that given a set of variables X, creates a relation consisting of
the cartesian product of the domains of the variables in X:

Definition 16 D(-): V =R
D(X) = {¢ | hvar(¢) = X}

Since ¢ is a tuple, in the above definition it is ensured that variables of sort NUM are assigned all
values of the numeric domain and variables of sort STR the values of the string domain.

4 Relational rewrite rules

In this section we describe a large number of rules handling the properties of the primitive relational
operators. Since these operators involve wellformedness conditions we introduce a special notation to
emphasize in what direction a rule can be applied:

Definition 17 (notation for rewriting)
1. R— S iff R iswellformed => S iswellformed & R=S
2 R~S iff R—-—S&S—R

For some rewrite rules R — S, wellformedness of R does not imply wellformedness of S and as a
consequence the rule is conditional. In that case the wellformedness conditions on the violating subex-
pressions are represented in the rewrite rule as a condition. Note that the list given below is incomplete,
but this is unavoidable.

4.1 Projection, selection and calculation

The projection, selection and calculate operators have in common that they are applied on a single
relational argument and therefore we discuss them together in this section. In the sequel we will cluster
rules that are similar in one proposition if possible.

Proposition 18 (constant reductions)

1 o(RytTU€) o R e [otrue]
2. K(Ry D) 0 R oo [k0]
3. (R, attr(R)) <> R o oo [rattr]
4o RDUYES 3 R oot e e e [Myes]
Proposition 19 (cascade rules)

L m(m(R,X),Y) = (R, Y) oo [xm]
2. 0(0(R,A),B) & 0(R,AANB) o [oo]
3. 0(0(R,A),B) > 0(0(R,B), A) o i [oox]
4o K(K(R, @),) — K(R, @ UB(W))) -ttt ettt et [k&]
5. k(k(R,®),¥) & k(R,®UY) if hvar(®)Ntvar(W) =0 ... [rKx]
Proposition 20 (selection and projection)

1L o(m(R, X), A) = (0(Ry A), X) e [o]
2. n(a(R, A), X) — m(o(m(R, attr(R) N (var(A)U X)), A), X) oo [ro]
3. w(o(R,A), X) = o(n(R,X),A) if var(A) CX «oorrii [mox]
Proposition 21 (selection and calculation)

1 o(K(R,®), A) = K(0(R, B(A)), B) - oo [ok]
2. K(0(R, A),®) — 0 (K(R, ®B), A) <ot [ko]
Proposition 22 (calculation and projection)

1. k(m(R, X),®) — m(k(RX, @), hvar(®) U X) ..o [k7]
2. k(n(R, X),®) — n(k(R,®), hvar(®) U X) if attr(R)Nhvar(®)=0 [cmx]
3. w(k(R, @), X) = (K(R, ®[X]), X) oo [mk]
4. 7(k(R,®), X) — n(k(m(R, tvar(®) U (X Nattr(R))),), X) ..o [rEx]
5 m(k(R,®),X) = k(m(R,X),®[X]) if twar(®[X])CX ... [rr+]

4.2 Join and union

In this section we add the join and union operators in our list of rules. As before some rules have both
conditional and unconditional versions. To illustrate how the rules for the join operator subsume the
rules for cartesian product, we have also listed the latter ([ULL89)]), if appropriate.

Proposition 23 (symmetry and associativity of X)

1. RIS 5 SR oot [sYMo X]
2. (RMS)MT e RX (SXT) Lottt ettt [AssoN]
Proposition 24 (symmetry and associativity of U)

1. RUS—SUR e [sYMoU]
2. (RUS)UT > RU(SUT) oo e [Ass oU]
Proposition 25 (join and calculation)

1. RX (S, ®) — k(c(R ™M S, ®[atir(R)]), P(attr(R))) ...ovovreiiiii e Mk]
2. RXK(S,®) = k(RXS,®) if hvar(®)Nattr(R)=0 ... [Xkx]
3. RXK(S,®) > o(RXS,®) if hvar(®)Cattr(R)coooiiiiiii i Mk+]
4. k(RX S, ®) > RXK(S,®) if tvar(®) Cattr(S) ..ooovviiii [kX]
Proposition 26 (join and projection)

1. RX (S, X) — m(RMSX attr(R)UX) . oo Mr]
2. RX (S, X) > m(RX S attr(R)UX) if attr(R)Nattr(S)CX ..o, [Xm*]
8 Rxm(S,X) = m(RXS,attr(R)UX) .o [x7x]
4. (RN S, X) = a(RX x(S, attr(S) N (attr(R)U X)), X) oo [xX]
5 7(RX S, X) - a(RXx(S,attr(S)NX),X) if attr(R)Nattr(S)CXo.t. [m4x]
6. M(Rx S, X) = m(Rx7(S,attr(S)NX),X) oo [rx*]
Proposition 27 (join and selection)

1. RXo(S,A) = o(RX S, A) oo Mo]
2. 0(RXS,A) = RXa(S,A) if wvar(A) Cattr(R) ... [oX]
Proposition 28 (union)

1 m(RUS, X) = (R, X)UT(S, X) oot e [mU]
2. o(RUS,A) = a(R,A)UG(S, A) oo [eU]
3. K(RUS,®) — k(R,) U K(S,®) oo [kU]
4. RM(SUT) = RXSURMT o U]
5 m(R,X)UT(S, X) = m(RUS, X) oo [rUm]
6. 0(R,A)U (S, A) = 0(RUS, A) oot e [oUc]
7. K(R,®)UK(S, @) — k(RUS, ®) oo [kUk]
8 RMSURMNMT — R (SUT) ottt et et e e e MUNX]

In the above union rules we deliberately maintained two versions for each of the operators 7, o, k and
M, so that from the rule label the structure of the rule can be easily inferred.
4.3 Generalized relational rules

Before we can proceed further we need rules which straightforwardly generalize rules of the previous
section. However, the last rule (kMk) in this section is quite involved but crucial for the proofs of rules
to come.

Proposition 29 (derived from (Xr) and (Mrx))

1L 7R, X)Ma(S,Y) = m(RE M SY X UY) oo [T]
2. 7(R, X)X x(S,)Y) = a(RX S, XUY) i attr(R)Nattr(S)CXNY ..., [mXmx]
Proposition 30 (derived from (wX) and (7x))

1. 7(RX S, X) — w(n(R, attr(R) N (attr(S) U X)) X (S, attr(S) N (attr(R)U X)), X) [mX+]
2. 7n(RX S, X) = 7(R,attr(R)NX) X (S, attr(S)NX) if attr(R)Natir(S)YC X []
3 m(Rx S8, X)—m(R,attr(R)yNX) x w(S,attr(S)NX) oo [rx#t]

Proposition 31 (derived from (X)) ..oo.ooiiiiiii [oXo]
o(R, A) X (S, B) — a(RX S, AN B)

The next proposition we need for derivation of (kMk). In general if both ® and ¥ are solution sets,
the expression ® U ¥ might not be a solution set. One possible reason is that heads from @ also occur as
heads from . In this case the @ operator can be used to merge the tails in ® and the tails in ¥ together:

Proposition 32 (introduction of the merge 0perator)ciiiiiiiiiiiiii [KXik*]
k(R,®) M k(S,¥) = k(c(RX S, 2 ¥), @) +f hvar(®) = hvar(¥)

Proposition 33 (generalization of (MK)) ..o [kXk]
k(R,®) X k(S,¥) —
k(oc(RM™ S,

® & U A ®[attr(S)] A ¥ (hvar(®))[attr(R)]),

&(attr(S)) U ¥{hvar(®))(attr(R)))

Proof: Informally we first explain the construction. In the righthand side of (kMk) the merge operator
@ handles the case that there is a solution z = t € ® and a solution y = s € ¥ with z = y, in
analogy to rule (kMXk+). Also another case needs to be checked. Suppose there is a solution z =t €
such that z € attr(S). If this solution were put in the instruction of the calculate operator, then the
resulting expression would be unwellformed. The problem can be handled by recognizing that x = { now
satisfies the wellformedness conditions of the select operator, viz. var(z = t) C attr(R) U attr(S). So
the restriction operator inserts the solution z = t in the condition of the select operator and the delete
operator deletes it from the calculate instruction. The symmetric case that there is a solutionz =t € ¥
such that z € atir(R), is handled in the same way.

More precisely the construction can be explained in the following way. The solution sets ® and ¥
are first transformed into the constraints ® @ ¥ and the solution sets W(hvar(®)) and ®. Next ® & ¥
is put directly into the condition of the select operator; the remaining pair of solution sets ¥(hvar(®))
and ® needs to be processed further. On both solution sets restrictions are applied to see whether more
solutions can be turned into select conditions. The applied restrictions are compensated by the delete
operators in the instruction of the calculate operator.

It should be noted that in the construction the expression

U (hvar(®))[attr(R)]
in the select condition can be replaced by the more simple expression ¥[attr(R)] since the following holds:

O ® U A D[attr(S)] A ¥(hvar(®))[attr(R)] = @ & ¥ A S[attr(S)| A¥[attr(R)]cooooiiiiiinns [*+]

However this could lead to duplicate use of solutions from ¥ in the select condition and since the rule is
to be used for query optimization we want to avoid this duplication.
For a formal derivation of (kXk) we first observe:

O DU = B[hvar(P)] @ W[Avar(P)]o [*]
Now put:

&, = B[attr(9)] ¥, = Y[attr(R)]

&y = P[hvar(¥)] Uy = ¥[hvar(P)]

&3 = O(attr(S) U hvar(¥)) W3 = ¥(attr(R) U hvar(®))
Both ® and ¥ can be obtained as mutually disjoint unions of the above solution sets:

=P, UP,UP3, ¥ =T, UT,UT3

We have:

k(R,®) X £(S, ¥)

— I‘C(R, P, UDU (I>3) X K(S, v, U¥,U ‘1’3)

— K(K(K(R, (1)1), q)z), @3) M KZ(K(K,(S, \Ifl), \Ifg), ‘1’3) .. (K,KI*)

— k(k(k(K(R, 1), ®2) M £(£(S, U1), a), W3),®3) -.oovnrriiiiii (M, M)

— n(K(K(R,@l),Qz) N K(R(S,‘I’l),q’z),q’gU‘I’;’,) .. (KKZ*)
— IC(K,(O'(KI(R, (I>1) X KZ(S, \1’1), @2) \Ifz), (I>2), ‘1)3 U \113) ... (K:NIC*)
— K(K(J(K(R,@l) X K(S,‘I’l),Q@\I’),Qg),qu\Pg) ... (*)
s k(R M (S, W1), @1), B W), B3), @3 UWa) 1.eoveeeanerseeneeseeeeei (M)
— K‘,(K(O’(O’(O’(R XS, \1’1), <I>1), i) ‘I’), <I)2), d3U ‘1’3) .. (NK+)
—)R(U(RNS,QlA‘I’lAq)@‘I’),QQU(p_gU\I’g) .. (UU,O’U,KK,*)
The last expression yields (kXk) by backsubstitution of @1, @3, 3, ¥y and ¥3 and application of ().
|

5 The languages PSJL, PCSJL and UPCSJL

In the next three sections we give normal forms for each of the languages PSJL, PCSJL and UPCSJL.
The language PSJL is the first in this series of increasingly more expressive languages. The second and
the third add the calculate operator and the union operator respectively to PSJL. Both PSJL and
PCSJL are just intermediate steps towards the language UPCSJL.

5.1 The language PSJL

In the construction of a normal form for PSJL we employ the rules (7mo), (oro) and (moXro) presented
in this section. For a more detailed description of the construction we refer to Section 5.2 which contains
a similar construction.

Definition 34 The language PSJIL consists of expressions constructed from the functions:
X, 7,0

Proposition 35 The expression n(o(R, A), X) is wellformed iff:
1. var(A) C atir(R)
2. X C atir(R)

Proof: Directly from the wellformedness conditions of the individual operators. W

Proposition 36 (projection rule)l [rmo]
7(r(o(R, A), X),Y) — n(c(R, A),Y)

Proof: Immediate from (77). B

Proposition 37 (selection Tule) o i [omo]
o(r(o(R, A), X), B) — n(c(R, AN B), X)

Proof: Immediate from (o7) and (co). ®

Proposition 38 (Join Tule)o [roXmo]
m(o(R, A), X) X 7(a(S, B),Y) — m(c(RX X SY, AX A BY), X UY)

Proof: n(o(R, A), X) X w(a(S, B),Y)

= m(o(RX, AX)Y M a(SY,BY), X UY) oo (wddmr)
= a(e(RXMSY AXABY), X UY) oo (o™o)
|

Now we describe the normal form for PSJL expressions. The normal form is quite simple, so we will
postpone a more extensive discussion of normal forms and their construction to Section 5.2.

Definition 39 (PSJL normal form)
If Ry, ..., R, are base relations then the following is a PSJL normal form:

7(o(R1 X...X R,, A), X)

Proposition 40 Every wellformed relational ezxpression in PSJIL can be transformed into an equivalent
wellformed PSJIL normal form.

Proof: Directly from (770), (o7o), (roXro) and R — w(c(R, true), atir(R)). B

11

5.2 Adding calculation: PCSJL

In this section we expand the previous propositions by adding the calculate operator. The results that
are presented in this section subsume all results of the previous section. The calculate operator adds
some complexity to the rules (77o), (770) and (moXr0), resulting in the modified rules (rmko), (oTko)
and (mkoXrko) Tespectively. Moreover we need a completely new rule (kmko) to be used for induction
over the calculate operator.

Definition 41 The language PCSJIL consists of expressions constructed from the functions:
X, m,Kk,0

Definition 42 (PCSJL normal form)
IfRy,..., Ry are base relations then the following is a PCSJL normal form:

m(k(o(Ry ™M... X Ry, A), @), X)

Proposition 43 The expression m(k(c(R, A), ®), X) is wellformed iff:
1. var(A) C attr(R)

2. tvar(®) C attr(R)

3. hvar(®) N atir(R) =0

4. X C attr(R) U hvar(®)

Proof: Directly from the wellformedness conditions of the individual operators. B

Proposition 44 Consequences of wellformedness of n(k(o(R, A), ®), X):
1. twar(®) N hvar(®) = 0
2. var(A) N hvar(®) =0

Proof: Follows directly from Proposition 43.
- .
Another feasible normal form exchanges the positions of the select and calculate operators:

m(o(k(Ry M...X Ry, @), A), X)

However the disadvantage of this normal form is that unnecessary computations are performed for tuples
for which the select condition evaluates to false. Derivation of our normal form below is achieved by
applying four unconditional rules of the form R — S for each of the primitive four relational operators.
Since these rules are unconditional they are suitable for obtaining a normal form. We now derive the
four rules:

Proposition 45 (projection Tule) [rmKo]
7(r(k(o(R, A), ®), X),Y) — n(k(s(R, A),®),Y)

Proof: Immediate from (77). B

Proposition 46 (selection Tule) iiiiii i [omka]
o(m(k(c(R, A), ®), X), B) — w(k(c(R, AN DB(B)), ®), X)

Proof: o(n(x(c(R, A),®), X), B)

— m((K(T(Ry A), @), B)y X) oo (o)
— T(k(T(T(Ry A), B(B)), ®), X)) oo (oK)
— T(K(F(R, AND(B)), B), X) oo e (o0)
|

Proposition 47 (calculation rule) i [kmko]

k(n(k(o(R, A), ®), X), ¥) — 7(k(c(RX, AX), X U @X (W), hvar(¥) U X)

Proof: k(n(k(c(R, A), ®), X), ¥)

— w(k(k(o(RX, AX), ®X), W), hvar(U) U X) ..o (k)
— m(k(o(RX, AX), ®X UK (1)), huar(W) U X) ..o (kK)
| |

12

Proposition 48 (join rule) [rroNXTKO]
m(k(c(R, A), ®), X) X 7(r(c(S, B), ¥),Y) —
m(k(c(RX M SY,

AX A BY A®X @ UY A ®X[atir(SY)] A Y (hvar(®X))[attr(RY)]),

X (attr(SY)) U TY (hvar(®X))(atir(RY))),

XUY)

Proof: n(k(c(R, A), ®), X)X n(k(o(S, B),¥),Y)
— w(k(a(RX, AX), %) X k(0(SY,BY),TY), X UY) ..o (mXr)
— m(k(c(c(RX, AX) X a(SY, BY),

X @ WY A &X[attr(SY)] A UY (hvar(®X))[attr(R¥)]),

X (attr(SY)) U TY (hvar(®X))(attr(RX))),

X U Y) e (kMK)
— w(k(o(a(RX X SY, AX A BY),

X @ U A 3X[attr(SY)] A OY (hvar(®X))[attr(RX))),

®X (attr(SY)) U TY (hvar(®X))(attr(RX)}),

XU Y) ettt et (o™o)
— m(k(oc(RX M SY,

AX ABY A®X @ UY A X [attr(SY)] A OY (hvar(®X))[attr(RY))),

®X (attr(SY)) U TY (hvar(®X))(attr(RX))),

XU Y) ottt e (c0)
n

Proposition 49 Every wellformed relational expression in PCSJL can be transformed into an equivalent
wellformed PCSJL normal form.

Proof: It suffices to show the following five statements:
1. Basis: R — 7(x(o(R, true),), attr(R))
In the remaining cases we use the following abbreviations:

R:=RiX..XR,,S:=85 X...XS,

For each case we first list the relational expression to be normalized into PCSJL.
2. Projection: m(w(k(o(R, A),®), X),Y)
Application of (r7ko).
3. Selection: o(7w(k(c(R, 4),®), X), B)
Application of (c7k0).
4. Calculation: x(7w(x(c(R, 4), ®), X), ¥)
Application of (kwk0).
5. Join: m(k(o(R, A), ®), X) X n(x(c(S, B), ¥),Y)
Application of (rkoXmK0).
|
Note that the normal form is not unique. Especially the renaming of clashing variables is a rich source
of equivalent expressions. We conclude this section with some examples.

Example 10
k(o (x(k(a(r(v,w),v > w),{z = v+ w}),{w,z}),z > 0),{v=2+2})
— w(k(o(r(ur, w), w1 +w > 0 Aug > w), {v =w +w+2}),{v,w,z})

Example 11
m(k(o(r(v,w),v > w), {z = v+ w}), {v,w,z})
4 w(n(o(s(2r 2),2 > 2), ly = 2 + 2)), (2, 2,4))
— w(k(o(r(v,w) M s(z,2),v>wAz>zAz=v+v),{y=z+2}),{v,w,2,y,2})

Example 12
(k(o(r(w,y,v),w > y),{z = w+y}), {w,2})
X w(k(o(s(z, 2, v),2 > 2),{y =z + z}), {2, 9, 2})
— w(k(o(r(w,u, us) M s(z, z,ug),w > uy Az >z Az =w+u),{y =z +z}),{w,z,y,2})

13

Example 13
7(k(o(r(v, w),v > w), {z = v+ w}), {v,w,z})
4 n((o(5(2), 2 > 0), {y = 2+ 11), {z. 1)) A
— 7(k(o(r(v,w) M s(2),v > wAz>0),{z=v+wy=z+1}),{v,w, z,y,2})

Example 14
7(k(o(r(v, w),v > w),{z = v+ w}), {v,w,z})
4 (m{o (50, 2), ¥ > 2 {2 = v+ 1), 123 2])
— w(k(o(r(v,w) XM s(y,2),v >wAy>zAv+w=y+2z2),{z= v+ w}), {v,w,z,y,2})

5.3 Adding union: UPCSJL

The next step is the addition of the union operator, yielding the language UPCSJL. The normal form
procedure presented in this section heavily relies on the normal form construction for PCSJL expressions
as discussed before. By the availability of this construction, derivation of a UPCSJL normal form is
more or less straightforward.

Definition 50 The language UPCSJL consists of expressions constructed from the functions:
M,U,m,K,0

Definition 51 (UPCSJL normal form)
IfRy,..., R, are PCSJL normal forms then the following is @ UPCSJL normal form:

RiU...UR,

Proposition 52 Every wellformed relational expression in UPCSJIL can be transformed into an equiv-
alent wellformed UPCSJL normal form.

Proof: It suffices to show the following six statements:
1. Basis: R — w(k(o(R, true), 0), atir(R)).
In the remaining cases, using the construction of Proposition 49, it may be assumed that:

R; is in PCSJL normal form fori =1,...,n
S; is in PCSJL normal form for j =1,...,m

The expressions T; are the resulting PCSJL normal forms:

2. Projection: By repeated application of the rules (7U) and (77ko) we have:
m7(RiU...URp, X) = w(R, X)U...Um(Rp, X) = T1U...UT,

3. Selection: By repeated application of the rules (cU) and (6mko) we have:
o(RiU...URp, X) > o(R1,X)U...Uo(Rp, X) = ThU...UT,

4. Calculation: By repeated application of the rules (kU) and (kmko) we have:
k(RiU...UR,, X) = (R, X)U...Uk(Rp, X) - T1U...UT,

5. Join: By repeated application of the rule (XU) and (rkoXrKo) we have:
(R1U...URn)N(SlU...USm)—>R1 MSiTU..UR, XS, —-T1U...UThm
6. Union: By repeated application of (ASS oU) we have:
(RiU...UR,)U(5U...USy) = RiU...UR,US U...USp,

| |

6 The languages (PS)JL, (PCS)JL and U(PCS)JL

Our approach in this section is similar to the one in Section 5 except that in the following sections we
consider combinations of relational operators. The aim of combining relational operators is that the
normalization process becomes more efficient.

6.1 Combining projection and selection: (PS)JL

A natural question that arises in the context of relational expressions is whether it is fruitful to combine
two or more operators into a single relational operator. In this section we merge the projection and the
selection operator and as we shall see such a combination is not merely a convenient abbreviation but

14

also yields a more efficient normal form procedure. More precisely the number of applications of the
induction hypothesis is reduced, since a combination of a projection and a selection now only takes one
induction step instead of two.

Definition 53 7: RxCxV—TR
(R, A, X) := 7(0(R, A), X)

Proposition 54 The ezpression T(R, A, X) is wellformed iff:
1. var(A) C attr(R)
2. X C attr(R)

Proof: Directly from the wellformedness conditions of the defining operators. W

Definition 55 The language (PS)JL consists of expressions constructed from the functions:
M, T

Now that we have combined projection and selection, we also need new rules that only refer to the 7
and join operators. Using these rules the normal form for (PS)JL can be constructed by straightforward
induction.

Proposition 56 (Jin Tule). it et [Xr]
(R, A, X)X 7(S,B,Y) —» r(R* ® §¥, AX ABY, X UY)

Proof: Immediate from (moXrc). B

Proposition 57 (cascade rule). ... [r]
r(r(R, A, X),B,Y) = 7(R,AA B,Y)

Proof: 7(r(R, 4, X),B,Y)
— m(o(r(R, A, X), B),Y)

S a(T(Ry,AAB, X), YY) e (omo)
TRy AN BY) o (mmo)
| |

Definition 58 ((PS)JL normal form)
IfRy,..., Ry, are base relations then the following is a (PS)JL normal form:

7(Ry™...X Ry, A, X)

Proposition 59 Every wellformed relational expression in (PS)JIL can be transformed into an equivalent
wellformed (PS)JL normal form.

Proof: Induction using (77), (7¥7r) and R — 7(R, true, attr(R)).
|

Although the previous construction showed some improvement on the number of invocations of the
induction, we still have that each join operator takes a separate induction step. This can be avoided if
induction is applied on the combination of the 7 and the join operator instead of induction on 7 and join
individually. Since some order in the application of the join and the operators is assumed we need the
following definition:

Definition 60 ((PS)JL tree)
1. If R is a base relation then R is a (PS)JL tree.
2. IfRy,..., R, are (PS)JL trees then 7(Ry ™M...X Ry, A, X) is a (PS)JL tree.

We are now in a position to state the next slightly modified normal form proposition:

Proposition 61 Every wellformed (PS)JL tree can be transformed into an equivalent wellformed (PS)JL
normal form.

15

Proof:
Basis: R — 7(R, true, atir(R)).
Induction over 7,X combinations:
Suppose R is of the following form:
7(Ry ™M...M Ry, A, X)

By induction we know that the R; are in (PS)JL normal form. Now we are faced with the problem of
bringing this particular expression into (PS)JL normal form.
Normalization is achieved by taking the following steps:

1. (mX7):
Merge Ry X. ..M R, into one (PS)JL normal form using the rule (mXr) various times. This yields
an expression

r(r(R, M...X R, B,Y), A, X)

where the R} are base relations and B and Y are newly created.

2. (r7):
Applying the rule (77) yields the following expression:

(R X...X R,, AA B, X)
This expression is a (PS)JL normal form.

|
Note that any wellformed relational (PS)JL expression can be easily transformed to a (PS)JL tree.

6.2 Adding calculation: (PCS)JL

Addition of the calculate operator to the language (PS)JL yields the language (PCS)JL discussed in
this section. The rules (77) and (7M7) are generalized to (66) and (6X6). With these rules, similar
efficient normal form constructions can be obtained as in Section 6.1.

Definition 62 § : RxCxSxV—->R
§(R, A, ®, X) := m(k(c(R, A), ®), X)

Proposition 63 The expression §(R, A, ®, X) is wellformed iff:
1. var(A) C attr(R)

2. tvar(®) C atir(R)

3. hvar(®) N attr(R) =0

4. X C attr(R) U hvar(®)

Proof: Directly from the wellformedness conditions of the defining operators. B

Definition 64 The language (PCS)JIL consists of expressions constructed from the functions:
4,8

Proposition 65 (50in Tule). e [6™6]
§(R, A, ®, X)X §(5, B, ¥,Y) —
§(RX x4 SY,

AX A BY A®X @ WY A ®X[attr(SY)] A ¥Y (hvar(®X))[attr(RX)],

®X (attr(SY)) U OY (hvar(®X))(attr(RX)),

XUY)

Proof: Immediate from (rkoXrkc). B

Proposition 66 (cascade Tule)...... i [668]
5(5(R, A,®, X), B,¥,Y) — §(RX, AX A ®X(B), ¥ U®¥(¥),Y)

16

Proof: §(§(R, A, ®,X),B,¥,Y)
— 7(k(0(6(R, A, ®, X), B),¥),Y)

— m(k(6(R,AAND(B), @, X), W), Y) oot (omko)
— n(8(RX, AX A ®@X(B), % U X (W), hvar(T)U X),Y) oo (k7o)
— §(RX, AX A®X(B),2X URX(T),Y) oot (rmKo)

Note that in the above construction the condition B is not renamed. From the wellformedness conditions
we know that var(B) C X. Therefore renaming B with respect to X in the application of the (kTko)
would not introduce any changes and the renaming is omitted. M

Definition 67 ((PCS)JL normal form)
IfRy,..., Ry are base relations then the following is a (PCS)JL normal form:

§(Ry™M... X Ry, A,®, X)

Proposition 68 Every wellformed relational expression in (PCS)JL can be iransformed into an equiv-
alent wellformed (PCS)JL normal form.

Proof: Induction using (66), (6X6) and R — é(R, true, §, attr(R)). W

Definition 69 ((PCS)JL tree)
1. If R is a base relation then R is a (PCS)JL tree.
2. IfRy,..., R, are (PCS)JL trees then §(Ry X...X Ry, A, X,) is a (PCS)JL tree.

Proposition 70 Every wellformed (PCS)JL tree can be transformed into an equivalent wellformed
(PCS)JL normal form.

Proof:
Basis: R — 6(R, true, 0, attr(R)).
Induction: Suppose R is of the following form:

§(Ry™...M Ry, B,¥,Y)

By induction we know that the R; are in (PCS)JL normal form. Now we are faced with the problem of
bringing this particular expression into (PCS)JL normal form.
Normalization is achieved by taking the following steps:

1. (6x8):
Merge R; M ...X R, into one (PCS)JL normal form using the rule (§X6) various times. This
yields an expression
§(6(Ry™.. X R, A ® X),B,Y¥,Y)

where R} are base relations and A, ® and X are newly created.

2. (66):
Applying the rule (66) yields the following:

§(RY ... X R/,C,0,Y)
This expression is a (PCS)JL normal form.

6.3 Adding union: U(PCS)JL

Finally in this section we define a language that combines the virtues of all five preceding relational
languages. Using the cascade rule (86), the join rule (§X6) and the union rule (6U) a normal form can be
constructed for U(PCS)JL.

Definition 71 The language U(PCS)JL consists of expressions constructed from the functions:
M,U,6

17

Proposition 72 Any ezpression in the language UPCSJL can be transformed into an equivalent ez-
pression in the language U(PCS)JL.

Proof: Simple traversal of the UPCSJL expressions using:

1. 7(R, X) = §(R, true, 0, X)

2. o(R, X) = §(R, A, 0, attr(R))

3. k(R, ®) = §(R, true, ®, attr(R) U hvar(®))

||

In order to extend the normal form construction with the union operator we need the following rules:

Proposition 73 (union rule)

1. ©(k(c(RU S, A), @), X) — n(k(s(R, A), ®), X) U m(k(a(S, A ®), X) o [rroU]
2. 8(RUS, A, ®,X) = §(R,A®, X)US(S, A, @, X) oo U]
Proof:

1. Immediate from the rules (cU), (kU) and (7U).
2. Immediate from (1).
]

Definition 74 (U(PCS)JL normal form)
IfRy,...,Rn are (PCS)JIL normal forms then the following is a U(PCS)JL normal form:

RiU...UR,

Proposition 75 Every wellformed relational expression in U(PCS)JL can be transformed into an equiv-
alent wellformed U(PCS)JL normal form.

Proof: Induction using (6U), (66), (646) and R — §(R, true, (), attr(R)).
|

In analogy to the languages (PS)JL and (PCS)JL also for UPCSJL an efficient induction scheme
can be devised. The construction generalizes the construction of Proposition 70.

Definition 76 (U(PCS)JL tree)
1. If R is a base relation then R is a U(PCS)JL tree.
2. If R;; are U(PCS)JL trees then the following is a U(PCS)JL tree:

8(Ryy M...0 Ryp, A1, @1, X)U...US(Rom1 M... X Rinp, A, @, X)

Proposition 77 Every wellformed U(PCS)JL tree can be transformed into an equivalent wellformed
U(PCS)JL normal form.

Proof: Basis: R — (R, true, 0, attr(R)).
Induction: Suppose R is of the following form:

(S(Rll NN Rln,A1,<D1,X)U ~U6(Rm1 MN Rmn;Am’(Dm;X)

By induction we know that the R;; are in U(PCS)JL normal form. For clarity we assume that there
are m x n normal forms R;; in the above expression. If this is not the case then some base relations yes
can be added without loss of generality. Now we are faced with the problem of bringing this particular
expression into U(PCS)JL normal form.

The problem is split up in bringing each §(R;1 X...X R, A;, ®;, X) into U(PCS)JL normal form.
After that is completed, the union of these U(PCS)JL normal forms is again a U(PCS)JL normal form.
Normalization of each expression §(R;; X. ..M R;pn, A;, ®;, X) is achieved as follows:

1. (}U), (ass oU), (Asso):
Distribute U over M. This yields the following expression

§(Riy1™M.. X RipU...URy X...X Ry, A, 8, X)

where R;; are (PCS)JL normal forms. Note that attr(Ryy M...M Ryp) = ... = attr(Rpy M... X
Rpy) as required.

18

2. (6V):
Next we bring the unions outwards using the rule (6U) various times. This yields the following

expression:
6(R11 M...X Rln,A,(},X) u...uU 5(Rp1 M... .M an,A,(b,X)
3. (8™6):
Next we merge each Rgy X ...X Ry, into one (PCS)JL normal form (using the rule (§X6) n-1
times for each k = 1,...,p). This yields an expression

§(RL,A® X)U...US(R,, A, ®,X)

where Rj, ..., R, are the newly constructed (PCS)JL normal forms.
Note that attr(R}) = ... = attr(R,).

4. (86):
Applying p times the rule (68) yields the following expression

R{U...UR]

where RY, ..., R} are the newly constructed (PCS)JL normal forms. This expression is a U(PCS)JL
normal form.

7 Query optimization of UPCSJL normal forms

In the previous sections we gave constructions for obtaining UPCSJL and U(PCS)JL normal forms.
Transforming a relational expression into its normal form was achieved by application of unconditional
rewrite rules. Once a relational expression is in normal form however, conditional rewrite rules are applied
to further optimize the expression. In this section we describe how this optimization can be achieved.
Since U(PCS)JL is nothing but a syntactical variety of UPCSJL we will only consider the latter in the
forthcoming discussion.

Optimization of PSJL expressions is well understood in literature on query transformations. The
heuristic of performing selections and projections before joins is effective because the number and size of
tuples to be joined can be reduced. If also calculations are applied before joins, duplicate computations
are avoided. A procedure for direct optimization of relational expressions, including the union operator,
consists of the following steps (freely adapted from [ULL89]):

Algorithm 78 (direct optimization)

1. Apply (o0) to separate all compound select conditions:

O'(R,Al /\.../\An) —>0’(...0’(R,A1)...,An)

2. Apply (co%), (o), (o) and (cU) to move selection down.

3. Apply (zm), (m44), (zV), (ro) and (wattr) to move projection down. Rules (w7) and (wattr) cause
some projections to disappear, while rule (mo) splits a projection into two projections, one of which
can be migrated downwards if possible.

4. Apply (00), (n7) and (o) to combine cascades of selections and projections into a single selectzon,
a single projection or a single projection followed by a single projection.

A disadvantage of the above algorithm is that the optimization rules are applied on the entire relational
expression. An appealing prospect would therefore be first to reduce the number of relational operators,
by bringing the expression in UPCSJL normal form. Subsequently it should be possible to apply
optimization techniques for PSJL expressions, such as Algorithm 78, on the normal form. The next
proposition allows us to do so by rewriting a PCSJL normal form to an expression that contains a
PSJL normal form:

19

Proposition T ... [rKka]
m(k(o(R, A), ®), X) — 7(k(m(o(R, A), tvar(®) U (attr(R) N X)), ®[X]), X)

Proof: Immediate from (7x+*) and (7k).
|

In (ko) a projection operator is inserted between calculation and selection such that: 1) the com-
putation ® can still be performed, 2) attributes of R that are in X remain available for the outermost
projection.

Algorithm 80 (normalization before optimization)
1. Bring the expression into UPCSJL normal form: S U ... USm
2. Apply the following steps on S; for j=1,...m.
S; has the form w(k(o(Ry M. ..M Ry, A), @), X):
(a) Apply (nko) yielding m(k(m(o(R1 X...X Ry, A), Y),®), X)
(b) Optimize the subezpression m(o(Ry M...X Rn, A), Y) with Algorithm 78.
Note that Algorithm 80 includes the calculation operator. The algorithm improves on the previous
one since optimization is applied on a normal form. However there still is some inefficiency in the
application of Algorithm 78 inside Algorithm 80 because projection is first pushed down over selection

and subsequently distributed over the join operator. The next rule combines these two steps into a single
rule:

Proposition 81ioiiii e [ro]
m(c(R™ S, A), X) — n(c(R X (S, attr(S) N (attr(R) U var(A) U X)), 4), X)

Proof: m(c(R™X S, A), X)

— w(o(r(R™ S, attr(R™ S) N (var(A) U X)), A), X) oo (wo)
— w(c(R ™ 7(S, attr(S) N (attr(R) U var(A) U X)), A), X) oo ()
]

In the above rule the expression S is projected on the union of: 1) attr(R) to make sure that the
joined attributes remain after projection, 2) var(A) so that the condition A can be evaluated, 3) X to
enforce that necessary attributes of S that are not in A remain after projection.

Also calculation can be pushed down over projection, selection and join with a single rule:

PropOSItiOn 82tit e [kmoX]
k(n(a(R ™ S, A), X),®) — m(c(RX X £(S¥,), AX) hvar(®) U X)
if tvar(®) C attr(S)

Proof: k(m(c(R ™ S, 4), X), ®)

— w(k(e(RX M SX AX), @), hvar(P) U X) oo (k)
— m(o(K(RX X SX, @), AX), hvar(®) U X) .o (ko)
— w(o(RX M k(SX, @), AX), hvar(D)U X) oo (,™)
|

Efficiency can be gained by generalizing (%), (oX) and (k7o) to an arbitrary number of joins, so
that processing of nested joins is avoided:

Proposition 83 (generalization of o).ooiiiiiiii [oXix]
O'(Rl MX...MR;X... X Ry, Ay A...A Aj AN Ap)
— G'(Rl M...N U(Ri, Aj) M...MRp, A1 AL ANA 1 A Aj+1 AN Ap)

if wvar(4;) C attr(R;)

Proposition 84 (generalization of ToX) [raXaX]
w(o(Ry M. .M R;], ..X Ry, A), X)
—7m(o(Ry ™M...M

7(Ri, attr(R;) N (attr(Ry M. X Ry X Riyy M...M R,) U war(A4) U X))

M...X Ry, A), X)

20

Proposition 85 (generalization of KTOM) ... oo [kmaiX]
K(?l'(O'(R1 M... M R;M...X R, A), X)-,‘I>1 u...ud;U...U Qq)
— wk(m(o(RE M...X

K(RiX’ @;)

M...X RX AX) hvar(®;)UX),;®1U...UB;_1UP;y; U...UD)

if tvar(®;) C atir(R;)

Now we combine the above generalized rules into an optimization algorithm that uses normalization for
UPCSJL:

Algorithm 86 (normalization before optimization)
1. Bring the expression into UPCSJIL normal form: S;U...U Sy

2. Apply the following steps on S; for j=1,...m.
S; has the form m(k(oc(Ry M... M Ry, A), ®), X):
(a) Apply (mxo) yielding: w(k(x(o(Ry M...M Ry, A),Y), @), X)
(b) Optimize the subezpression w(a(Ry M. ..M Ry, A),Y):
i. Apply (o0) to separate select conditions yielding:

7!’(0’(R1 X...XR,, A /\.../\Ap),Y)

ii. Apply (oXX) at most p times to move selection down.
it5. Apply (moXiX) ezactly n times to move projection down.
iv. Apply (00) to combine cascades of selections and (mattr) to eliminate superfluous projec-
tions.
(c) Optimize the subezpression k(m(o(R} XW...M Ry, A"),Y), ®) resulting from the previous step:

i. Apply (kk*) to separate calculate computations yielding:
k(m(o(Ry™M...}MR;,A"),Y), & U...UB,)

ii. Apply (kmoXIX) at most g times to move calculation down.
i11. Apply (kk*) to combine cascades of calculations.

8 The language CONSL

In the language CONSL calculation, selection and projection are combined into a single operator x. For
this reason y resembles the § operator defined in Section 5.2 but contrary to the § operator, x merges the
computation of the calculate operator and the condition of the selection operator into a single constraint
set A. Expressive power is not lost however, since calculations can be represented as constraints in A. In
fact, with the x operator it is possible to create an infinite relation from a finite one, which could not be
achieved by the § operator due to its strict wellformedness conditions.

Definition 87 y : R xCxV —=R
x(R, A, X) := 7(RX D(u1, ..., un), A, X)
where {uy,...,us} = var(A) — attr(R)

Definition 88 A wvariable z is bound by a relational expression R if ¢ € atir(R).

The definition of x is valid because in Section 5.1 we did not restrict the relational argument R in
7(R, A, X) to finite relations only. As an immediate consequence in x(R, A, X) we allow in the constraint
set A variables that are not bound by R (which was not the case for the 7 operator). However projection
variables that do not occur anywhere in the expression are not permitted:

Proposition 89 The expression x(R, A, X) ts wellformed iff X C attr(R) U var(A).
Definition 90 The language CONSL consists of expressions constructed from the functions:

M,U, x

21

Proposition 91 (Join TUle)ot ittt LX)
X(R, A, X)X x(S,B,Y) — x(RX W S¥, AX ABY, X UY)

Proof:

X(RvA)X)NX(S’B’Y)

—>1-(RI><ID(u1,...,un),A,X)NT(SN'D(vl,...,vm),B,Y)

S r(RX M SY)D(ud, .. ul o), o), AN ABY X UY) (m3T)
—)T(RXNSYND(Zl,...,Zk),AX/\BY,XUY) .. (*)
— x(RX x SY, AX ABY, X UY)

As justification for step () we have to construct a set Z = {z1, .. .zg} such that:

Z = var(AX A BY) — attr(R* M SY)

But consider the set of variables W constructed from the variables in AX not bound by RX and the
variables in BY not bound by SY:

X X Y Y
W ={uf,...,up,v{, ., Un}

We claim that Z C W since in the construction no bound variables become unbound. Now the set Z is
obtained by deleting from W all variables that become bound. B

Proposition 92 (cascade Tule)ooiii [xx]
x(x(R, 4, X), B,Y) = x(RX,AX AB,Y)

Proof: Let V = {v1,...,vm} = var(B) — X.

x(X(R, A, X),B,Y)

— x(T(RMD(uy,...,un), 4, X), B,Y)

— 7(r(RXD(uy, ..., un), A, X)W D(v1,...,vm), B,Y)

— 7(T(RN D(uy, ..., us), A, X) M (D(v1,...,vm), true, V), B,Y)

— r(r(RX M D(uf, ..., uX) M D(v1, .., 0m), A, XUV),B,Y) oo (m™7)
—>T(RXND(uf(,...,uf)N'D(vl,...,vm),AX/\B,Y) .. (r7)
—>r(RXN'D(zl,...,zk),AX/\B,Y) .. (*)

— x(RX,AX AB,)Y)

In the step (7%7) the variables V = {v1,. .., vm} are not renamed because VNX = 0 and renaming with
respect to X was already applied on R and uf, ..., uX and so no clashes can occur.

As justification for step (*) we have to construct a set Z = {z1,...zx} such that:

7 = var(AX A B) — attr(RY)
But consider the set of variables W:

W:{uf{,...,uf,vl,...,vm}

We claim that Z = W.
| |
Before we can give a union rule for the y operator we need the next proposition:

Proposition 93 (union rule)

1. m(e(RUS, A), X) = w(c(R, A), X)Um(0(S,A), X) «vveri [xoU]
2. T(RUS, A, X) = 7(R, A, X)UT(S, 4, X) oo U]
Proof:

1. Immediate from the rules (¢U) and (7U).
2. Immediate from (1).
u

Proposition 94 (union rule). [xY]
x(RUS, A, X) — x(R, A, X)Ux(S, A, X)

22

Proof: Let {uy,...,un} = var(A) — attr(R) = var(A) — attr(S).

x(RUS, A, X)

— 7((RUS) X D(uy,...,un), 4, X)

—)T(RND(UI,...,un)USMD(ul,...,un),A,X) ... (ML)
—7(RMX D(u1,---rUn), A, X)UT(S X D(uy, ..., us), 4, X) (V)
| |

Definition 95 (CONSL normal form)
If R;j are base relations then the following is ¢ CONSL normal form:

X(Rll M. ..X Rln,Al,X)U...UX(le X...X Rmp,Am,X)

Proposition 96 Every wellformed relational expression in CONSL can be transformed into an equiva-
lent wellformed CONSL normal form.

Proof: Induction using (xX), (x™x), (xU) and R — x(R, true, atir(R)). ®

Definition 97 (CONSL tree)
1. If R is a base relation then R is a CONSL tree.
2. If R;j are CONSL trees then the following is a CONSL tree:

X(Ru M...X Rln,Al,X)U...UX(le M. RmvaﬂhX)

Proposition 98 Every wellformed CONSL tree can be transformed into an equivalent wellformed CONSL
normal form.

Proof: Similar to the construction of Proposition 77. B

9 Conclusions

In this paper we have defined a series of languages {PSJL, PCSJL, UPCSJL}. We have shown that a
Normal Form Theorem for each of these languages exists, by giving a construction to transform arbitrary
relational expressions into normal form. Since renaming for attributes can be defined directly in terms
of calculation and projection, it is included in the normalization construction.

Subsequently we introduced the languages {(PS)JL, (PCS)JL, U(PCS)JL} to obtain a normal form
more efficiently by combining relational operators if possible. In addition we changed the normal form
construction to further reduce the number of applications of the induction hypothesis.

There are several directions for further research in this area. First of all the translation of RL
expressions into PCSJL expressions, using CONSL as an intermediate language, is to be worked out:
this is currently investigated by the authors. Another interesting point is the existence of a normal form
that includes the difference operator. However there seems to be no easy normal form for this case since
in general projection does not commute with set difference.

23

Index

bound variables 21 oo 8

calculation function & 7 ocU,ocUoc 9
cartesian product x 7 omo 11

Xy 21 omko 12

xx 21 oX 9

xU 21 oXiX 20

§x6 16 oXoe 9

66 16 selection function o 7
6U 18 ™r 14

domain function D(-) 8 T 14

M, M, Xk+ 9 U 22

M, Mr*, xm*x 9 tree, (PS)JL 14
MU, MUNM 9 tree, (PCS)JL 16
join function X 7 tree, U(PCS)JL 17
kr 8 tree, CONSL 21
krx 8 union function U 7
kwoX, kwoX 20 : yes 4

ko 8

kk 8

kkx 8

kX 9

kU, kUK 9

Xk 9

Mrx 9

krko 12

merge function & 6

no 4

normal form, PSJL 11
normal form, PCSJL 12
normal form, UPCSJL 14
normal form, (PS)JL 14
normal form, (PCS)JL 16
normal form, U(PCS)JL 17
normal form, CONSL 21
7o 8

moX, ToXX 20

TK, TK*, TK+ 8

ko 20

8

aX, ak, wxkx 9

w4, X, TxHFE 9

U, rUm 9

aXm, Tk 9

ko 12

ro 11

rolJ 22

TkoU 18

roXro 11

rkoXrko 12

projection function # 7
rename function p 7
renaming variables EX 5
ok 8

or 8

24

References

[DATEST]
[DATES89]

[DENSS]

[DENB8Y]

[HANSSS]
[HANS89)
[LARS5]
[ULL89)
[VEMDS6a]

[VEMDS6b)]

[VEMDS6c]

[YANS7]

Date, C.J., A Guide to the SQL Standard, Addison-Wesley Publishing Company 1987.

Date, C.J. & White, C.J., A Guide to DB2, (Third Edition), Addison- Wesley Publishing
Company 1989.

van Denneheuvel, S. & van Emde Boas, P., Constraint solving for databases, Proc. of NAIC
1, Apr. 1988

van Denneheuvel, S. & Renardel de Lavalette, G. R., Normalization of Database ezpres-
sions involving Calculations, Logic Group Preprint Series No.45, Department of Philosophy,
University of Utrecht, 1989

Hansen, M.R., Algebraic Optimization of Recursive Database Queries, Information Systems
and Operations Research 26 (1988) 286-298

Hansen, M.R., Hansen, B.S., Lucas, P. & van Emde Boas, P, Integrating Relational
Databases and Constraint Languages, in Comput. Lang. Vol. 14, No. 2, 63-82, 1989.

Larson, P.A., Yang, H.Z., Computing Queries from Derived Relations, Proc. of the 11th
Intl. Conf. on VLDB, 259-269, (1985).

Ullman, J.D., Principles of Data and Knowledge - Base Systems, Volume II: The New
Technologies, Computer Science Press, 1989.

van Emde Boas, P., RL, a Language for Enhanced Rule Bases Database Processing, Working
Document, Rep IBM Research, RJ 4869 (51299)

van Emde Boas, P., A semantical model for the integration and modularization of rules, Pro-
ceedings MFCS 12, Bratislava, August 1986, Springer Lecture Notes in Computer Science
233 (1986), 78-92

van Emde Boas, H. & van Emde Boas, P., Storing and Evaluating Horn-Clause Rules in a
Relational Database, IBM J. Res. Develop. 30 (1), (1986), 80-92

Yang, H. Z., Larson, P. A., Query Transformations for PSJ-queries, Proc. of the 13th Int.
Conf. on VLDB, Brighton, 245-254, (1987)

25

The ITLI Prepublication Series

1990

Logic, Semantics and Philosophy of Language
LP-90-01 Jaap van der Does i
LP-90-02 Jeroen Groenendijk, Martin Stokhof
LP-90-03 Renate Bartsch

LP-90-04 Aarne Ranta

LP-90-05 Patrick Blackburn

LP-90-06 Gennaro Chierchia

LP-90-07 Gennaro Chierchia

LP-90-08 Herman Hendriks

LP-90-09 Paul Dekker

LP-90-10 Theo M.V. Janssen
LP-90-11 Johan van Benthem
LP-90-12 Serﬁe La%ierre
LP-90-13 Zisheng Huang
Mathematical Logic and Foundations
ML-90-01 Harold Schellinx
ML-90-02 Jaap van Oosten
ML-90-03 Yde Venema
ML-90-04 Maarten de Rijke
ML-90-05 Domenico Zambella
ML-90-06 Jaap van Oosten

ML-90-07 Maarten de Rijke
ML-90-08 Harold Schellinx)
ML-90-09 Dick de Jongh, Duccio Pianigiani
Computation and Complexity Theory
CT-90-01 John Tromp, Peter van Emde Boas
CT-90-02 Sieger van Denneheuvel
Gerard R. Renardel de Lavalette
CT-90-03 Ricard Gavalda, Leen Torenvliet
Osamu Watanabe, José L. Balcizar
CT-90-04 Harry Buhrman, Leen Torenvliet

A Generalized Quantifier Logic for Naked Infinitives
Dynamic Montague Grammar

Concept Formation and Concept Composition
Intuitionistic Categorial Grammar

Nominal Tense Logic

The Variablity of Impersonal Subjects

Anaphora and Dynamic Logic

Flexible MontIziFue Grammar

The Scope of Negation in Discourse,

towards a flexible dynamic Montague grammar
Models for Discourse Markers

General Dynamics

A Functional Partial Semantics for Intensional Logic
Logics for Belief Dependence

Isomorphisms and Non-Isomorphisms of Graph Models

A Semantical Proof of De Jongh's Theorem

Relational Games_)

Unary Interpretability Logic

Sequences with Simple Initial Segments

Extension of Lifschitz' Realizability to Higher Order Arithmetic,

and a Solution to a Problem of F. Richman

A Note on the Inter%retabihty Logic of Finitely Axiomatized Theories
Some Syntactical Observations on Linear Logic

Solution of a Problem of David Guaspari

Associative Storage Modification Machines
A Normal Form for PCSJ Expressions

Generalized Kolmogorov Complexity
in Relativized Separations
Bounded Reductions

CT-90-05 Sieger van Denncheuvel, Karen Kwast Efficient Normalization of Database and Constraint Expressions

Other Prepublications
X-90-01 A.S. Troelstra

X-90-02 Maarten de Rijke

X-90-03 L.D. Beklemishev

X-90-04

X-90-05 Valentin Shehtman

X-90-06 Valentin Goranko, Solomon Passy
X-90-07 V.Yu. Shavrukov

X-90-08 L.D. Beklemishev

X-90-09 V.Yu. Shavrukov
X-90-10 Sieger van Denncheuvel
Peter van Emde Boas
X-90-11 Alessandra Carbone
X-90-12 Maarten de Rijke

Remarks on Intuitionism and the Philosophy of Mathematics,
Revised Version

Some Chapters on Interpretability Logic

On the Complex1t§ of Arithmetical Interpretations of Modal Formulae
Annual Report 1989

Derived Sets in Euclidean Spaces and Modal Logic

Using the Universal Modality: Gains and Questions

The Lindenbaum Fixed Point Algebra is Undecidable

Provability Logics for Natural Turing Progressions of Arithmetical
Theories

On Rosser's Provability Predicate

An Overview of the Rule Language RL/1

Provable Fixed points in IAg+Q;, revised version
Bi-Unary Interpretability Logic

