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Unique Normal Forms for Combinatory Logic with Parallel Conditional,
a case study in conditional rewriting

Abstract

In this note we present a simple proof of the unicity of normal forms property for Combinatory Logic
extended with 'Parallel Conditional', that is, with constants C, T and F (conditional, true, false) and extra
reduction rules CTxy — x, CFxy — y and Czxx — x. The proof makes use of a method involving con-
ditional term rewriting systems that has more general application. This method is described and some
other applications are discussed.
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Introduction

A Term Rewriting System (or any Abstract Reduction System for that matter) has the unicity of
normal forms property (UN), if every convertibility class contains at most one normal form;
equivalently, if convertible normal forms are identical. A TRS satisfying UN is said to have unique
normal forms.

In this note we present a simple proof of UN for Combinatory Logic (CL), consisting of the
well-known rules for I, K and S, extended with ‘Parallel Conditional’. That is, augmented with con-
stants C, T and F (conditional, true, false) and with the extra reduction rules CTxy — x, CFxy —y
and Czxx — x. This TRS, we call it CL-pc, was demonstrated to fail the Church-Rosser property
(CR) by Klop [1980]. So the usual way of establishing unicity of normal forms, via CR, is not
available here.

* Also: Free University , Department of Mathematics and Computer Science,
de Boelelaan 1081a. 1081 HV Amsterdam, The Netherlands



Our proof for the case of CL-pc is based on a more general method for proving UN for certain
term rewriting systems with repeated variables in the left-hand sides of the rules (‘non-leftlinear’
rules), that has originally been proposed by the present author and was first used in Klop [1980],
see also Klop & de Vrijer [1989]. This method proceeds by proving confluence for an associated
left-linear conditional term rewriting system, that originates from the original non-leftlinear one by—
what might be called—‘linearizing’ the rules. Apart from the new application to Combinatory Logic
with parallel conditional, the purpose of the present paper is to give this method a cogent presen-
tation. The method of conditional linearization is shown to yield very easily yet another interesting
result: all TRSs that are non-ambiguous after linearization have unique normal forms (Theorem 3.9).

Two features of the application of the method to Combinatory Logic plus parallel conditional may
be worth mentioning. First it involves the use of a Conditonal Term Rewriting System with negative
conditions, added in order to disambiguate the rewriting rules. Secondly, although the general
method is essentially proof-theoretic, our new application uses a lemma that depends on a model-
theoretic argument, using the graph model P.

The two applications of our method that were mentioned above, also follow from a theorem sta-
ted in Chew [1981], establishing the unicity of normal forms for a wider class of non-leftlinear
TRSs. Chew’s theorem will be briefly discussed; we do not go into details of the proof though, as
its complexity surpasses that of the proofs given here by some orders of magnitude.

1. Four non-leftlinear, non-confluent TRSs

In this note we will discuss four specific non-leftlinear extensions of Combinatory Logic: CL-sp,
CL-d, CL-e and CL-pc. We recall that CL has a signature consisting of one binary operator, applica-
tion, and three constants, S, K and I. As usual, the application operator is notationally suppressed,
its role being taken over by concatenation; we adopt the usual conventions of leaving away brackets,
with association to the left. The rewrite rules of CL are:

CL: Sxyz — xz(yz),
Kxy — x,
Ix - x

The system CL-sp of Combinatory Logic with surjective pairing was the first non-leftlinear term re-
writing system to be extensively studied, mostly in the related lambda calculus version (e.g. in Mann
[1973], Barendregt [1974], Klop [1980], de Vrijer [1987, 1989], Klop & de Vrijer [1989]). It adds
to CL the new constants D, Dy, and Dy, for pairing and its respective projections. The usual rewrite
rules are
CL-sp: CL +

D1(Dxy) = x,

Da(Dxy) =y,

D(D1x)(D2x) = X.

The systems CL-d and CL-e came up in the study of CL-sp; they were proposed by Hindley (see
Bshm [1975], Staples [1975]) for theoretical purposes. CL-d adds to CL one new constant D and
the non-leftlinear rewrite rule r-d:

CL-d: CL+
r-d: Dxx —X.



In CL-e yet another constant, E, is added. The rule r-e can be seen as test for syntactic identity.

CL-e: CL+
re:. Dxx—E.

Then finally, the system we are primarily concerned with here augments CL with constants C, T and
F, for conditional, true and false respectively. The rewrite rule r-pc makes the conditional parallel.

CL-pc: CL+
r-t: CTxy = x,
r-f: CEFxy —vy,
r-pc: Czxx = X.

Each of these four non-leftlinear rewriting systems lacks the Church-Rosser property (Klop [1980]).
But nevertheless, each can be shown to have unique normal forms. Essentially in each of these cases
the method of linearizing the rules by adding conditions, described in section 3 below, can be used.
Still, the case of CL-sp is very complicated (see Klop & de Vrijer [1989]) and so is the existing
proof of unicity of normal forms for CL-pc via Chew’s theorem. For the latter case a much simpler
proof is presented in this note. The cases of CL-d and CL-¢ are relatively simple and are included
here mainly for expository purposes.

2. Conditional Term Rewriting Systems

A general framework of rewriting that takes the possibility into account that rewrite rules may be
subjected to conditions, has probably first been given in O’Donnell [1977]. Then of course, condi-
tional rewriting has important roots in Universal Algebra and in the field of Algebraic Specifications.

Maybe less well-known, conditional rewriting has yet another origin. Out of the algebraic con-
text, rewriting rules with conditions have been used as a proof-theoretic tool for establishing syntac-
tic properties of unconditional rewriting systems and A-calculus extensions in Klop [1980], de Vrijer
[1987, 1989] and Klop & de Vrijer [1989]. It is the latter kind of use of conditional rewriting that
we are concermned with in this note.

Algebraically, conditional rewrite rules can be viewed as implementations of equational specifica-
tions containing positive conditional equations:

t1=81 A .. Aty=8, = [p=Sp ()

If n = 0, the equation is unconditional. Conforming with the notation often used in ‘equational logic
programming’, one mostly writes instead of (+):

tg=Sp & 11 =81, ., In = 8p-

Then the transition from conditional equations to conditional rewrite rules can be made by just ori-
enting the equation in the lefthand side. This gives rise to what in Dershowitz, Okada & Sivakumar
[1988] has been named semi-equational systems. Dershowitz, Okada & Sivakumar list a number of
alternative types of CTRSs, thereby extending the classification given in Bergstra & Klop [1986];
the distinctions derive from different choices that can be made in the implementation of the condi-
tions. Apart from the semi-equational systems, we will here make use of one other type of CTRS; it
does not correspond to any of the special categories and hence it falls in the inclusive category of
generalized systems. In generalized systems there is no restriction at all on the character or the for-
mat of the conditions; they can be just any predicate.



So we consider the following two types of CTRSs:

(i)  semi-equational systems

tg—> Sp & t] =81, sty = Sps
(i) generalized systems

tp— sp <= Pp, ..., Py

Note that in case (i) the definition of — is circular since it depends on conditions involving a ref-
erence to — (via the conversion relation); but the rewrite rules can be taken as constituting a positive
inductive definition of —, since the conditions are positive. In the case of generalized CTRSs one
has to take care in formulating conditions involving —, in order to ensure that — is well-defined.

2.1. NOTE. Incorporating negative conditions containing — in a generalized CTRS can be dangerous. Consider the
example of CL with constants C and A , and the generalized conditional rule:

Cx—> A & notx —» A,

The question is now whether the conditional reduction relation is well-defined. The negative condition 'not x —» A'is
itself in terms of — and looks circular. Since the condition is negative, the clauses for — can not, without more, be
taken as an inductive definition. Indeed, by a fixed point construction, there is a term Z such that Z —» CZ. Does Z —»
A hold? If not, then yes by the conditional rule. If yes, then by which reduction steps?

As a matter of fact, a simpler example already illustrates the point. Consider the generalized CTRS consisting of
the single conditional rewrite rule:

a—>b & azb.
Does a — b hold?
2.2. NOTE. A non-left linear rule can be seen as a special kind of generalized conditional rewrite rule that is leftlinear.
Consider as an illustration the non-leftlinear rule r-d: Dxx — x; in the format of conditional rewriting it becomes:

r-d: Dxy - x & x=y.

Recall that an orthogonal TRS is one that is unambiguous and left-linear.

2.3. DEFINITION. (i) Let R be a CTRS. Then Ry, the unconditional version of R, is the TRS which
arises from R by deleting all conditions.
(i) The CTRS Ris called (non-)leftlinear if Ry, is so; likewise for orthogonal.

2.4. DEFINITION. (i) Let R be a CTRS with rewrite relation —, and let P be an n-ary predicate on the
set of terms of R. Then P is stable with respect to — if for all terms t;, ;' such that t; — t;' =1,

N o)

P(t]s o ty) = Pty oo 1)

(i) LetR bea CTRS with rewrite relation —. Then R is stable if all conditions (appearing in some
conditional rewrite rule of R), viewed as predicates with the variables ranging over R-terms, are
stable with respect to —.

2.5. THEOREM (O’Donnell [1977]).
Let R be a generalized, orthogonal CTRS which is stable. Then R is confluent.

The proof is a rather straightforward generalization of the confluence proof for orthogonal TRSs.
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Obviously, the convertibility conditions t; = s; (i = 1, ..., n) in a rewrite rule of a semi-equational
CTRS are stable. So the following theorem from Bergstra & Klop [1986] can in fact be obtained as
a corollary of Theorem 2.5:

2.6. THEOREM. Orthogonal semi-equational CTRSs are confluent.

2.7. EXAMPLE. Let CL-e* be the orthogonal, semi-equational CTRS obtained by extending Combinatory Logic
with a ‘test for convertibility’ (compare CL-e defined in section 1, with test for syntactic identity):

Sxyz — xz(yz)

Kxy - x
Ix—>x
r-e*: Dxy - E & x=y.
Then R is confluent.

3. Application of CTRSs to prove unicity of normal forms.

In this section we explain the method for proving the property UN for certain non-leftlinear TRSs as
a proof-theoretic application of conditional rewriting in the field of term rewriting itself. The method
is based on the following simple observation concerning Abstract Reduction Systems (ARSs); recall
that an ARS is just any set with a binary relation —, considered as a reduction relation.

3.1. PROPOSITION. Let Rg and Ry be two ARSs with the same set of objects, and with reduction
relations —, —1 and convertibility relations =(, =1 respectively. Let NF; be the set of normal
forms of R; (i=0, 1). Then Ry is UN if each of the following conditions hold.:

@A) —q extends —;
@) RyisCR;
(iii) NF; contains NF.

PROOF. Easy. a

3.2. REMARK. The conditons (i) and (ii) could still be weakened to:

@) =1 extends =g,

(i)’ Ry is UN.

In the applications that concern us here, however, we use 3.1 as it is stated. In particular the uniqueness of normal
forms property of Ry is always obtained as a consequence of confluence.

The interest of Proposition 3.1 derives from its applications, in particular in the method of condition-
al linearization for proving UN, that is the topic of this paper. By way of illustration, we can already
apply it to a relatively simple, but typical example. We consider the non-confluent system CL-e =
CL + {r-e: Dxx — E} from section 1. In order to be able to use Proposition 3.1 for establishing UN
for CL-¢e, we ‘break’ the non-leftlinearity constraint in the rule r-e by replacing it with a conditional
rule:

r-e*: Dxy - E & x=y.

Thus we get the system CL-e* of Example 2.7. Remark that the rule r-e* can be seen as resulting
from r-e, written in the conditional format of Note 2.2, by relaxing the conditionx =y tox =y.



3.3. PROPOSITION. The TRS CL-¢ has unique normal forms.

PROOF. We want to apply Proposition 3.1 with Rg = CL-e and R1 = CL-¢*; so we must check the
clauses (i), (ii) and (iii).

(i) Obviously —cL.e is contained in —cL-e*, since, as we just observed, the rule r-e: Dxx — E
can be seen as a restriction of the more liberal conditional rule r-e*: Dxy - E < x=y.(Asa
matter of fact, one easily verifies that the convertibility relations of CL-e and CL-e* coincide.)

(ii) The semi-equational CTRS CL-e* is orthogonal; hence, by Theorem 2.6, it is confluent.

(iii) It remains to be checked that each CL-e-normal form t is also a CL-e*-normal form. Consider
for a proof by contradiction a term t which is a CL-e-normal form, but not a CL-e*-normal form.
Moreover, take t to be of minimal length such that these properties hold. Then t must contain a sub-
term DXY, such that X 2 Y and X =cp ..+ Y. But then, by the minimality of t, the CL-e-normal
forms X and Y must be CL-e*-normal forms as well, convertible but distinct, contradicting the
Church-Rosser property of CL-e*. 0O

In order to make the reasoning of Propositon 3.3 more generally applicable, we introduce the
concept of ‘linearizing’.

3.4. DEFINITION. (i) If ris a rewrite rule t — s, we say that r' = t' — s'is a left-linear version of r
if there is a substitution 6: VAR — VAR such that r'C = r and r' is left-linear.

(i) Ifr=t—> sisarewrite rule,and r' =t — s'is a left-linear version of r, such that r = 1'0, then
the conditionalized left-linear version or linearization of r (associated to r') is the conditional rewrite
rule:

t'—>s < /\{Xi=Xj|i>j,Xi6= jo,Xi,XjE t'}.

(In case r is already left-linear, it will coincide with its left-linear version r' and with the associated conditional rule.)

3.5. EXAMPLE. Czxy — y is a left-linear version of the non-leftlinear rule Czxx — x, since using
the substitution ¢ with o(z) = z, 6(x) = X, 6(y) = X we have
(Czxy — y)% = (Czxy)® — yO = Czxx = X.
The associated conditional rule is
Czxy—>y & x=y.
Another left-linear version of Czxx — x is Czxy — x, with the associated conditional rule
Czxy—>x & Xx=Yy.

These are the only linearizations, because we will identify rules that originate from each other by a
1-1 renaming of variables as usual.

3.6. DEFINITION. (Linearization)
(@) IfRisaTRS, then a linearization of R is a semi-equational CTRS that consists of lineariza-
tions of the rules of R, for each rule of R at least one.

So a linearization R' of R can be obtained by the following two steps:

- Step 1. Choose for every rule r € R one or more of its left-linear versions; say the (left-linear) rules thus
obtained are rq, ..., Ip.

- Step 2. Then take R' to be the CTRS consisting of the conditional rewrite rules r{*, ..., rp* associated to
T1s wees Ih-



Note that by these two steps the left-linear rules of R are left untouched. In general there will be several lineariza-
tions of R, according to the choices that can be made in step 1; but in case R is already left-linear, there is only
one, coinciding with R.
() IfRisa TRS, then RL, the full linearization of R, is defined as the linearization of R that is
obtained by including for each rule r € R all its conditionalized left-linear versions.

EXAMPLE. The system CL-e* is the result of linearizing the system CL-e.
As a matter of fact, CL-e* = CL-eL.

3.7. LEMMA. Let R' be a linearization of R. Then:
(1)  The one-step reduction relation of R' extends that of R: —R < —R'
(i) The conversion relations of R and of R' are the same: =R = =R.

PROOF. (i) For each rule r of R at least one of its linearizations r* is included in R'. In case r itself
is left-linear, the rule r coincides with r*; if r is not left-linear, r is stricter than its linearization r*.

(i) The inclusion=Rr < =g holds because of (i). The inclusion =g < =g follows by induction on
conversion in R'. It suffices to check that the rules of R' respect convertibility in R, under the hypo-
thesis that the conditons already hold with respect to R. O

3.8. THEOREM. If a linearization of a term rewriting system R is confluent, then R has unique
normal forms.

PROOF. The proof runs parallel to that of Proposition 3.2; it is only a little bit more abstract. So now
it sufices to check (i), (ii) and (iii) of Proposition 3.1 for R and a linearization R’, that is:

(@)  —pg extends —p;
(i) R'is Church-Rosser;
(ijj.) NFR' Contains NFR.

(i) follows from Lemma 3.7.

(ii) holds by assumption.

As to (iii), we prove by induction on X the implication X € NFR = X € NFg.. Assume X €
NFR. Then X can only be not an R'-normal form, if it contains a redex Y that is an instance of a
linearization r* of some non-leftlinear rule r = t — s of R. That is, X = C[Y] and for a leftlinear
version ' = t' — s' of r (such that r = r'0 ), we have Y =t'T; moreover the conditions of r* must be
satisfied, amounting to the implication x;® =x;© => x;* =x{%, for all x;, xj € t". Since the x;*’s are
proper subterms of X, and hence R-normal forms, they are by the induction hypothesis also R'-
normal forms. Hence, since R' has unique normal forms: x;® =x;° = x;* = x;*. But then Y would

be also an R-redex, contradicting the assumption that X € NFr. O
REMARK. Like Proposition 3.1, also this theorem may be strengthened by requiring only UN for the linearization.

Now we have obtained a general method to prove unicity of normal forms for non-leftlinear TRSs:
try to prove CR for one of its linearizations in order to be able to apply Theorem 3.8. Whether the
method will work in a particular case, and how difficult it is, depends on the CR problem that
ensues.

We first treat a simple but interesting example. Call a TRS strongly non-ambiguous if after repla-
cing each non-leftlinear reduction rule by a left-linear version the resulting TRS is non-ambiguous.
The following general result is an immediate consequence of Theorem 3.8.



3.9. THEOREM. Any strongly non-ambiguous TRS has unique normal forms.

PROOF. Let R be a strongly non-ambiguous TRS. Consider a linearization R' of R consisiting of
exactly one conditionalized left-linear version for each rule of R. Then R’ will be an orthogonal
semi-equational CTRS. Hence the result follows by Theorems 3.8 and 2.6. a

Two examples of non-leftlinear TRSs to which Theorem 3.9 can be applied to yield UN are the sys-
tems CL-d and CL-e from section 2. An example of a non-ambiguous but not strongly non-ambigu-
ous TRS that does not have unique normal forms is the following.

3.10. EXAMPLE (Huet [1980]). R = {F(x, x) = A, F(x, G(x)) = B, C = G(C)}. R is non-ambiguous; there are no
critical pairs since x and G(x) cannot be unified. However, R is not strongly non-ambiguous, since {F(x,y) = A, F(x,
G(y)) — B} has a critical pair. The term F(C, C) has the two distinct normal forms A and B.

4. The case of Combinatory Logic plus Parallel Conditional

In this section we prove CR for the full linearization CL-pcl- of the ambiguous and non-leftlinear
system CL-pc, Combinatory Logic with parallel conditional. Then the uniqueness of normal forms
property for CL-pc follows by an application of Theorem 3.8. First we sum up the rules of the
linearization CL-pcL.

CL-pcl: CL+
-t CTxy — X,
r-f CFxy — vy,
r-pcl: Czxy > X & x =Y,
r-pc2: Czxy >y & x=y.

Solving the CR problem may at first look not very promising, because of the vicious cases of over-
lap between the pairs of rules r-t / r-pc2, r-f / r-pc! and r-pc! / r-pc2. Now the idea is to add extra
conditions in order to remove these cases of vicious overlap. This will involve also the use of neg-
ative conditions, however, and hence there is the danger of the pitfall indicated in Note 2.1.

To avoid this pitfall we ‘fix’ the conditions, making them refer to =cr, pc, convertibility in CL-pc.
Thereby the conditions have a determinate meaning, independent of the inductive definition of con-
version (=cpcl-) they are part of. What we get is not a semi-equational, but a generalized CTRS; it
will be called CL-pcl-.

CL-pcl—: CL+
-t CTxy — X,
r-f: CFxy — vy,
r-pcl—: Czxy = X & X=cppc¥> DOt Z=cLpc F,
r-pc2— Czxy =2y < X=cLpc¥> Z=CL-pc F-

4.1. LEMMA. (i) The convertibility relations in CL-pc, in CL-pcL, and in CL-pcl— coincide.

(i) —cL-pel- S —>CL-pl

PROOF. (i) For conversion in CL-pc and CL-pcl we have Lemma 3.7. We show that =cp pcL- =
=cL-pc- The inclusion =c,pc  =cL-pcl- holds since each instance of the rule r-pc of CL-pc is also
an instance of either r-pc! or r-pc2. So it suffices to check that the rules r-pc! and r-pc? of CL-pcl—
respect convertibility in CL-pc. This is immediate by the (positive) conditions X =¢,pc V-



(i) By (i), the conditions X =c . y of the rules r-pcl- and r-pc2- amount to the same as the condi-
tions on r-pc!+2. Then the extra conditions on r-pcl+2 can only make the relation —>CL-pcl- stricter
than —CLpcl- O

Now in order to prove CR for CL-pcl~ we need to know that T #cL-pc F; this will guarantee that
there is indeed no overlap in CL-pcL— between the rules r-t and r-pc?, etc. A model construction
within the Graph Model P for CL can be used for this purpose.
The Graph Model P is surveyed e.g. in Barendregt [1981], Chapter 18; we assume the follow-

ing preliminaries.

- The function (, ): ® X ® — ®is a 1-1 coding of pairs of natural numbers;

- ¢(0), e(1), e(2), ... is a list of all finite subsets of w, with e(0) the empty set;

- the function s: ® — ® is such that e(s(n)) = {n}, for all n € o (s stands for ‘singleton’). 0O

4.2. LEMMA. T #cp pc F

PROOF. The following definitions of T, F and C within P can be given, satisfying the equations of
CL-pc:

T={1},

F= {0},

C = {(0,(s(),(s(m),m)) In e ®} U {(s(1),(s(),(0,n))) Ine ®} U {(s(0),(0,(s(m),n))) I n € ©}.
The model thus obtained satisfies =cL-pc, butnot T = F. O

4.3. PROPOSITION. The system CL-pcl—is Church-Rosser.

PROOF. By Lemma 4.1 it follows that the conditions of CL-pcL— are stable. Moreover between the
rules of CL-pcl— there are no harmful cases of overlap, due to the negative condition and to Lemma
4.2. Then proving CR is a routine matter (compare Theorems 2.5, 2.6). O

The confluence of CL-pcl can now be concluded from 4.1 and 4.3 by using the following general
principle for ARSs.

4.4. PROPOSITION. Let R and R' be ARSs such that the following three conditions are satisfied:
(i) R'is confluent
(@) —-RrR < —R
(i) =r < =R’
Then R is confluent.
PROOF. Assume t =g s. Then by clause (iii) also t =g' s. Hence by (i), the terms t and s must have a
common reduct in R'. But then, again by (iii), t and s have the same common reductinR. 0.

4.5. THEOREM. (i) The system CL-pcl is Church-Rosser.
(ii) The system CL-pc has unique normal forms.

PROOF. (i) The Curch-Rosser property for CL-pcL follows by Proposition 4.4 from 4.3 and 4.1.
(ii) Since we have confluence for the linearization CL-pcl, Theorem 3.8 can be applied. O



5. Chew’s Theorem

We will now give a brief account of a theorem stated in Chew [1981], giving sufficient conditions
for a TRS to have unique normal forms. In the light of the present paper, Chew’s theorem can be
viewed as a generalization of Theorem 3.9: the condition of strong non-ambiguity is relaxed to allow
overlap at the root between the lefthand sides of rules, but only when an extra requirement is met,
called compatibility (see Definition 5.1). The paradigmatic example of a non-leftlinear TRS that is
not strongly non-ambiguous, but still within the scope of Chew’s theorem, is the system CL-pc.

So Chew’s conditions imply both our theorems 3.9 and 4.5(ii). The proof in Chew [1981], how-
ever is far more complicated than the ones given here. For the relation between our method in-
volving the use of an associated CTRS and Chew’s approach see the remarks below.

5.1. DEFINITION (Compatibility)
(@) Letr = t—> sbe arewrite rule. Then the set of all left-linear versions of r,

{t = s1', ' 8"}

is a cluster of rewrite rules. (Note that the left-hand sides of the rules in the cluster corresponding to
r, are taken the same. In Chew [1981] this cluster is presented as t' — {s;, ..., $,'}.)
(i) Now letr;:t; — s and rp: ty — s; be two different rewrite rules of the TRS R. Let

{tll - Sli' li=1, .., Il} and
{t) = SZj' lj=1, .., m}

be the two clusters corresponding to ry and r,, respectively. We say that R has compatible rewrite
rules (or that R is compatible) if for all 1y, r, the following holds:

(a) t;' cannot be unified with a proper subterm of itself. Likewise for t,".

(b) t;' cannot be unified with a proper subterm of t,'. Likewise with 1, 2 interchanged.

(¢) ifty', tp' can be unified (at the root), via mgu o, then the two clusters must have a

common G-instance:

{t1" > s1{)°li= 1,...n} N {(ty = Szj')(s lj=1,..m} # Q.

5.2. NOTE. The terminology used here deviates slightly from that in Chew [1981]. There the notion
strongly non-overlapping allows possible overlap at the root; the term compatible only concerns con-
dition (ii)(c) of Definition 5.1.

5.3. THEOREM (Chew [1981]). Let R be a compatible TRS, then R is UN.

Like the method we described in section 3, the proof of Theorem 5.3 given in Chew [1981] does re-
ly on Proposition 3.1. Also analogously, the extended rewriting relation (R1) used by Chew is the
result of some procedure of linearizing the non-leftlinear rules. But Chew does not make use of the
notion of conditional rewriting, and accordingly his linearizations are slightly different from the ones
obtained via an associated semi-equational CTRS. Then the Church-Rosser proof by Chew for the
linearizations he obtains from compatible systems is by an ingenious and complex syntactic analysis.

It seems not unlikely that Chew’s approach can be transferred to our CTRS framework. If R is a
TRS and RL its full linearization, we can group the conditional rules of RL also in clusters, accor-
ding to how they originated from rules in R. Thus for example for CL-pc, we have the partition in
clusters (indicated by boxes) in Figure 5.1.
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Sxyz — xz(yz)

ny_)x

x - x

CTxy — X

CExy >y

Czxy— X & Xx=y

Czxy 5y & x=y

Figure 5.1

Now it should be proved that the full linearizations of compatible TRSs satisfy CR. Then it would
follow by Theorem 3.8 that all compatible TRSs are UN.

5.4. CONJECTURE. Let R be a compatible TRS and let the semi-equational CTRS RL be the full
linearization of R. Then RL is confluent. (Hence R is UN.)

6. Remarks and further questions

6.1. As said before, the proof of Theorem 5.3 is by an ingenious but also very complicated syntactic
analysis. As a matter of fact, we have not yet succeeded in fully reconstructing all details of the argu-
ment from the rather sketchy presentation in Chew [1981].

6.2. Combinatory Logic with parallel conditional is presented here and in Chew [1981] as the para-
digmatic example of a compatible, not strongly non-ambiguous TRS. We do not know yet another
interesting example. It would be interesting to know if such examples exist. A related question is
whether it would be possible to broaden the scope of Theorem 5.3 by extending Chew’s syntactic
analysis beyond the class of compatible TRSs.

6.3. There do exist non-leftlinear systems known to have unique normal forms that are not com-
patible and are therefore outside the scope of Chew’s theorem. An example of such a TRS is CL-sp.
It is covered in Klop & de Vrijer [1989].

6.4. It is at present an open question whether another linearization of CL-pc, the system CL-pcl, is
confluent. This question was suggested in a personal communication by Toyama.

CL-pcl: CL+
CTxy — x,
CFxy =y,
Czxy &> x&=x=Y.

Acknowledgments. I would like to thank Yoshihito Toyama for some interesting communications via e-mail on
the subject of this paper, and Jan Willem Klop, Aart Middeldorp and Vincent van Oostrom for their support.
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