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Abstract

Sharing data between multiple asynchronous users—each of which can
both read and write the data—such that the accesses are serializable and
free from waiting, is a feature which may help to increase the amount
of parallellism in distributed systems. An algorithm implementing this
feature is presented. Using a structured, top-down approach, we obtain
a better understanding of what the algorithms do, why they do it, and
that they correctly implement the specification. The main construction of
an n-user atomic variable directly from single-writer, single-reader atomic
variables uses O(n) control bits per subvariable and O(n) accesses to sub-
variables per read/write action.
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1 Introduction

In [8] Lamport has shown how an atomic variable—one whose accesses appear to
be indivisible—shared between one writer and one reader, acting asynchronously
and without waiting, can be constructed from lower level hardware rather than
just assuming its existence. There arises the question of the construction of
multi-user atomic variables of that type [17]. In this paper we will supply a
uniform solution to such problems, given Lamport’s construction, and derive
the implementations by transformations from the specification. Independently
from this derivation, we give a direct proof of the main result.

1.1 Informal Problem Statement and Main Result

Usually, with asynchronous readers and writers, atomicity of operations is sim-
ply assumed or enforced by synchronization primitives like semaphores. How-
ever, active serialization of asynchronous concurrent actions always implies wait-
ing by one action for another. In contrast, our aim is to realize the maximum
amount of parallellism inherent in concurrent systems by avoiding waiting al-
together in our algorithms. In such a setting, serializability is not actively
enforced, rather it is the result of a pre-established harmony in the way the
executions of the algorithm by the various processors interact. Any one of the
references, say [8] or [17], describes the problem area in some detail.

The point of departure is the solution of the following problem. (We keep the
discussion informal). A flip-flop is a Boolean variable that can be read (tested)
by one processor and written (set, reset, or changed) by another. Suppose, one
is given atomic flip-flops as building blocks, and is asked to implement an atomic
variable with range 0 to n — 1, that can be written by one processor and read
by another one. Of course, [log, n] flip-flops suffice to hold such a value. It
is stipulated that the two processors are asynchronous and do not wait for one
another. Suppose the writer gets stuck after it has written half the bits of the
new value. If the reader executes a read while the writer is stuck, it obtains a
value that consists of half the new value and half the old one. Obviously, this
violates atomicity.

Such atomic variables, correctly implemented [13, 8], serve as the building
blocks for our main construction. The following naming convention is used for
classifying the accessibility of a variable (also called register):

single-user a local variable

single-reader one writer and another reader
multi-reader one writer and multiple readers
multi-writer multiple writers and readers

multi-user each user can both write and read



This constitutes a hierarchy of variables!. At the outset we state our main
result:

Theorem 1 An atomic wait-free n-user variable is constructed from O(n?)
atomic wait-free 1-reader 1-writer variables, using O(n) accesses of subvariables
per read/write and O(n) control bits per subvariable.

1.2 Comparison with Related Work.

Related constructions are given by [15, 7, 3, 11, 6] for the single-reader to multi-
reader case (which is dealt with in appendix B), and by [17, 12, 14] for the
multi-reader to multi-writer case (see appendix A). The latter problem is the
more difficult one. The solutions in references [17, 12] are known to be incor-
rect [14]. There has been no previous attempt to implement an n-user variable
directly from single reader variables. Yet we believe the construction presented
is relatively simple and transparent. Both problems above are solved by sim-
plifications (as it were “projections”) of our main solution. The precise form
of our solution was arrived at by implementing and empirically testing several
candidates. Appendix C discusses the simulation of our main algorithms.

The algorithm uses O(n) accesses to single-reader subvariables per opera-
tion, and each single-reader subvariable stores two copies of the value of the
constructed variable together with O(n) bits of control information. In com-
parison, the multi-writer algorithm in [14] uses (n?) accesses to multi-reader
variables per operation. Following [6], recent work [4] aims at providing a gen-
eral method for replacing unbounded timestamps by bounded timestamps in
concurrent systems of multi-reader variables. Application to a multi-writer vari-
able requires 2(n? logn) accesses to multi-reader variables per operation. Other
related work is [1, 2, 5, 8, 10, 13, 16].

1.3 Definitions

A concurrent system consists of a collection of sequential processes that com-
municate through shared data structures. The most basic such data structure
is a shared variable. A user of such a variable V can start an action a (read
or write) at any time when it is not engaged in another action, by invoking an
“execute a” command on V, which finishes at some later time, possibly return-
‘ing the value read. The semantics can be expressed in terms of a local value v
of a process P and the global value contained in V. In absence of any other
concurrent action the result of process P writing its local value v to V is that
V:=v is executed, and the result of a process reading the global V is that v:=V

! Although a multi-user variable can be trivially implemented by a multi-writer variable
(and is not more powerful in that sense), this requires in the worst case a quadrupling in
the number of subvariables (“space”) used. It also seems impractical to make a distinction
between users restricted to write actions and users restricted to read actions.



is executed. To emphasize the distinction between actions at a higher level, and
those at a lower level, the word operation ezecution, or shortly action, is used
for the former, and subaction is used for the latter.

An implementation of V consists of a set of protocols, one for each user
process, and a set of single-reader subvariables X,Y,...,Z. An operation exe-
cution a by user process P on V consists of an execution of the associated pro-
tocol in which it applies some transformations on the subvariables X,Y, ..., Z,
followed by returning a result to P. An implementation is wait-free if the num-
ber of subvariable accesses in an operation execution is bounded by a constant,
which depends only on the number of users.

Linearizability or atomicity is defined in terms of equivalence with a sequen-
tial system in which actions are mediated by a sequential scheduler that permits
only one operation at a time to execute on any variable. A shared variable is
atomic, if each read and write of it actually happens, or appears to take effect,
instantaneously at some point between its invocation and response, irrespective
of its actual duration. This can be formalized as follows.

Let V be a shared variable with associated user processes P,Q,...,R. Let A
be the set of operation executions that the users execute on V. Each execution
is comprised of a number of subvariable accesses, called subactions. Let — be
the (total) order in which these subactions occur. Extend — to a partial order
on sets of subactions, as follows:

Definition 1 Let — be a total order on all the subactions. Let S be a finite,
nonempty set of subactions. Denote the —-first subaction in S by s(S) (start
of §), and the —-last subaction in § by f(S) (finish of S).

Definition 2 Let — be a total order on all the subactions. Let Sy, Sy be two
finite, nonempty sets of subactions. Define: §; — Sy iff f(S1) — s(S2).

For convenience, a single subaction is interpreted as a singleton set, of which
it is both the start and finish. Note that with this definition, — is a special type
of partial order called an interval order. That is, a transitive binary relation
such that if @ — b and ¢ — d then a — d or ¢ — b (the interval aziom).

In the remainder of this section, consider as sets of subactions only those
corresponding to the operation executions in A.

Given the finite domain of a variable, sufficiently long runs of operations will
have to contain multiple writes of the same value. But since the actual values
written to the shared variable are not used, apart from being copied 2, a unique
identity can be associated with each written value. In this way, for any action
a, val(a) is taken to be the uniquely identified value written/read by a. Define
the reading mapping 7 as a mapping from reads to writes by: if r is a read that
returns the value written by write w (val(r) = val(w)), then n(r) = w. The
triple o = (A, —, ) is called a system execution.

2Peterson and Burns use the word opague for this property.



Definition 3 A system execution o = (A, —,7) is atomic if — can be extended
to a total order = such that

(A1) n(r) = r, and
(A2) there is no write w such that #(r) = w = r.

That is, the partially ordered set of actions can be linearized while respecting the
logical read/write order. A shared variable is atomic if each system execution
of it is atomic.

1.4 The Problem to be Solved

The goal is to implement an atomic wait-free shared variable V for n users
0,...,n — 1, such that each user can perform both reads and writes. V is
implemented using atomic variables R; ;(0 < i,j < n), for which user 1 is the
only associated writer process and user j is the only associated reader process.
Since only user 7 can write to variables R;y,..., Rin-1, it owns these variables.

1.5 Specification

While the definition of atomicity is quite clear, it is convenient to transform it
into an equivalent specification, from which the first algorithm that implements
V can be directly derived. Call two actions a and b equivalent, a = b, if val(a) =
val(b). Note that for a write action w, its equivalence class is [w] = {w}Ur~!(w),
consisting of exactly one write (itself), and 0 or more reads which obtain the
value it writes. The precedence relation — on .4 induces a relation < on A/ =
(the set of equivalence classes) as follows:

Definition 4 For two writes wy,wy € A, [wy] € [wa] iff w; # wa and there
exist a; = w; and ag = wy such that a; — as.

The following lemma comes from [1]:

Lemma 1 Let (A,—,w) be a system ezecution. There exists an ertension =
of — satisfying (A1) and (A2) iff K is acyclic and not r — n(r) for any read r.

Proof. “If”. If <« has no cycles then it can be extended to a total order <
on A/ =. Define = on A by:

1. if @ £ b then a = b iff [a] < [b]

2. within each [w], topologically sort the elements beginning with the write
(using r 4 w(r)), so that [w] = {w,ry,...,7} and r; — r; implies ¢ < j.
Now put w =7y =79 = -+ = 714



We claim that => is an extension of —. Assume that a — b. Then either a # b
and by definition of < it follows that [a] « [b] hence [a] < [b] and thus a => b,
or a = b in which case a = b follows from the topological sort. Furthermore, =
is a total order on A since the elements in each [w] are totally ordered and the
[w]’s themselves are totally ordered by 1. Finally, (A1) and (A2) hold because
x(r) is the last write =>-preceding r.

“Only if”. First assume r — m(r) for some read r. Since = extends —,
also r = m(r), which is in contradiction with (A1). Therefore, r /> m(r) for any
read r. Because of (A1) and (A2) each [w] is a consecutive sequence of actions
in the total order =. It follows that the order < on the [w]’s induced by = is"
total. If [wi] < [wy] then there are a; = w; and ay = w» such that a; — as.
Since = extends —, also a; = ay and thus [wq] < [ws]. Then, < is an extension
of €. Since < is acyclic, so must < be. O

This gives the specification that an atomic variable has to satisfy: for each
of its system executions o = (4, —, )

(S1) not r — m(r) for any read action r, and

(S2) the induced relation < has no cycles.

2 The Basic Algorithm

The first approximation of the target algorithm captures the essence of the
problem solution apart from the boundedness of the constituent shared variables
(see also [17]). Let V be as in the problem description above. Violation of (S1)
would mean that a read execution returns a value before the write of it ever
started. This condition will be trivially satisfied by all algorithms considered
here. How can (S2) be satisfied? Proceed as follows. Let (T,<) be a totally
ordered set of tags. For each system execution o = (A,—,7), let tag: A > T
be a function such that

(T1) if a = b then tag(a) = tag(b)
(T2) if a — b then tag(a) < tag(b), and
(T3) if wy # wy are both writes, then tag(wy) # tag(ws).

(T1) ensures a single tag for equivalent actions, so that we may write tag([a]).
If [w1] < [wo] then by definition w; # wy and there exist @ = wy and b = w;
with @ — b. Apply (T3) and (T2) respectively, to obtain tag([wi]) # tag([ws])
and tag([wi]) < tag([wa]), hence tag([wi1]) < tag([wz]). Therefore, < has no
cycles and (S2) is satisfied. Hence we have shown:

Lemma 2 Let V be a variable such that for each system ezecution o condition
(81) is satisfied, and there is a function tag satisfying (T1), (T2), and (T3).
Then V s atomic.



Using T = IN, the set of nonnegative integers, an atomic variable V' can be
implemented as follows. To satisfy

T1: read-actions copy the tag of the return-value
T2: actions maximize over the visible tags
T3: write actions choose a tag

e greater than the maximum visible tag

e congruent to the user modulo n

The last two items ensure different tags for the writes of a single user, and
those of different users (recall that the users are numbered 0,...,n —1). To
make explicit the congruence modulo n one can view a tag ¢ as a pair (ts,d),
where t = n - ts +1d and 0 < id < n. Call ts = t div n the timestamp and
id = t mod n the indez.

Figure 1 shows the basic algorithm. The architecture is an n by n matrix of
atomic subvariables R; j, providing a directed communication path from user :
to user j. The subvariable R;; can be written by user i in a statement Write
R;; := loc, where loc is a local variable. Likewise, it can be read by user j in
a statement Read loc := R;;. Each R;; contains the fields value and tag.

This and all other algorithms in this paper are initialized by simply setting
all fields of all local and subvariables to 0. This puts the system in a state which
appears to have resulted from an initial write by user 0 of the value 0 with a
zero tag, followed by successive reads of the other users 1,...,n—1, all of which
choose max := 0.

Locally, each user 7 has an array from[0],... ,from[n-1] where from[j] is
to hold a local copy of R; ;. Note that a single protocol is given for both read
and write actions. All multi-user algorithms presented in this paper have such
a unified protocol.

A return statement exits the execution of the protocol. The argument of
the return statement is used by read actions as the return value, and is ignored
by write actions. If the end of a protocol can only be reached by a write action,
then a return statement in the last line is superfluous and omitted.

Lemma 3 Algorithm 0 implements an atomic wait-free multi-user variable.

Proof. (See also [1, 17].) Obviously Algorithm 0 is wait-free. One only
has to argue atomicity. Let o = (A, —,7) be a system execution according to
Algorithm 0. (T1) is satisfied since tags are copied alongside their corresponding
values.

Claim 1 Forall :,5 (0 <4,j < n), R;;.tag is nondecreasing in time.



for j:=0 to n-1 do Read from[j] := R;;
select max such that Vj (from[j].tag < from[max].tag)
if read.action then
from[i] .value := from[max].value
from[i] .tag := from[max].tag
else if write_action then
from[i] .value := newvalue
from[i].tag := n * (from[max].tag divan + 1) + i
endif
for j:=0 to n-1 do Write R;; := from[i]
return from[i].value

-
> O W W NGO P W

-

Figure 1: Algorithm 0; protocol for user ¢

Proof. Consider first from[i] .tag of user 7. It is only changed in lines 5
and 8. The new value of from[i].tag is at least from[max].tag, which by
line 2 is at least the old value of from[i].tag. Since R;;.tag only changes
when user i overwrites it with from[i].tag (line 10), the claim holds for these
fields as well. O

Moreover, in a write action, the new timestamp of ¢ is at least 1 greater
than the previous timestamp, and the new index equals %, so two different write
actions, either by the same user or by two different users, must have different
tags, thus satisfying (T3). Let a — b be two actions by users 7 and j respectively.
Due to the maximizing in line 2, the new tag of action b is at least from[i].tag
which, according to claim 1, is at least the tag of a, since a writes its tag to
R; ; and finishes before b starts. Therefore, (T2) holds as well. Condition (S1)
is satisfied trivially. By lemma 2, Algorithm 0 is atomic. O

3 Solution Method

The only problem with Algorithm 0 is that T = IN is infinite. Through a series
of transformations of the basic algorithm, this shortcoming is removed.

In order to motivate the first transformation, consider the following system
execution scenario.

User 0 starts a write operation, but falls asleep after writing to Rp, ‘in
line 10. Then user 1 also starts a write operation, sees the new tag (1,0) of
user 0, and falls asleep after writing to Ry in line 10. This continues in the
obvious manner until user n—3 writes to R,_3n—2 and also falls asleep. Clearly,
none of the writing users have informed user n — 1 of the ongoing activities, and
as a result the maximum timestamp in column n — 2 (Rypn—2,...,Rn-1,n-2)
is approximately n greater than the maximum timestamp in column n —1. It
will later prove useful to bound these differences. Algorithm 1 (figure 2) takes
care of this by having the write actions also “propagate” the value and tag that



they consider to be most recent. In this way, the write protocol becomes an
extension of the read protocol.

1. for j:=0 to n-1 do Read from[j] := Rj;

2. select max such that Vj (from[j].tag < from[max].tag)
3. from[i].value := from[max].value

4. from[i] .tag := from[max].tag

5. for j:=0 to n-1 do Write R;; := from[i]

6. if read._action then return from[i].value

7. from[i].value := newvalue

8. from[i].tag := n * (from[max].tag divn + 1) + i

9.

for j:=0 to n-1 do Write R;; := from[i]

Figure 2: Algorithm 1; protocol for user %

The correctness of Algorithm 1 follows easily from that of Algorithm 0. We
do not need a proof of this for the sequel, since we prove the correctness of the
next Algorithm 2 from scratch.

3.1 Outline of the Algorithm

The obvious way to proceed is to refine Algorithm 1 to an algorithm that induces
a function tag’ such that for each action a one has tag'(a) = tag(a) (mod C),
for some system constant C. The only difficulty with this scheme is that the
old tags may be confused with the new ones when looping back. However, if
the loop is wide enough, then outdated tags are scanned many times by at least
one user. Similarly, long pending actions are scanned many times by at least
one user. Intuitively, this can be exploited as follows.

Each time a user finishes a write, it ‘shoots’ every other read or write exe-
cution it ‘sees’ once. An action is discredited, if it is shot at least d times by
the same user, d a large enough system constant. In this way, each out of date
action gets discredited after at most about dn writes. This solves the problem
of discrediting actions which are already outdated when they are scanned.

One must also solve the problem of actions which are not outdated when
scanned initially, but become outdated in the course of the scanning phase,
simply because it takes too long. This can be detected and resolved by having
the scanning action check the number of times it has been shot by each user,
subsequent to the scanning phase.

To implement all this, add new lines to Algorithm 1. The old line 1 of
Algorithm 1 is ‘bracketed’ by an extra preliminary phase that sets up a target
associated with the operation execution, and by an extra test phase that checks
the number of times the target has been shot by whom. This way an operation
can check whether or not it has been shot at least e times by the same user. If
it has, then it completely ‘overlaps’ a write execution from this set, say the one-



before-last, and can safely ‘abort’, terminate without executing the remainder
of its protocol. Hence, at most about en writes complete during the scanning
phase of a non-aborting operation execution a. Taking into account the ‘about’
caveats in the discussion, a loop of length C, using, say C div n = 2(d+e+1)n+2
timestamps, suffices to identify the largest element of the set of credible tags,
clustered in a n((d + e + 1)n + 1)-size ‘window’.

An aborting read execution will report the value of the one-before-last shoot-
ing write of a user who causes the abortion. An aborting write action will simply
not write at all. Intuitively, an aborting read can be ordered just after the write
whose value it reports. This requires that the value written by the one-before-
last write is available. It is therefore saved in the preliminary phase added to
Algorithm 1. The shooting phase is inserted just before the end of Algorithm 1.
An aborting write can be ordered just before the one-before-last shooting write
of a user who causes the abortion.

3.2 OQutline of the Proof

Inserting the above additions in Algorithm 1, we obtain Algorithm 2. Actions
do not yet get discredited, but they do abort (with e = 3). Just like in the proof
of Algorithm 0, we show (from scratch) that for each system execution o of
Algorithm 2 there is a function tag satisfying (T1), (T2), and (T3). The change
between Algorithm 2 and the next Algorithm 3 consists in discrediting actions
(with d = 5). It is shown that the change from Algorithm 2 to Algorithm 3
leaves the associated function tag invariant. The next step is to show that in
Algorithm 3 all comparisons between unbounded variables (like timestamps)
are between comparands which differ by at most a function of the number of
users (like 9n + 1). Simply reducing all such variables modulo the appropriate
number yields the final Algorithm 4 using only bounded variables, and, again,
leaves the associated function tag invariant. Condition (S1) holds trivially. By
lemma 2, it is established that Algorithm 4 is atomic. It is wait-free, because
the protocol does not contain unbounded loops. This establishes theorem 1, but
for the complexity aspects which are easy to verify.

4 Algorithm 2

Looking at figure 3, it is observed that the implementation of the shooting
feature adds some complexity to the algorithm. All the old lines of Algorithm 1
are still present as indicated, with line 2 (Algorithm 1) rephrased as lines 12,13
(Algorithm 2), making the new algorithm an extension of Algorithm 1. In
the added lines, which we have put in boxes, one can see some new fields in the
registers. The field previous is used to hold the value of the last completed write
(line 1). The total number of shots from user j to user i's action number a(=
0,1,2,...) is counted on shoot[:][a] of user j. The total amount of healing
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from[i] .previous := from[i].value

s := 1 - from[i].ss

for j:=0 to n-1 do
Read tmp := R;; e(xamine)
from[i] .heal[j][s] := tmp.shoot[i][s]

{ from[i] .num +:= 1 }

for j:=0 to n-1 do Write R;; := from[i] h(eal)

for j:=0 to n-1 do Read from[jl := R;; r(ead)

for j:=0 to n-1 do
Read tmp := Rj; t(est)
if tmp.shoot[i][s] - from[i].heal[j][s] > 3 then return tmp.previous

. L:={0,..,n1}
. select max € L such that Vj € L (from[j]l.tag < from[max].tag)

from[i] .value := from[max].value

. from[i].tag := from[max].tag

. from[i].ss := s

{ from[i] .pnum := from[i].num }

. for j:=0 to n-1 do Write R;; := from[i] p(ropagate)
. if read_action then return from[i].value

. from[i] .value := newvalue

. from[i].tag := n * (from[max].tag divn + 1) + i

. for j:=0 to n-1 and for s:=0 to 1 do

if from[i].shoot[jl[s] - from[j].heal[ills] < &
then from[i].shoot[jl[s] +:= 1

. for j:=0 to n-1 do Write R;; := from[i] w(rite)
J \J

Figure 3: Algorithm 2; protocol for user 4
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of user i's action number a with respect to user j is counted on heal[j][a] of
user i. The difference between these two counters, shoot[:] [a] —heal[j][a],
at any time represents the number of shots that user i’s action a has received
from user j. At any state of the system execution, there are only two relevant
actions a, namely, the one in progress and the previous one. Thus, it suffices
to use shoot[i][s] and heall[j][s], with s = a mod 2. The value of s for a
non-aborting action is recorded in the ‘shoot selector’ field ss. The values in
the shoot and heal counters, like the tags, are unbounded. It will be seen later
that they can be easily bounded. However, doing so at this point would only
complicate the algorithm and its discussion. In detail, the shooting works as
follows. At the start of a new action, user ¢ complements its local variable s,
and reads the shoot[i][s] entry of R;;. Then it sets its heal[j][s] equal
to that shoot count, so as to heal from shots delivered to its previous actions.
During the reading phase (line 8) of i’s action, user j may perform some write
actions. At the end of each such action, user j checks whether the difference
between shoot[i] [s] and heal[j][s] has reached 5 yet. If not then it shoots
the current action of user i by incrementing (+:= 1) its shoot counter in line 24.
In this way the difference between a shoot counter and the corresponding heal
counter is always between 0 and 5 inclusive.

Consider the number of shots to wound an action (3). After the reading
phase, user ¢ reads the shoot[i][s] entry of R;; again and tests wether the
difference with its heal[j] [s] is at least 3. If so, then the action aborts, i.e. it
exits execution of the protocol, returning the value of a recently completed write
action by user j in line 11. (Recall our convention that execution of a return
statement terminates the operation execution, and its argument is ignored if
the operation is a write.) Otherwise, the normal course of action is resumed.

The fields num and pnum serve no other purpose than simplifying the proofs.
They number the actions of each user from 0 onwards. The auxiliary lines 6
and 17 are placed between braces {,} to emphasize that they are not part of the
algorithm itself.

4.1 Proof Preliminaries

The set of subactions comprising an execution of Algorithm 2 can be divided
into 6 phases, each consisting of n subreads/subwrites. These are indicated
in figure 3 at the right end of those lines which involve shared register access.
Denote the phases by a single letter extension to the action name, and the
subactions in each phase by a subscript. E.g., if a is an action by user 3, then
a.ty is the subread of Ry 3 in line 10; the testing phase. A complete execution
of the algorithm, say action a by user ¢, consists of the phases

a.e—ah—ar—at—ap-—aw,
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where each phase a.c is a sequence of subactions
a.cp = '+ — G.Cp_1.

Recall the definition of start s() and finish f() (definition 1). Using the
notation above, we have s(a) = a.ep. Moreover, f(a) = a.t; for an action
aborted by user 7, f(a) = a.p,_; for a non-aborting read, and f(a) = a.wn_1
for a non-aborting write.

We first prove an extension of claim 1.

Claim 2 For all 1, j, k, s, each of the fields shoot[k][s], heal [k][s], tag, num
and pnum in either a shared register R; ; or in user i’s from[j], is nondecreasing
in time.

Proof. First consider the local variable from[:] of user 1. Note that it is
not changed by lines 7,8. The num and shoot[k][s] fields of this variable are
only changed in lines 6,24 respectively, at which point they are incremented.
The claim also holds for the field pnum of from[:], as it is only changed by
assignment from num. The tag of from[i] is only changed in lines 15,21. By
the maximization step in line 13, and the increment of the timestamp in line 21,
this field is nondecreasing as well. '

Since R;; is only changed by assigning from[:] to it in lines 7,18,25, the
fields shoot[k][s], tag, num and pnum of R;; are also nondecreasing. The
claim holds similarly for the above fields in the from[i] variable of other users,
which is changed only by assignment from R; ; in line 8.

The above also establishes (by interchanging the roles of 7 and j) that, in
particular, R;;.shoot[i][s] is nondecreasing. Note that lines 4 and 5 carry
out the assignment from[i].heal[j][s] := Rj;.shoot[4][s], Since the field
heal[k][s] of user i’s from[i] is only changed here, with j = k, the claim
holds this field as well. The same argument can be repeated for heal[k] [s] in
R;; and in user j's from[:]. O

This claim shows that if

e wis a subwrite of the value v, to one of the above fields of some subvari-
able, and

e pis a subread from the same subvariable, which obtains a value v, for
that field, '

then w — p implies v, < vp, and conversely, v, < v, implies p — w.
The following notation will be used throughout the proofs.

Definition 5 Let a € A be an action by user ¢, and loc a local variable of
user 7. Define loc@a as the value of that variable immediately after f(a). Let
c € {e,h,r,t,p,w} be a single character phase descriptor. Define loc@a.c as
the value of that variable immediately after f(a.c). If loc is a field of from[:]
then the from[:]. part is omitted.
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Definition 6 A j-(sub)action/read/write is a (sub)action/read/write by user j.

The next definition provides a concise notation for the actions by other users
which are the most important to a given action.

Definition 7 Let a be a non-aborting action by user i. Define a? as the unique
j-action b with num@b = from[j].pnum@a.r. (For example, a* is the last non-
aborting i-action before a.)

Lemma 4 Let a be a non-aborting action by user i and b = a’. Define js =
from[j].ssQ@a.r. Then '

1. b does not abort

2. js = ss@b

3. for all k, 0 < k < n, from[;].heal[k][js]@a.r = heal[k] [js]@b
4. tag@b.p < from[j].tag@a.r < tag@b

5. forallk,s,0 < k <nands € {0,1}, shoot[k] [s]1@b.p < from[;].shoot[k][s]1@a.r <
shoot [k] [s]1@b

Proof.

1. Consider the successive subwrites to R;;. A change in either of the fields
poum or ss of this variable must be the result of a .p; subaction in line 18.
Hence the numbers written to R ;.pnum are those of non-aborting actions,
which proves that b doesn’t abort.

2. Let ¢ be the next non-aborting j-action following b. Then its subaction
c.p; complements R; ;.ss, and increases R; ;.pnum by an amount 1 greater
than the number of aborting j-actions between b and ¢ (which increment
only .num). Moreover, no subaction between b.p; and c.p; changes these
fields. Since, by claim 2, from[7] .pnum@a.p = nun@b < num@c, the order
of the subactions must be

b.p; — a.r; — c.p;. (1)
Therefore, js = from[j].ss@a.p = ss@b.

3. Note that j-actions following b up to and including ¢ change only from[j] .heal[k] [1—
js1 and not from[j].heal[k][js]. So the ordering of events (1) gives
also from[j].heal[k] [js]@a.p = heal[k][js]@b.

4. From the first part of (1) and claim 2 we have tag@b.p < from[j].tagQa.r.
From the second part of (1) and the observation that c.h; is the last sub-
write to R;; preceding c.p;, we obtain from[j].tag@a.r < tag@ch =
tag@b.
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5. Similar to Item 4. From the first part of (1) and claim 2 follows shoot [k] [s]1@b.p <
from[5].shoot[k][s]@a.r. From the second part of (1) and claim 2 fol-
lows from[j].shoot[k][s]1@a.r < shoot[k][s]1@c.p = shoot[k] [s]1@b.

]

4.2 Correctness of Algorithm 2

Lemma 5 Let 0 = (A,—,7) be a system ezecution according to Algorithm 2.
Then there is a function tag() satisfying (T1), (T2) and (T3).

Proof. Let a be an action by user i. Define tag : A — &) as follows. If a
doesn’t abort, then simply set tag(a) = tag@a. Otherwise, if a aborts, let w be
the non-aborting write of the value tmp.previous@a. Now set tag(a) = tag(w)
if a is a read, and set tag(a) = tag(w) — €q, if a is a write, where 0 < e, < 1is
a fraction unique to a.

Claim 3 If an action a by user 7 aborts, then there exists a non-aborting write
action w, such that s(a) — w — f(a) with valueQw = tmp.previous@a and

[tag(a)] = tag(w).

Proof. Define j = jQa as the user by which a sees itself wounded®. Let b be
the j-action with nun@b = tmp.num@a and let w = b’. Then w — s(b) — f(a).
Let u be the j-action immediately preceding w. Then, with is = s@a,

shoot [¢] [is]@Qu > shoot[7] [ts]@Qw — 1 > shoot[i] [is]1@b—2 >

tmp.shoot [4] [is]@a — 2 > heal[;j][is]1@a + 1.

(Since a shoot counter increases by no more than the number of non-aborting
write actions, the order u — w — b of j-actions gives by claim 2 the first two
inequalities. The definition of b gives the third inequality, and the fact that
a aborts gives the fourth inequalty.) Hence, not v — a.ej, and consequently
s(a) = f(u) - w.

Let ¢ be the j-action immediately following b. By definition of b,

b.h; — a.t; — c.h;.

Therefore, tmp.previous @a = value @Qw, and the definition of tag gives [tag(a)] =
tag(w). This completes the proof of claim 3. O

Claim 4 Let a — b be actions by users 7 and j respectively. If b is a non-
aborting read, then
tag(b) = tag@b > tagQa,

3Since a aborts, it terminates execution of the protocol in line 11, with the local variable
j as stated (f(a) = a.t;).
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and if b is a non-aborting write, then

tag(b) = tag@b > tagQa + 1.

Proof. Assume that b doesn’t abort. Then, the definition of tag gives
tag(b) = tag@b. If a aborts, then it writes tag@a to R; ; in a.h;. Otherwise, a
does so in a.p; if it is a read, or in a.w; if it is a write. Using @ — b.r;, claim 2
then gives from[max].tag@b.p > from[:].tag@b.r > tag@a. If b is a read,
then tag@b = from[max] .tag@b.p, which proves the first case. If bis a write,
then by line 21, tag@b = (from[max] .tag@b.p div n+1, j), proving the second
case. O

We proceed with the proof of lemma 5.

(T1) states that tag(r) = tag(n(r)) must hold for all read actions r. This
follows, in case r doesn’t abort, directly from the definition of tag, and in case
r aborts, from claim 3.

(T2) states that if @ — b then tag(a) < tag(b). Let a — b be actions by
users 7 and j respectively. If a aborts, then by claim 3 there is a non-aborting
w, with tag(a) < tag(w,) and f(w,) — f(a), in which case it suffices to prove
(T2) for w, — b. Hence, without loss of generality, assume that a doesn’t
abort. If b aborts, then by claim 3 there is a non-aborting write action wy
with @ — s(b) — wy and tag(b) > tag(ws) — 1 which by claim 4 is at least
(tag(a) + 1) — 1. Otherwise, (T2) follows directly from claim 4.

(T3) states that if w; # w, are both writes, then tag(wi) # tag(wz). Let
i,j be the users executing wy and ws respectively. If either w; or wy aborts,
then either tag(w;) or tag(wy) has a unique fractional part, in which case (T3)
holds. Now assume that neither one aborts. Then tag(w;) = 7 (mod n),
whereas tag(ws) =j (mod n). Clearly, (T3) holds in case 7 # j. In case i = j,
one write precedes the other, and (T3) follows from claim 4. O

5 Algorithm 3

The next transformation to Algorithm 3, see figure 4, consists of restricting the
set of users from which to choose max to the credible users. The restriction
implies that tags of actions which have received at least 5 shots from one user
are removed from consideration.

12. L ={j | V k#j from[k].shoot[j][from[j].ss]-from[j].heal[k] [from[j].ss] < 6}

Figure 4: Algorithm 3; protocol for user . Identical with figure 3, but for the
exhibited line.
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Lemma 6 Let 0 = (A,—, ) be a system execution according to Algorithm 3.
Then there is a function tag() satisfying (T1), (T2) and (T3).

Proof. By lemma 5, it only needs to be shown that L as set in line 12 in
Algorithm 2 can be restricted as in line 12 in Algorithm 3, without affecting the
choice of max. It suffices to show claim 5, which means that an index associated
with the maximum tag will not be eliminated by the restriction.

Claim 5 Let a be a non-aborting action by user 1, and j,k € L,j # k, be two
indices. Define js = from[j].ss@a.r. If

from[k].shoot[j]1[js]@a.r — from[j].heal[k][js]@a.r > 5
(a sees j discredited by k), then

from[k] .tag@a.r > from[j].tag@a.r

Proof. Let b = a/. Using in succession item 5 of lemma 4, the assumption
of the claim, and item 3 of lemma 4:

shoot[7][75s] Q@a* > from[k] .shoot[§]1[js]@a.r >

from[j].heallk][js]1Q@a.r + 5 = heal[k] [js]@b + 5.

This shows the existence of wg — --- — ws, defined as follows. For 0 < m < 5,
let w,, be the first non-aborting write action by user k such that

shoot [;][js] Qw,, = heal[k] [js] @b + m.

Therefore, in particular, ws.w; — a.rx so that, using in succession claim 2,
claim 4, and line 21 of Algorithm 3:

from[k] .tag@a.r > tagQuws >

(tag@Quwy div n + 1,k) = (from[max] . tagQw,.p div n + 2, k).
By item 4 of lemma 4, and lines 15, 21 of Algorithm 3:

from[j].tag@a.r < tag@b < (from[max] .tag@b.p div n + 1, 7).
Thus, to prove the claim it suffices to show that
(from[max] .tag@uws.p div n + 1,k) > (from[max].tag@b.p div n,j). (2)

Since by item 1 of lemma 4, b doesn’t abort, it follows that br — b.ty —
w3.w; — wy (by definition of the w;’s). The proof of (2) now depends on the
order of j and k.

17



k < j Let .pw be the first instance of a propagate or write phase in which
user m = max@b communicates from[max] . tag@b.p to user j. The order-
ing of the for loops in lines 18 and 25 implies the sequence of events

PWj — .pW; — b.ry — W4Ty
So
from[max] .tag@Qw,.p > from[m].tagQuwy.r > from[max].tag@b.p.
This proves (2).

j < k Define w with tagQw = from[max].tag@b.p as the write action by
user id = from[max].tag@b.p mod n that created the tag maximum
among those read by b. The sequence of events

w.pp — w.W; — b.Imaxas — W4.Tid

shows that even if tag@uw is not visible to w4 yet, in wq.r it obtains a tag
not less than the tag propagated by w.p. Hence

from[max] .tag@w,.p div n + 1 > from[max] .tag@w.pdiva +1=

tagQw div n = from[max] .tag@b.p div n.
Together with j < k, this proves (2).

O
Claim 5 concludes the proof of lemma 6. O

6 Final Algorithm

It remains to get rid of the unbounded tags and counters in Algorithm 3. Ad-
ditionally, the control-bit complexity can be minimized by removing from R;;
all information irrelevant to user j.

Due to the behaviour of shoot and heal counters, the perceived differences in
lines 11 and 23 are in the range from 0 to 5 inclusive, since one of the comparands
is owned by the user executing the operation. This is not the case in line 12
of figure 4. There it may be that neither of the two comparands are owned by
the user executing the operation. Hence, they have been acquired by different
atomic subactions spaced arbitrarily wide apart—which raises the possibility
that the differences can rise unboundedly. It will be proved that this is not the
case.

More precisely, suppose user ¢ is executing the read phase of an action a.
For j < k, other users (like j and k) may be executing arbitrarily many actions
between a.r; and a.ry. Usually, this has the effect that the values obtained from
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Ry, in a.ry are greater then they were at the time of a.rj. Thus, k appears
to have higher tags, higher shoot counters, and higher heal counters. Since
read actions do not introduce any values higher than those already in existence,
this effect must be caused by write actions. However, a shooting mechanism
has been introduced which makes actions abort if they overlap—in their read
phase—a certain number of write actions by the same user. Furthermore, those
aborting actions do not even get to line 12. Bounding the number of overlapped
write actions also bounds the apparent increase in k’s values. The next two
sections discuss the differences between shoot and heal counters followed by a
discussion of tag differences.

6.1 Upper Bound on Perceived Differences

Claim 6 Let a be a non-aborting action by user i, and 0 < j,k < n,j # k.
Define js = from[j] .ss@a.r. Then

from[k].shoot[j][js] @a.r — from[;] .heal[k][js]@a.r < 8

Proof. We prove that a aborts if the above difference is more than 8. Let
b = a’ so that js = s@b, by lemma 4, item 2. Thus, a difference of at least 9
gives, using in succession claim 2, the contradictory assumption, and lemma 4,
item 3:

shoot[1[js1@a* > from[k] .shoot[5] [js]@a.r >

from[j].heal[k][js]@a.r + 9 = heal[k][js]1 @b + 9.

This establishes the existence of wy — -+ — wy, defined as follows. For 0 <
m < 9, let w,, be the first non-aborting write action by user k such that

shoot [7] [j5] Qw,, = heal[k] [js]1@b + m.

Because a shoot counter of a user is at most 5 ahead of the corresponding heal
counter, and by definition of wg:

from[;] .heal[k] [js] Qwg > shoot[j]l[js]Qwg — 5 =

heal[k][7s1@b+ 1 = heallk]l[js]@c + 1,

where c is the next non-aborting j-action after b (lines 2 and 16 show that non-
aborting actions use the two sets of heal counters alternately). This implies
—(wg.rj — c.p;). Using a’ = b — c for the second arrow, we get

a.h — a.rj — c.p; = wg.r; — wr.
As a consequence (with is = s@a), by claim 2,

from[i].heall[k] [1s]Qwy; > heal[k] [¢5] Qa,
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so with wy, wg and wy shooting at user ¢,
shoot[1] [1s] @Qwgy > heal[k] [is]@a + 3.

By definition of wy, wp.w; — a.rx — a.tk, hence a aborts. O

6.2 Lower Bound on Perceived Differences

Again consider the case that user k shoots at j, but now k < j, hence a.tp —
a.rj. It is possible that between these two atomic reads, user k performs some
write actions, and user j updates its heal counters in a read action. It can then
be the case that the heal counter read in a.r; is actually greater than the shoot
counter read in a.rg!

Claim 7 Let a be a non-aborting action by user ¢, and 0 < j,k < n,j # k.
Define js = from[j] .ss@a.r. Then

from[k].shoot[j]1[js]1@a.r — from[j].heallk] [js]@a.r > —4

Proof. We prove that a aborts if the above difference is less than -4. Let
b = a’ so that js = s@b, by lemma 4, item 2. A difference of at most -5 gives,
using in succession item 5 of lemma 4 claim 2, item 3 of lemma 4, and the
contradictory assumption:

shoot [j1[js]1@b* > from[k] .shoot[j][js]1@b.r > heallk] [js]@b =

from[j].heal[k] [js]1@a.r > from[k].shoot[;][js]1@a.r + 5.

This establishes the existence of wg — ... — ws, defined as follows. For 0 S
m < 5, let w,, be the first non-aborting write action by user k such that

shoot [j] [js] Qw,, = from[k] .shoot[j][js]@a.r + m.

Note that with this definition, b.ex — ws.w; would imply heal[k][js]1@b <
shoot[;] [js]@uws, contradictory to the derivation above.
By definition of wy, wa,

a.h — a.rp = wy.w; > ws.
As a consequence (with is = s@a), by claim 2,
from[:] .heal[k] [¢s]@Qw; > heall[k] [i5]Qa,
so with ws, w3 and w4 shooting at user ¢,

shoot [¢] [4s] Qw4 > heall[k] [t5s]1@a + 3.

20



But by definition of wy and the definition of b, the order of events is
Wy W; — W5.W; — b.ex — b.p; = a.rj — a.ty,

and hence a aborts. O

The conclusion is that the result of any comparison between a shoot counter
and the corresponding heal counter always lies in the range —4,...,8 inclusive.
Since the only purpose served by these counters is comparison, they can be
stored and used modulo 8 — (—4) + 1 = 13. For the algorithm, this only involves
performing the shoot counter increment modulo 13 and mapping all differences
between shoot and heal counters to the above range. This mapping can be done
in the comparison by treating 9,10,11,12 as —4,—3,—2, —1. The name can be
changed accordingly from counter to ring, resulting in ‘shoot rings’ and ‘heal
rings’. In the next section we show that the tags can be turned into such a ring
as well.

6.3 Range of Credible Timestamps

Having restricted L in Algorithm 3 to the set of users whose actions are not
discredited, one would expect the tags—and therefore the timestamps—to be
relatively close to each other. This is formalized in the next claim.

Claim 8 Let a be a non-aborting action by user i, and 0 < 5,1 < n. Let b = a’
and define js = s@b = from[j] .ss@a.r. If

from[l] .tag@a.r — from[j].tag@a.r > 9n’® +n — 1
then there exists a k,0 < k < n such that

from[k].shoot[j][js] @a.r — from[j].heal[k] [js]@a.r > 5.

Proof. Division by n yields
from[l].tagQ@a.r div n — from[j].tag@a.r div n > 9n,

which means that more than 9n non-aborting write actions that start before
a.r; have a timestamp greater than from[j].tag@a.r div n, which, by lemma 4
item 4 and lines 15, 21, is at least from[max] .tag@b.p div n. Therefore none
of these actions precede b.r. Since each user can start at most one such action
before b.r, b.h precedes more than 8n such write actions. Let k be a user which
executes at least 9 of these write actions, b.h — w; — -+ — wy. The sequence
of events
we.T; — wy — wg — s{wy) — a.r; — a.tbk,
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and the fact that a would abort if a.hy — weg.r;, imply that
wy.W; — Wg.T; — a.hp — a.r. (3)

If k = j, then b — ws — a.rj, which contradicts b = a’. Hence, k # j. Since
b.h — w;, by claim 2,

from[j].heallk][js]1@Qw; > heallk][js]@b.
Therefore, with w; through ws shooting at user j,
shoot[j1[js]@ws > heal[k] [js]@b + 5. (4)

Applying in succession (3) in combination with claim 2, (4), and lemma 4,
item 3: :
from[k].shoot[j1[js] @a.r > shoot[j][js]Quws >

heall[k][js]@b+ 5= from[j] .heal[k] [js]@Qa.r + 5.

0

By claim 8, the result of comparing two alive tags in Algorithm 3 lies in the
range —n(9n + 1) +1,...,n(9n + 1) — 1 inclusive. That being the only use of
tags, reduce the tags modulo 2n(9n + 1), without affecting the behaviour of the
. algorithm (using a multiple of n to accomodate the index). With these tag rings,
all variables used by the algorithm have been bounded. The resulting algorithm,
Algorithm 4, incorporating all three types of ring, is depicted in figure 5.

Proof of theorem 1. Algorithm 4 is obviously wait-free. Let o = (A4, -»,7)
be a system execution according to Algorithm 4. Condition (S1) is trivially
satisfied. By lemma 6, claim 6, claim 7, and claim 8, there is a function tag
satisfying (T1), (T2), and (T3). Therefore, Algorithm 4 implements an atomic
variable, by lemma 2. It uses n? atomic wait-free 1-reader l-writer variables
(the R; ;’s). The protocol uses O(n) of accesses of subvariables per read/write,
and O(n) control bits per subvariable (a precise analysis is given in section 8).
O

6.4 Minimizing Redundancy

We actually need only n(n — 1) subvariables since the diagonal subvariables R;;
and their accesses are superfluous and can be omitted. Since no purpose is served
by shooting at oneself, we can also remove all suicide-related shoot and heal
rings. Note furthermore that user j makes no use of the fields heal[# j][1-ss]
in R; ;. Thus, in addition to the element heal[j][1-ss], only a single heal[]
array needs to be stored in R;;, provided the second index is understood to be
R; ;.ss. Table 1 shows all the fields in R3; in the case of 5 users.
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from[i] .previous := from[i].value

s := 1 - from[i].ss
for j:=0 to n-1 do

Read tmp := R;;

from[i] .heal[j]1[s] := tmp.shoot[il[s]
for j:=0 to n-1 do Write R;; := from[i]

for j:=0 to n-1 do Read from[j]
for j:=0 to n-1 do
Read tmp := R;;
if (tmp.shoot[i][s] - from[i].heal[jl[s]) mod 13 > 3
then return tmp.previous

= Rji

. L:={3j |V k#j (from[k].shoot[j] [from[j].ss]

- from[j].heal[k][from[j].ss]) mod 13 ¢ {5,...,8} }
select max € L such that V j € L
(from[max] .tag - from[j].tag) mod 2n(9n+1) < n(9n+1)
from[i] .value := from[max].value
from[i] .tag := from[max].tag
from[i].ss := s :
for j:=0 to n-1 do Write R;; := from[il]
if read-action then return from[i].value
from[i] .value := newvalue
from[i].tag := (n * (from[max].tag div n + 1) + i) mod 2n(9n+1)
for j:=0 to n-1 and s € {0,1} do
if (from[i].shoot[jl1[s] - from[j].heal[i][s]) mod 13 < 5
then from[i].shoot[j]1[s] := (from[i].shoot[jl[s]+1) mod 13
for j:=0 to n-1 do Write R;; := from[i]

Figure 5: Final Algorithm (4); protocol for user 4

shoot [0] [0]
shoot[0] [1]

shoot[1] [0]
shoot[1] [1]

shoot [2] [0]
shoot[2] [1]

shoot[4] [0]
shoot[4] [1]

value

tag

sSs

previous

heal[0] [ss]

heal[1][1-ss]
heall[1][ss]

heal[2] [ss]

heal[4][ss]

Table 1: the fields of R3; with 5 users
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7 Subproblems and Implementation

The final algorithm implements a multi-user variable with single-reader vari-
ables. Using multi-reader variables as the basis of a multi-user implementation
simplifies matters. The interested reader is referred to appendix A. Another pro-
jection of the algorithm implements a multi-reader variable from single-reader
ones. See appendix B for details.

Some of the algorithms presented here have been implemented and tested.
See appendix C for the results.

8 Conclusions

It has now been proven that Algorithm 4, by equivalence with Algorithm 2,
correctly implements an atomic multi-user variable without waiting. Analysing
the complexity (indicating the optimized version of section 6.4 in parentheses)
yields the following. The number of subvariable accesses in an operation exe-
cution is at most 6n (optimized 6(n — 1)) in the case of a write action and at
most 5n (optimized 5(n — 1)) in the case of a read action. This proves the O(n)
subvariable accesses or “time complexity” of theorem 1. The number of bits
in each subvariable R; ; equals 2b + 4nlog 13 +log(2n(9n + 1)) + 1, (optimized
2b+ (3n —2) log 13 +log(2n(9n+1)) + 1), with b the number of bits (“width”) of
the shared variable V. This proves the O(n) control bits or “space complexity”
of theorem 1, and thereby completes its proof. Unfortunately, the extra value
previous may put a heavy burden on the size of the subvariables if b >> n.
This cannot be helped since the whole solution relies on the principle of abortion
and aborting actions are required to return the value of a completed write.

We would like to make some final remarks about the possibility of parallel-
lizing the algorithm. The order of the for loops in Algorithm 4 is only important
in lines 18 and 25. All other for loops could be replaced by a “for all j in”
construct which means that the different instances of the loop body can be exe-
cuted in parallel. By increasing the lethal number of shots from 5 to 6, the above
two loops can also be relaxed. This would enlarge the range of perceived shoot
- heal differences to —4,...,9 hence a 14-valued shoot/heal ring (instead of
13). The size of the tag ring should accordingly be increased from 2n(9n +1) to
2n(10n +1). These numbers follow from careful examination of the claims 6, 7,
and 8 in the light of the incremented lethal number of shots. Hence, a parallel
version of the algorithm can be made to run in O(1) time complexity and the
same (O(n)) space complexity.
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A  From Multi-reader to Multi-user

A restriction of our original goal corresponds to the problem that [17] and [12]
unsuccesfully tried to solve. Viz., to implement an atomic wait-free n-user
shared variable V using atomic multi-reader variables R;(0 < i < n) for which
user 4 is the single writer and the other n — 1 users are the readers.

To implement V, collapse row R;j,...,Rin-1 to the single multi-reader
variable R; owned by user i. So the write loops reduce to a single atomic
write. Each variable R;; read is replaced by R;. The previous field is no
longer needed, since the value of a write action becomes visible to all users at
the same time, thus making it suitable for return by an aborting action. The
complete propagate phase can be skipped for similar reasons. The wounding
number of shots can be reduced from 3 to 2, since the write action firing the
second shot must have finished by the time the shot is noticed. The lethal
(discrediting) number of shots can then be reduced to 4. The affected ring-sizes
are 9 for the shoot/heal rings and 2n(6n + 1) for the tag rings. Figure 6 shows
the resulting algorithm, given without a proof of correctness. This solution uses
O(n) control bits per variable R; and O(n) atomic accesses of subvariables per
read or write action on V. '

s := 1 - from[i].ss
for j:=0 to n-1 do
Read tmp := R;
from[i] .heal[j][s] := tmp.shoot[i][s]
Write R; := from[i]
for j:=0 to n-1 do Read from[j] := R;
for j:=0 to n-1 do
Read tmp := R;
if (tmp.shoot[i][s] - from[i].heal[j1[s]) mod 9 > 2
then return tmp.value
. L:={ 3|V k#j (from[k].shoot[j][from[j].ss]
- from[j].heal[k][from[j].ss]) mod 9 ¢ {4,5,6} }
12. select max € L such that V j € L
13. (from[max] .tag - from[j].tag) mod 2n(6n+1) < n(6n+1)
14. if read_action then return from[max].value
15. from[i].value := newvalue
16. from[i].tag := (n*(from[max].tag div n + 1) + i) mod 2n(6n+1)
17. from[i]l.ss := s
18. for j:=0 to n-1 and s € {0,1} do
19.  if (from[il.shoot[j1[s] - from[j].heall[il[s]) mod 9 < 4
20.  then from[i].shoot[jl1[s] := (from[il.shoot[j][s]+1) mod 9
21. Write R; := from[il

e
= O © 0N Ok WN -

Figure 6: Algorithm 5; protocol for user ¢
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B From Single-reader to Multi-reader

Another restriction of our original goal above corresponds to the problem that
was attacked in [15, 7, 3, 11, 6]. Viz., to implement an atomic wait-free multi-
reader shared variable V with n readers 0,...,n — 1 and a single writer n. V' is
implemented using atomic single-reader variables R;;,(0 < 4,5 < n) for which
user % is the single associated writer and user j is the single associated reader.
We show how to implement V using O(n) control bits in each variable R, ;
owned by the writer, and O(1) control bits in each variable R;;, (0 < i < n)
owned by the readers.

With a single writer, tags equal timestamps, none of the readers need a shoot
array, and the heal[j][s] array of a reader collapses into heal[s]. Also the
writer doesn’t need a heal array and therefore no ss. While the wounding
number of shots remains 3, the discrediting number of shots can be reduced
to 3. Because the writer will be last in the reader’s read phase, the observed
heal counters (timestamps) are at most 1 greater than the corresponding shoot
counters (resp. timestamp) of the writer. As a result, the size of the shoot/heal
rings can be reduced to 8. Analysis also shows that alive readers are perceived
to be at most 6 tags behind the writer, so a tag ring of size 8 suffices. There
are separate protocols for the writer (fig 7) and the readers (fig 8), as to reflect
the functional difference. Note that the writer has no propagate phase—there
are no other writers that could have more recent values.

from.previous := from.value
from.value := newvalue
from.tag := (from.tag+l) mod 8
for j:=0 to n-1 do
Read tmp := R,
for s € {0,1} do
if (from.shoot[j][s] - tmp.heal[s]) mod 8 < 3
then from.shoot[j][s] := (from.shoot[j][s]+1) mod 8
for j:=0 to mn-1 do Write R, ; := from

W 0N OO WD

Figure 7: Algorithm 6; protocol for writer (user n)
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1. s := 1 - from[il.ss

2. Read from[n] := R, ;

3. from[i].heal[s] := from[n].shoot[i][s]

4. VWrite R;n, := from[i]

5. for j:=0 to n do Read from[j] := R;;

6. if (from[n].shoot[i][s] - from[i].heal[s]) mod 8 > 3
7. then return from[n].previous

8. max := n

9. for j:=0 to n-1 do

10.  if from[j]l.tag = (from[n].tag+l) mod 8 A

11. (from[n] .shoot[j][from[j].ss]-from[j].heal[from[j].ss]) mod 8 & {3,...,6}

12. then max := j

13. from[i].value := from[max].value

14. from[il .tag := from[max].tag

15. from[i].ss :5 s

16. for j:=0 to n-1 do Write R;; := from[i]
17. return from[i].value

Figure 8: Algorithm 6; protocol for reader 7
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C Simulation of the Algorithm

Both Algorithm 2 and Algorithm 4 have been implemented and a program was
written which simulates (pseudo-) randomly interleaved system executions of
both algorithms in parallel.

An explanation of the interleaving process follows. First a distribution of
sleeptimes was fixed. A sleeptime is a number of steps which a user has to
wait before it may continue the execution of a protocol. Initially all users start
awake, i.e., with a sleeptime of zero. In general, if more than one user is awake,
then one such user is selected at random and a new, positive sleeptime is chosen
from the sleeptimes distribution. This procedure is repeated until a single user
remains awake. In that case the minimim of the sleeptimes of the other users
is determined and taken as the number of steps to run the remaining user. A
step is defined as a part of the protocol involving exactly one primitive register
access and any local computations—this reflects the atomicity of the constituent
registers. When the desired number of steps is completed, it is subtracted from
the sleeptimes of the other users and the whole process repeats. This sleeptime
algorithm helps to find counterexamples in which one user is required to sleep
while most of the other ones repeatedly run.

By testing whether actions have the same behaviour under both protocols,
the program empirically tests the correctness of Algorithm 4 relative to Algo-
rithm 2. While the latter uses unbounded counters and tags, the former uses
modulos and a restricted “alive” set to choose max from. The simulator allows
adjustment of the following parameters:

e number of users (n)

e lower bound of the range of shoot/heal ring values (Ib)

e upper bound of the range of shoot/heal ring values (ub)

e number of shots to wound an action (wd)

e number of shots to discredit an action (ki)

e size of the tag ring (ts)

e percentage of write actions (wp)

e number of steps simulated with same sleeptime distribution (nd)
e size of the sleeptime distribution (ds)

e maximum sleeptime (ms)

Given the last two parameters, the logarithms of the ds sleeptimes were cho-
sen randomly from the uniform distribution [0,logms]. After each nd simulated
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steps a new sleeptime distribution is chosen. Sooner or later a distribution will
be found which is appropriate for the search of a counterexample. This means
that nd should be taken neither too small nor too large; any value between 10°
and 10% seems reasonable. Curiously, the best value of wp for finding counterex-
amples proved to be 100. Furthermore, the set of counterexamples found with
n = 4 was a proper subset of those found with n = 3.

The counterexamples which can be shown to exist for Ib = —3 and ub =7
proved to be too hard to find for the simulator within some 107 simulated
steps. The bounds of the shoot/heal rings are optimal in the sense that they
are sufficient to preserve correctness of the algorithm, while tightening either
of them gives rise to a counterexample. The size of the tag ring is larger than
necessary, but optimal bounds (like n(18n — 27)) are hard to obtain and much
more so to prove.

While the use of a simulator may seem of questionable value in supporting
the correctness proofs of the algorithms, it has proven to be of great assistance
in the development of both the algorithms and their formal proofs. Several
alternative implementations of the shooting construct have been tried out, and
some were refuted by the simulator much faster than could have been done
manually.
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