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Abstract

The utility of a Kolmogorov complexity method in combinatorial
theory is demonstrated by several examples.

1 Introduction

Probabilistic arguments in combinatorial theory, as used by Erdos and Spencer
[4], are usually aimed at establishing the existence of an object, in a non-
constructive sense. It is assertained that a certain member of a class has
a certain property, without actually exhibiting that object. Usually, the
method proceeds by exhibiting a random process which produces the object
with positive probability. Alternatively, a quantitative property is deter-
mined from a bound on its average in a probabilistic situation. The way to
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prove such ‘existential’ propositions often uses averages. We may call this
“first-moment’ methods. ‘Second-moment’ methods, using means and vari-
ance of random variables to establish combinatorial results have been used
by Moser [14]. Pippenger [15], has used related notions like ‘entropy’, ‘self-
information’, and ‘mutual information’, from information theory, [17]. He
gives two examples of ‘universal propositions’, such as a lower bound on the
minimum of a quantity, or an upper bound on the maximum of a quantity.

In [8], Kolmogorov established a notion of complexity (self-information)
of finite objects which is essentially finitary and combinatorial. Says Kol-
mogorov [9]: “The real substance of the entropy formula [based on prob-
abilistic assumptions about independent random variables] ... holds under
incomparably weaker and purely combinatorial assumptions... Information
theory must precede probability theory, and not be based on it. By the very
essence of this discipline, the foundations of information theory must have a
finite combinatorial character.” It is the aim of this paper to demonstrate
how to replace probability based arguments in combinatorics by complexity
based arguments, which of themselves are essentially combinatorial in nature
without probabilistic assumptions at all.

One can often convert Kolmogorov arguments (or probabilistic arguments
for that matter) into counting arguments. Our intention is pragmatic: we
aim for arguments which are easy to use in the sense that they supply rigorous
analogs for our intuitive reasoning why something should be the case, rather
than have to resort to nonintuitive meanderings along seemingly unrelated
mathematical byways. It is always a matter of using regularity in an object,
imposed by a property under investigation and quantified in an assumption
to be contradicted, to compress the object’s description to below its minimal
value.

We treat two examples from Erdds and Spencer’s book, and the two
examples in Pippenger’s article. It is only important to us to show that the
application of Kolmogorov complexity in combinatorics is not restricted to
trivialities. To make this paper self-contained we briefly review notions and
properties needed in the sequel.



2 Kolmogorov Complexity

We identify the natural numbers A and the finite binary sequences as

(0,¢),(1,0),(2,1),(3,00), (4,01), ...,

where € is the empty sequence. The length I(z) of a natural number z is
the number of bits in the corresponding binary sequence, I(¢) = 0. If A
is a set, then |A| denotes the cardinality of A. Let < . > N xN — N
denote a standard computable bijective pairing function of which the inverse
is computable too. Define < z,y,z > inductively by < z,<y,z >>.

We need some notions from the theory of algorithms, see [16]. Let
&1, 2, ... be a standard enumeration of the partial recursive functions. The
(Kolmogorov) complezity of z € N, given y € N, is defined as

K(z|y) = min{l(< n,z >) : $a(< 9,2 >) = z}.

This means that K(z|y) is the minimal number of bits in a description from
which z can be effectively reconstructed, given y. The unconditional com-
plexity is defined as K(z) = K(z|e). Alternatively, fix a universal partial
recursive function ¢y, such that ¢o(< y,< m,z >) = ¢a(< y,z >). An
equivalent definition, often used, is:

K(zly) = min{l(2) : go(< y,2 >) = z}.

A survey is [12]. We need the following properties. Throughout ‘log’
denotes the binary logarithm. We often use O(f(n)) = —O(f(n)), so that
O(f(n)) may denote a negative quantity. For each z,y € N we have

K(aly) < U(z) + O(1). (1)

For each y € N there is an z such that K(z|y) > [l(z). In particular,
we can set y = €. Such z’s may be called random, since they are without
regularities which can be used to compress their description: the shortest
effective description of z is z itself. In general, for each n and y, there are at
least 2" — 2"¢ + 1 distinct z’s of length n with

K(zly) > n - (2)




Tt is not too difficult to show that, if K(z) > n + O(logn) (n = l(z)), then
the number of zeros it contains is, [13],

n/2 + O(v/n). (3)

(If = contains less or more zeros, then it can be described as an element of
an ensemble which is significantly smaller than 2".)

Denote K(< z,y >) by K(=,y). It can be proved, [9, 12], that, up to a
an additive term O(log min{K(z), K(y)}),

K(z,y) = K(z) + K(y|z) = K(y) + K(=|y) (4)

This identity is sometimes referred to as ‘symmetry of information’. The
logarithmic error term is caused by the fact that we need to encode a de-
limitor to separate two concatenated binary sequences (description of z and
description of y given z) in the original pair. We also denote K(z| < y,z >)
by K(z|y,z).

3 Tournaments

The first example proved by Erdés and Spencer in [4] by the probabilistic
method, Theorem 1, is originally due to Erdés and Moser [3]. (Rather, a
version with |2logn| instead of 2[logn].) A tournament T is a complete
directed graph. That is, for each pair of nodes ¢ and j in T, exactly one of
edges (i,5), (j,%) is in the graph. The nodes of a tournament can be viewed
as players in a game tournament. If (7,7) is in T we say player j dominates
player 1. We call T transitive if (1,7), (7, k) in T implies (4, k) in T'.

Let T be the set of all tournaments on N = {1,...,n}. Given a tour-
nament T € T, fix a standard coding E : T — N, such that {(E(T)) =
n(n — 1)/2 bits, one bit for each edge. The bit for edge (4,7) is set to 1 if
1 < j and 0 otherwise.

Theorem 1 If v(n) ts the largest integer such that every tournament on N
contains a transitive subtournament on v(n) nodes, then v(n) < 1+ 2[log n|
from some n onwards.

Proof. By Equation 2, fix T € T' such that
K(E(T)In) 2 (E(T)). (5)
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Let S be the transitive subtournament of T' on v(n) nodes. We compress
E(T), to an encoding E'(T), as follows.

1. Prefix the list of nodes in § in lexicographical order of dominance to
E(T), each node using [log n] bits, adding v(n)[logn] bits.

2. Delete all redundant bits from the E(T') part, representing the edges
between nodes in S, saving v(n)(v(n) — 1)/2 bits.

Then,

(B(T) = (E@) + X (o(n) — 2flog ] ~1). (6

Given n, an O(1) bit description of this discussion and E'(T) suffice to re-
construct E(T). (We can find v(n) by exhaustive search.) Therefore,

K(E(T)ln) < U(E'(T)) + O(1)- - (M

For large enough n, Equations 5, 6, and 7 can only be satisfied with v(n) <
1+ 2[logn]. O

The general idea used is the following. * If each tournament contains a
large transitive subtournament, then also a T of maximal complexity contains
one. But the regularity induced by the transitive subtournament can be used
to compress the description of T' to below its complexity, yielding the required
contradiction. Use the method on the following.

Ezercise. Let w(n) be the largest integer so that for each tournament T
on N there exist disjoint sets A and B in N of cardinality w(n) such that
A x B CT. Prove w(n) < 2[log n].

The second example is Theorem 9.1 in [4], originally due to Erdos [2]. A
tournament T on N has property S(k) if for every set A of k nodes (players)
there is a node (player) in N — A which dominates (beats) all nodes in A.
Let s(k) be the minimum number of nodes (players) in a tournament with
property S(k). An upper bound on s(k) has applications in constructing
time stamp systems in distributed computing, [11].

Theorem 2 s(k) < 2*k*(log, 2 + o(1)).

1For each n, define T;, as the Turing machine that on input E'(T') outputs E(T'). Define
complexity Kr, relative to T, and repeat the given argument, dispensing with the O(1)
error term in Equation 7. This proves Theorem 1 for each n.

5



Proof. Assume the notation of the previous theorem. By Equation 2,
choose T such that

K(E(T)[n, k) > I(E(T)) = n{n — 1)/2. @)
Assume that S(k) is false for
n = 2°k*(log, 2 + o(1)). (9)

Fix a set A of k nodes with no common dominator in NV — A. Describe T as
follows by a compressed effective encoding E'(T).

1. List the nodes in A first, using [log n]| bits each;

2. Secondly, list E(T) with the bits representing edges between N — A
and A deleted (saving (n — k)k bits).

3. Thirdly, code the edges between N — A and A. From eachi € N — A,
there are 2 — 1 possible ways of directing edges to A, in total t =
(2% — 1)"* possibilities. To encode the list of edges [log t] bits suffice.

Given n, one can reconstruct E(T') from this discussion (O(1) bits), and
E'(T). Hence,
K(B(T)/n,k) < ((E(T)) + O(1). (10)

Calculation shows that, for large enough n, Equation 9 is consistent with:
(E(T)) > UE'(T))+k50<e<1. (11)

Equations 8, 9, 10, 11, yield the desired contradiction. Therefore, s(k) < n.
O

4 The Coin-Weighing Problem

A family D = {Ds,...,D;} of subsets of N = {1,...,n} is called a distin-
guishing family for N if for any two distinct subsets M and M’ of N there
exists an 4 (1 <4 < j) such that |D;\ M| is different from |D;NM’|. Let f(n)



denote the minimum of |D| over all distinguishing families for N. To deter-
mine f(n) is commonly known as the coin-wetghing problem. It is known,

that log 1
fln) = ( + 0B8Ry

Erdés and Rényi, [5], Moser, [14], and Pippenger, [15], have used various
methods in combinatorics to show the lower bound in the theorem below.
Pippenger used an information theoretic argument. We will supply a proof
using Kolmogorov complexity. Fix a standard encoding E : 2V — N, such
that E(A), A C N, is n bits, one bit for each node in V. The bit for node 7 is
set to 1 if node i is in A, and 0 otherwise. Define E(D) = (E(Dy),..., E(D;)).
To simplify notation, in the proof below we identify A with E(A), where
ACNor A=D.

Theorem 3

logn

1
logn

f(r) > {1+ O(——))-

Proof. Use the notation above. By Equations 1, 2, choose M such that

log n

K(M|D) > n. (12)

Let m; = |D; N M|. Since D is a distinguishing family for N: given D, the
values my, ..., m; determine M. Hence,

K(M|\D) < K(m4,...,m;|D) + O(1). (13)

Let d; = |D;|, and assume d; > /n. By a standard argument (detailed
after the proof), Equation 12 implies that the randomness deficiency k =
d; — K(M N D;|D;) is O(log d;). Therefore, by Equation 3, m; is within range
4 1 O(+/d;). Since m; can be described by its discrepancy with d;/2, and
d; < m,

1
K(m;|D;) < §logn+ 0(1),1 <i<j.

Pad each description of an m; to a block of length 1logn + O(1). Then,

K(ma,...,m;|D) < 2( log n + O(1)). (14)

=1
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By Equations 12, 13, and 14, j > n/(3logn + O(1)), which is equivalelit to
the theorem. O

Standard Argument. A useful property states that if an object has maxi-
mal complexity, then the complexity of an easily describable part cannot be
too far below maximal. In the particular case involved in the proof above,
the standard argument runs as follows. The randomness deficiency k cannot
be large, since we can reconstruct M from:

1. A description of this discussion, and delimitors between the separate
description items, in O(log n) bits.

2. The literal description of E(M) leaving out the bits corresponding to
elements in D;, saving d; bits.

3. The assumed short program to reconstruct the bits in E(M) corre-
sponding to elements in D;, adding d; — k bits.

4. A description of D and <.

Then, K(M|D,i) < n — k + O(logn), which by Equation 12 implies that
k < K(i) + O(log n). Since i < 7, and j < n (the set of singleton sets in IV
is a distinguishing family), we find k£ = O(log n).

5 Covering Families

Let n and N be as before, and let K(N) denote the set of all unordered
pairs of elements from N (the complete n-graph). If A and B are disjoint
subsets of N, then K(A, B) denotes the set of all unordered pairs {u,v},
u € A and v € B (complete bipartite graph on A and B). A family C =
(K(A1, B1),...,K(A;, B;))is called a covering family of K(N), if for any pair
{u,v} € K(N), there exists an ¢ (1 < ¢ < j) such that {u,v} € K(A;, B;).
For each ¢ (1 <17 < j), set C; = A; U B;, and ¢; = |C;|. Let g(n) denote the
minimum of
> G

1<i<;

over all covering families for K (V). The problem of determining g(n) arises
in the study of networks of contacts realizing a certain symmetric Boolean
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function, and the following is known, [7]:
nlogn < g(n) < nlogn + (1 — log e + log log e)n.

The lower bound on g(n) was also proven by Pippenger, [15], using an infor-
mation theoretic argument. There the reader can find additional references
to the source of the problem and its solutions. We shall give a short Kol-
mogorov complexity proof for the following.

Theorem 4

9(n) > logn + O(log log n).
n
Proof. Use the notation above. For each z € N, thereisay =y,...y;,
and a binary sequence z of an exactly sufficient number of bits for the con-

struction below, with K(z|n,z) > I(2).
1. If z € A;, then y; = 0.
2. If z € B;, then y; = 1.
3. If z € N — C;, then y; = next unused bit of z.

Denote y and z associated with z by y® and 2*. Given n, we can reconstruct
C as the lexicographically least minimal covering family. Therefore, we can
reconstruct z from y* and n, by exhaustive matching of all elements in NV
with y® under C. Namely, suppose distinct z and 2’ match. By the cov-
ering property, {z,2'} € K(A;, B;) for some i. But then y? # y?. Hence,
K(z|n,y") = O(1). Then, by Equation 4, we have:

R(z) ¥ K(y°|n) — K(y°|n,z) — K(z|n) = O(log K (z|n)).  (15)

Given n and z, we can reconstruct y* from z° and C, first reconstruct-
ing the latter item from n as above. Thus, up to an O(n) additive term,
Y zen K(y®|n,z) can be evaluated, from the number of bits in the 2°’s, as
follows.

Z]{i:mEN—C,-H:E|{m:m€N—C;}|:nj——Zc,-. (16)

zEN 1<i<;s 1<i<i



For each z, by Equation 1,
K(y°|n) < I(y") + O(1) = j + O(1), (17)

and K(z|n) < logn + O(1). Estimating the lower bound on ) K(z|n) by
Equation 2,
3" K(z|n) = nlogn + O(n). (18)
zeN
By Equations 15, 1, 16, 17, and 18 we have

Y ci—nlogn+0(n) > ) R(z) = O(nloglogn),

1<i<; zeN

from which the theorem follows. O

One may wonder whether we can remove the O(loglogn) error term.
The prefix variant of complexity K P(z|y), [10, 6, 1] or [12], is the length of
the shortest self-delimiting description from which z can be reconstructed,
given the shortest self-delimiting description for y (rather than y literally).
A description is ‘self-delimiting’ if the interpreter can determine the end of it
without looking at additional bits. This KP complexity is more precise for
some applications. In its K P version, Equation 4 holds to within an O(1)
additive term, rather than the O(log log n) one, [6]. Then, in Equation 15, the
K P version of R(z) = O(1). A straightforward, somewhat tedious, analysis
shows that estimates of the quantities in Equations 16, 18, and 17, still hold
in K P-version. Together, it follows that g(n)/n > logn + O(1).
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