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Abstract: Two problems are considered that deal with dynamic data structures on
multiple storage media. In the first problem we want to partition a range tree into
parts of a small size, such that queries and updates visit only a small number of parts.
In this way, the range tree can be maintained in secondary memory efliciently. The
second problem is the reconstruction problem: given a main memory data structure,
design a shadow administration, to be stored in secondary memory, such that the main
memory structure can be reconstructed after e.g. a system crash.

Key words: Dynamic data structures, binary search trees, range trees, secondary
memory, reconstruction problem, union-find problem, deferred data structures.

This paper will be presented at SOFSEM’90 Zotavovna Siréna, Janské Lazné, Krkonose,
Czechoslovakia.

1 Introduction

The theory of data structures and algorithms is concerned with the design and analysis
of structures that solve searching problems. In a searching problem, we have to answer
a question (also called a query) about an object with respect to a given set of objects. A
data structure for such a searching problem stores the objects in such a way that queries
can be answered efficiently. The design of data structures has received considerable
attention.

A large part of the research is focussed on designing structures that are stored
in the main memory of a computer, on which all standard computations can be per-
formed, and which is usually modeled as a Random Access Machine (RAM). (See [2].)
The memory of a RAM consists of an array, the entries of which can store pieces of

*This author was supported by the ESPRIT II Basic Research Actions Program under contract
No. 3075 (project ALCOM).



information, such as names, integers, pointers, etc. Each such array entry can be ac-
cessed at constant cost, provided the address of the entry is known. The main problem
is to structure the relations of the basic pieces of information, using a small amount
of space, such that queries can be answered fast.

Until about 1979, many of the main memory data structures that were designed
were static, i.e., it was not possible to insert and delete objects. Exceptions were
data structures that can handle dictionary operations. The oldest are the AVL-trees,
introduced in 1962 by Adel’son-Vel’skii and Landis [1]. In these trees one can search,
insert and delete objects in a number of steps that is logarithmic in the number of
objects that are stored in the tree.

In 1979, the research on general dynamization techniques was initiated by Bent-
ley [4]. This research consists of designing techniques to transform static data struc-
tures into dynamic structures, i.e., structures that do allow insertions and deletions of
objects. Many techniques are available nowadays that can be applied to large classes
of searching problems. As an example, there exists a general theory to dynamize
data structures that solve so-called decomposable searching problems. In a decom-
posable searching problem, the answer to a query with respect to a set of objects can
be obtained by merging the partial answers to the query with respect to a partition
of this set. Any static data structure that solves a searching problem satisfying this
general constraint, can be turned into a dynamic structure. The reader is referred to
Overmars [11] for a detailed account of dynamization techniques.

Another part of the research is concerned with the problem of designing structures
that are stored and maintained in secondary memory. This problem often occurs
in database applications, where data structures are too large to be stored in main
memory, and therefore have to be stored in secondary memory.

Secondary memory is modeled as an array that is divided into blocks. In secondary
memory, no computing is possible, and the only allowed operations are to replace a
block by another one and to add a new block at the end of the file. All computations
take place in main memory, and the blocks that store information that is needed
during a computation are transported to main memory. If a block is changed during
an operation, it is transported back to secondary memory. For each block we need
in a computation, we have to access secondary memory, which takes a considerable
amount of time in practice.

Therefore, the main problem is to partition the data structure into parts of a small
size, such that each operation needs information from only a few parts. Then, by
storing each part of the partition in one block in secondary memory, we can perform
operations at the cost of only a few disk accesses and a small amount of data transport.

The best-known example of a data structure for secondary memory applications
is the B-tree, introduced in 1972 by Bayer and McCreight [3]. If a B-tree stores n
objects, and if it is stored in blocks of size m, then the operations search, insert and
delete can be performed at the cost of O(logn/logm) accesses to secondary memory
in the worst case.

In the first part of this paper, we consider the problem of storing and maintaining
a specific data structure—a range tree—in secondary memory. This data structure
was designed for main memory applications. It turns out, however, that the structure



can also efficiently be maintained in secondary memory. Furthermore, we believe that
the techniques applied to this one data structure can also be applied to many more
data structures.

The problem of considering range trees was posed by Mark Overmars, and the
research on this problem was done in close collaboration with him, Mark de Berg and
Marc van Kreveld.

In most studies that have appeared so far, it is assumed that the objects are repre-
sented by only one data structure that is stored either in main memory or in secondary
memory, and all operations are performed on this one structure. In many situations,
however, we need to represent the data more than once—possibly on different storage
media—and have a multiple representation of the data.

In the second part of this paper, we consider one such problem: The reconstruction
problem. After a system crash, or as a result of errors in software, a data structure that
is stored in main memory can be destroyed. Another case, in which a main memory
structure can be destroyed, is the regular termination of an application program that
uses the structure. In case of an application that is executed on a system that is also
used by other persons, the copy of a data structure in main memory will be destroyed
between two runs of the application program. In both cases—system crash or regular
termination—the data structure has to be reconstructed from the information stored in
secondary memory. This information is called the shadow administration. So besides
the data structure in main memory, we represent the data in a shadow administration
that is stored in secondary memory.

This leads to the problem of designing for a given searching problem, a dynamic
data structure that solves this searching problem, together with a shadow administra-
tion from which the data structure can be reconstructed in case of calamity.

This shadow administration does not have to support the same operations as the
main memory data structure. Only insertions and deletions have to be performed,
whereas on the main structure itself also queries are carried out. Furthermore, we
only require that the shadow administration contains enough information that makes
it possible to reco to reconstruct the main structure.

The reconstruction problem was suggested by Ghica van Emde Boas-Lubsen. Leen
Torenvliet and Peter van Emde Boas investigated this reconstruction and optimization
problem for these functions in [19]. A few years later, the authors, together with Leen
Torenvliet and Mark Overmars studied this reconstruction problem in a more general
setting.

The rest of this paper is organized as follows. In Section 2, we introduce the models
of main and secondary memory. In Section 3 we introduce binary search trees and the
basic data structure of the first part of this paper, the range tree. In Section 4, we show
how range trees can be maintained in secondary memory, by giving several efficient
partitions. In Section 5, we consider the reconstruction problem. In Section 5.1,
we introduce a realistic general framework that we use to describe solutions to the
reconstruction problem, and we introduce the complexity measures to express the
efficiency of solutions. In Section 5.2, we consider a specific example of a problem,
the union-find problem. For this problem, we design an eflicient main memory data
structure—in fact, this structure is optimal in a very general class of data structures—



in such a way that a copy of it can efficiently be maintained in secondary memory,
thereby leading to a good solution to the reconstruction problem. In Section 5.3, we
apply the recent idea of deferred data structuring to the reconstruction problem. This
leads to another approach in the reconstruction procedure: after a crash, the data
structure is reconstructed “on-the-fly”, i.e., we immediately proceed with performing
queries and updates, and we reconstruct the data structure during these operations. It
should be mentioned that Sections 5.2 and 5.3 contain results that are also interesting
in other areas besides the reconstruction problem. We finish the paper in Section 6
with some concluding remarks.

2 Storage and computation models

The medium in which all computations take place, and in which also data can be
stored, is called main memory. We model main memory as a Random Access Machine
(RAM). The memory of a RAM consists of an array, the entries of which have unique
indices. The contents of such an array entry can be obtained at constant cost, provided
its address, i.e., its index, is known. We express the complexity of a computation in
main memory in computing time, which is the usual measure—in terms of words—to
express the length of a computation. (In the theory of algorithms and data structures
it is customary to express complexities in terms of words, not in terms of bits.)

Our second storage medium is secondary memory. Just as for the RAM, secondary
memory consists of an array. Now, this array is divided into blocks of a fixed size.
This block-size can be chosen arbitrary. Each such block has a unique address, and it
is possible to access a block directly, provided its address is known.

A data structure is stored in secondary memory by distributing it over a number of
blocks of a predetermined size. In secondary memory no computing is possible. There-
fore, to perform an operation—a query or an update—on a data structure, we send
information from secondary memory to main memory—where computing is possible—
and vice versa. The following update operations are possible in secondary memory:

e We can replace a block by another block, or a number of (physically) consecutive
blocks by at most the same number of blocks.

e We can add a new block, or a number of new blocks, at the end of the file.

Hence, we can only update complete blocks. It is also possible to transport (complete)
blocks from secondary memory to main memory. To transport a block to secondary
memory, we have to know the address where the block will be stored. Similarly, a
block can be transported to main memory only if its address in secondary memory is
known.

We express the complexity of an operation in secondary memory by two quantities.
In practice, these two quantities dominate the time for the operation. The first one—
which is in general the most time consuming—is the number of disk accesses—also
called seeks—that has to be done: For each segment of consecutive blocks we transport,
we have to do one disk access. Hence, we can transport the entire data structure in
one disk access to secondary memory, provided we store the structure in consecutive
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blocks. Also, it takes one disk access to transport a structure that is stored in secondary
memory in consecutive blocks, to main memory. In this latter case, it is sufficient to
know the address—in secondary memory—of the first block of the segment that stores
the structure: We transport all blocks “to the right” of this first block, in which some
information is stored. (Here we assume that blocks that do not contain information
of the structure, are empty.)

The second quantity is the transport time: We assume that an amount of n data
can be transported in O(n) transport time from main memory to secondary memory,
and vice versa. In general the constants in this estimate for the transport time are
incomparable to the constants in computing time.

We already said that in practice the time for one disk access is high. In order to
get an impression, for a typical standard computer, one disk access takes about 15 mil-
liseconds, whereas data transport between main and secondary memory is performed
at a rate of 3 Mbyte per second. Therefore it is essential to limit the number of disk
accesses as much as possible.

3 Binary search trees and range trees

3.1 Binary search trees

The reader is assumed to be familiar with the basic terminology from graph theory,
especially trees. (See e.g. [2].) A binary tree is a rooted tree, in which each node has
either zero or two sons. The link between a node and its son is called an edge. Nodes
without sons are called leaves, whereas nodes that do have sons are called internal
nodes. The two sons of an internal node v are called left son and right son The node
v itself is called the father of the two sons. If v is a node of a binary tree, we define
the subtree of v as the tree having v as its root and that contains all nodes—including
v—that can be reached from v by following edges to sons. The height of a binary
tree is defined as the number of edges in the longest root-to-leaf path. A binary tree
consists of levels, where a level is the set of all nodes that are at the same distance
to the root of the tree. Here the distance of two nodes is defined as the number of
edges on the path that connects these nodes. The levels of a binary tree are numbered
according to their distance to the root of the tree. So the root itself is at level 0, the
sons of the roots are at level 1, etc.

A binary tree that stores a set of objects is called a node search tree, if the objects
are stored in the nodes of the tree—one object in each node—in such a way that for
each internal node v it holds that all objects in the left subtree of v are smaller than
the object stored in v, and all objects in the right subtree of v are larger than that of
v, according to some order.

In this paper, binary trees are almost always used as leaf search trees. That is,
if we use a binary tree to represent a set of objects, we store these objects in the
leaves of the tree, such that for each internal node v, all objects in the left subtree
of v are smaller than those in the right subtree of v. Internal nodes of the tree contain
information to guide searches. (For example, we can store in each internal node the
maximal element in its left subtree.)



Binary search trees can be used to solve the member searching problem. In order
to search for an object ¢, we follow a path in the tree starting at the root. In each node
on this path, we compare ¢ with the information stored at that node, and we decide
whether the search is finished—in case we have found ¢ or end in a leaf—or proceeds
to the left or to the right son. The complexity of this search procedure depends on
the height of the tree. Since the height of a binary search tree storing n objects is at
least logarithmic in n, the best we can hope for is a search complexity of ©(logn). In
the static case, we can build a perfectly balanced binary search tree, which is a binary
tree in which for each internal node v, the number of leaves in the two subtrees of v
differ by at most one. Such trees have logarithmic height, and, hence, member queries
can be performed in O(logn) time.

An insertion or deletion of an object p in a leaf search tree is performed by first
searching for p. This search ends in a leaf v. In case of an insertion, we give v two
new sons, one son containing p, the other containing the object that was stored in v.
We also update the search information that is stored at the nodes on the path to v. In
case of a deletion, let w be the other son of v’s father. Then we delete the two leaves
v and w, and we store the object that was stored in w in its father. Again, we update
the search information of the nodes on the search path. The complexity of this update
procedure is proportional to the height of the tree.

The problem is how to maintain a logarithmic height after objects have been in-
serted and deleted in the tree. An interesting class of binary search trees for which
this is possible, was introduced in 1973 by Nievergelt and Reingold [10]:

Definition 1 Let o be a real number, 0 < a < 1/2. A binary tree is called a BB[a]-
tree, if for each internal node v, the number of leaves in the left subtree of v divided
by the number of leaves in the entire subtree of v lies in between o and 1 — a.

We give a simple technique to maintain BB[a]-trees after objects are inserted or
deleted. This technique—the partial rebuilding technique of Lueker [9]—gives an amor-
tized update complexity of O(logn). Here, amortized complexity is defined as follows.
Suppose we perform a sequence of m updates in a data structure that initially stores n
objects. The value of m is assumed to be large. Let T'(n,m) be the time to process this
sequence. Assume that this sequence is such that T'(n,m) is maximal among all se-
quences of length m. Then the amortized update time is defined as T'(n, m)/m. Hence,
in amortized time bounds, we average over long worst-case sequences of updates.

Suppose we want to insert or delete object p in the leaf search BB[a]-tree T. We
search for p, until we end in a leaf. Then we insert or delete object p. Next, we walk
back to the root of T', and we find the highest node v that does not satisfy the balance
condition of Definition 1 anymore. We rebalance the tree by rebuilding the entire
subtree of v as a perfectly balanced tree. Clearly, if v is high in the tree, this takes a
lot of time. For example, if v is the root of T', the update takes O(n) time. In this
case, however, it takes (n) updates before we again have to rebuild the entire tree.
In this way, the amortized update complexity is bounded by O(logn). To prove this,
we need the following lemma, the proof of which can be found in [11, page 53].



Lemma 1 Let v be a node in a BBfaJ-tree that is in perfect balance. Let n, be the
number of leaves in the subtree of v at the moment it gets out of balance. Then there
have been at least (1 — 2a)n, — 2 updates in the subtree of v.

Theorem 1 If in a leaf search BB[aj-tree, updates are performed by means of the
partial rebuilding technique, the amortized time for an update is bounded by O(logn).

Proof. Let U(n) denote this amortized update complexity for a BB[a]-tree with n
leaves. To perform an update, we start at the root of the tree, and we decide whether
we proceed to the left or to the right son. If the entire tree is not rebuilt, we spend
O(1) time in the root. Otherwise, we spend O(n) time to rebuild the tree, since we
have the objects already in sorted order. By Lemma 1, this rebuilding has to be done
at most once every (n) updates. It follows that the amortized time due to our visit to
the root is bounded by O(1). The amortized time we spend in the subtree in which the
update proceeds, is bounded by U((1 — a)n), since this subtree has at most (1 — a)n
leaves. Hence U(n) < O(1) +U((1 — @)n), from which it follows that U(n) = O(logn).
a

3.2 Range trees

Range trees are used to solve the following problem:

Definition 2 Let V be a set of points in d-dimensional space, and let ([z1 : y1], [22 :
Yal, ..., [Td: ya]) be some hyperrectangle. The orthogonal range searching problem asks
fO'I‘ all pOiTLtS b= (PI,P%- .. apd) in V; such that I S h S Yi1,22 S D2 S Y2y.+52d S
Pd < Yd-

The range searching problem has applications in e.g. computer graphics and data-
base design. As an example, consider a salary administration, in which the information
for each registered person includes age and salary. We can view each person as a point
in 2-dimensional space, with as first coordinate the age, and as second coordinate the
salary. Then a question like “give all persons with age between 20 and 25, having a
salary between $ 30,000 and $ 35,000 a year” is an example of a range query. Range
trees were introduced by Bentley [4] and Lueker [9]:

Definition 3 Let V be a finite set of points in d-dimensional space. A d-dimensional
range tree T, representing the set V, is defined as follows.

1. Ifd = 1, then T is a BBfajJ-tree, containing the elements of V in sorted order
in its leaves.

2. Ifd > 1, then T consists of a BBJa]-tree, called the main tree, which contains
in its leaves the elements of V, ordered according to their first coordinates. Fach
internal node w of this main tree contains (a pointer to) an associated structure,
which is a (d — 1)-dimensional range tree for those elements of V' that are in the
subtree rooted at w, taking only the second to d-th coordinate into account.
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Figure 1: A two-dimensional range tree

Let T be a range tree, representing the set V, and let w be a node of T (w is a
node of the main tree, or of an associated structure, or of an associated structure of
an associated structure, etc.). Let V,, be the set of those points of V' that are in the
subtree of w. Then node w is said to represent the set V,,.

For example, a 2-dimensional range tree for a set V consists of a binary tree,
containing in its leaves the points of V ordered according to their z-coordinates. For
any internal node w of this tree, let V,, be the subset of V represented by w. Then node
w contains (a pointer to) a binary tree, representing the set V,,, ordered according to
their y-coordinates. See Figure 1.

The building algorithm: Let V be a set of n points in d-dimensional space. To
build a range tree for V, we order the points of V' according to their d-th coordinates.

Let d > 1. We build a perfectly balanced (d — 1)-dimensional range tree for the set
V, taking only the second to d-th coordinate into account. This range tree becomes
the associated structure of the root of the main tree of the final structure. Next, we
divide the set V in two subsets V; and V, of equal size, such that the first coordinates
of the points in V; are less than those in V;. This splitting is done in such a way that
the points in both sets V; and V; remain ordered according to their last coordinates.
Then we build recursively two d-dimensional range trees for the sets V3 and V.

The query algorithm: Orthogonal range queries are solved as follows. We first
consider the one-dimensional case. Let [z, : y1] be a query interval. Then we search in
the binary tree with both z; and y;. Assume w.l.o.g. that z; < y;. We have to report
all leaves that lie between the paths to z; and y;. Let u be that node in the tree for
which z; lies in the left subtree of u, and y; lies in the right subtree of u. Then for
each node v # u on the path from u to z;, for which the search proceeds to the left son



of v, we report the leaves in the right subtree of v. Similarly, for each node w # u on
the path from u to y;, for which the search proceeds to the right son of w, we report
the leaves in the left subtree of w. Finally, we check the two leaves in which the paths
end.

Now let d > 1 and let ([z1 : y1],[®2 : y2],...,[2d : ¥4]) be a query rectangle. Then
we begin by searching with both z; and y; in the main tree. Assume w.l.o.g. that
z1 < y1. Let u be that node in the main tree for which z; lies in the left subtree of
u, and y; lies in the right subtree of u. Then we have to perform a range query with
the last d — 1 coordinates on all points that lie between z; and y; in the main tree. It
is not difficult to see that it is sufficient to perform recursively a (d — 1)-dimensional
range query in the associated structure of the right son of each node v # u on the path
from u to z; for which the search proceeds to the left son of v, and in the associated
structure of the left son of each node w # u on the path from u to y; for which the
search proceeds to the right son of w. We also have to check the points in the two
leaves of the main tree in which the paths end. The answer to the entire query is
the union of the answers of these partial queries. Note that each point in the query
rectangle is reported exactly once.

The update algorithm: Suppose we want to insert or delete a point p in the
range tree. Then we search with the first coordinate of p in the main tree to locate its
position among the leaves, and we insert or delete p in all the associated structures we
encounter on our search path. If these associated structures are one-dimensional range
trees, we apply the usual insertion/deletion algorithm for binary trees; otherwise we
use the same procedure recursively. Next, we insert or delete p among the leaves of
the main tree. In order to keep the trees balanced, we use Lueker’s partial rebuilding
technique. After we have inserted or deleted p among the leaves of the main tree, we
walk back to the root. During this walk, we locate the highest node v that is out of
balance, i.e., does not satisfy the balance condition of Definition 1 anymore. Then
we rebalance at node v by rebuilding the entire structure rooted at v as a perfectly
balanced range tree.

Just as in Section 3.1, if in this update algorithm node v is the root of the main
tree, we have to rebuild the entire range tree. We saw in Lemma 1, however, that in
this case (n) updates must occur before we again have to rebuild the entire structure.
The following theorem—due to Lueker [9]—gives the complexity of a range tree.

Theorem 2 A d-dimensional range tree for n points, can be built in O(nlogn +
n(logn)?1) time, and requires O(n(logn)?~*) space. Using this tree, orthogonal range
queries can be solved in O((logn)?+1) time, where t is the number of reported answers.
Insertions and deletions in this tree can be performed in amortized time O((logn)?).

Proof. We first prove the bound on the building time. Let V' be a set of n points in d-
dimensional space. It takes O(n logn) time to order the points of V' according to their
d-th coordinates. Let P(n,d) be the time to build a perfectly balanced d-dimensional
range tree for n points, that are ordered according to their last coordinates. Then
P(n,1) = O(n). Let d > 1. The building of the associated structure of the root of
the main tree takes P(n,d — 1) time. Using a linear time median algorithm (see [5]),
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the splitting of the set V in two equal sized subsets V; and V; can be done in O(n)
time. This splitting can be done such that the points in both sets V4 and V; remain
ordered according to their last coordinates. Finally, it takes 2 P(n/2,d) time to build
two d-dimensional range trees for the sets V; and V5.

We have proved that P(n,d) = 2P(n/2,d) + P(n,d —1) + O(n) for d > 1. It
follows that P(n,d) = O(n(logn)®1). This proves the bound on the building time.
The bound on the size of the data structure can be proved in a similar way.

The bound on the query time follows by induction on d, since in the above described
query algorithm, the paths in the main tree give rise to O(logn) (d — 1)-dimensional
range queries. A one-dimensional range query takes O(logn 4 t) time, since the height
of a BB[a]-tree is bounded by O(logn). We saw already that each point in the query
rectangle is reported exactly once.

Let U(n,d) be the amortized update time in a d-dimensional range tree for a set
of n points. Then, by Theorem 1, U(n,1) = O(logn). Let d > 1. To perform an
update, we start in the root of the main tree and we update its associated structure.
This takes, amortized, U(n,d — 1) time. Then we repeat the same procedure for the
appropriate son of the root, which is the root of a d-dimensional range tree for at most
(1 — a)n points. Therefore, this takes, amortized, at most U((1 — a)n,d) time. If
the root of the main tree gets out of balance, we rebuild the entire tree, which takes
O(n(logn)?~!) time. According to Lemma 1, this happens at most once every ((n)
updates. So this rebuilding adds O((logn)?~!) to the amortized update time. We have
proved that for d > 1

U(n,d) < U(n,d —1) + U((1 — @)n,d) + O((log n)*™?).

It follows that U(n,d) = O((logn)?). O

4 Maintaining range trees in secondary memory

4.1 The partitioning problem

In this section, we study the problem of storing and maintaining range trees in sec-
ondary memory. If a data structure is too large to be stored in main memory, it
has to be stored in secondary memory. In Section 2, we saw that a data structure
is stored in secondary memory by partitioning it into a number of parts, and by dis-
tributing the parts over blocks of some predetermined size. In order to answer queries
and to perform updates, parts of the data structure that are needed in the operation
are transported from secondary memory to main memory, and vice versa. Since the
complexity of an operation is expressed by the number of disk accesses and by the
amount of data that is transported, it is necessary to partition the data structure into
parts, such that queries and updates pass through only a small number of parts, each
of which has small size. This leads to the following definition.

Definition 4 A partition of a dynamic data structure, representing a set of n points,
is called an (f(n), g(n), k(n))-partition, if:
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1. Each part has size at most f(n).

2. There are O(S(n)/f(n)) parts, where S(n) is the amount of space required to
store the data structure.

3. Each query passes through at most g(n) parts.

4. The amortized number of parts through which an update passes is at most h(n).

The relation of this definition to the above should be clear. It states, that we can
store the data structure in secondary memory, such that a query requires at most g(n)
disk accesses and f(n) x g(n) data transport. Also, an update takes—amortized—at
most A(n) disk accesses and f(n) x h(n) data transport.

In this section, we design various partition schemes for range trees. For simplicity,
we only consider the two-dimensional case. We consider two types of partitions. The
first type are the so-called restricted partitions. In a restricted partition, only the main
tree is partitioned into parts, whereas associated structures are never subdivided. In
such a partition, a node of the main tree and its associated structure are contained
in the same part. The second type of partitions are those in which also associated
structures are partitioned into parts.

4.2 Restricted partitions

We first consider restricted partitions of range trees. Although there exist more effi-
cient partitions, it is useful to consider these restricted partitions, because they are a
lot easier to implement. Also, the techniques developed here apply to other data struc-
tures. In fact, any data structure that has the form of an augmented binary tree, with
some reasonable properties of the query and update algorithms, can be partitioned
in the way described in this section. Examples of such structures are segment trees,
structures solving set problems like maintaining a convex hull, maintaining a Voronoi
diagram, etc., and structures for adding range restrictions to searching problems (see
e.g. Bentley [4] and Overmars [11]).

Note that in a restricted partition, parts have size Q(n), because the associated
structure of the root of the main tree has size O(n).

In order to be able to give efficient restricted partitions, we modify the definition
of range tree somewhat. Let V be a set of n points in the plane. We suppose that the
points of V = {p; < p» < p3 < ... < p,} are ordered according to their z-coordinates.
Partition V into subsets Vi = {p1,p2,...,Pan)}> V2 = {Pr(n)+15 - - - » P2n(n) }» €tc., where
h(n) = [n/logn].

Definition 5 A modified range tree, representing the set V, is defined as follows.

1. Each set V; is stored in a two-dimensional range tree T;. In the root of T; we do
not store an associated structure. Let r; be the root of T;. The roots are ordered
according tor; <re <rz<....
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2. The roots r; are stored in the leaves of a perfectly balanced binary tree T'. Let v
be any node of T, representing the roots ri,rit1,...,r; (v may be a leaf of T).
Then v contains an associated structure, which is a BB[a]-tree, representing the
set V;U Vg U... UV, ordered according to their y-coordinates.

Query and update algorithms: First, note that the structure of a range tree is
not changed, only the balance conditions are different. Therefore, in a modified range
tree, range queries are solved in the same way as in ordinary range trees. An insertion
or deletion of a point p is performed as follows. First we walk down tree T, to find the
appropriate root r;. During this walk we insert or delete p in all associated structures
we encounter on our search path. Then we insert or delete p in T}, using the update
algorithm for range trees.

Suppose at the moment we build this structure, the set V' contains n points. Then
each set V; (except for the “last” one) contains [n/logn] points. As soon as at least
one set V; contains either [n/logn]/2 or 2 [n/log n] points, we rebuild the entire data
structure.

Theorem 3 A modified range tree, representing n points, can be built in O(nlogn)
time, and takes O(nlogn) space to store. Range queries can be solved, using this tree,
in O((logn)? + t) time, where t is the number of reported answers. Insertions and
deletions in this tree can be performed in amortized time O((logn)?).

Proof. The bounds for the size, the building time and the query time can be proved
in the same way as in Theorem 2. If the entire data structure is not rebuilt, an update
takes amortized O((logn)?) time, since each set V; contains ©(n/logn) points. The
data structure is rebuilt at most once every Q(n/logn) updates. Since this rebuilding
takes O(nlogn) time, this adds O((logn)?) to the amortized update time. O

Theorem 4 For a modified range tree, there exists an (O(n), loglogn+0(1), loglogn+
O(1))-partition.

Proof. Each tree T; represents O(n/logn) points. So it has size O(n) and, hence, it
can form a part of the partition. This gives us O(logn) parts. Each level of the tree
T, together with its associated structures, forms a part, again of size O(n). Since tree
T is perfectly balanced, it has height loglogn + O(1). So this gives us loglogn + O(1)
parts. A query passes through all levels of T', and through at most 2 trees T; (since we
store associated structures in the leaves of T'). Hence it passes through loglogn+ O(1)
parts. An update passes through loglogn+ O(1) parts, if we do not have to rebuild the
data structure. If we have to rebuild the structure, O(logn) parts are involved. Since
this has to be done at most once every 2(n/logn) updates, the amortized number of
parts through which an update passes is at most loglogn + O(1) + O((logn)?/n) =
loglogn + O(1). O

Theorem 5 For a modified range tree, there exists an (O(nloglogn),3,2 + o(1))-
partition.
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Proof. The tree T, together with its associated structures, forms a part on its own,
of size O(n loglogn). Furthermore, we put sets of [loglogn] trees T; together in one
part. A query passes through at most 3 parts: The part containing tree T', and at
most 2 parts containing trees T; (again we use the fact that we also store associated
structures in the leaves of T'). An update passes through exactly 2 parts, if the data
structure is not rebuilt. Since rebuilding of the structure has to be done at most
once every ((n/logn) updates, and since O(log n/loglog n) parts are involved in this
rebuilding, the amortized number of parts through which an update passes is 2+ o(1).
O

Next we improve Theorem 4 considerably. We want to partition a modified range
tree into parts of size O(n). Since each tree T; has size O(n), it can form a part on its
own.

We are left with the tree T' and its associated structures. We first sketch how these
structures are partitioned. The root of T', together with its associated structure, forms
a part. This removes the top level of T. Now consider the two sons v and w of the
root. Look at the subtree consisting of v and its two sons. It takes, together with its
associated structures, O(n) storage and, hence, can form a part. Similarly for w. This
removes two more levels of T'; so we are left with 8 sons. For each son u, we make a
part consisting of the subtree with root u, of depth 8, where the depth of a tree equals
the number of levels. This subtree, of course with its associated structures, uses O(n)
space. We now have removed 11 levels. So we are left with 2!! sons. For each son,
we take a subtree of depth 2!, with associated structures, which takes O(n) storage.
Next we are left with 22411 sons, etc. Note that the tree T is perfectly balanced. So
a node on level i represents ©(n/2') points. We describe the above more precisely.

The partition: Each tree T; forms a part on its own. Let ap = 0 and ax41 = 2% +
ai for k > 0. Let d be the height of tree T', and let m = min{¢ > 0|a; > d}. The tree
T and its associated structures are partitioned as follows. For each k,0 < k <m — 1,
there are 2% parts. Each such part is a subtree of T', together with its associated
structures, having its root at level ak, of depth 2%,

Before we state the result, we introduce a very slowly growing function. Let (log)*n
denote the k-th iterated logarithm. Then we define the function log*n by log*n :=
min{k > 1|(log)*n < 1}.

Theorem 6 For a modified range tree, there exists an (O(n), 4log*n+O(1), log" n+
O(1))-partition.

Proof. We saw already that each tree T; has size O(n). Furthermore, there are

O(log n) such trees. Since the tree T is perfectly balanced, we have d = loglogn+0O(1).
The tree T is partitioned into
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parts. Each such part is a subtree of T', together with its associated structures, having
its Toot at level ay, of depth 2%¢. Since this root represents n/2% points, such a part
has size O(n).

Now let ([z1 : y1],[z2 : y2]) be a query rectangle, and consider the path in T' from
the root to z;. Look at a node v through which this path passes, and let II be the part
of the partition containing this node. If this path proceeds to the left son, we have to
search the associated structure of the right son of v. If v is not at the bottom level
of II, these left and right sons are also contained in II. Otherwise, these two sons are
contained in two different parts. So, since the number of parts through which this left
path passes is m, the left path of the query passes through at most 2m + 1 parts (2m
parts in tree T, and one part containing a tree T;). Hence the number of parts through
which a query passes is at most 4m + 2. It can be shown, that m < log*n + O(1).
Therefore, a query passes through at most 4log*n + O(1) parts. Finally, an update
passes through m < log™n + O(1) parts of T' and through one part containing a tree
T:, if we do not have to rebuild the data structure. If we take the cost of rebuilding
into account, we see that—amortized—log* n + O(1) + O((log n)?/n) = log™ n + O(1)
parts are involved in an update. O

This result means that we can query and maintain a modified range tree, stored
in secondary memory, by transporting O(log™n) parts of size O(n). Observe that
although log* n goes to infinity as n does, for all practical values of n, we have log"n <
5. In fact, log*n < 5 for all n < 265536,

4.3 Changing range trees to make them partitionable

The best restricted partition into parts of size O(n) we have seen so far, is the (O(n),
O(log* n), O(log* n))-partition of Theorem 6. Although it is proved in [16] that this
is optimal for restricted partitions of normal range trees, we show now that, making
some slight changes, the bounds can be improved.

Let V = {p1 < p2 < ... < pn} be a set of n points in the plane, ordered according
to their z-coordinates. We partition the set V into subsets Vi = {p1,...,Pr(m)}

Va = {Ph(n)+1, - - - » P2h(n) }» €tc., where h(n) = [n/logn].

Definition 6 A reduced range tree representing the set V consists of the following.
1. Each set V; is stored in a two-dimensional range tree T;. Let r; be the root of T;.
2. These roots r; are stored in the leaves of a perfectly balanced binary tree T'.

So in a reduced range tree, nodes that are high in the main tree (i.e., nodes repre-
senting many points) do not have an associated structure.

Query and update algorithms: To perform a query with range ([z1 : y1], [22 :
y2]), we do the following. We search with 2, and y; in tree T' for the appropriate roots,
say r; and r;. If 1 = j, we perform a query, with the rectangle ([z; : y1], [22 : y2]), in the
range tree T;. Otherwise, if i < j, we perform queries, with the strip ([z1 : 00], [z2 : y2])
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in tree T;, and with ([—oo : y1],[z2 : y2]) in tree T;. Furthermore, we perform one-
dimensional range queries, with query interval [z, : y2] in the associated structures of
the roots of the trees Tiyq,...,Tj-1.

An insertion or deletion of a point p is performed as follows. First, we walk down
tree T, to find the appropriate root r;, and we insert or delete p in the tree T}, using the
update algorithm for range trees. Just as for modified range trees, we completely re-
build the data structure as soon as one set V; contains either [n/logn]/2 or 2[n/logn|
points.

Theorem 7 A reduced range tree can be built in O(nlogn) time, and has size O(nlogn).
In this tree, range queries can be solved in O((logn)?+t) time, where t is the number of
reported answers. Insertions and deletions in this tree can be performed in amortized

time O((logn)?).

Proof. The bounds on the building time, the space requirement and the update time
can be proved in the same way as for range trees (cf. Theorem 2). Consider the query
algorithm for reduced range trees as described above. The time to find the roots r;
and r; is proportional to the height of tree T', which is O(loglogn). If ¢ = j, we have
to query the tree Tj, which takes O((log(n/logn))?) = O((logn)?) time. If i < j,
we query the trees T; and T, which takes O((logn)?) time. Furthermore, the one-
dimensional range queries in the associated structures of the roots of Tjy4, ..., Tj_; take
O(logn x log(n/logn)) = O((logn)?) time, since there are O(logn) such associated
structures, and each has a query time of O(log(n/logn)). Of course we have to add
O(t) to the total query time for reporting the answers. This proves the theorem. O

The partition of a reduced range tree: We put the tree T', together with the
associated structures of the roots of the trees T; in one part. Furthermore, each tree
T;, without the associated structure of its root, forms one part of the partition.

Theorem 8 For a reduced range tree, there exists an (O(n), 3,2 + o(1))-partition.

Proof. The part that contains T and the associated structures of the roots of the trees
T;, has size O(logn + logn x (n/logn)) = O(n). It is clear that each T; without the
associated structure of its root has size O(n). There are O(logn) such trees. Clearly,
a query passes through at most 3 parts. Also, if the data structure is not rebuilt, an
update passes through exactly 2 parts. If the structure is rebuilt, which happens at
most once every §)(n/logn) updates, O(logn) parts are involved. Hence an update
passes, amortized, through at most 2 + o(1) parts of the partition. O
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4.4 A partition in which updates pass through 3 parts

We now look at general partitions that also allow splitting associated structures. As
a result we can reduce the size of the parts to be asymptotically less than n.

Definition 7 Let g(n) and h(n) be integer functions, such that 1 < g(n) < n,1 <
h(n) < n, and g(n) x h(n) > n/logn. Let V = {p1 < pz < ... < pa} be a set of n
points in the plane, ordered according to their x-coordinates. We partition the set V
into subsets Vi = {p1,...,Pgm)}r V2 = {Py(n)+1, - - - > P2g(n)}, €tc. Order the points of V
according to their y-coordinates. Let V = {q1 < g2 < ... < ¢n} be the resulting set.
We partition this set into subsets Wy = {q1,...,qnn)}, W2 = {@h(n)+1,- - - » Q2n(n) }, €lC.
A (g(n), h(n))-range tree is defined as follows.

1. Each set V; is stored in a two-dimensional range tree T;. Let r; be the root of T;.

9. these roots are stored in the leaves of a perfectly balanced binary tree T. Let v
any node of T, representing the roots ri,riy1,...,7;. Then v represents the set
Vij = ViUV U. . .UV, Let I, = {k|V;;NW}, # 0}. node v contains an associated
structure, representing the set V;;, having the following form. There is a top tree
T!, which is a BBJa]-tree, containing the set I, in its leaves. Furthermore, each
leaf k of this top tree, contains a BB[oa]-tree T, containing in its leaves the
points of V;j N Wy, ordered according to their y-coordinates.

Observe that the associated structure of a node v of the tree T' contains the points
of Urer,(Vij N Wi) = V;, ordered according to their y-coordinates. Also, for such a
node v, we have |I,| = O(n/h(n)). If r is the root of tree T, the set I, contains all
values of indices for which there is a set W;. Therefore, the top tree T, associated
with the root is perfectly balanced. See Figure 2 for a pictorial representation of a
(g(n), h(n))-range tree.

Query and update algorithms: Since (g(n), h(n))-range trees have the same
structure as ordinary range trees, the query algorithm for this data structure will be
clear. An insertion or deletion of a point p is performed as follows. First we walk
down tree T, to find the appropriate root r;. During this walk, we have to update all
associated structures we encounter on the search path. The first associated structure
we encounter is that of the root r of T. We search in its top tree T}, to find the set
W in which p has to be inserted or deleted. Then we update the corresponding tree

/. Now for each node v # r of T, that is on our search path, we do the following.
We search in the top tree T for k. (We know the value of k.)

1. Suppose that k is present in this top tree. Then we insert or delete p in the tree
T!.. If T/, becomes empty, we delete k from the top tree T}.

2. Otherwise, k is not present in the top tree. (Then, point p is not present in the
data structure, and therefore the update is an insertion: If p was present, then
k was present in the top tree T,. If we had to delete the point p, we would have
noticed that it is not present during the update of the associated structure of the
root r, and the update procedure would have stopped.) In this case, we insert &
into the top tree, together with a tree T, containing p.
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Figure 2: A (g(n), h(n))-range tree. T1,...,Tn/yn) are 2-dimensional range trees, the
other trees are binary trees.

Finally, point p is inserted or deleted in the appropriate range tree T;, using the update
algorithm for range trees.

In order to keep the data structure balanced, we completely rebuild it as soon as
one set V; contains either g(n)/2 or 2 g(n) points, or as soon as one set W; contains
either h(n)/2 or 2 h(n) points.

Theorem 9 Let g(n) and h(n) be as before. A (g(n),h(n))-range tree, representing
n points, can be built in O(nlogn) time, and takes O(nlogn) space to store. Using
this tree, range queries can be solved in O((logn)? +t) time, where t is the number of
reported answers. Insertions and deletions in this tree can be performed in amortized

time O((logn)? + (nlogn)/ min(g(n), h(n))).

Proof. Each tree T; represents O(g(n)) points. Hence it has size O(g(n)log g(n)).
Since there are O(n/g(n)) such trees, they take together O(nlog g(n)) space. The tree
T takes O(n/g(n)) space. Each top tree T, where v is a node of T', has size O(n/h(n)).
Hence all top trees together have size O((n/g(n)) x (n/h(n))). Consider a fixed level
of T. The trees T, of the associated structures on this level together represent the set
V, and, hence, they have size O(n). Since T has height O(log(n/g(n))), all these trees

/. together take O(nlog(n/g(n))) space. Hence the size of the entire data structure
is bounded by

O(nlog g(n)) + O((n/g(n)) x (n/h(n))) + O(nlog(n/g(n))) = O(nlogn),
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since g(n) x h(n) > n/logn. The bounds on the building, query and update time can
be proved in an analogous way. O

The partition: We partition a (g(n), k(n))-range tree as follows. Each tree T;
forms a part on its own. Next we put the tree T' together with all top trees T, in one
part of the partition. Finally, for each fixed k, the trees T, where v ranges over all
nodes in T, are put together in one part. (Use Figure 2 to get an impression of this
partition.)

Theorem 10 A (g(n), h(n))-range tree, representing a set of n points, can be parti-
tioned into parts of size O(f(n)), where

f(n) = max (g(n)log g(n), (n/g(n)) x (n/h(n)), h(r)log(n/g(n))),

such that a query passes through at most 5+ O(t/h(n)) parts, where t is the number of
reported answers, and the amortized number of parts through which an update passes

is at most 3+ O((nlogn)/(f(n) x min(g(n), h(n)))).

Proof. Each tree T; forms a part of size O(g(n)logg(n)). This gives us O(n/g(n))
parts. The tree T has size O(n/g(n)). There are O(n/g(n)) top trees, and each
of them has size O(n/h(n)). So the part of the partition containing 7' and all top
trees has size O(n/g(n)) + O((n/g(n)) x (n/h(n))) = O((n/g(n)) x (n/h(n))). Take
a fixed k. All trees T!;, where v ranges over the nodes in T', form one part. Consider
a level of T. Let v,vs,...,vm be the nodes on this level. The trees T, ,,...,T,
together represent the set Wy, which has size O(h(n)). So for this fixed k, all trees T
together have size O(h(n)log(n/g(n))), since tree T has height O(log(n/g(n))). Since
there are O(n/h(n)) possible values for k, this gives us O(n/h(n)) parts, each of size
O(h(n)log(n/g(n)))-

To summarize, we have O(n/g(n)) parts of size O(g(n)log g(n)), one part of size
O((n/g(n)) x (n/h(n))), and O(n/h(n)) parts of size O(h(n) log(n/g(n))). Then, in
order to get the desired partition, we merge parts into O((nlogn)/f(n)) new parts of
size O(f(n)).

Now consider an insertion or a deletion of a point, such that the data structure
is not rebuilt. Let Wy be the set in which the point is inserted or deleted. Then
this update passes through exactly three parts: The part containing T' and the top
trees; the part containing the trees T7;; and a part containing the appropriate range
tree T;. If the structure is rebuilt, O((nlogn)/f(n)) parts are involved in the update.
Since this has to be done at most once every (min(g(n), h(n))) updates, it follows
that the amortized number of parts through which an update passes is at most 3 +
O((nlogn)/f(n) x 1/min(g(n), h(n))). The bound on the number of parts through
which a query passes can be proved in a similar way. O

Now we choose the functions g(n) and h(n) such that the sizes of the parts are
minimal.

Corollary 1 Let g(n) = h(n) = [n?/3/(logn)'/?]. In a (g(n),h(n))-range tree, up-
dates can be performed in amortized time O(n'/? x (logn)*/3). This range tree can be
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partitioned into parts of size ©((nlogn)?/?), such that a query passes through at most
5+ O(t x (logn)'/3/n?/3) parts, where t is the number of answers to the query, and
the amortized number of parts through which an update passes is at most 3 + o(1).

5 The reconstruction problem

5.1 A model for the reconstruction problem

To study and analyze solutions to the reconstruction problem, we use the following
conceptual model:

e DS is a dynamic data structure, stored in main memory.

e SH is a shadow administration from which the data structure DS can be recon-
structed. This shadow administration is also stored in main memory.

o In secondary memory, we store a copy CSH of the shadow administration SH.

o Finally, there is extra information INF, that is used to update the shadow ad-
ministration SH and its copy CSH. This extra information is not needed to
reconstruct the data structure, and, hence, it may be destroyed in a system
crash. Therefore, it is only stored in main memory.

In practice SH often is not necessary and changes can be made immediately in
CSH.

Let DS be a dynamic data structure, and let SH, CSH and INF be the corre-
sponding additional structures. To perform an update we carry out the following
steps:

1. The data structure DS is updated.
2. The structures SH and INF are updated.
3. The copy CSH in secondary memory is updated.

Steps 1 and 2 take place in main memory. Therefore, all standard operations are
allowed for these two steps of the update procedure. The complexity of these steps is
expressed in computing time.

In step 3, data in secondary memory has to be updated. The structure CSH is
distributed over a number of blocks in secondary memory. After the update of SH,
we know which parts of CSH have to be updated. We update CSH by replacing all
blocks in which some information has to be changed by the corresponding updated
parts of SH. The complexity of this operation is given by the number of disk accesses
that has to be done; the amount of transport time which is proportional to the amount
of data that is transported; and the amount of computing time needed to collect the
information that is transported.

After a system crash, or as a result of program errors, the contents of main memory
(i.e., DS, SH and INF) will be destroyed. To reconstruct the structures, we transport
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the copy CSH of the shadow administration to main memory. This copy takes over the
role of the destroyed shadow administration SH. Then we reconstruct from SH the
structures DS and INF. After the reconstruction, we proceed with query answering
and performing updates.

The reconstruction procedure takes a number of disk accesses, O(S¢sg(n)) trans-
port time, where Scsg(n) is the size of CSH, and an amount of computing time. We
assume here that the copy CSH is stored in consecutive blocks. Therefore, the number
of disk accesses in the reconstruction procedure is equal to one.

An important issue in the reconstruction procedure is how we store the copy CSH
in main memory. Note that data structures contain pointers, which we consider to
be indices of memory locations. In order to guarantee that these pointers “point” to
the correct objects, each indivisible piece of information of CSH should be stored in
exactly the same location in main memory as its corresponding piece of SH was, before
the information was destroyed. In general, this is not possible, because the crash may
also have destroyed physical parts of main memory where the information was stored.
In this case, we can of course store the information in another part of main memory,
in such a way that all addresses are shifted by the same amount.

We assume for simplicity, however, that a crash only destroys the pieces of infor-
mation; the memory locations themselves are not destroyed. Hence, these locations
can be used after the crash to store information again.

We store in secondary memory with each piece of information of CSH, the address
of its corresponding piece in main memory. In this way, the size of the structure CSH
is at most twice as large as the size of SH. Note that now the structure CSH is not
an exact copy, since it contains more information. To reconstruct the structures, we
transport CSH to main memory, and we store the information in the same positions
as SH was, using the addresses. Then all pointers indeed have the correct meaning,
and we can reconstruct DS and INF. It follows that the computing time needed to
reconstruct the structures is 2(Scsy(n)), since in main memory an amount of Sc¢sg(n)
information has to be written in the correct positions.

5.2 An example: the union-find problem

The union-find problem is one of the basic problems in the theory of algorithms
and data structures. In this problem we are given a collection of n disjoint sets
Vi, Va, ..., Vy, each containing one single element, and we have to carry out a sequence
of operations of the following two types:

1. UNION (A, B,C): combine the two disjoint sets A and B into a new set named C'.

2. FIND(z): compute the name of the (unique) set that contains z.

The union-find problem has many applications, and many algorithms use the prob-
lem in some way as a subroutine. Examples are algorithms for computing minimum
spanning trees, solving an off-line minimum problem, computing depths in trees and
determining the equivalence of finite automata. (See [2].)

In this section we are interested in the single-operation time complexity of the
union-find problem. Blum [6] has given a data structure of size O(n), in which each
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UNION operation can be performed in O(k + log,, n) time, and each FIND operation
in O(log, n) time. Here k is a parameter, possibly depending on n. He also gives a
very general class B of data structures, that contains many implementations of known
algorithms for the union-find problem:

The class B: Data structures in class B are linked structures that are considered
as directed graphs. The algorithms that use these data structures for solving the
union-find problem should satisfy the following constraints:

1. For each set and for each element, there is exactly one node in the data structure
that contains the name of this set or element.

2. The data structure can be partitioned into subgraphs, such that each subgraph
corresponds to a current set. There are no edges between two such subgraphs.

3. To perform an operation FIND(z), the algorithm gets the node v that contains z.
The algorithm follows paths in the graph, until it reaches the node that contains
the node of the corresponding set.

4. To perform a UNION or a FIND operation, the algorithm may insert or delete
any edges, as long as Condition 2 is satisfied.

Theorem 11 (Blum [6]) Let DS be any data structure in class B. Suppose that each
UNION operation can be performed in O(k) time. Then there is a FIND operation

that needs time
Q logn
logk + loglogn |

In this section, we give a variant of Blum’s structure that gives a better trade-off
between the times for UNION and FIND operations. This structure depends on a
parameter, and for many values of this parameter it is optimal in the class B.

The data structure consists of a number of trees, and has the property that for
a UNION operation we only have to visit the roots of two trees, together with their
direct descendants. Furthermore, a FIND operation does not change the structure.
This property implies that we can efficiently maintain a copy of the data structure in
secondary memory, leading to a good solution to the reconstruction problem.

5.2.1 The union-find data structure

Let V be a set of n elements for which we want to solve the union-find problem. That
is, we want to maintain a partition of V under a sequence of UNION and FIND
operations, where initially each set in the partition contains exactly one element.

Definition 8 Let k be an integer, 2 < k < n. A tree T is called a UF (k)-tree, if
1. the root of T' has at most k sons,

2. each node in T has either 0 or more than k grandsons. (Here, a grandson of a
node v is a son of a son of v.)
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Each set A in the partition of V is stored in a separate UF(k)-tree, as follows: The
elements of A are stored in the leaves of the tree. In the root, we store the name of the
set, the height of the tree, and the number of its sons. Each non-root node contains a
pointer to its father, and the root contains pointers to all its sons. Note that the root
contains at most k pointers. A UF(k)-tree storing a set of cardinality one, consists of
two nodes, a root and one leaf.

The find-algorithm: To perform an operation FIND(xz), we get at constant cost
the leaf that contains element z. Then we follow father-pointers, until we reach the
root of the tree, where we read the name of the set that contains z.

The union-algorithm: To perform the operation UNION(A, B,C), we get at
constant cost the root r resp. s of the tree that contains the set A resp. B. We
distinguish three cases.

Case 1. The trees containing A and B have equal height, and the total number
of sons of r and s is < k: Assume w.l.o.g. that the number of sons of s is less than
or equal to the number of sons of r. We change the father-pointers from all sons of
s into pointers to r, and we store in r pointers to its new sons. Next, we discard the
root s, together with all its information. Finally, we adapt in r the number of its sons
and the name of the set. It is clear that the resulting tree is again a UF(k)-tree.

Case 2. The trees containing A and B have equal height, and the total number of
sons of r and s is > k: In this case, we create a new root ¢. In this new root, we store
pointers to r and s; the name of the new set C; the height of the new tree, which is
one more than the corresponding value stored in r; and the number of sons, which is
2. In the old roots r and s, we discard all information, and we add pointers to their
new father ¢. Again, the resulting tree is a UF(k)-tree.

Case 3. The trees containing A and B have unequal height: Assume w.l.o.g. that
the tree of B has smaller height than the tree of A. Let v be an arbitrary son of r.
Then we change the father-pointers from all sons of s into pointers to v. The root
s, together with all its information, is discarded. Also, we adapt the name of the set
stored in r. Note that the height of the tree and the number of sons of r does not
change. Again, it is not difficult to see that the resulting tree is a UF(k)-tree.

Theorem 12 Let k and n be integers, such that 2 < k < n. Using UF (k)-trees, the
union-find problem on n elements can be solved, such that

1. each UNION takes O(k) time,
2. each FIND takes O(log, n) time,

3. the data structure has size O(n).

Proof. We saw already that the UNION -algorithm correctly maintains UF (k)-trees.
Note that we can determine in constant time in which of the three cases we are,
since all information for deciding this is stored in the roots. Cases 1 and 3 of the
UNION -algorithm take O(k) time in the worst case. Case 2 can be handled in O(1)
time.
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The size of a UF (k)-tree is linear in the number of its leaves, which shows that the
entire data structure has size O(n).

The time needed for a FIND operation is bounded above by the height of a UF(k)-
tree. The problem is that Definition 8 does not imply that the height of a UF(k)-tree
is bounded above by O(log, n). In fact, the reader is encouraged to construct a UF (k)-
tree having a height that is proportional to n/k. Of course, we only have to give an
upper bound on the heights of the trees that are made by the UNION-algorithm. It
can be shown, that the trees that are made by the UNION -algorithm, have height
at most 1 + 2[log, n]. (For a proof of this fact, see [14, 15].) Therefore, each FIND
operation takes O(log; n) time in the worst case. O

Since the given data structure is contained in Blum’s class B, Theorems 11 and 12
yield:

Corollary 2 The data structure of Theorem 12 is optimal in Blum’s class B of struc-
tures for the union-find problem, for all values of k satisfying k = Q((log n)¢) for some
e > 0.

5.2.2 An efficient shadow administration

We store a copy of the data structure in secondary memory as follows. We reserve a
number of consecutive blocks of some predetermined size (see below), and we distribute
the structure over these blocks. Together with each indivisible piece of information,
we store in secondary memory the address of the corresponding piece in main memory.

Since the root of a UF(k)-tree has at most k sons, the total size of this root,
together with all its sons and all the information stored in these nodes (i.e., pointers,
name of the set, height of the tree and number of sons), and all their addresses in main
memory, is bounded above by ck for some constant c¢. Also, there is a constant ¢’ such
that the size of the entire data structure, together with all the addresses, is at most
cn.

We reserve in secondary memory [(¢'n)/(ck)] consecutive blocks of size 2ck, start-
ing at block 0. The copy of the data structure will be stored in these blocks. We call
a block free if at least half of the block is empty. The following lemma can easily be
proved.

Lemma 2 Among the reserved blocks, there is always at least one free block.

Initially we have n trees, each of them having one root and one leaf. We store these
trees in main memory. Copies of the trees are distributed over the reserved blocks. For
each tree, the root and its son, together of course with all their information and their
positions in main memory, are stored in the same block. We store in main memory
in the root of each tree, the address of the block in secondary memory that contains
the copy of this root. Finally, we maintain in main memory a stack containing the
addresses of the free blocks. By Lemma 2, this stack is never empty. The stack
will only be used for updating the structure in secondary memory; it is not used for
reconstructing the data structure. Therefore it may be destroyed in a crash. Note
that the amount of space in main memory remains bounded by O(n).
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Since a FIND operation does not change the data structure, such an operation
does not affect the shadow administration.

A UNION operation is first performed on the structure in main memory accord-
ing to the algorithm of Section 5.2.1. Then the shadow administration in secondary
memory is updated. We take care that at each moment the following holds:

Invariant: For each UF(k)-tree, the root and all its sons, together with
all the information stored in these nodes, and all their positions in main
memory, are stored in the same block in secondary memory.

Clearly, this invariant holds initially. (In the sequel we shall not state each time
explicitly that if we put information in a block, we also store with it its position in
main memory. It is clear how this can be done.)

The union-algorithm: The operation UNION (A, B, C) is performed as follows.
Let r resp. s be the root of the tree containing the set A resp. B.

Case 1. The trees containing A and B have equal height, and the total number
of sons of r and s is < k: Assume w.l.o.g. that the number of sons of s is less than
or equal to the number of sons of r. In the block containing r we remove this root
and all its sons. (Note that we can read the address of this block in the root r that is
stored in main memory.) If this block becomes free, we put its address on the stack.
In the block containing s we do the same. Next we take the address of a free block
from the stack, and in that block we add the root, together with its sons, of the new
tree. If this block remains free we put its address back on the stack. In main memory,
we store in the root of the new tree, the address of the block containing its copy.

Case 2. The trees containing A and B have equal height, and the total number of
sons of r and s is > k: In the block containing r we remove this root, together with all
the information stored in it. If the block becomes free, we put its address on the stack.
In the block containing s we do the same. Then we add the new root, together with
its sons r and s and all the information that these three nodes contain, to a free block,
the address of which we take from the stack. If this block remains free its address is
put back on the stack. In main memory we store in the new root the address of the
block containing its copy.

Case 3. The trees containing A and B have unequal height: Assume w.l.o.g. that
the tree of B has smaller height than the tree of A. In the block containing r we
change the name of the set from A to C. In the block containing s, we change the
pointers of the sons of s, and we remove the root s together with all its information.
If this block becomes free we put its address on the stack.

The reconstruction algorithm: To reconstruct the data structure, we transport
the entire file to main memory, and we rebuild the stack of free blocks. Then each
indivisible piece of information of the data structure is stored in the array location
where it was before the information was destroyed. This guarantees that each pointer
“points” to the correct position in main memory. Now we can proceed performing

UNION and FIND operations.

The following theorem summarizes the result.
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Theorem 13 Let k and n be integers, such that 2 < k < n. For the data structure
of Theorem 12, solving the union-find problem on n elements, there exists a shadow
administration

1. of size O(n),

2. that can be maintained after a UNION operation at the cost of at most three disk
accesses, O(k) computing time and O(k) transport time.

The data structure can be reconstructed at the cost of one disk access, O(n) transport
time and O(n) compuling time.

5.3 Another approach: deferred data structuring

In the approach we have taken so far for solving the reconstruction problem, we first
completely rebuild the data structure DS and the corresponding structures SH and
INF, after a crash. Then we proceed with query answering and performing updates.
Hence, if the reconstruction time is high, it takes a lot of time before we can proceed
again. To avoid this problem, we introduce another approach to the reconstruction
problem. The idea is to maintain in secondary memory the objects that are repre-
sented by the data structure DS. If we want to reconstruct this data structure, we
transport the objects to main memory. Then we immediately continue with answering
queries and performing updates. The data structure is built “on-the-fly” during these
operations. With each operation, those parts of the data structure that do not exist
at that moment, but that are needed in the operation, are built. These parts can then
be used for future operations.

This technique of building a data structure is due to Karp, Motwani and Ragha-
van [8], who call it deferred data structuring, although they do not apply this technique
to the reconstruction problem. Their motivation to design deferred data structures is
to solve a sequence of queries, where the length of the sequence is not known.

5.3.1 The static deferred binary search tree

We first recall the static solution of [8] for the member searching problem.

Let V be a set of n objects drawn from some totally ordered universe U. We are
asked to perform—on-line—a sequence of member queries. In each such query we get
an object q of U, and we have to decide whether or not ¢ € V.

The algorithm that answers these queries builds a binary search tree as follows.
Initially there is only the root, containing the set V. Consider the first query q. We
compute the median m of V, and store it in the root. Then we make two new nodes u
and v. Node u will be the left son of the root, and we store in it all objects of V' that
are smaller than m. Similarly, v will be the right son of the root, and we store in it
the objects of V' that are larger than m. Then we compare the query object ¢ with m.
If ¢ = m we know that ¢ € V, and we stop. Suppose ¢ < m. Then we proceed in the
same way with node u. That is, we find the median of all objects stored in u, we store
this median in u, we give u two sons with the appropriate objects, and we compare ¢
with the new median. This procedure is repeated until we either find a node in which
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the “local” median is equal to ¢, in which case we are finished, or end in a node storing
only one object not equal to g, in which case we know that ¢ ¢ V.

The first query takes O(n +n/2 + n/4 + ---) = O(n) time, since in each node we
have to find a median, which can be done in linear time [5]. During this first query,
however, we have built some structure that can be used for future queries: In the
second query, we have to perform only one comparison in the root to decide whether
we have to proceed to the left or right son. In fact, in any node we visit that is visited
already before, we spend only one comparison.

This is the general principle in deferred data structuring: If we do a lot of work to
answer one query, we do it in such a way that we can take advantage from it in future
queries.

We now describe the algorithm in more detail. Each node v in the structure
contains a list L(v) of objects, two variables N(v) and key(v), and two pointers. Some
of these values may be undefined. The value of N(v) is equal to the number of objects
that are stored in the subtree with root v. The meaning of the other variables will be
clear from the algorithms below.

Initialization: At the start of the algorithm there is one node, the root r. The
list L(r) stores all objects of V. (This list is not sorted.) The value of N(r) is equal
to n, which is the cardinality of V', and the value of key(r) is undefined.

Expand: Let v be a node having an undefined variable key(v). In this case, the
list L(v) will contain at least 2 objects, and the value of N(v) will be equal to |L(v)|.
The operation expand is performed as follows:

First we compute the median m of L(v), and we determine the sets V; = {z €
L(v)|z < m} and V; = {z € L(v)|z > m}. Then we set key(v) := m and L(v) := 0.
Next we make two new nodes v; and v,. Node vy will be the left son of v, so we store in v
a pointer to vy. If [V4| > 1, we set L(vq) := V3, N(v1) := |V4| and key(v;) := undefined.
If V4| = 1, we set L(v;) := 0, N(v1) := 1 and key(v;) := s, where s is the (only) object
of Vi. (Of course, if V; = (), we do not create the node v;.) Similarly for v,.

Answering one query: Let ¢ be a query object, i.e., we want to know whether
or not ¢ € V. Then we start at the root, and we follow the appropriate path in the
deferred tree, by comparing q with the values of key in the nodes we encounter. If one
of these key values is equal to ¢ we know that ¢ € V and we are finished.

If we encounter a node v having an undefined variable key(v), we expand node v,
as described above. Then we proceed our query by comparing ¢ with the value of
key(v). If ¢ = key(v), we know that ¢ € V, and we can stop. Otherwise, if ¢ < key(v),
we expand the left son of v, and we continue in the same way. If this left son does not
exist, we know that ¢ & V. Similarly, if ¢ > key(v).

The following theorem gives the complexity of the algorithm. For a proof, see
Section 5.3.2.

Theorem 14 A sequence of k member queries in a set of n objects can be solved in

total time O(nlogk) if k < n, and O((n + k)logn) if k > n.
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5.3.2 A dynamic solution

Consider the deferred tree of the preceding section. At some point in the sequence of
queries, the structure consists of a number of nodes. Take such a node v.

Suppose key(v) is defined. Then the list L(v) is empty, the value of N(v) is equal
to the number of objects that are stored in the subtree with root v, and the value of
key(v) is equal to the median of the objects stored in this subtree.

If key(v) is undefined, node v contains a list L(v) storing a subset of V—those
objects that “belong” in the subtree of v—and the variable N(v) has the value |L(v)],
which is at least two.

An update algorithm: We only give the insert algorithm. Deletions can be
performed similarly. See [13, 14]. Suppose we have to insert an object x. Then we
start searching for z in the deferred tree, using the key values stored in the encountered
nodes. In each node v we encounter, we increase the value of N(v) by one, since the
object = has to be inserted in the subtree of v.

If we end in a leaf, we insert z in the standard way, by creating a new node for
it, and we set the variables L, N and key to their correct values. (A node v in the
deferred tree is called a leaf if N(v) = 1. So a node that is not expanded—such a node
does not have any sons—is not a leaf.) Note that if z is already present in the deferred
tree, we will have encountered it. In that case, we have to decrease the values of the
increased N(v)’s by one.

If we do not end in a leaf, we reach a node w with an undefined key value. Since
we have to check whether z is already present in the structure, we have to walk along
the list L(w). (The list L(w) is not sorted!) If z is present, we decrease the increased
N(v)’s. Otherwise, if z is a new object, we add it to the list, and increase N(w) by
one. Note that the walk along L(w) takes O(|L(w)|) time. Hence a number of such
insertions would take a lot of time. Then, our general principle—if we do a lot of work,
we do it in such a way that it saves work in future operations—is violated. Therefore,
after we have checked whether z is a new object, and—in case it is—after we have
added z to the list L(w), we expand node w. So if we again have to insert an object
in the subtree of w, the time for this insertion will be halved.

We are left with the problem of keeping the deferred tree balanced. For the class
of BB[a]-trees, the balance criterion depends only on the size of its subtrees. For our
deferred trees, the size of each subtree—whether it has been completely built already
or not—is known at each moment: It is stored in the variable N(v). Therefore, we
can generalize Lueker’s partial rebuilding technique to deferred binary search trees:

The partial dismantling technique: Our data structure is a deferred BB[q]-
tree. Updates are performed as described above. Rebalancing is carried out as follows.
After the insertion or deletion, we walk back to the root of the deferred tree to find
the highest node v that is out of balance. Then we dismantle the subtree with root
v. That is, we collect all objects that are stored in this subtree, and put them in the
list L(v). Furthermore, we set key(v) := undefined. Note that the value of N(v) is
already equal to |L(v)|. Finally, we discard all nodes in the subtree of v (except for v

itself).
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Such a dismantling operation takes O(N(v)) time. Hence, if v is high in the tree,
this will take a lot of time. By Lemma 1, however, this does not occur too often.

Theorem 15 A sequence of k < n member queries, insertions and deletions in a set
of initially n objects can be performed in total time O(nlog k).

Proof. Let f(n,k) denote the total time to perform a sequence of k¥ member queries
and updates in a set of initially n objects, with the above algorithms. According to
Lemma 1, there is a constant ¢, such that during a sequence of < cn updates, the
root of the deferred tree always satisfies the balance condition of Definition 1. So in
a sequence of k < cn queries and updates, the root of the tree is expanded exactly
once. The total time we spend in the root in such a sequence is therefore bounded
by O(n + k) = O(n). If ky operations are performed in the left subtree, we spend an
amount of time there bounded by f(n/2, k), since the left subtree initially contains
n/2 objects. Similarly, we spend an amount of f(n/2,k—k;) time in the right subtree.
It follows that

f(n,k) < o2, {f(n/2,k1)+ f(n/2,k — K1)} + cin if k < en,

for some constant ¢;. Each query or update takes O(m) time if m is the number
of objects. Therefore, a sequence of k operations takes O(k(n + k)) time, since the
number of objects is always < n + k. It follows that f(n,k) < ck? if k > cn, for some
constant cs.

It can easily be shown by induction that f(n,k) = O(nlogk + k?). So a sequence
of k < y/n queries and updates takes O(nlog k) time.

After \/n operations, we have spent already Q(n log /n) = (nlogn) time. There-
fore, we build in the /n-th operation a binary tree for the objects that are present at
this moment. So the y/n-th operation takes O(n logn) time. The future operations are
performed in this complete structure in the standard non-deferred way. This proves
the theorem. O

There are other techniques to dynamize static deferred data structures. These
techniques are generalizations of known methods for “ordinary”, i.e., non-deferred,
data structures. See [7, 13, 14].

5.3.3 Applications to the reconstruction problem

We now apply the technique of deferred data structuring to the reconstruction problem.
Let DS be a dynamic data structure representing a set V of n objects. Suppose that the
structure DS can be built in a deferred way. We take for DS a shadow administration
that stores the objects of V in sorted order.

So let SH be a sorted list that stores the objects of the set V. Let INF be a
balanced binary search tree that contains the objects of V' in sorted order in its leaves.
Each leaf—storing say object p—contains a pointer to object p in the list SH.

For the update algorithm of SH and INF, see [14]. We concentrate on the recon-
struction procedure. Suppose all information in main memory is destroyed. Then we
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transport the structure SH from secondary memory to main memory, and we build
the binary tree INF. This can be done in one disk access, O(n) transport time and
O(n) computing time. (Note that SH is a sorted list. Therefore the tree INF can be
built in linear time.)

At this moment, main memory contains the objects in sorted order. We imme-
diately proceed with answering queries and performing updates in the structure DS,
in a deferred way. Therefore, the first operations take a lot of time, but the opera-
tions will be executed faster and faster the more operations are performed. The data
structure DS will be reconstructed gradually during the operations. Note that we now
start with the objects in sorted order; in Sections 5.3.1 and 5.3.2, we started with an
unsorted set of objects.

As an illustration, consider the range counting problem. Here, we are given a set V
of n points in the d-dimensional real vector space. For a given query hyperrectangle
([z1 : y1ly- -+, [2d : y4]) , we have to report the number of points in V' that are in this
rectangle. That is, we want the number of points p = (p1,...,ps) in V, such that
1 <p1 S Y1005 %d S P < Yo

A somewhat extended form of range tree can be used for solving range counting
queries in O((logn)?) time. This structure has size O(n(logn)?™*), and can be built
in O(n(logn)?1) time.

Using a similar technique as in Subsection 5.3.1, it can be shown that a static
deferred version of this structure exists, such that a sequence of k¥ < n range counting
queries can be solved in O(n(logk)?™* + k(logn)?) time, if the points are ordered
according to one of their coordinates. (See also [8].)

Using the partial dismantling technique of the preceding section, a dynamic de-
ferred solution for the range counting problem can be obtained. In fact, then the
update algorithm for the dynamic deferred structure is almost the same as the update
algorithm for range trees. The result is expressed in the following theorem.

Theorem 16 A sequence of k < n range counting queries, insertions and deletions
in a set of initially n points in d-dimensional space, initially ordered according to one
of their coordinates, can be performed in total time O(n(log k)?~! + k(logn)?).

So we have a dynamic deferred data structure for the range counting problem.
Now take as a shadow administration the points represented by the structure, ordered
according to one of their coordinates. Then after a crash, we reconstruct the ordered
list SH of points and the binary tree INF', and we immediately proceed with performing
operations in the deferred way. Of course, with each update, we also maintain the
shadow administration. In this new approach, the first operation takes O(n) time.
The data structure will become, however, more complete, and the operations will be
executed faster and faster the more operations are performed. In fact, by Theorem 16,
we can perform ©(n/logn) operations in O(n(logn)?~!) time.

Using the approach, in which we completely reconstruct the data structure before
we proceed with query answering and performing updates, it takes O(n(logn)?~1)
computing time before we can proceed, since the structure has size O(n(logn)?-1).
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Then the first n/ log n operations also take O(n(logn)?~!) time, because each operation
takes, amortized, O((logn)?) time.

Hence, in the approach of the current section, the first n/logn operations take
the same amount of time as we would have needed in the old approach. In this new
approach, however, we do not have to wait O(n(logn)?~!) time before we can start
with the operations.

6 Concluding remarks

We have given an overview of two data structuring problems: maintaining a dynamic
data structure in secondary memory and the reconstruction problem. In [12, 14], many
more partitions of range trees are given. In [16], lower bounds are proved, from which
it follows that many restricted partitions are optimal.

In [14, 18], more techniques are given for designing shadow administrations. For
example, there are general techniques to design shadow administrations for the data
structures solving large classes of searching problems, such as decomposable searching
problems and order decomposable set problems.

In the present paper, we have considered only one multiple representation prob-
lem. Another case where data is represented more than once is investigated in [14, 17]:
When we have a network of processors, each having its own memory, there are sit-
uations in which each processor holds its own copy of a particular data structure.
Updates have to be made in all copies. When the time for an update is high, this is
an unfavorable situation. In this situation, we are better off dedicating one processor
the task of maintaining the data structure and broadcasting the actual changes to the
other processors. Again we have a situation in which there is a multiple representation
of the data. One data structure should allow for updates, and a set of other structures
answer queries. Of course, the query data structures must be structured in such a way
that they can perform updates, but they get the update in a kind of “preprocessed”
form that is easier to handle.

This multiple representation problem is related to the reconstruction problem.
Indeed, most of the techniques for designing shadow administrations can be generalized

to this second multiple representation problem. For details, the reader is referred to
[14, 17].
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