Institute for Language, Logic and Information

GREATEST FIXED POINTS OF
LOGIC PROGRAMS

Kees Doets

ITLI Prepublication Series
for Computation and Complexity Theory CT-90-07

University of Amsterdam

%
&
%

The ITLI Prepublication Series

1986

86-01 The Institute of Language, Logic and Information

86-02 Peter van Emde Boas A Semantical Model for Integration and Modularization of Rules

86-03 Johan van Benthem Categorial Grammar and Lambda Calculus

86-04 Reinhard Muskens A Relational Formulation of the Theory of Types

86-05 Kenneth A. Bowen, Dick de Jongh Some Complete Logics for Branched Time, Part I Well-founded Time,

86-06 Johan van Benthem Logical Syntax Forward looking Operators
87-01 Jeroen Groenendijk, Martin Stokhof Type shifting Rules and the Semantics of Interrogatives

87-02 Renate Bartsch Frame Representations and Discourse Representations

87-03 Jan Willem Klop, Roel de Vrijer Unique Normal Forms for Lambda Calculus with Surjective Pairing

87-04 Johan van Benthem Polyadic quantificrs

87-05 Victor Sénchez Valencia Traditional Logicians and de Morgan's Example

87-06 Eleonore Oversteegen Temporal Adverbials in the Two Track Theory of Time

87-07 Johan van Benthem Categorial Grammar and Type Theory

87-08 Renate Bartsch The Construction of Properties under Perspectives

87-09 Herman Hendriks Type Change in Semantics: The Scope of &:ntiﬁcation and Coordination

1988 | p.g8-01 Michiel van Lambalgen Logic, Semantics and Philosophy of Language: Ajgorithmic Information Theory

LP-88-02 Yde Venema Expressiveness and Completeness of an Interval Tense Logic

LP-88-03 Year Report 1987

LP-88-04 Reinhard Muskens Goingara:ﬁal in Montague Grammar

LP-88-05 Johan van Benthem Logical Constants across Varying Types

LP-88-06 Johan van Benthem Semantic Parallels in Natural Language and Computation

LP-88-07 Renate Bartsch Tenses, Aspects, and their Scopes in Discourse

LP-88-08 Jeroen Groenendijk, Martin Stokhof ~ Context and Information in Dynamic Semantics

LP-88-09 Theo M.V. Janssen A mathematical model for the CAT framework of Eurotra

LP-88-10 Anneke Kleppe . . A Blissymbolics Translation Program

ML-88-01 Jaap van Oosten Mathematical Logic and Fourdations: | jfschitz' Realizabiility

ML-88-02 M.D.G. Swaen The Arithmetical Fragment of Martin Léf's Type Theories with weak Z-elimination

ML-88-03 Dick de Jongh, Frank Veltman Provability Lcﬁics for Relative Interpretability

ML-88-04 A.S. Troelstra On the Early History of Intvitionistic Logic

ML-88-05 A.S. Troelstra . Remarks on Intuitionism and the Philosophy of Mathematics

CT-88-01 Ming Li, Paul M.B.Vitanyi Computation and Complexity Theory: Two Decades of Ap%ied Kolmogorov Complexity

CT-88-02 Michiel H.M. Smid General Lower Bounds for the Partitioning of Range Trees

CT-88-03 Michiel H.M. Smid, Mark H, Overmars Maintaining Multiple Representations of
Leen Torenvliet, Peter van Emde Boas Dynamic Data Structures

CT-88-04 Dick de Jongh, Lex Hendriks Computations in Fragments of Intuitionistic Propositional Logic
Gerard R. Renardel de Lavalette

CT-88-05 Peter van Emde Boas Machine Models and Simulations (revised version)

CT-88-06 Michiel H.M. Smid A Data Structure for the Union-find Problem having good Single-Operation Complexity

CT-88-07 Johan van Benthem Time, LOﬁic and Computation

CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas
CT-88-09 Theo M.V. Janssen Towards a Universal Parsing Algorithm for Functional Grammar

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundaméental Analogy
CT-88-11 Sieger van Denncheuvel, Peter van Emde Boas Towards implementing RL
X-88-01 Marc Jumelet Other prepublications: op Solovay's Completeness Theorem

9 1P-89-01 Johan van Benthemlogic, Semantics and Philosophy of Language:The Fine-Structure of Categorial Semantics

LP-89-02 Jeroen Groenendijk, Martin Stokhof ~ Dynamic Predicate Logic, towards a compositional,
non-representational semantics of discourse

LP-89-03 Yde Venema Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-04 Johan van Benthem Language in Action

LP-89-05 Johan van Benthem Modal E ic as a Theory of Information

LP-89-06 Andreja Prijatelj Intensional Lambek Calculi: Theory and Application

LP-89-07 Heinnch Wansin The Adequacy Problem for Sequential Propositional Logic

LP-89-08 Victor Sdnchez Valencia Pcirce'segropositional Logic: From Algebra to Graphs

LP-89-09 Zhisheng Huang Dependency of Belief in Distributed Systems

ML-89-01 Dick de Jongh, Albert Visser Mathematical Logic ‘and Foundations: Explicit Fixed Points for Interpretability Logic
ML-89-02 Roel de Vrijer Extending the Lambda Calculus with Surjective Pairing is conservative

ML-89-03 Dick de Jongh, Franco Montagna Rosser Orderings and Free Variables
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna ~ On the Proof of Solovay's Theorem

ML-89-05 Rineke Verbrugge X-completencss and Bounded Arithmetic

ML-89-06 Michiel van Lambalgen The Axiomatization of Randomness

ML-89-07 Dirk Roorda Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
ML-89-08 Dirk Roorda’ Investigations into Classical Linear Logic

ML-89-09 Alessandra Carbone . Provable Fixed points in IAp+y

CT-89-01 Michicl HM. Smid Computation and Complexity Theory: Dynamic Deferred Data Structures

CT-89-02 Peter van Emde Boas Machine Models and Simulations

CT-89-03 Ming Li, Herman Ncuféglise, Leen Torenvliet, Peter van Emde Boas ~ On Space Efficient Simulations
CT-89-04 Harry Buhrman, Leen Torenvliet A Comparison of Reductions on Nondcterministic Space

CT-89-05 Pieter H, Hartel, Michicl H.M. Smid A Parallel Functional Implementation of Range Queries
Leen Torenvhet, Willem G. Vree

CT-89-06 H.W. Lenstra, Jr. Finding Isomorphisms between Finite Fields
CT-89-07 Ming Li, Paul M.B. Vitanyi A Theory of Lca.minF Simple Concepts under Simple Distributions and
Average Case Complexity ll)'or the Universal Distn'gulion (Prel. Version)
CT-89-08 Harry Buhrman, Steven Homer Honest Reductions, Completeness and
Leen Torenvliet Nondeterminstic Complexity Classes
CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet On Adaptive Resource Bounded Computations
CT-89-10 Sieger van Denncheuvel The Rule Language RL/1

CT-89-11 Zhisheng Huang, Sieger van Dennecheuvel Towards Functional Classification of Recursive Query Processing

Peter van Emde Boas N
X-89-01 Mariannc Kalsbeek Other Prepublications: Ap Orey Sentence for Predicative Arithmetic

X-89-02 G. Wagemakers New Foundations: a Survey of Quine's Set Theory
X-89-03 A.S. Troelstra Index of the Heyting Nachlass
X-89-04 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar, a first sketch
X-89-05 Maarten de Rijke ¢ Modal Theog' of Inequality
emanﬁ‘:i voor Conceptueel Modelleren: Het RL-project

%-8 -06 Peter van ¢ Boas Een Relationele
990 SEE INSIDE BACK COVER

Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and
Information

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)
Plantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam 1012CP Amsterdam

GREATEST FIXED POINTS OF
LOGIC PROGRAMS

Kees Doets
Department of Mathematics and Computer Science
University of Amsterdam

ITLI Prepublication Series

for Computation and Complexity Theory
ISSN 0924-8374

Received November 1990

Greatest Fixed Points of Logic Programs

Kees Doets

Dept. of Mathematics and Computer Science
University of Amsterdam

Plantage Muidergracht 24

1018 TV Amsterdam

the Netherlands

Contents.
Summary and introduction

Downward closure ordinals and recurrency
Games related to TT and T

Weak recurrency

Computation of recursively defined operations
Proof of a theorem of Blair

Canonical mgu-trees

Non-standard Herbrand universes

NOObhUWDdD=O

0. Summary and introduction.
Consider a logic program P and its associated immediate consequence
operator T over the corresponding Herbrand base HB. (Cf. Apt [1988] and
Lloyd [1987] for unexplained notions.)
We have TT=TTwCTlCTlwCHB.
For the problem "when is the ground-atom A false?" at least three
possible answers have been considered:
1. A¢TT (taking the least model seriously as the intended one)
2. Ag¢Tlw ("finite failure”)
3. A¢Tl ("Herbrand's rule").
S0, the following questions are natural: (a) when do these answers
coincide, and (b) what is their computational complexity?

2

Most of this report has been motivated by these questions.

Here is a short description of its contents.

Part 1 gives an upper bound for the downward closure ordinal of a
monotone operator. Here and in part 3, the notions of recurrency and weak
recurrency and some related results of Bezem [1997] are generalized.
Part 2 describes an infinite game connected with TT, T! and the
corresponding hierarchies.

Part 4 presents a couple of results on weak recurrency of "natural”
computing programs; it slightly strengthens Blair's result [Blair 19861
that every total recursive function can be computed by a program with
T1=Tlw and presents a more direct proof of Bezem's [199?] strengthening
thereof.

Part 5 contains a short, but nevertheless quite complete, proof for Blair's
[1982] theorem that T| can be 21,-complete.

Part 6 introduces the canonical mgu-tree associated with a (fair)
SLD-tree. Using it, we extend the finite-failure characterization.

Part 7 discusses non-standard Herbrand universes obtained as direct
limits and quotients of free algebras induced by substitutions; it shows
that the results of [Blair/Brown 199?] follow from known facts in the
theory of recursive saturation.

Note that we deviate from general usage in not writing the
implication-sign backwards (and in goals, we often omit it).

1. The downward closure ordinal and recurrency.
Suppose that P is a logic program. Let T=Tp:P(HB)— P(HB) be its
associated immediate consequence operator over the Herbrand base HB
consisting of all atomic sentences.
Define, for a ground-atom A, a(A) to be the set of all literals occurring in
bodies C of ground-instances C— A of P-rules of which A is the head.
Then obviously, for XCHB:

[a] AeT(X) = AeT(a(A)NnX).
For the rest of this section we make the

Assumption: T:P(U)— P(U) is an arbitrary monotone operator over U (not
necessarily associated with a logic program) and c.U— P (U) is a
function satisfying [al.

It is well-known that if A is an infinite regular cardinal such that
aeT(X) = IYCXIYIKN A aeT(Y)]
then TT=TTA.

3

However, it need not be true at all that also T1=TI\, as operators
associated with logic programs emphatically demonstrate.

But, assuming a uniform condition helps:

1.1 Theorem. If X\ is regular and |a(a)I< for all aeU then T{=TIA.
Proof. In order that TL=TIX, it suffices that TIANCT(TIA) (=TIxn+1).
S0, assume that aeTIA. Now, TIA =T, n Ti&=1,, T(TL2).

Hence, by [a], ael 1, ., T(a(a)nTL2).

Define h:a(a)\TIA—X by h(x):=min{ZIxgTl&}.

Since la(a)\TIAI <la(a)I< X and A is regular,

3<X exists such that h:a(a)\TIA—3.

Then a(a)nTir=a(a)nT!s.

Hence, for &> §: a(a)nTIECTIN;

therefore T(a(a)nTIZ)CT(TIA) and [, ., T(x(a)nTIZ)CT(TIN). K

1.2 Remark. For T associated with a logic program, the hypothesis of 1.1
is satisfied with A=w when each variable in the body of a rule occurs as
well in its head. Cf. Lloyd [1987] p. 67 exercise 7b.

For any well-founded relation < on a set U we can define its

rank-function g:U— OR by the equation g(b)=sup{g(a)+1la<b}, using

recursion along <.

Then sup{p(b)+1|beU} is called the heigth of <.

In the following, we concentrate on the relation < defined by
a<b:=aea(b).

1.3 Definition.
1. o is co-recurrent iff < is well-founded;
2. it is y3-recurrent iff < is well-founded of height j.
3. (Bezem [1997]) o is recurrent iff it is w-recurrent.

1.4 Theorem.

1. If < is well-founded then TT=T\.

2. Precisely, if a is y-recurrent then TT3=Tl3}.
Proof.
1. Assume that < is well-founded. We show that, if T(I)cI and JCT(J)
(which is satisfied, in particular, for I=TT and J=Tl) then JC1I.
In fact, we show that aeJ=>a€el using induction along <.
So, assume by way of induction hypothesis that VbeJ[b<a=bell.
This means that a(a)nJcl.
S0, T(a(a)nd)cT(I).
Now if aedJ, then aeT(J) as well (since JCT(J)).

4
Hence, if aeJ then aeT(a(a)nJ)cT(1), using [al.
Part 2. immediately follows from the

1.5 Lemma. If < is well-founded then

po(b)<& and beT|Z imply beTTe.
Proof. Induction w.r.t. &.
The cases &¢=0 and & a limit are trivial.
So, assume p(b)<Z+1 and beTl&+1.
Now, T1&+1=T(Tl2), so, by [a], beT(ax(b)NTLZ).
But, a(b)nTl&EcT1¢ by induction hypothesis.
So, beT(a(b)NTIE)CT(TTE)=TTE+1. K

1.6 Remark. When P is the natural program computing a primitive
recursive function (cf. part 4) then the associated relation < is easily
seen to be well-founded.
Example.
The addition-program
— +(x,0,x)

+(x,4,2) = +(x,y+1,z+1)
has < of height .
Then the addition of x-computing rules

- X(x,0,0)

x(x,4,u), +(u,x,2) - x(x,y+1,2)
preserves height w (for, the height of x(n,m,p) is n+m+1)
and so TT=Tlw.
However other x-computing rules could be used as well.
Replacing the last one by

x(x,4,u), +(x,u,z) = x(x,y+1,z)
will also compute X, since we can compute all instances of the
commutativity of +. However, the height of the corresponding < is no
longer w (it is w+w), and we can no longer use 1.4 to prove the fact that,
still, TT=Tlw.
1.7 Remark. If TT=Tlw, then P is called determinate by Blair [1986],
who also proves that every total recursive function can be determinately
computed (cf. also part 4 below).
Thus, recurrency implies determinacy (1.4.2 for y=w), but the converse
fails. (For examples, cf. Bezem [199?]. The easiest is {p—p; —p}; more
complicated ones are the second x-computing program above and the
natural program which computes the Ackermann-function.)
Note that Bezem [1997?] supersedes Blair [1986] by proving that every
total recursive function can be computed by a recurrent program (again,
cf. part 4).

2. Games related to TT and TI.
We refine condition [a] of part 1.
Again, let P be a logic program and T:P(HB)— P(HB) its immediate
consequence operator. Define, for AeHB, 6(A) to be the set of all clauses C
(considered as the finite set of its literals) such thatC—A is a
ground-instance of a rule of P.
Then
[6] 1. Cec(A) = Cis finite
2. Ceoc(A) = AeT(C)
3. AeT(X) = 3Cec(A)[CcX]
Assumption. In the following, T:P(U)— P(U) can be an arbitrary
monotone operator and 6:U— P(U) is a map satisfying [c].

2.1 Lemma. Defining a(a):=Uas(a) we obtain [a]. |

2.2 Definition.

1. The infinite game (a)=3(a,) (acU) has two players CL and AT
(for: clause and atom). A play of the game proceeds as follows. First, CL
chooses some Cgec(a), then AT chooses an a €Cg, after which CL chooses
some Cq€c(aq), then AT chooses a,eC4 again, and so on.

The play stops when one of the players has no move anymore. This can
happen either when CL chooses C,=¢ (then CL wins AT loses) or AT
chooses a, with o(a,)=¢ (AT wins, CL loses). So, the player with the last
move wins. A play which goes on forever is a draw.

2. Let a be an ordinal. 2(a,a) is a game similar to Z(a,e), but now, AT,
together with each of his ordinary Z(a,e)-moves a,, has to choose - on
penalty of losing - an ordinal o, <o as well, in such a way that
Q> 0> 03>

3. If a<0, the optimal thing to do for AT is choosing ax—n as the
ordinal-part of his n-th move; and so the ordinal-part of his moves is
irrelevant here if we agree that each play shall have length n at the most.
(Here, n is the length of a play a=aq,Cp,a1,C1,...,8n-1,Cn=1.)

2.3 Theorem.

1. Z(a,») is a win for CL iff aeTT;

2. Z(a,a) is a win for CL iff aeTTq;

3. 3(a,») is a win for AT iff a¢T{;

4. Z(a,a) is a win for AT iff a¢Tla.
Proof.
1=>. Suppose that a¢TT. Let AT pick his moves - as far as possible -
outside TT. In fact, AT always can play outside T1: if a,¢T1 and C,eo(a,)
than C,cTT is impossible as otherwise a,eT(C,)cT(T1)=TT1; and hence

6
an.+1€C,\TT exists. Playing this way, AT cannot lose. But then CL cannot
possibly have a winning strategy.
1«=. Suppose that aeTT; say, aeTTa, where a=g(a)=min{ZlaeT1¢}. So, a is
a successor. Now CL can pick Ceo(a) such that CcTTa-1; and hence every
beC has p(b)<g(a). This describes a strategy for CL forcing finiteness of
the resulting play; and hence, the strategy is winning for CL.
2. Induction w.r.t. o
S(a,n) is @ win for CL & 3JCec(a) VbeC VB<a[Z(b,B) is a win for CL]
& 3dCec(a) VbeCVB<albeTIp]
by induction hypothesis
& aeTta.
3=>. Suppose that aeTl. CL plays - as far as possible - cT{. In fact, he
can always do so: if C,cTl then a,,,€Tl=T(T!) and hence for some
Ceo(a,.q): CcTI. So, CL can't lose. So, AT cannot have a winning strategy.
3«. Suppose that a¢Tla where a=p(a)=min{&lagTlZ}. AT now takes care
that he plays a sequence of elements of descending g-rank.
4. Induction w.r.t. o
3(a,n) is a win for AT & VCeo(a)IbeCIp<a[Z(b,B) is a win for AT]
& VCeo(a)dbeCIAp<albeT!p]
& adTla N

3. Weak recurrency.
If a¢TT, then Z(a,e) is not a win for CL according to 2.3.1.
In fact, AT has a strategy with which he cannot lose, since we have

[*] VagTTVCec(A)IbeC[beTT]
and so all AT has to do in order not to lose is staying outside TT.
Unfortunately, this strategy cannot guarantee him a win since a play may
go on forever (and in fact, if aeT|, then CL can see to that by always
playing cT!).
Fortunately though, the only thing that is needed for AT to win 2(a,e0)
(with a¢T1) by just playing outside TT is that each play should always
terminate.
For then, since the last move will be AT's by [*], CL must lose.
Now, termination can be guaranteed if a map 1:.U—OR (OR the collection of
all ordinals) exists such that we have the following stronger alternative
to[*]:

[~,1] VagTTVCeo(a)IbeClbeTT A 1(b)<1(a)]
since then AT simply plays a sequence that is 1-descending.
This motivates the following

3.1 Definition.
1. ¢ is co-weakly recurrent if 1:.U— OR exists such that [*,1] holds.
2. ¢ is a-weakly recurrent if :U—a exists for which [*,1].
3. (Bezem [1997])
6 is weakly recurrent iff it is ww-weakly recurrent.
4. A program is (/=) weakly recurrent iff the induced ¢ is.

3.2 Lemma. If ¢ is co-weakly recurrent w.r.t. 1 then, if k> 1(a):
aeTlk = aeTT.
Proof. Immediate from the discussion above.
If agT1T then, by o-weak recurrency, clearly 2(a,i(a)) is a win for AT,
whence agTll1(a) by 2.3.4.
As k>1(a), TIkcTl1(a). Hence, agTlk. K

3.3 Corollary. ([Bezem 1997] for a=w.)
If 6 is a-weakly recurrent w.rt. lU-a then TT=Tla=TI.

3.4 Theorem. The following two statements are equivalent:

1. Tla=TT

2.0 is a-weakly recurrent.
In particular ([Bezem 1997]) a program is determinate iff it is weakly
recurrent.
Proof. 1=>2:1et 1 be the rank-function associated with the Tl-hierarchy,
i.e., define 1 on UNTTCU\Tla by 1(a):=min{zlagTls}. K

4. Computation of "recursively defined" operations.

Although 3.2/3/4 may appear to be too obvious to be interesting, in fact
they can be quite helpful, as the results below indicate.

We show that the natural programs for recursively defined operations are
weakly recurrent with respect to an obvious map and hence determinate.
[Blair 1986] shows that every total recursive function can be
determinately computed. [Bezem 1997] has the even better result that
every total recursive function can be recurrently computed. Below, we
reprove these results, using a simpler implementation for p, showing
left-rule termination of the resulting programs and termination for their
variants under a simple transformation.

To be able to discuss computation of relations and functions over some
domain, some representation in the Herbrand universe HU of closed terms
of the objects of the domain is needed. In the case of IN, the usual way to
achieve this is by means of an individual constant O (for zero) and a unary

8

function symbol S (for successor). In the sequel however, we don't
distinguish between an object and its representation in the Herbrand
universe and we only discuss computation of relations and functions over
HU, part of which may be identified with IN, for instance, using O and 3.
The usual definition now reads as follows.

4.1 Definition.

1. The program P computes the relation rcHUk in the symbol R iff

for all tq,...,t eHU: r(ty,....t) & Rty,... t)eTT.
2. P computes f:HUk—-HU in F iff for all t,,...,t,,seHU:
f(ty,....t)=s & F(ty,... t,s)eTT,
i.e., iff P computes the graph of f in F.

Instead of 4.1.2, a somewhat different notion could be considered as well:
4.2 Definition.

P strongly computes f in F iff for all t,,...,t,eHU:

P refutes the goal F(t,,...,t,,y)— with computed answer y="1(t,,...,t;).
However
4.3 Lemma. If O is the only individual constant and S the only function

symbol then P computes f in F iff it does so strongly.

Proaf. First, suppose that P strongly computes f in F.
First, if f(n)=m, then y=m is a computed answer for the goal F(n,y)— by
strong computability and hence, by soundness, F(n,m)eTT.
Second, if F(n,m)eT1T then A\:={y/m} is correct for the goal F(n,y)—.
Therefore, by strong completeness, P refutes F(n,y)— with an answer
8:={y/t} more general than A. By assumption however, t=f(n). Since A=62
for some 3, m=yx=yga="f(n)a="7(n).
Conversely, assume that P computes f in F.
Assume m=1f(n). We have to show that P refutes F(n,y)— with the answer
y=m. Since m=f(n), F(n,m)eT1 by hypothesis and hence P refutes F(n,m)—
by completeness. By strong completeness however, P refutes F(n,y)— with
an answer 8={y/t} more general than x:={y/m}. Since 0 and 3 are the only
constant/function symbol, there are only two possibilities for t.
(i) t=5ky for some k. But then we would have F(n,k+m+1)eTT as well,
entailing the impossibility f(n)=k+m+1>m="f(n).
(ii) t=35k0. But then, since 6 is more general than A, k=m and t=m. X

4.4 Definition.
(1). f:Nk—> NN is primitive recursive if there is a list fg,...,f,,=f (the
p.r. definition of f) such that for each k <m one of 1-5 hold:
1. fx=An.n+1
2. fg=Ang,...,Nj_4.n; for some j<i
3. fx=Aan.0

9
4, fk=)\ﬂ.fj(fj(0)(ﬂ),...,fj(p_1)(ﬂ)) where j,j(O),...,j(D— 1)<k
("composition”)
5. fy is the unique function satisfying
fi(n,0)=1;(n)
f (n,p+1)="f(n,p,f(n,p)) where j, i<k ("primitive recursion”).
(2). If fg,...,fn=f is a p.r. definition of the primitive recursive function f,
the natural program associated with it is obtained (cf. Apt [1988]) by
transforming equations 1-5 above into rules in the following,
straightforward, way:

1. - Fi(x,x+1)

2 - Fk(XO,...,X1_1,Xj)

3. - Fk(X,O)

4. Fj(O)(L'Jo),---; Fj(p—1)(x.;gp_1); Fj(Uo,---,Up_1;Z) i Fk(x,Z)
5. F;(y) — Fy(x,0,y)

Fk(_&,U,Z), Fi(ilglzlw) - Fk(K;U"' 1)W)
Obviously, the canonical program computes f; in F; (j <m).

4.5 Theorem. The natural program associated with a p.r. definition is
determinate.

Proof. Let P be the program constructed from the p.r. definition fg,...,f,.

we want to use 3.3, i.e., we have to define a map :1HB—IN w.r.t. which P is

weakly recurrent.

For j <m, define 1(F;(n,m)) to be the length of the calculation of f;(n),

according to the p.r. definition fq,...,f; of f;.

Notice that I(Fj(n,m)) does not depend on the "value” m but only on the

"arguments” n.

By 3.3, it suffices to prove the

Claim. P is weakly recurrent w.r.t. 1.

So, let A¢T1T be a ground atom and Cec(A); i.e.,, C— A is ground-instance of

a P-rule. We have to find BeC such that 1(B)<1(A).

Now, the only rules with non-empty bodies are the ones associated with

composition and recursion. In the following we simplify.

1. A=F(n,m); C—> A is: G(n,u),H(u,m)—>F(n,m). (Composition)

Assume that P computes g,h,f in resp. G, H and F.

By hypothesis, F(n,m)¢TT; hence, f(n)=m.

(i). G(n,u)¢T1T. We can take B:=G(n,u), since, in order to calculate f(n), one

has - according to the p.r. definition of f - to calculate g(n) first; i.e.,

1(G(n,u))<1(F(n,m)).

(ii). G(n,u)eTT. Hence, g(n)=u.

Now if H(u,m)eTT, then h(u)=m and hence f(n)=h(g(n))=h(u)=m.

But, f(n)=m. So, H(u,m)¢TT. We now can take B:=H(u,m) as

1(H(u,m))<1(F(n,m)): in order to calculate f(n) according to the p.r.

10
definition, one has to calculate h(u) first (u being g(n)).
2.C—>A s

G(n,m)—F(n,0,m). Then G(n,m)gTT and 1(G(n,m))<1(F(n,0,m)).
3.C—Ais

F(n,p,u),H(u,m)—>F(n,p+1,m).
Again, there are two cases.
(i). F(n,p,u)€T1T. Then 1{(F(n,p,u))<1(F(n,p+1,m)).
(i1). F(n,p,u)eT1. Then H(u,m)&T1 and 1(H(u,m))<1(F(n,p+1,m)). &
4.6 Remarks.
1. Of course, the argument of 4.5 can be used for every recursively defined
function, where we can take this term in a very broad sense.
For an example, cf. the proof of 4.10 below.
2. For another example, Bezem [1997] notes that the natural program
computing Ackermann's function is not w-recurrent; however, our choice
of 1 easily establishes its weak recurrency.
3. Suppose that P computes the function f in the relation symbol F
acording to 4.1.2. We call t4,...,t, the arguments of F(t,,...,t,s) and s its
value.
Now, it is easily verified that the natural programs for p.r. functions
terminate on goals with arguments ground under the Prolog-selection-rule
which always selects the left-most atom. |

General recursive functions are obtained in a way entirely similar to the
primitive recursive ones, now admitting the minimalisation-schema
which obtains the (possibly, partial) function f from g by the definition
f(n):=pmlg(n,m)=01.
However, minimalisation spoils the case for the "natural” programs.
4.7 Definition.
Suppose that f(n)=pmlg(n,m)=0]. Suppose that P computes g in G.
The natural rules ([Apt 1988]) computing f in F are the following
three.
First, define the relation o by o(n,m):=¥m’'<mlg(n,m’')>0].
The following two rules compute o in O:
—0(x,0)
0(x,y),6(x,y,5z) —0(x,y+1).
Now, add
0(x,4y),6(x,y,0) —>F(x,y).
Clearly, these rules compute f in F.

4.8 Example.
g:N— N is defined by: g(k)=0 if k is a square, g(k)=1 otherwise. So,
between the zeros n2 and (n+1)2 of g are (n+1)2 — n2 —1=2n values 1.

11
Suppose that P determinately computes g in G.
Consider the extended program, canonically computing the argument-less
function f:= pylgy=0] using the rules from 4.7. 5o, F(n)eTT«>n=0.
Notice:
1. F((n+1)2)eTl(2n); 2. F(K)eTlwek=0; 3. TI=Tlw.
Add the rule

F(Sx)—Q
which is a canonical composition-rule computing the argument-less Q.
Now, for the associated T: QeTlw\T' I (w+1); T'{=T"l(w+1).
Determinacy is lost.

The total recursive functions are obtained in the same way as the general
recursive ones by restricting application of the pL-schema:
f(n):=pmlg(n,m)=0], to functions g satisfying the existence-condition
¥m3anlg(n,m)=0l].
4.9 Theorem. For the natural programs (4.4/7) computing total recursive
functions: T1=TT.
Proof. Theorem 1.4. &
Here is a proof of Blair's [1986]
4.10 Theorem.
Every total recursive function can be computed by a determinate
program.
Proof. This is an immediate consequence of the following theorem which
shows that there is an alternative to the "natural rules” of 4.7 which
preserves determinacy.

4.11 Theorem. Suppose that
1. g:N—N satisfies ¥n3m[g(n,m)=0]
2. f:N— N is defined by the minimalisation f(n):=pm[g(n,m)=0]
3. the program P computes g in G; T=Tp is its immediate consequence
operator
4. :HB— N is such that
(i) for all n,m: 1(G(n,m))=1(G(n,0))
(i.e., 1(G(n,m)) does not depend on the "value” m of G(n,m))
(ii) 6(n,m)eTI1(G(n,m)) implies G(n,m)eT?T
(i.e., 1 "witnesses weak recurrency of P w.r.t. G-atoms").
Then P can be extended to a program computing f in @ new symbol F in
such a way that an extension 1' of 1 to F-atoms exists with,

for all n,m:
(i) 1T(F(n,m))eN (1" is finite)
(ii) 1'(F(n,m))=1'(F(n,0)) (independence of m)

(iii) F(n,m)eTL1'(F(n,m)) implies F(n,m)eTT (weak recurrency).

12
(In fact, 1" will witness recurrency of the new rules.)
Proof.
Define the relation zerocIN3 by:

zero(n,i,j):= Vj'<jlg(n,i+j)=01 A g(n,i+j)=0.
I.e., zero(n,i,j) holds iff i+] is the first zero > i of the function Am.g(n,m).
Here is a recursion defining zero (the recursion is on the last argument):

zero(n,i,0) & g(n,i)=0

zero(n,i,j+1) & g(n,i)=0Azero(n,i+1,j).
Of course, this is not a primitive recursion since the second argument
has not been kept fixed.
Nevertheless, here are program-rules which, upon addition to the program
P, obviously compute zero in the symbol ZERO
(n,i,u,j are meant to be variables here):

G(n,i,0) — ZERO(n,i,0)

G(n,i,u+1), ZERO(n,i+1,j) — ZERO(n,i,j+1).
Extend 1 to 1* on ZERD-atoms by the recursion (n,i,j numbers this time):

1*[ZERO(n,i,0)] =1+1[G(n,i,0)]

1*[2ERO(n,i,j+ 1)1 =1+max{1[G(n,i,0)], 1*[ZERO(n,i+1,j)1}.
It is easily seen that 1* witnesses weak recurrency of the rules w.r.t.
ZERO-atoms in the sense of the theorem.
Finally add the following rule which can, without difficulty, be seen to
compute fin F:

ZERO(n,0,m) —F(n,m).
It remains to construct a map 1' on F-atoms witnessing weak recurrency
and not depending on F-"values”.
(Note that the obvious map 1'(F(n,m)):=1+1*(ZERO(n,0,m)) does depend on
m.)
Define 1' by
1'(F(n,m)):=1+max[{1+f(n)+1[G(n,f(n),0)1}u{1*[ZERO(n,0,m))IIm<f(n)}].
By hypothesis 1., f(n) is a well-defined number, and hence so is 1'(F(n,m)).
Also, notice that 1'(F(n,m)) does not depend on m.
Therefore, our theorem has been proved if we can show:
If k+1>1(F(n,m)) and F(n,m)eTlk+1 then F(n,m)eTT.

Proof. Assume that k+1>1'(F(n,m)) and F(h,m)eTlk+1.
Then, by the F-rule, ZERO(n,0,m)eT k.
Now, ZERO(n,0,m)eTT clearly amounts to: m=f(n).
Instead of showing m=1f(n), we show that m<f(n) and m>f(n) are
impossible.
a. m<f(n).
Then, by definition of 1', k>1*(ZERO(n,0,m)).
3ince 1* witnesses weak recurrency of the ZERO-computing rules,
ZERO(n,0,m)eTT, i.e., m=1f(n); contradicting m<f(n).

13
Thus, m<f(n) is impossible.
b. m>f(n).
Since ZERO(n,0,m)eTlk, by the second ZERO-rule, there exists uy such that
G(n,0,Sup), ZERO(n,1,m—1)eTlk-1.
Assuming m—1>0, by the second ZERO-rule again, there exists uy such
that
G(n,1,5u,), ZERO(n,2,m-2)eTlk-2.
A third application of the second ZERO-rule (as long as m-2>0) provides
us with a u, such that
G(n,2,u,), ZERO(n,3,m=3)eTlk-3;
we proceed, until we obtain at the f(n)-th step a number u such that
G(n,f(n)=1,5u), ZERO(n,f(n),m—=1(n))eTlk—-"f(n);
By assumption m>f(n), hence m—f(n) is still positive; and so we apply the
second ZERO-rule a last time, obtaining v such that
G(n,f(n),Sv), ZERO(n,f(n)+1,m=f(n)—1)eTlk-f(n)-1.
Now, by definition of 1', k—=f(n)-1>1(G(n,f(n),5v)); and so G(n,f(n),Sv)eTT,
i.e., g(n,f(n))=v+1 - a contradiction, since g(n,f(n))=0.
So, m>f(n) is impossible and our proof is complete. K

4.12 Remark on the proof of 4.11.
From the definition of 1* it follows, by induction on j, that
1(ZERO(n,1,1)) € Zg <k < [K+1(G(n,i+k,0))]1.
In particular,
1*(ZERO(n,0,m)) < 3o <k «m [k +1(G(n,k,0))].
From the definition of 1' it now follows, that
1'(F(n,m)) < Zg <k <1y [k +1(G(n,k,0))],
and so we could have defined
1'(F(n,m))=3¢ <k <1 [k +1(G(n,k,0))] outright.
Of course, this just expresses that 1’ here has the same meaning as the
map defined in the proof of 4.5.

Bezem [1997] proves that every total recursive function can even be
recurrently computed. His proof uses a translation from the
register-machine model to logic programs due to Shepherdson.

Below we present a more direct proof of this theorem using a translation
from logic programs to logic programs, based on the proofs of theorems
4.5 (weak recurrency of the canonical p.r.-computing programs) and 4.11
(weak recurrency of our implementation of the p-schema for total
recursiveness) above.

Note that the rules proposed in 4.5/11 are such that, when applied with
the Prolog "left-most“-selection-rule to a goal in whch the arguments are
variable-free, they never will produce an infinite SLD-derivation, i.e.,

14
the "left-most"-rule will, when applied to such goals, always lead to
termination of the SLD-resolution-process: remark 4.6.3 extends to the
zero-computing rules.

The reason that this is so is simply, that (i) 1eft-most selection will
never introduce variables on argument-places (just inspect the rules -
variables introduced on argument-places in bodies of rules - which only
happens with composition and recursion - always occur in atoms which
are not left-most) and (ii) the rules are weakly recurrent w.r.t. a map
which only depends on arguments.

(N.B.: Compare the p-rules given in 4.7. Notice that they behave bad in this
respect: the rule 0(x,y),G(x,y,0)—=F(x,y) transfers the value y in F(x,y) to
an argument-place in G(x,y,0).)

To be able to circumvent the problem of a variable argument in a body
transferred from a value-place in a head (alternatively, the problem that
an unfortunate selection may not lead to termination), we shall transform
the program for a total recursive function in such a way that "goals will
become single atoms and atoms will become terms”.

This needs a little coding.

4.13. Coding sequences and numbers.

Our transformation translates an arbitrary logic program P in a language L
into a program P* of which the 1anguage is Lu{nil, cons, GOAL} where nil
is a new individual constant, cons a new two-place function symbol and
GOAL a new one-place relation symbol.

In connection with nil and cons, we need the following standard
abbreviations.

4.13.1. Think of nil as representing the empty sequence.
Writing cons(t,s), think of s as denoting a (finite) sequence; cons(t,s) then
will denote the sequence obtained from s by the addition of t as a new
element in front of it.
50, we have the following notations:

1. [tlsl:=cons(t,s).

2. [tl:=[tInill. (Sequence of length one.)
And of course

3. [ty thlsli= [ty,lty,.. [tyls]... 1]
(Concatenation of sequences where the first one is completely specified.)
In particular:

4. [tq,.. =0ty [y, 0] 11
(Completely specified sequences of given length.)
In order to avoid the cluttering-up of [and] and make for somewhat
easier reading, below I shall use < and > for the same purpose as [and 1.

15
4.13.2 Coding numbers.

5. "0™:=nil

6. "n+1:=["n"1"n"1(=["n","n=-1","n=2",..,707]).
(Defining "n+1™":=["n"] would work as well.)

4.14 The transformation.
Suppose that P is an arbitrary logic program in a language L.
Assume that Ry,...,Ry, is @ complete list of all relation symbols of L.

4.14.1 Translating rules.
Suppose that
Rilty,...,ty),.., Rj(8y,...,8¢) = Rylug,...up)
is any rule of P.
The translation of this rule (using nil, cons and GOAL) now reads

GOALKKITi™, ty,...,t,1..., [T7, sq,...,8dIw>) = GOALKKITK™, uq,...,upliw>).

Notice that, in the translated rule, atoms and clauses of the old rule have
been coded into terms in an obvious fashion; the R, are identified by their
indices. Note the new variable w.

4.14.2 Definition of the transformation.
The transformed program P* consists of all translations of the
P-rules, together with the following m+1 rules:
fori=1,...,m, we have the following start-rule:
GOAL(KITi™, Xq,...,%5]>) = Ri(xq,...,Xp)

(assuming R; to be n-place);
finally we have the one bodyless end-rule:

— GOAL(nil).

4.15 Theorem.

Suppose that P is left-rule terminating on a class of

atomic goals AG.

Then P* is terminating on AG with the same results as P.
le.
P* produces a finite SLD-tree for every goal N in AG; the derivation fails
iff P fails finitely on N under the left-rule and it succeeds iff P succeeds
on N left-most, yielding the same answer-substitutions as does P.
Proof. Each derivation from P* starting with an initial goal in the
language L corresponds in a unique fashion to a left-rule SLD-derivation
from P. The point of the translation is forcing left-rule application, so to
speak. X

16

The application of this theorem to programs computing total recursive

functions which are left-rule terminating on atomic goals with ground

arguments yields Bezem's [1997]

4.16 Theorem. Every total recursive function can be computed by a
recurrent program.

Proof. Apply * to a suitable left-rule terminating program P. Notice that

P* will terminate on all] atomic ground goals of the extended language. X

4.17 Remark. The translation effortlessly transforms the natural weakly
recurrent program for the Ackermann-function into a recurrent one. Cf.
[Bezem 1997] example 3.2, where a different recurrent program is
obtained by means of ingenuity, however, with additional niceties.

17
5. Proof of a theorem of Blair.
5.0. By its definition TL=U{XCHBIXCT(X)}, Tl is =1, at the worst.
It is a remarkable result of Blair [1982] that T! actually can be as
complicated as complete-1,.
The argument in [Blair 1982] is hard to follow and the sketch of [Blair
1986] is rather incomplete. Below follows a short proof of Blair's
theorem, the main lemma of which (cf. 5.5) may have some interest of its
own.
5.1. The usual computability-notion for logic programs is defined in
terms of the Jeast fixed point: P computes the relation r on the
Herbrand-universe HU of closed terms in the symbol R if:
r(t,...)eR(t,...)eTT.
we'll now say that P co-computes it if: r(t,...) < R(t,...)¢TI.
Note that, if TT=T{ - or even, if R(t,...)eTT<R(t,...)eT| - then P
computes r in R iff it co-computes 7r in R. This holds in particular when
P is determinate.
5.2. Since greatest fixed points - as opposed to their least counterparts
- often seem to be difficult to grasp, note the well-known fact that they
are complements of Jeast fixed points: if T:P(U)— P(U) is monotone,
define its dual Tc:P(U)— P(U) by Te(X):=U\T(U\X). T¢ is monotone as well.
It is easily checked, that for all &: T1E=U\T¢1Z and hence Tl=U\TcT.
Finally, note that Tcc=T.
5.3. This section will not be needed; however, the reader may wonder how
the program-rules below were constructed. In that case, the following
might be illuminating.
If T is the operator of a logic program P, we may ask a seemingly silly
question: is there a "program” Pc¢ (of some sort) of which T¢ is the
operator? The answer is: yes! And it can be obtained fairly easily from P
as follows.
To make things easier, assume that P has, for each relation it defines,
only one rule and that, moreover, variables are the only terms rule-heads
contain.
Note, that the first restriction really is immaterial: we can always
combine two rules C—R(x) and D—R(x) into the one rule CVD—R(x) (cf.
the procedure for obtaining the completion of a program). So, we can
satisfy the first assumption if we admit arbitrary positive quantifier-
free bodies of rules, i.e., bodies made up of atoms using A and V.
The second restriction can be satisfied transforming a rule C—R(t) into
CAay=t—R(y). However, the discussion only serves as a guideline for
finding additional rules without function symbols in the heads
co-computing some new relations, and so we don't need equality.
Finally, if C(x,y)—R(x) is a rule, logically speaking it won't change if we

18
add the "hidden existential quantifier™: 3yC(x,y)—R(x).
Now we have the
Eact: the corresponding co-rule is obtained by
(i) simultaneously changingin C A to V and V to A everywhere, and
(ii) changing 3 to V.
The result has the form YyCc(x,y)— R(x) where C¢ again is positive
quantifier-free.
This is quite easy to prove taking into account the definition of T¢ - but,
since below we will use this only twice and check things there thoroughly,
we leave this to the reader.
The main point behind Blair's result now appears to be that a universal
quantifier in the body of a rule can be (very) much more powerful than an
existential one.
Below, we will draw attention to this fact at the appropriate place.

5.4. We need the following well-known
Lemma. Let < be any relation on a set W.
Define the monotone operator ®:P(W)— P(W) by
B(X):={aeW|VB< a[peX]}.

Then 8T=Wf(W,<), where Wf(w,<) is the well-founded part of <,
that is: the largest <-initial of W on which < is well-founded.
Proof. Of course, < is well-founded on V iff <-jnduction on V is valid:

if YaeVIVB<a(peV=>peX)= aeX] then VaeV[aeX].
(i) If V is an < -initial of W on which < is well-founded then VC &7, i.e,,
VYoaeVlae®1] follows using < -induction on V (putting X:=&T): suppose
that aeV and V< a(BeV=pe®1) (induction hypothesis). Then
VR<a[pe®T] since V is an < -initial of W and aeV; i.e., xe®(21)=21.
(ii) 1 is an < -initial of W: if ae®T then ae®(®1), hence e and
VB<a(Be@T).
(iii) Finally, < is well-founded on &T:
Assume that YVoe@T[VB<X a(BedT=peX)= xeX].
Le., VaeWI[VB<a(peY)=>aeY], where YV:=(W\&T)uUX.
Then &(Y)cY by definition of &, hence ®TCY since &7 is the least such v,
whence 2TcCX. K
Relation to the discussion in 5.3: Note that the following "program
rule” completely corresponds to the inductive definition of @T=Wf(W,<):

VBIB<Xa—BeBT]IAeEW > ePT.

This amounts to VR[1B<aVBe®T]IAaeW - aedT, which has the
co-rule-form of 5.3, provided we canread "< a” positively. (Cf. the
hypothesis of theorem 5.5.) This is the motivating guideline behind the
following section. The corresponding, ordinary program-rule then reads
(cf. the fact of 5.3)

19

IB[IB<X xABERTIVaEW o e®T.
The disjunction here is responsible for the splitting of this rule into wf1
and wf2 in the next subsection.
As a consequence, we have the following
Remark. The dual &c of the canonical operator & used in showing that
WwWf(w,<) is positive elementary inductively definable in W and the
complement of < (cf. Moschovakis [1974] for this terminology, the
content of which however is obvious here) is continuous and, hence, has
closure ordinal .

5.5. We are going to co-compute well-founded parts.
Theorem. Suppose that WcHU and that < is a relation on W.
Assume that the program P co-computes (!*) W and the complement
(I1*=) of < in the symbols nw and pr, respectively.
Then the addition of the following two rules
wf 1: pr(B,a)Awf(B) —-wf(a)
wf 2: nw(a) - wf(a)
to P produces a program Q which co-computes Wf(w,<) in wf.
Proof. Let T and S be the operators associated with P resp. Q.
It suffices to prove the
Claim. wf(a)eScT & aeWf(W,<),
since then wi(a)gSl e wi(a)eScT < aeW(W,<).
Remember, that, for &(X):={ceWI|VB< a[BeX]}, we have BT=Wf(W,<).
Define, for Xc HB: Q(X):={alwf(a)eX}.
The claim now amounts to: Q(ScT)=Wf(W,<) (=31).
The "easy” part of this is the inclusion O.

ae $2(S°T)
& wf(a)esct (by def. of Q)
& wiloe)gsl (by 5.2)
& 13p[pr(g,a),wf(B)eSiIAnw(a)g Sl
(by the rules wf, since 5| is a fixed point)
& 3plpr(B,x)eTIAWT(B)eSIIANw(ax)gT!
(on the P-language, Q and P behave similarly)
& 3R aAwl(B)eSIIAaeW (by !* and !I*)
= VBIB<Xa—-wi(B)¢SllaaeWw (by predicate logic)
= VBIB<a—-wi(B)eScTIAdeW (by 5.3)
& VBIB<Xa—BRe(ScT)IAeW (by def. of Q)
& ae®(Q(Scr)). (by def. of &)

So, 2(S¢1) is a fixed-point of &, whence it follows, that
Wf(w,<)=81Tc (3¢°1).

Finally, we have to show that Q(ScT)cWf(W,<).

Here, we cannot come by without delving into the details of the

20

S-hierarchies.

So instead, we show that, for all &, Q(3ctZ)cWf(W,<): and this clearly
suffices.

Use induction w.r.t. & For the parts £=0 and & a limit, the induction
presents no problems. As to the successor-step, note the following,
somewhat longer list, the individual steps of which still are simple and
accounted for:

xeQ(ScTE+1)
& wl(a)eSeTE+1 (by def. of Q)
& wri(a)ese(sere) (def. of the Sct-hierarchy)
= wf(a)gS(HU\ScTE) (def. of S¢)
& 13e[pr(p,a), wf(B)eHU\ScTE]ANnw () g HU\SCT2

(by the rules wf1/2)
T13B[pr(p,a), wi(B)eSlzlAanw(a)gSlE (by 5.3)
13p[prB,a)eTlE, wf(B)eSlElAanw(a)gTlE
(since pr and nw belong to the P-language)

& VBlpr(p,a)eTlE or wi(B)¢Slzlanw(a)gTlE (by logic)

= VB[B<aor wi(B)gSltlAaeWw
(by assumptions I* and !l1** we have for any & (since Tl CTl2)

pr(,x)¢TiE=pr(B,a)¢Tl e TB<q,

and similarly for nw and W - note we don't get & herel)

11

&= VBRIB<Xa—-wi(B)eScTZ]AneW (by 5.2)

& VBIB<a—pe(ScTE)]AaeW (def. of §2)

& aed(Q(Scre)). (def. of &)
Due to the one = here, we have obtained no more than
Q(SerE+1)cd(2(5e12)).

Nevertheless, this suffices. For, assuming 2(S¢1g)cWf(W,<)=&1 by way
of inductive hypothesis, we then have
Q(ScTE+1)c@(Q(Sc1e))c®(@T)=8T=Wf(W,<), and we have completed our
proof. X

Let P be any program. Note that Tl¢Z is hyperarithmetical as long as
¢<w,tKand Tl is hyperarithmetical iff its downward closure ordinal is
<w4CK; cf., e.g., [Shoenfield 1967].

Here, w4CK is the least ordinal which is not the height of a recursive
well-founded relation.

Below we show that every TI'',-set A can be co-computed. Now, take any
non-hyperarithmetical AeT', and let P co-compute A. Clearly then, T must
have downward closure ordinal w,tK, since A is computable in the
complement of T{.

This proves the a=w,tK - instance of the following

21
Theorem ([Blair 1982]).
Every ordinal <w4CK is the downward closure ordinal of an
immediate consequence operator.
Proof. Every a<w,CtK is the height of a recursive well-founded structure
(W,<). The program co-computing Wf(W,<) (=W, since (W,<) is
well-founded) described in the previous theorem (since W and < are
recursive, we can construct a base-program co-computing W and the
complement of <) has this ordinal as its downward closure ordinal. &
Similar programs for the <w,CK -part of the theorem were used in Apt
[19881]

Theorem. If WeTl1, and < €X1, then Wf(W,<) is T'',, hence co-computable,
and has ordinal <w,CK

Proof. Immediate from the theorem and the fact (to be shown below) that

T1,-sets are exactly the co-computable ones. K

9.6. In order to finally prove Blair's result, it clearly suffices to show
that we can co-compute an arbitrary T1,-set.
For this, we use the Kleene-Spector normal-form for T1,-sets. It says
that, when AeTl1,, there is a recursive RCIN<@xIN (N<® is the set of
codes of number-sequences of finite length - of course, a nice coding
makes it equal to N) such that, for < defined by: < a:=p properly
extends a:

5.6.1 neA & < is well-founded on W :={alR(a,n)}.
(Cf., for instance, Shoenfield [1967], p. 180, the "Tree Theorem" and the
first six lines of the proof given there.)
Now, we first parametrize the fore-going.
For each n, define the (recursive) monotone operator &, P(W,)— P(Ww,) by

56.2 &, (X):={oeW, VB a[peW,—>BeX]}.
Again, &,T will be the well-founded part of (W,,<). Therefore,

9.6.3 < is well-founded on W,, & W,C3,T.
30, combining things, we have

5.6.4 neA & W,cd,7.
Relation with 5.3: note that 5.6.4 corresponds to the A-computing
“program-rule”

ValaeW,—»ae® 11> 0eA
which takes the form of a co-rule
VoalagW,Vaed, t1->aeA

provided we canread "ag W, positively. (Cf. the new assumption in the
next section.) This motivates the rule [A] below.

9.7. To transform definition 5.6.4 into a co-computation of A, we first

22
co-compute Wf(<|W,)=&,T uniformly in n. By the discussion above, this is
accomplished by the rules

wf 1: pr(g,e,n)Awf(B,n) —->wf(o,n)

wf 2: nw(a,n) - wf(a,n)
where we now assume: a base-program P co-computing W,, and the
complement of < in nw(a,n) resp. pr(g,a,n) . Of course, this can be done
since both are recursive (for instance, either by 4.9 or by Blair's 4.10).
In order to be able to co-compute A, we have to assume furthermore
that our base-program P also co-computes the complement of W,; say, in
w(a,n). Again, this is unproblematic since the complement of a recursive
relation is recursive.
These rules, together with P, form the program Q.
Let S be its associated operator.

9.8. Finally, 5.6.4 can now be transformed straightforwardly into the
A-co-computing rule
[A] w(a,n)Awf(e,n)—A(n).
Add this to Q. Let R be the resulting program.
U is the operator associated with R.
Claim: R co-computes A in A.

proof:

Aln)eUl
& 3alw(o,n),wila,n)eUl] (by [A], since Ul is a fixedpoint)
& Valw(a,n)gUl or wf(a,n)gUl] (by predicate logic)

= VYoalw(o,n)gTl or wi(a,n)gsSl]
(since P,Q,R agree on atoms of the P-language such as w;
similarly: Q and R agree w.r.t. wf)
= VolagwW, or aed, 1]
(P co-computes the complement of W, in w;
Q co-computes &,T in wf)

& VoaloeW,=0ed, 1] (by propositional logic)
& WLCd1
& neA. (by 5.6.4) B

This ends our proof. However, note the

9.9. Corollary. More liberal rules of the form C—R(x) where C is
arbitrary positive (any number of 3 and V allowed!) can always be
replaced by ordinary (i.e., quantifier-free) rules yielding the same
greatest fixed point.

Proof. The greatest fixed point of such rules always is PRI

23
6. Extending the finite-failure characterization:
canonical mgu-trees.
6.1. Introduction.
Let P be a (definite) logic program and A a ground atom.
There are two (well-known) theorems which draw conclusions about the
status of A relative to P from the form of an SLD-search tree for the goal
«—A.They are the following two equivalences:
(i) AeTT & every SLD-tree for («)A is succesful
("strong completeness of SLD-resolution w.r.t. ground-atoms”),
and, whenever ¢ is a fair selection-rule:
(ii) A¢Tlw & the SLD-tree for A generated by ¢ fails finitely
(characterization of "finite failure”).
This section generalizes (ii), showing that from an unsuccesful fair
SLD-tree for A, even if it is infinite, interesting information concerning
the position of A in the Tl-hierarchy can be obtained.
We define the canonical mgu-tree corresponding to a (fair) SLD-tree. Our
basic result then reads as follows:
(iii) A€ Tl < the canonical mgu-tree corresponding to a fair
SLD-tree for A is well-founded.
This result is then refined by putting in ordinals at both sides: on the left,
measuring where A drops out of the Tl-hierarchy, and on the right,
measuring the height of the mgu-tree. These results contain (ii) as a
special case.
By nature of its impredicative definition TL=U{XcHBIXCT(X)}, T{ is 21,
Therefore, by Kleene-Spector, there is a recursive R such that
A¢Tl & < is well-founded on {alR(x,A)}.
The canonical mgu-tree is just one proposal for such an R which is closely
associated with a (fair) SLD-tree for A.
Before coming to its definition, we need to say a few things on how to
attain fairness, on mgu’'s and on standardization-apart in sections 2, 3 and
4 below.

6.2. Attaining fairness.

Notice, that (primitive) recursive fair selection rules exist. A natural one
is obtained when, generating an SLD-tree, at each node a finite stack of
literals to be selected is kept; at each resolution-step the, in the stack
lowest, literal (or its descendant) is selected and the new literals
introduced by the next step - if any - are added on top of the stack (so,
the stack is used first-in first-out). With this rule - which we call the
stack-rule -, it is clear, at each moment of the resolution-process,

after how many steps a certain literal (or its descendant) will be resolved
(if it can be resolved, and if the derivation does not end with failure

24

before).

A recursive selection rule produces a recursively enumerable SLD-tree.
And if we regard the SLD-tree as a prefix-tree - which we shall - it will
even be recursive.

Similarly, a recursive fair rule such as the above will produce a recursive
canonical mgu-tree.

6.3. Mgu’'s.
The SLD-resolution process uses maost general unifiers. We take these to
be produced by the Montanari-Martelli (MM-) algorithm (cf. Apt [1988]).
Mgu's obtained this way satisfy two well-known properties. To formulate
these, we introduce some terminology first. Notice that a mgu first is a
substitution, that is: a function 8 from variables to terms such that
Dom(8):={xeVarlo(x)=x} is finite. We denote by Ran(8) the set
U{var(e(x))lxeDom(8)} of all variables occurring in terms 8(x) for
xeDom(8). Finally, Var(8):=Dom(8)uRan(8).
The two crucial properties of MM-mgu’s now are

(i) idempotency: Dom(8)nRan(8)=¢

(ii) relevancy: if 8 is constructed to most generally unify

expressions A and B then Var(8)cVar(A)uVar(B).
In order to construct a mgu 8 for which t;6=s;8 (i<k), the MM-algorithm
transforms the set {t;=s;li<k} of equations - in case an mgu exists - into
a "solved set" of equations E(8)={x;=u;li<m} which is - modulo free
equality axioms - logically equivalent with the original one and has the
properties that (i)' no x; occurs in a uj and (ii)’ every variable in E(8)
occurs in some equation ty=s; - i.e., the transformation does not introduce
new variables. Then 8:={x;/u;li<m} is the desired mgu.
HU is the Herbrand universe of closed terms.
A substitution X is ground if A(x)eHU for each xeDom(X).
In the following lemma, the notation HUFE(8)[A] - where 8 is an arbitrary
substitution and A is ground - signifies that A - considered as an
HU-ssignment of variables - satisfies the equations in E(8) (in the usual
logical sense of this term).
We could relax this by not requiring A to be ground, but this won't be
needed.
6.3.1 Lemma. Suppose that we have two substitutions 8 and A where 8 is
idempotent and A is ground. Then the following conditions are pairwise

equivalent:
1. HUEE(8)[A] (\ satisfies E(8))
2. A=0\ (» matches 8)
3. for some d, A=02? (N refines or specializes 8).

Proof.

25
1=>2.If xeDom@ , 8(x)=t, then HUEx=t[A], i.e., Ax=tA=x68A. If x¢Dom§
then 8(x)=X hence xXA=X68A.
2=1.1f xeDom®@, 8(x)=t, then A(x)=tX hence HUEx=1[A].
2=>3.Take d:=A.
3=2.A=00=003=0A by idempotency. B
Remark. The lemma makes sense also if we replace HU by an arbitrary
algebra C and let A:Var—C be a C-assignment of the variables; the proof
remains unchanged.
The same is true for the following:
6.3.2 Lemma. Suppose that 8 is idempotent.
Every ground substitution X with Dom(x)=Ran(8) uniquely extends to a
A DA on Var(8) refining 6.
Proof. Define N:=0A.
It remains to check that Dom(\')=Var(8):
If xeRan(8) then x¢gDom(8), hence xXA'=x8Ax=xA and xeDom(X\').
If xeDom(8) then Var(x8)cRan(8), xA'=x8A=x x8 =8, and xeDom(\') as
well.
Hence, Var(8)cDom(\')cRan(8), i.e., Dom(\')cVar(8).
Finally, if xeDom(X') then x=xX\' and so either xeDom(8) or
xeDom(X)\Dom(8).
Finally, uniqueness of \": suppose that A"=6A", A"DA.
Let xeVar(0). We need to show, that xA'=x\".
(i) xeRan(@). Then XA"=xA=xX\".
(ii) xeDom(8). Then xA"=x0X\" and XA'=x8\". However, Xx8A"=x68\" since A"
and \' agree on Ran(8) by (i). B

6.4. Standardization-apart.

To effectuate standardization-apart in the application of program-rules,
assume first of all that all variables of an initial goal Ny shall have
superscripts O attached.

Suppose that Ng,N4,N,,Nz,... is a derivation using (variants of)
program-rules P4,P,,Pz,... and mgu's 64,8,,03,....

We'll always assume that all variables in the (variant of the) rule P; used
to deduce N, via 8; shall have the superscript i attached to them.

It then follows that variables in N; shall always have one of the
superscripts O,...,1.

Furthermore, in the set-up so arranged we'll have, by idempotency and
relevancy of the mgu's, for each sequence 64,...,8, of (in a derivation)
consecutively used mgu's, the following facts:

6.4.1 Lemma. Dom(8;)nVar(8;.,)=9.

Proof. Suppose that xeDom(8;).

Now, N;=«(C,M)8; where, for some A,B: P;=(C—B), N;_,=<(A,M) and

26

B8;=A8;

By idempotency, x¢ Var(N;). (If xeVar(C,M) then, since xeDom(8;), 8 pulls
it out; if x¢Var(C,M) then, since xgRan(#8;), 8; won't put it back in.)

By our standardization-apart convention, xgVar(Pi.q).

But, Var(8;,,)cVar(N;)uVar(P;,,) (relevancy).

Hence, x¢Var(8;,4). &

6.4.2 Corollary. If i<j then Dom(6;)nVar(8;)=¢ and all compositions
84...8, of (in a derivation) consecutive mgu's 84,...,68, are idempotent.
Proof. As above. If xeDom(6,...8,), there is a first 8; such that
xeDom(8;). Then x¢Ran(8;), and, by our standardization-apart convention,
no 8; (j>1i) will introduce x back again. 3o, for j>i, x¢Var(6;);
x¢Ran(6,...0,), and 68,...8, will be idempotent. ¥

6.4.3 Lemma. If for allis.t. 1 <i<n:A=08;A, then A=0,...0,A.

Proof. Trivial. &

6.5. Canonical mgu-trees associated with failing SLD-trees.

Fix a program P. Let A be a ground atom not in TT.

B is the (recursive) SLD-prefix-search-tree for A constructed by some
selection rule.

To describe the canonical mgu tree M=M(B) associated with B, it is useful
to identify the elements of B - which really are finite, unsuccesful
derivations from the initial goal A - with the sequence T=(84,...,8,) of
consecutive mgu's used in constructing such a derivation.

HU<w denotes the set of all substitutions which are ground.

For t=(84,...,8,)€B, Var(t):=U; ;< Var(s,).

6.5.1 Definition. If AeHU<®, t=(84,...,8,)€B, Dom(\)=Var(t) and for all
is.t. 1<i<k, A=6;A, then we'll say that A matches t.

6.5.2 Definition.
M=M(B):={ (Tt ,A)eBXHU<®|X\ matches T}.
The ordering < on M(B) is the natural one:
(6,8)< (TA):=0<gTA¥DN.
Here, <g is the prefix-ordering of B: 6<gT means that o properly extends
T in B.

6.5.3 Example. P:={px— pSx; px— A} is the usual example illustrating

that Tl may be different from Tlw. In fact, Tlw={A} and TI=Tl(w+1)=4¢.
By the way, it also is a simple example showing that satisfiability of
equations in Herbrand-models (opposed to arbitrary models) is incompact.
There is but one selection rule; it produces, when confronted with the
initial goal A an SLD-tree B consisting of one infinite branch. The clauses

27

on this branch are A,px1,px2,px3,...; the (equations corresponding to the)
mgu's used are @, x1=5x2, x2=5x3, x3=3x4,....

B is not well-founded.

However, note that M(B) is well-founded. In fact, the node A has <-height
w+1.

The reader may question the non-emptiness of M(B). However:
6.5.4 Lemma. VteB IneHU<®[(t,A\)eM(B)].
Proof.
Suppose that t=(84,...,8,)€B.
Define Basis(t)c Var(t) by recursion on k as follows:
Basis((8))=Ran(8)
Basis(tn(8))=Ran(8)u[Basis(t)\Dom(8)]
(n denoting concatenation).
Now 6.5.4 immediately follows from the
6.5.5 Claim. Each A\:Basis(t)—HU uniquely extends to a A:Var(t)—-HU
matching T.
Proof. For T=(8), this is 6.3.2.
Next, suppose that A:Basis(tn(6))—HU.
$:=AIRan(8) extends to 3’ matching 8 by 6.3.2.
&:=n|[Basis(t)\Dom(8)]uyIlBasis(t)nDom(8)] extends to &' matching T by
induction hypothesis.
Now define A" =3'UZ" K

6.6. Relating M(B) to the Tl-hierarchy.
First, we have the following "Kleene-Spector normal-form" for HB\T:
6.6.1 Theorem.
1. If < is well-founded on M(B) then A¢T|.
Conversely:
2. If B is fair and A¢ Tl then < is well-founded on M(B).

6.6.1.2 immediately follows from a lemma which deserves to be mentioned
separately:
6.6.2 Lemma. Let g be an infinitely descending branch through M(B) - B a
fair SLD-tree.
Let A be the union of second components j in tuples (o,3)€B.
Let a be the infinite branch through B of which all ¢ with
(o,AVar(o))ep are initials.
Then if C is any goal on o, TIECA.
Proof.
Suppose this is not the case.
Then a Jeast ordinal & exists such that, for some C on &, and some literal

28
ReC, RA¢TIE.

Now, a is infinite.

Therefore, since B was constructed using a fair rule, somewhere below C
in B a descendant R6 of R must be selected, 6 being the composition of
mgu's used along a going from C to the place where the selection takes
place. (8 may be empty if R was selected immediately.)

Since « is infinite, R8 can be unified with the head of a program-rule (for
if not, « would stop here and fail).

Suppose that o uses the rule D'— R’ to resolve R6 using a next mgu 68"
Then D'8' is part of the clause on &« immediately below the occurrence of
R#.

Now, (D'=>R)8'A=(D'8'A—>R'8'AN)=(D'6'’A—>R88'A\)=D"8"A—Rx, since A
matches all compositions of consecutive mgu's along B.

As RAgTlZ, there must be a literal Q8'A of D'8'A and an ordinal 3 <& such
that Q8'A¢Tld - contradicting the minimality of &. K

Proof of 6.6.1.1.
Suppose that < is well-founded on M(B).
We claim that for every (t,\)eM(B):

for some literal Q in the goal of T, QA ¢TI.
In particular, this will be true of the top-node of M(B) where A is the only
literal, and we are through.
The claim is proved using induction along <.
So, suppose that (t,\)eM(B), where C is the goal of T.
Supose that, for every literal QeC, we have QxeTl. [*]
Then in particular for the Q in C selected in B, Q\eT|.
Since T(T1)=Tl, for some ground-instance D— QA of a rule we have TlED.
[*~]
Let E—R be the rule of which D—Q\ is an instance; say, (D—Qx)=(E—R)j
where j is ground.
S0, Q unifies with R: by standardization-apart, A =AUy is a unifier.
Let 8 be a mgu of Q and R.
Since Q unifies with R, one of the resolvents F of C uses the rule E—R
with the mgu 6.
As N'=020 for some 9, A’ matches 8, and so, since A'DA matches every mgu
occurring before 8, (6,7\")eM(B), where ¢ (corresponding to F) is the
successor of T in B.
By induction-hypothesis, for some SeF, SA'¢TI.
If S=3'8 with S'eC\{Q}, then SA'=3'8A'=3"\"=3"\, contradicting the
assumption [*] above.
50, 5=3'6 with 3'eE. However, SA\'=3'8A'=3"\"'=3"y€D, contradicting [**].
X

29
Now for a sharpened version of 6.6.1.
In order to obtain a slightly nicer match, redefine the Tl-hierarchy by the
one recursion-equation
[1] TE=T(N, <, TI2).
(Cf. for instance, Moschovakis [1974] and Barwise [1975].)
The difference with the usual definition - which can succinctly be given
by the recursion
[2] TiE=,, T(T12)
- is that [1] only proceeds through the successor-stages of the
[2]-hierarchy, skipping the O-th- and all limit-stages.
Let T(A) be the usual rank of A¢T| in the prewellordering on the
complement of Tl corresponding to either one of these hierarchies.
N.B.: the induced prewellorderings under either [1] or [2] of course are the
same, and so this redefinition does not affect (the definition of) T.
Then for Ag¢Tl,
T(A)=t iff Aell,,TIa\TiZ
under the new definition [1],
iff AeTIE\TI(&+1)
under the old one [2].
For the sequel, let p(T,\) be the <-rank of (T,A\) in the well-founded part
of M(B).

6.6.1.1, refined.
If < is well-founded on M(B) and the top-node (A,®) has
o(A,@)=p, then AgTlp.
Le., T(A) <o(A,9).
Proof. Almost as before, now with bounds added.
Assume the hypothesis.
We claim that for every (t,A)eM(B) with <-rank &
for some literal Q in the goal of T, QNgTIl&.
In particular, this will be true of the top-node of M(B) where A is the only
literal and &:=p, and we are through.
The claim is proved using induction along <.
S0, suppose that (t,A)eM(B), where C is the goal of T, has <-rank &.
Supose that, for every literal QeC, we have Qx eTl&. [*]
Then in particular for the Q in C selected in B, QA eTl2.
Since TlE=T(nb<€ T12), for some ground-instance D— QX of a rule we
have (1, TLOED. [**]
Let E—>R be the rule of which D—QA\ is an instance; say, (D—»QX)=(E—R)3
where j is ground.
30, Q unifies with R: by standardization-apart, A :=Auy is a unifier.
Let 8 be a mgu of Q and R.

30
Since Q unifies with R, one of the resolvents F of C uses the rule E—R
with the mgu 8.

As \'=82 for some 3, A" matches 68, and so, since A’>X matches every mgu
occurring before 8, (6,7\')eM(B), where ¢ (corresponding to F) is the
successor of T in B.

Let d< be the < -rank of (6,\").

By induction-hypothesis, for some SeF, SA'¢Tlo.

If S=5'0 with S'eC\{Q}, then SA\'=5'8N\'=3'N\"'=S5'\, contradicting the
assumption [*] above, as Tl CTla.

So, S=5'6 with S'eE. However, S\'=5'0A'=3'N\"'=3"§eD, contradicting [**].
X

Due to the fact that the SLD-resolution process handles but one atom at
the time while many others must remain waiting for resolution - if we
use the stack-rule to attain fairness, these make up the stack employed
-, the next result probably cannot be made much sharper.
6.6.1.2, refined.

Suppose that fairness of B is accomplished by the stack-rule.

If AgTl then < is well-founded on M(B) and g(A,8) <w X},

i.e., 0(A,8) <wxT(A).

Moreover, the sharper bound ¢(A,#) <a+n(s+1) can be obtained

- where o is the 1imit ordinal and n the natural number such that

L =o+n - if the stack employed never (i.e., nowhere in B) will

contain more than s literals.
Proof.
Well-foundedness of < follows from 6.6.1.2.
Now, since B must select the only literal A of its top-goal A (i.e., the
stack going with A in B must be empty), the first part of this result is a
special case of the following lemma, where k=0:

6.6.3 Lemma. If 1. (C,A\)eM(B), TIZECA
2. the stack going with C in B contains k literals
then g(C,2\) <wxZ+k.
Proof. Induction w.r.t. &.
By 1., choose QeC such that QA¢T!E&.
Suppose that (D,3)< (C,A\) and the descendant of Q is selected in D.
By 2., 0(D,3)+k'=9(C,)\) for some k' <k.
Let (D',3') be an immediate predecessor of (D,3) in M(B).
Then in D', the descendant of Q in D has been resolved,
whence, by 1., [, ., TL2.ED"
S50, for some a0<¢, Tl b,léD'zs'.'
By induction hypothesis, g(D",5') <wx3+p(D') - p(D') being the size of the

31

stack going with D' in B.

Hence, (D',) <X d +w < WXE.

Therefore, ¢(D,3)=sup{e(D",3')+11(D",5')<(D,5)} <wx&.
And so, p(C,N) wXxE+k'<wx&+k. B

The second part of the refined version of 6.6.1.2 similarly follows from
the
6.6.4 Lemma. If 1. (C,\)eM(B), TIEECA
2. the stack never gets size >s inB
then g(C,\) <a+n(s+1) - where a is the 1imit ordinal and
n the natural number such that &=oa+n.
Proof. Similar t0 6.6.3. X
6.6.5 Corollary. If B is constructed fairly using the stack-rule and
wXT(A)=T(A), then g(A,@B)=T(A).
6.6.6 Fact. oxp=p iff Jalp=wexal.

6.6.7 Theorem.
1. If ¢ is a selection-rule such that, for AeHB\TT, (A,@) has rank
<a in the associated mgu-tree then P is a-weakly recurrent.
2. In particular, if g is such that for each AeHB\TT the
SLD-search-tree for the goal A— is finite then P is weakly
recurrent.
Proof.
1.By 6.6.1.1, if (A,#) has rank <a (A¢TT) then A has rank <a in the
Tl-hierarchy. Hence, HB\TTCHB\Tl¢q, ie., TlacCTT.

2. If SLD-trees are finite then the associated mgu-trees are finite as well

and the result follows from 1. by taking a=w. X

32

7. Non-standard Herbrand-universes.

7.0. Contents.

Sections 1-3 of this part discuss quotients and limits of free term
algebras, convergence of sequences of substitutions, the structure of
limits and several ways to turn limits into models.

Finally, in section 4, we have a couple of remarks in the margin of
[Blair/Brown 1997]. This paper constructs, by iterating in a sense the
model-construction in the proof of the theorem on "completeness of
negation as failure”, a remarkable countable algebra over which "every
program is canonical”. We show that the conclusions of that paper follow
if we take the algebra to be countable recursively saturated.
Subsequently, we relax recursive saturation to properties more
appropriate for the algebraic setting.

7.1 Quotients and Limits.

Substitutions can be used in several ways to produce new algebras out of
the free term algebras TERM=TERM(VAR) of all terms over a set VAR of
variables:

1. As identifications. Used as such, they induce a quotient of the free term
algebra in which a term is identified with the variable for which it is
substituted. See 7.1.4.

2. As homomorphisms between free term algebras. The induced quotient
now identifies terms being unified. (7.1.5)

3. Finally, a sequence of substitutions-as-homomorphisms can be used to
form a direct 1imit. (7.1.6; in 7.1.7 we prove that every model of the free
equality axioms can be represented in this fashion.)

The proper settings for the subject at hand are 2 and 3. Nevertheless, 1 is
not without interest: first, this offers a way to produce algebras in which
not every free equality axiom is preserved; second, we'll note that 1 and 2
produce isomorphs when the substitution is idempotent; and hence we then
harvest the merits of both approaches.

The following discussion is parametrized by a finite set FUNC of function
symbols which contains at least one individual constant (that is, a
zero-argument function symbol). We start with the preliminary 7.1.1-3.

7.1.1 Equality axioms.
The Free Equality Axioms consist of the following:
FEQ1. fx=fy — x=y (feFUNC)
FEQ2. fxs=gy (f,geFUNC, f=g)
FEQ3. x=t for every term t which has x as a proper subterm.
By FEQ we denote the theory axiomatized by these axioms.
The Domain Closure Axiom is

33
DCA. VX VieruncIy: X=1y.

7.1.2 Congruences.

Let C be a FUNC-model, that is: an algebra interpreting the symbols of

FUNC.

An equivalence relation ~ on C is a congruence if it respects the

functions of C: a;~by,...,an~by=f(ay,...,b)~f(by,...,bp).

Clearly, for every relation R on C there is a Jeast congruence extending R.

Every congruence ~ on C induces a quotient-algebra C/~ over the set of

~-equivalence classes [c| (c€C). The quotient-map e:c|cl then is a

(surjective) homomorphism: C—»C/~; hence

Lemma. ~ is a congruence over C iff there exist an algebra B and a
homomorphism h:C— B such that ~ is the kernel {(a,b)eC2lha=hb} of h.

7.1.3 Equation-induced congruences over the free algebra.
Let VAR be a set of variables and TERM=TERM(VAR) the free algebra of all
FUNC-terms over VAR.
Each set E of equations t=s with t,seTERM corresponds in a 1-1-fashion
to a relation R(E):={(t,s)lt=s€E} over TERM.
C(E) is the least congruence containing R(E).
TERM/E is the quotient of TERM modulo C(E).
Note that, for teTERM, the value te of t under the quotient-map s:.c—|c| in
TERM/E (in the model-theoretic sense, where ¢ is considered as an
assignment) equals [t]. (Induction on t.)
Lemma. ¢ satisfies every e€E in TERM/E: TERM/EEE[¢].
Representation of arbitrary algebras using equation-induced
quotients:
If C is a (countable) algebra then C=TERM/E for some set E of
equations.
Proof. Fix a surjection a:VAR—C and let E be the set of all equations
satisfiedby ain C. &

7.1.4 Substitutions as Identifications.
Suppose that 8:VAR—-TERM=TERM(VAR) is a substitution, i.e,,
Dom(8):={xe VARIx= 8 (x)} is finite.
E(8):={x=0(x)IxeDom(8)} is the set of equations associated with 9.
Lemma. For each algebra C and a:VAR—C, the following are equivalent:
1. CEE(8)[al]
2. 8a=0 (e matches 9, 8 is invariant over o).
N.B.. 8 associates with x the value (8(x))x of the term 8(x) under the
assignment o in C.
Id(8), the identification induced by 8, is the least congruence

34

containing the graph {(x,8(x))IxeDom(8)} of 8.
Hence, 1d(8)=C(E(8)), and TERM/Id(6)=TERM/E(8).
Lemma. 1. TERM/1d(8)EE(8)[¢]

2. fe=¢

3. TERM/Id(8)EFEQ1/2.
In 7.1.5 we note that more holds when 8 is idempotent.
Example. If 8={x/Sx}, Ix| is a solution in TERM/Id(8) of x=35x, and so
FEQ3 cannot be satisfied in this quotient.

7.1.5 Substitutions as unifiers.
Let 8 be a substitution.
Identify 8 with the unique homomorphism between the free term algebras
to which it recursively extends.
Un(8), the unification corresponding to 8, is the kernel of 8 considered-
as-a-homomorphism, i.e., Un(8) is defined by the condition: t8=s8.
TERM/ 8 is the induced quotient.
Lemma. 1. TERM/6EFEQ

2. Un(8)cId(8)

3. If 8 is idempotent then Un(8)=1d(8).
Proof.
2.1f t =50 then t~t8~s8~s under Id(8).
3. In order that Id(8)cUn(8), since 1d(8) is the least congruence
Sgraph(8), it suffices that graph(8)cUn(8). So, assume 8(x)=t. By
idempotency x8=x688=t8, and hence (x,t)eUn(8). K
N.B.:
Lemma. For every substitution 8 there is an idempotent substitution @
such that Vs,t[s8=t8 < s®=t®], i.e.,, Un(8)=Un(&®), and TERM/ 6 =TERM/&.
Proof. Let V=Var(8) be the set of all variables occurring in Dom(8) and in
terms 8(x) for xeDom(8). E:={s=t|s,teTERM(V), s8=t8}. E is infinite.
However, modulo FEQ-, E amounts to E-:={s=teElseV}.
Claim: E- is finite.
For, otherwise xeV would exist such that x=teE for infinitely many t. For
all those t, x8=t0. However, x8 has a fixed complexity (=number of
function symbols) r, the complexity of t8 is > that of t; and there are
only finitely many terms t over the finite set V of bounded complexity.
Now, feed E- to the Martelli-Montanari-algorithm. This produces an
idempotent & such that Vs,teTERM(V)[s8=t8 < s®=t&] and hence
Vs,t[s8=t8 < sd=td] as well. K

7.1.6 Direct limits.
Suppose that V(i) is a set of variables (ielN).
TM(i) is the set of all FUNC-terms over V(i).

35

Suppose, furthermore, that 8=<6U-+1IieIN> is a sequence of substitutions
81 5e:V (D)= TM(i+1).

Again, identify 8; ;.4 with the unique free-algebra
homomorphism:TM(i)—>TM(i+1) to which it recursively extends.

Finallg, put 61’j1= Bi'i”... ej—1,j ('| g])

Definition. The direct limit Lim(8) is the algebra obtained as follows.
First, define =~ on the set {(t,i)|teTM(i)} by
[~] (t,i)z(S,j):E 3k>ilj:tei,k=sej,k'
The universe of Lim(8) is the quotient {(t,)IteTM(i)}/ .
(The idea here being that (t,i) heads the sequence
(t,1), (t8; 449,01+ 1), (185 442,1%2),...;
(t,i) and (s,j) are identified iff their sequences eventually coincide.)
Each FeFUNC is interpreted as a function F* over this universe defined by
F* (10t i) I, IDID:= G (g 850y oot Biny i) KO
where k=max{i(1),...,i(n)}.

Consider the following condition:

[*] teTM(i) and j<iimply t8q;=t.

Lemma. [*] will be satisfied always when we obtain 8 as a sequence of
mgu's along an infinite SLD-derivation and V(i) is the set of variables
in the i-th goal of this derivation.

For, if @ is constructed in such a way, by idempotency and

standardization-apart we will have for all j>0 that Dom(8¢;)nV(j)=¢

(if xeDom(8¢), there is a first j'’<j s.t. xeDom(8; ;-.1), whence x¢V(j)

forall j>j'+1)

and so 8, ; does not act on teTM(i) when i>j. K

Lemma. If [*] holds then Lim(8) is isomorphic to the quotient TERM/ 8 of
TERM:=UJ; TM(i) modulo the congruence ~ defined by:

t~s:=3k:itBg =500y
Proof. Note first that
K> 1,j: 18, =508, iff Ik:tBoy=500y.

Also, by [*] the 8 are idempotent. It then follows that the map

h:l(t,i)l=Itl (where x~-equivalence classes are meant on the left and

~-classes on the right), is an isomorphism, as for k=max(i,j), F* resp. F°

corresponding to the (say, binary) symbol F in Lim(8) resp. TERM/ 8:

h(F = (I(t,1)L,I(s,i)D)=hl(F(t 8¢ x,S0 k).K)=IF(t 8¢k, 80) =F°(It8g IS8 ()=

Feo(ltl,Isl)=Fe(hl(t,i)l,hi(s,j)I), since by idempotency t8¢ =184 80 and,

hence, ItI=It8q,] B

7.1.7 Representation of algebras by limits.
Definition. For substitutions A and 8 we say that

36
1. » refines 6, notation: A <6, if Ja:A=102.
2. A neatly refines 6, notation: A<* 86,

if A < 8 and Dom(x\)>Dom(8).
Note that, if A < 8, then Dom(8)cDom(x) iff there are no two different
variables xeDom(8) and yeDom(X) such that 8(x)=y and A(y)=x.
If A\<0,i.e, =00 for some 2, and 8 is idempotent,
then A=060=060=0A.
Lemma. Suppose that

1. C satisfies FEQ,

2. 2:VAR—C is an assignment,

3.t,s are terms for which ta=sa,

4. 9 is an idempotent substitution for which 8a=q.

Then an idempotent A exists, neatly refining 6,

and such that Aa=a and tA=sA.
Proof.
Consider the set of equations E:=E(8)u{t8=s8}.
By 3/4, a satisfies E in C.
Consider the Martelli-Montanari-algorithm for producing idempotent most
general unifiers. Put it to work on E. Since « satisfies E in C and C models
FEQ1, it is easily checked that each set of equations produced by the
algorithm starting from E is satisfied by a in C as well. Since also
CEFEQ2/3, the algorithm cannot fail to produce a most general unifier A
for E for which, hence, Aa=a. Since A unifies E(8) and 8 most generally
unifies E(8), we obtain A <8 and, as 8 is idempotent, A=08\. Also,
tA=t8A=s0A=8\. Finally, Dom(x\)>Dom(8): if xeDom(8) then
xgVar(te=s8). So, the algorithm never replaces a variable x on the
left-hand side of an equation x=u in E(8) (or its transforms), and neither
does it delete such an equation (or a transform). X

Theorem. If C is a countable algebra satisfying the free equality
axioms, then C=TERM/8 for some neatly descending sequence
8: 8o>"6,>"8,>"... of idempotent substitutions 8;.

Proof.

Fix a surjection a:VAR—C.

Fix an enumeration of all equations s=t satisfied by a in C.

By the lemma, construct a sequence 8: 85> *8,> *8,> *... of idempotent

substitutions matched by &, the n-th substitution unifying the n-th

equation.

Clearly, sa=ta iff Ji:s6;=t6; (if s6;=t8; then sa=s6,a=t8;a=ta).

Hence, the map |t|~ta is an isomorphism: TERM/86 ->C. &

37

7.2 Convergence.

Contents: we characterize the standard part of a direct 1imit produced by
an infinite SLD-derivation (under suitable conditions on
standardization-apart and the mgu-producing algorithm) in terms of
convergence of the substitutions involved.

Sections 6.3/4 on conventions regarding mgu's and standardization-apart
of program-rules in SLD-derivations are still in force.

Note in particular that we effectuated standardization-apart by means of
superscripting variables: O to superscript variables of the initial goal, and
j>0 to superscript variables in the (variant of the) program-rule used at
the j-th step.

For the rest of this section, fix a sequence 8=(84,68,,03,...) of mgu's
consecutively occurring in an infinite SLD-derivation.

7.2.1 Definition.
1. 8 converges on the term t at i iff Vj>i[t6,...6;=t8,...6;].
2. 6 converges on t at i exactly iff it converges at i but not at
some j<i.
3. 8 converges on t iff it converges on t at some i.
4. 8 converges iff it converges on every term.
Clearly 8 converges on t iff it converges on every xeVar(t); and 0
converges iff it converges on every variable.

HU is the Herbrand universe of all closed terms.

An assignment A:Var(8)—HU (Var(8):=U{var(8;)li>0}) is said to match
8 if 64...0;A=A for alli.

7.2.2 Lemma. If 8 has a matching assigment A in HU, then 8 converges.
Proof. Suppose that A matches 8. Fix xeVar. We have to show that 8
converges on X.

Define V(i):=Var(x8,...8;) and V:=U, V(i).

Claim. V is finite.

Proof. A matches 8 and has a finite domain.

Fix some k for which V=U, <, V(i).

Now it is easy to see that 8 must converge on x (somewhere): subsequent
mgu's By.q, Bk+o,... Can only take away variables: every variable which
will be introduced eventually has been introduced by the previous mgu's
already by choice of k; and, once substituted away, a variable won't come
back anymore by the conventions of 6.4. Since there are only [V (k)|
variables in x84... 8;, subsequent mgu's can only change x8,... 8; and its
descendants x84...8; (j> k) [V(k)I-many times at the most, after which
convergence obtains. K

38

Conversely:

7.2.3 Lemma. Suppose that 8 converges.
Define k(x) (xeVar) by the stipulation that 8 converges on x at k(x)
exactly.
Define Ran(8):=U{Var(x0,... 8y)lxeVar}.
Then each h\:Ran(8)—HU uniquely extends to a A:Var(8)—HU
matching 8.

7.2.4 Corollary. 8 converges iff it has a matching assignment in HU.

7.3 Structure of limits and models.

Contents. We make some observations concerning the structure of direct
limits/quotients. We discuss three ways of extending direct limits to
models. Finally, the theorem on completeness of negation as failure is
slightly extended.

Assume that V(i), TM(i), 8=(8¢ 1, 84, 8,3...) are as in 7.1.6 and that [*]
of that section holds; so we may consider Lim(8) as well to be the
quotient TERM/ @ of TERM:=U; TM(i).
7.3.1 Lemma. |.|:HU—-Lim(8) embeds the Herbrand-algebra into Lim(8).
Proof. =~ reduces to the identity on HU. &
Identify HU with its image in Lim(8) under [.1.
we need a slightly modified notion of convergence.
7.3.2 Definitions.
1. 8 converges on t at k iff Vj>k: t8p; is a variant of t6, .
2. Con(@):={teTM|8 converges on t}
3. For teCon(8), k(t)elN is the number at which 8 converges on t
exactly
4.5t(8):={t 8¢ ()teCon(8)}
5.5T(8):={lt||teCon(8)} is called the standard part of Lim(8).

7.3.3 Lemma. |.|:5t(8)—ST(8) is a bijection.
Identify St(8) with its image ST(8) under |.|.

7.3.4 Lemma. |.|:Con(8)—ST(8) is a surjection.

The direct limit-construction opens up two possibilities standard

Herbrand universes do not have:

(i) ST(8)\HU may be non-empty. These are new elements compared to the
standard situation of HU; nevertheless they are also standard in the
sense that, in Lim(8), they can be identified with the object t6

39
in 5t(8).

(ii) More importantly, 8 may not converge on some t and hence
Lim(8)\ST(8), the non-standard part of Lim(8), may be non-empty.

7.3.5 Lemma. Lim(8) satisfies the free equality axioms.
7.3.6 Lemma. ST(@) is freely generated in Lim(8) from the set
{IxI| xeCon(8))}.
7.3.7 Lemma. Lim(8) satisfies the domain closure axiom iff Con(8)=HU.

Direct limits turned into models.
Suppose now that REL is a set of relation symbols. A model will be a
FUNC-algebra equipped with interpretations for all symbols in REL.
Assume that A=<A;lieN> is a sequence such that A; is a model over the
free algebra TM(i) (ielN).
Assume that 8; ;;A;— A; is a homomorphism whenever i<].
Since we know already that each 8, ; is a homomorphism w.r.t. the
algebraic structure, this only puts a restriction on the interpretation of
relation symbols in the A;, namely, for t,... eTM(i) and ReREL:
AiFR(t,...) = AjER(t8;;,...).

Identifying models with subsets of their Herbrand-base, this condition
can be given more succinctly as:

for atomic Q: QeA; = Q6 €A,

If this is satisfied, we can turn Lim(8) into the model Lim(A,8) over
Lim(8) induced by A by defining interpretations for the relation symbols
according to the following

7.3.8 Definition. For t,s,... e TM(i):
Lim(A,8)ER(tlIsl,...):=3j> i: A|ER(18, ;,58, ;,...).
Of course, this definition requires some careful handling.
If t,s,... are in diferent TM(i); say, teTM(i(t)), 1et m:=max{i(t),i(s),...};
now Lim(8)ER(ltLIsl,...) just means 3k>m: Ay FR(t8¢) «,S8(s) ks---)-

For each i, 1et T(i) be the monotone operator over the Herbrand-base HB(i)
corresponding to TM(i) which is associated with the program P.

Again, T(i)T and T(i)l are its least resp. greatest fixed point: they both are
identified with models over TM(i).

For these choices of the A;, the homomorphism-condition is satisfied:
7.3.9 Lemma. 8; ;: T(i)T > T(j)T is a homomorphism.

Proof. Suppose that A is an atomic sentence over TM(i) and 8= 81,5
We have to show, that AeT(i)T implies ABeT(j)T.

40

Consider X:={AeFM(i)IA0€eT(j)T}.

It suffices to show, that XEP, since then, T(i)TcX and we are done.

So, suppose that C(x,y)—R(c(x)) is some P-rule.

Assume that C(t,s)cX. We have to show, that R(c(t))eX.

By definition of X, C(t,s)8 CT(j)T.

Since T(j)TEP, we obtain R(c(t))8€T(j)T. Hence, R(o(t))eX. K

This result however may seem nicer than it really is. For, notice that for
sensible programs, the rules are such that every variable in a rule-head
also will occur in the corresponding body. But then we will have
T(i)T=TTcHU, trivializing the result.

7.3.10 Lemma. 8; ;: T(I)l > T(j)! is a homomorphism.

Proof. Suppose again that A is an atomic sentence over TM(i) and 8=8, ;.
we have to show, that AeT(i)l implies AB8eT(j)!. But this follows
immediately from the

7.3.11 Lemma. AeT(i)lZ = ABeT(j)l&.

Proof. Induction w.r.t. &. As usual, the cases ¢=0 and & a limit are trivial.
So, assume AeT(i)lZ+1. Then for some rule-instance C—A, CcT(i)lZ. By
induction hypothesis, C8 cT(j)!. But then C8 - A8 is a rule-instance as
well, whence, ABeT(j)lZ+1. X

we can get some more information on the greatest-fixed-point case.
The next result is obvious, once one views the variables xeV(i) as
constants of TM(i) about which the program does not provide any specific
information.
7.3.12 Lemma. If xeV(i) and A(x)eT(i)l& then A(y)eT(i)l& for any other
yeV(i) and A(c)eT(i)lZ for any constant c.
Proof. Easy induction w.r.t. & X
7.3.13 Lemma. If t,s,... e TM(i)nTM(j) and A=R(t,s,...), then
AeTM(i)lE & AeTM(j)le.

7.3.14 Lemma. Suppose that @(x,...) is a positive quantifier-free
formula.
Then the following are equivalent for t,...e TM(i):
1. Lim(A,8)E@(tl],...)
2.3j> 0 AjF@(te,;,...).
Proof. Immediate from the definition. X

The following result, telling which sentences are preserved by the
construction, is known.
7.3.15 Corollary. Supose that ¢ and @ are as in 7.3.14.

If for every i: AjEVx[@(x)—>3yy(x,y)l

41
then Lim(A,8)EVx(@(x)—>3Iyy(x,y).

Proof. Suppose that for every i: A;EVx[@(x)—3yyp(x,y)l.

Take any ItleLim(8) such that Lim(A,8)F @(lt]).

Say, teTM(i).

Then j>1i exists such that A;kF@(t8; ;).

By hypothesis, seTM(j) exists such that Ajl=tp(t6,-.j,s)

But then, Lim(A,8)Ey(ltlIs]); i.e., Lim(A,8)E3Iyy(itl,y). B

7.3.16 Remark. [Keisler1960] proves that each theory which is
preserved by direct 1imits (of type w) has a set of axioms of the form
Vx(@—3yy) with @,y positive quantifier-free.

Cf. also [Chang/Keisler 1990] p.322, exercise 5.2.24.

?.3.17 Corollary. If each A, is a fixed point of T(i), then
Lim(A,8)EComp(P).

Proof. Except some of the FEQ-axioms, the sentences in Comp(P) - the

completion of P - are of the form required and are satisfied by every A;. K

7.3.18. "Completeness of negation as failure” is the statement that for
every AeTlw there is a model of A+Comp(P).

The usual proof employs the limit of mgu’s along an infinite fair
derivation of A, turned into a model in still another way. We strengthen
this slightly, obtaining a model satisfying the domain closure axiom as
well. Of course, this also follows from [Blair/Brown 1997], which is
discussed in 7.4.

S0, assume 0 is the sequence of mgu’'s along an infinite fair derivation of
the ground atom AeTlw (such a derivation exists by the finite failure
theorem).

Define T* to be the monotone operator over the Herbrand-base associated
with Lim(8) induced by P.

To describe T* a little more precisely, we admit all variables of

v=U, V(i) as individual constants, xeV interpreted as Ix| in Lim(8).

Let HB(8) be the Herbrand base over Lim(8), i.e., the set of all atomic
formulas A s.t. Var(A)c V. Of course, we identify R(t,...) and R(s,...) in
case txs,....

Now, for XcHB(8), T(X)cHB(8) is defined by: AeT(X) iff for some instance
C—Aof aP-rule: CcX.

T*T and T*] are the least, resp. greatest fixed points of T*. Obviously,
these are models of Comp(P).

Lim(T,8) is the model produced by the TM(i)T, Lim({,8) the one produced by
the TM(i)l.

7.3.19 Lemma. T*T=Lim(T,8)cLim(l,8)cT*!.

42
Proof of last inclusion: suppose that Lim(l,8)ER(t,s). Then for some i
R(t,5)8¢1€T(i)l. The result now is immediate from the
7.3.20 Lemma. If AeHB(i) then for all &

AeT(i)lz = AeT*leZ.
The converse of this fails, even for AeHB. This is illustrated by the
program {px— pSx; px—p0}: T(I)l=T(i)lw+1=¢ for all i; however,
p(x1)eT*lw, and hence p(0)eT*lw+1.

7.3.21 Completeness of negation as failure.
Let T be the infinite fair derivation of AeTlw from which 8 is taken.
Each literal in each clause from each goal on T is satisfied by the
assignment |.|:V—Lim(8) in the model T*|.
Proof. If not, there is a least & such that for some atom A occurring in the
derivation: AgT*1Z+1.
From A, follow the derivation downwards until you find the selected
descendant Ag;; of A. Suppose the P-rule D—R is applied there using
8j,j+1. ThenD8; ;.4 —RB; ;.4 15 3 rule-instance; R8; j.1=A08; ;.1 18
identified with A. We must have T*18#D8; ;.,, contradicting the choice of
¢ K
we know that T*| will be a model of Comp(P). It is not necessarily a
model of the domain closure axiom; however, taking one more quotient
remedies this: by 7.3.7 the only thing needed is to identify each variable in
Con(@) (if any) with some individual constant. Therefore
7.3.22. Theorem. Every AeTlw is satisfied in a model of Comp(P) and
the domain closure axiom.
Varying the construction suitably gives:
7.3.23 Theorem ([Blair/Brown 199?], with a different proof.)
We can construct 8 so, that T*| is a model of Comp(P),
the domain closure axiom, and all of Tlw.
Proof. Note that 7.3.21 produces a model of one atom in Tl only.
Fix an enumeration of Tlw. Start a fair derivation using the first element
of this enumeration for an initial goal. Add the i-th element of the
enumeration both as a last literal to the i-th goal obtained and to the
stack regulating fairness. X

7.4. Marginal remarks to a theorem of Blair and Brown.

Contents: we note that the results of [Blair/Brown 199?] can be obtained
immediately from certain results in [Barwise 1975] on recursive
saturation and inductive definability, in particular, Gandy's theorem.
Subsequently, the recursive saturation-condition is relaxed.

43
7.4.1. [Blair/Brown 1997] constructs a countable FUNC-algebra M such
that the following conditions are satisfied.

1. M is a quotient of the free algebra over the set of all terms induced
by a collection of (idempotent) substitutions; in particular, HUCM.

2. M satisfies all free equality axioms.

3. The immediate consequence operator T* induced over M by an
arbitrary logic program always has downward closure ordinal <w (i.e.,
T*1=T*lw).

N.B. A program P is called canonical by [Jaffar/Stuckey 1986] whenever
Tl=Tlw, where T=Tp. This explains the title of [Blair/Brown 1997].
Finally, assuming an individual constant O, a unary function symbol S and
a binary function symbol J to be present in FUNC:

4. Every total recursive function is represented by an element of M.
Here, we say that aeM represents f:N—IN iff for some (by the free
equality axioms, unigue) sequence ay=a, a4, a,,... exists in M such that
a;=J(f(i),a;+1) (ieN), identifying each keN with the term SkO.

(The definition of [Blair/Brown 199?] is, in an inessential way, slightly
more complicated.)

7.4.2. In [Blair/Brown 199?], M is constructed as a limit of quotients of
which the model from 7.4.23 is the first step. It is easy to see, that, in
this model, the restricted hierarchy T*1nHB, where HB is the Herbrand
base over the standard algebra HU, closes in <w steps; in fact:
T*lnHB=Tlw=T*lwnHB.

Iterating the construction (this needs relativizing the
unification-procedure and SLD-resolution to an arbitrary algebra)
eventually produces the desired algebra.

7.4.3. Here is a shortcut to such an algebra.

In order to obtain 7.4.1.1-4 above, it suffices for M to be a countable
recursively saturated elementary extension of the free algebra HU.

For elementary results on recursive saturation, cf. [Chang/Keisler 1990].
In particular, it is proved there that every countable model has a
countable recursively saturated elementary extension.

That M satisfies the free equality axioms is now clear. It even satisfies
the domain closure axiom.

That M is a quotient of the free algebra of all terms modulo a sequence of
idempotent substitutions is immediate from our representation result
7.1.7 above.

Representation of recursive functions follows from recursive saturation.
If :N—IN is recursive, consider the recursive type T="T(xq) consisting of
the formulas

x4 [Xg=J(f(0),x4)]

x4 Ix, [Xg=J(F(0),x1) A xq4=J(f(1),x5)]

44
Jxq X, Iz [xg=J(1(0),x1) A xq=J(F(1),%5) A Xo=J(f(2),X3)]

etc.
Obviously, T is finitely satisfiable in HU; hence it is satisfied in M by
recursive saturation; equally obviously, an element satisfies T iff it
represents f.
7.4.4. 1t remains to show that the operator T* induced over the
Herbrand-base corresponding to M by an arbitrary program P has downward
closure ordinal .
This follows from two quotable results in Barwise [1975]. Unfortunately,
these results involve the ordinal 0(M), the analogue of w,tK when
M=(N,0,5).
0(M) is the height of HYP(M), the least transitive model of the weak set
theory KPU* which has M as an element. For the precise definition, cf.
[Barwise 1975). Least models exist here, they are initials of Gddel's
constructible hierarchy starting on M instead of the empty set.
We have the
7.4.5 Theorem ([Barwise 1975] Thm. 5.3 p.139)

M is recursively saturated iff O(M)=c.

Of this, we only need (a special case of) the = -part, which has a rather
complicated proof in [Barwise 1975]. A more easy one can be obtained as
follows. We know that M is countably infinite. By the strong form of
resplendency of M (i.e., [Chang/Keisler 1990] Thm.2.4.10 p.120), we can
expand M into a model of KPU* in which M is represented as an element;
and, using compactness along the way, we can take care that the only
well-founded ordinals of the model are its natural numbers. It follows
that the standard part of this model has height . By the Truncation
Lemma, cf. Barwise 1.c., it is a model of KPU* as well, and the result
folows.
7.4.6. Now, by [Barwise 19751 Thm.3.11 p.211 ("Gandy's theorem"), every
extended inductive definition over a model A has closure ordinal <0(A);
in particular, extended inductive definitions over M close at w at the
latest.
The extended inductive definitions include those in which the monotone
operator is defined by a first-order positive formula on the structure
under consideration.
It is not difficult to see that this includes the duals of program-induced
operators. Though the set-up in logic programming differs from that in
first-order positive inductive definability, it is straightforward to
translate (the complement of) T*| into a first-order positive inductive
definition with the same closure ordinal: if the program defines, say,
relations R,,... Ry with resp. ry,...,r, arguments, the inductive definition
now introduces one relation of ry+... +r, arguments, the first r, arguments

45

of which are used to represent Ry, the next r, to represent R,, etc. In fact,
the formula needed only uses universal quantifiers (cf. the discussion in
part 5 on co-computability).

In order to obtain algebras satisfying the Blair/Brown conditions, the
formulation of Gandy's theorem suggests that recursive saturation is
probably much more than is needed here.

7.4.7. Consider the following

Definitions.

1. C is equationally weakly recursively saturated iff every
recursive set E of parameter-free equations with possibly infinitely
many variables finitely satisfied in C is realized in C..

2. C is weakly recursively complete iff each recursive neatly
descending sequence 84> *8,> *0,> *... of idempotent substitutions is
matched in C

(i.e., an assignment a:VAR—C exists s.t. a=8;a for all i).

3. C is weakly canonical iff for each logic program P: TlwcT*!
(here, T=Tp is the operator induced by P over HU; T* is the operator
induced by P over C).

Theorem. For countable algebras satisfying the free equality-axioms:
1. recursive saturation implies equational weak recursive saturation;
2. equational weak recursive saturation amounts to weak recursive
completeness;
3. weak recursive completeness implies weak cononicity.
Proof. Fix an algebra C satisfying all free equality axioms.
1. Immediate from strong resplendency of C (i.e., [Chang/Keisler 1990]
Thm.2.4.10 p.120). (This uses countability of C.)
2. &. Suppose that E={eg, €4, 5, ...} is @ recursive set of equations
finitely satisfied in C.
Consider the Martelli-Montanari algorithm for obtaining idempotent mgu’'s.
If E'is a finite set of equations, MM(E') denotes the (a) solved set of
equations equivalent with E' (modulo free equality-axioms) which is
produced by the algorithm - that is, if unification is possible at all.
Note that, if E' is satisfiable in C, since C satisfies the free equality
axioms, the MM-algorithm cannot fail to succeed on E' and MM(E') is
defined.
Now define
Eg=MM{eg} : this produces an idempotent 8
E,=MM(E(8y)u{e,08}): this produces an idempotent 6, <* 8,
(cf. the proof of lemma 7.1.7)
Eo=MM(E(8,)u{e,04}): this produces 6,<*8,

46

etc.;
Now, apply weak recursive completeness.
2.=>. Suppose that 8,>*8,>"6,> "... is a recursive descending
sequence of idempotent substitutions; let E; be the set of equations
associated with 8;. Apply equational weak recursive saturation to U,E..
3. Just copy the proof of "completeness of negation as failure”. If 8 is the
(by standardization-apart, neatly descending) sequence of successive
compositions of mgu's along an infinite fair derivation of AeTlcw, by weak
recursive completeness 8 has a matching assignment a in C. It now
follows that a satisfies in T*| every atom in every goal of the derivation:
if not, a Jeast & exists such that for some such atom B, T*l&¥B[al; now,
go down the derivation until you find the selected descendant of B and
argue as in the proof of 7.3.21. K

The following 1ooks as a - not so easy - exercise in programming:
Conjecture. For C satisfying the free equality axioms:
weak canonicity implies weak recursive completeness.

7.4.8 Relativizing the discussion of 7.4.7:
Definitions.
1'. C is equationally recursively saturated iff every recursive set E
of equations with finitely many parameters from C and with possibly
infinitely many variables finitely satisfied in C is realized in C.
2'. C is recursively complete iff each recursive neatly descending
sequence 8o> *6,> *08,> *... of idempotent substitutions using finitely
many parameters from C is matched in C.
3'. C is canonical iff for each logic program P: T*lwcCT*!.
Theorem. For countable algebras satisfying the free equality-axioms:

1. recursive saturation implies equational recursive saturation;

2. equational recursive saturation amounts to recursive completeness;

3. recursive completeness implies canonicity.
Proof. 1. As before. 2/3 Also as before, but now using the relativized
machinery of [Blair/Brown 1997?] on M-unification (needed for 2,3),
-resolution and -finite failure (needed for 3), i.e., section 4 of that paper.
Note that we can simplify the exposition given there slightly by skipping
the taking of the first quotient corresponding to ~ resp. ° by not
expanding the algebra M with all its elements as additional constants but
just expanding with elements of M not in HU. X
Again, we have a
Conjecture. For C satisfying the free equality axioms:

canonicity implies recursive completeness.

Example. Consider the simplest non-trivial case where FUNC={0,3}.

47

The Herbrand universe here is nothing but the set N with O and successor.
Let N+2Z denote the model of FEQ consisting of IN plus one copy of the
integers Z with successor.

This model is far from being resursively saturated (the countable
recursively saturated equivalent N+2Z Xxcw of IN must contain a countably
infinite number of copies of 2).

However, it is equationally saturated:

Lemma.

Every set of equations finitely satisfied in N can be satisfied in N+2Z.
Proof. The homomorphism:N+ZXw—MN+2Z which identifies all Z-copies
preserves satisfaction of equations. X
Remark. Clearly, this is the only case where we have equational
saturation (instead of mere recursive saturation) of a countable algebra:
as soon as there are two unary functions, or only one function with > 2
arguments, there is a notion of representation of number-theoretic
functions by elements in the sense of [Blair/Brown 199?] - cf. 7.4.1.4 -
and countable equationally saturated algebras no longer exist.

48

ACKNOWLEDGEMENTS.

I owe Marc Bezem, Johan van Benthem and Krzysztof Apt for listening to
me patiently, and providing me with unpublished manuscripts and
criticism on previous versions of this material.

References.

[Apt 19881
Apt, K.R.: Introduction to Logic Programming. (Revised and
Extended Version.) Report CS-R8826 C.W.I. Amsterdam. To appear
in: Handbook of Theoretical Computer Science (J.van
Leeuwen, ed.) North-Holland, Amsterdam.
[Barwise 1975]
Barwise, J.. Admissible Sets and Structures. Springer, Berlin etc.
[Bezem 19971
Bezem, M. : Strong Termination of Logic Programs. Preprint.
(A preliminary version is Bezem [1989].)
[Bezem 19891
Bezem, M. : Characterizing Termination of Logic Programs with Level
Mappings, in: Proceedings of the North American Conference on
Logic Programming, Cleveland, Ohio, pp. 69-80.
[Blair 19821
Blair, H.A. : The Recursion-Theoretic Complexity of Predicate Logic as
a Programming Language. Inf. and Control 54 pp.25-47.
[Blair 19861
Blair, H.A. : Decidability in the Herbrand Base, manuscript (presented
at the Workshop on Foundations of Deductive Databases and Logic
Programming, Washington D.C., August 1986).
[Blair/Brown 19971
Blair, H.A. and A.L. Brown Jr.: Definite Clause Programs are Canonical
(Over a Suitable Domain). Manuscript.
[Chang/Keisler 19901l
Chang, C.C., and H.J. Keisler : Model Theory. North-Holland,
Amsterdam etc.
[Jaffar/Stuckey 19861
Jaffar, J. and P.J. Stuckey: Canonical Logic Programs. J. of Logic
Programming 3 (1986) pp.143-155.

49
[Keisler 19601
Keisler, H.J. : Theory of models with generalized atomic formulas.
J.Symb.Logic 25 (1960), pp.1-26.
[L1oyd 19871
Lloyd, J.W. : Foundations of Logic programming, second,
extended edition. Springer, Berlin etc.
[Moschovakis 19741
Moschovakis, Y.N. : Elementary Induction on Abstract
Structures. North-Holland, Amsterdam etc. 1974.
[Shoenfield 19671
Shoenfield, J.R. : Mathematical Logic. Addison-Wesley, Reading,
Mass.

The ITLI Prepublication Series

1990

Logic, Semantics and Philosophy of Language
LP-90-01 Jaap van der Does }
LP-90-02 Jeroen Groenendijk, Martin Stokhof
LP-90-03 Renate Bartsch

LP-90-04 Aarne Ranta

LP-90-05 Patrick Blackburn

LP-90-06 Gennaro Chierchia

LP-90-07 Gennaro Chierchia

LP-90-08 Herman Hendriks

LP-90-09 Paul Dekker

LP-90-10 Theo M.V. Janssen
LP-90-11 Johan van Benthem
LP-90-12 Serge Laglerre
LP-90-13 Zisheng Huan
Mathematical Logic and Foundations
ML-90-01 Harold Schellinx
ML-90-02 Jaap van Oosten
ML-90-03 Yde Venema
ML-90-04 Maarten de Rijke
ML-90-05 Domenico Zambella
ML-90-06 Jaap van Oosten

ML-90-07 Maarten de Rijke
ML-90-08 Harold Schellmx |
ML-90-09 Dick de Jongh, Duccio Pianigiani
ML-90-10 Michiel van Lambalgen
Computation and Complexity Theory
CT-90-01 John Tromp, Peter van Emde Boas
CT-90-02 Sieger van Denneheuvel
Gerard R. Renardel de Lavalette
CT-90-03 Ricard Gavalda, Leen Torenvliet
Osamu Watanabe, José L. Balcazar
CT-90-04 Harry Buhrman, Leen Torenvliet

A Generalized Quantifier Logic for Naked Infinitives
Dynamic Montague Grammar .
Concept Formation and Concept Composition
Intuitionistic Categorial Grammar

Nominal Tense Logic .

The Variablity of Impersonal Subjects

Anaphora and Dynamic Logic

Flexible Montague Grammar

The Scope of Negation in Discourse,

towards a flexible dynamic Montague grammar
Models for Discourse Markers

General Dynamics .))
A Functional Partial Semantics for Intensional Logic
Logics for Belief Dependence

Isomorphisms and Non-Isomorphisms of Graph Models

A Semantical Proof of De Jongh's Theorem

Relational Games_)

Unary Interpretability Logic

Sequences with Simple Initial Segments

Extension of Lifschitz' Realizability to Higher Order Arithmetic,
and a Solution to a Problem of F. Richman

A Note on the Interpretability Logic of Finitely Axiomatized Theories
Some Syntactical Observations on Linear Logic

Solution of a Problem of David Guaspari

Randomness in Set Theory

Associative Storage Modification Machines
A Normal Form for PCSJ Expressions

Generalized Kolmogorov Complexity
in Relativized Separations
Bounded Reductions

CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint Expressions

CT-90-06 Michiel Smid, Peter van Emde Boas
CT-90-07 Kees Doets

Other Prepublications

X-90-01 A.S. Troelstra

X-90-02 Maarten de Rijke
X-90-03 L.D. Beklemishev

X-90-04 .

X-90-05 Valentin Shehtman

X-90-06 Valentin Goranko, Solomon Passy
X-90-07 V.Yu. Shavrukov

X-90-08 L.D. Beklemishev

X-90-09 V.Yu. Shavrukov
X-90-10 Sieger van Denneheuvel

Peter van Emde Boas
X-90-11 Alessandra Carbone
X-90-12 Maarten de Rijke
X-90-13 K.N. Ignatiev

X-90-14 L.A. Chagrova

Dynamic Data Structures on Multiple Storage Media, a Tutorial
Greatest Fixed Points of Logic Programs

Remarks on Intuitionism and the Philosophy of Mathematics,
Revised Version

Some Chapters on Interpretability Logic

On the Comple)utg of Arithmetical Interpretations of Modal Formulae
Annual Report 1989

Derived Sets in Euclidean Spaces and Modal Logic

Using the Universal Modality: Gains and Questions

The Lindenbaum Fixed Point Algebra is Undecidable

grhovablhty Logics for Natural Turing Progressions of Arithmetical

eories
On Rosser's Provability Predicate
An Overview of the Rule Language RL/1

Provable Fixed points in 1Ap+€;, revised version

Bi-Unary Interpretability Logic

Dzhaparidze's Polymodal Logic: Arithmetical Completeness,
Fixed Point Pro%erty, Craig's Property

Undecidable Problems in Correspondence Theory

