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ABSTRACT

The average complexity of any algorithm whatsoever (provided it
always terminates) under the universal distribution is of the same order of
magpitude as the worst-case complexity. This holds both for time complex-
ity and for space complexity. To focus our discussion, we use as illustra-
tions the particular case of sorting algorithms, and the general case of the
average case complexity of NP-complete problems.

1. Introduction

For many algorithms the average case running time under some distributions on the inputs
is less than the worst-case running time. For instance, using Quicksort on a list of » items
to be sorted gives under the Uniform Distribution on the inputs an average running time
of O (nlogn) while the worst-case running time is (n 2). The worst-case running time of

Quicksort is typically reached if the list is already sorted or almost sorted, that is, exactly

in cases where we actually should not have to do much work at all. Since in practice the
lists to be sorted occurring in computer computations are very likely to be sorted or almost
sorted, programmers implementing systems involving sorting algorithms tend to resort to
fast sorting algorithms of which the provable average run-time is of equal order of magni-
tude as the worst-case run-time, even though this average running time can only be proved
to be O(nlog?n) under the Uniform Distribution as in the case of Shellsort, or to some
randomized version of Quicksort. '

In the case of NP-complete problems the question arises whether there are algorithms
that solve them in polynomial time “on the average”. Whether this phenomenon occurs

The work of the first author was supported in part by NSERC Operating Grant OGP0036747. Part of the
work was performed while he was with the Department of Computer Science, York University, North York,
Ontario, Canada. The work of the second author was supported in part by NSERC International Scientific Ex-
change Award ISE0046203. A preliminary version of this work was presented at the 30th Annual IEEE Sympo-
sium on Foundations of Computer Science, 1989, pp. 34-39.
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must depend on the combination of the particular NP-complete problem to be solved and
the distribution of the instances. Obviously, some combinations are easy on the average,
and some combinations are hard on the average, by tailoring the distribution to the ease or
hardness of the individual instances of the problem. This raises the question of a meaning-
ful definition of a “hard on the average” problem.

L.A. Levin [Le] has shown that for the Tiling problem with uniform distribution of
instances there is no polynomial on the average algorithm, unless there exists such an algo-
rithm for each combination of an NP-complete problem and polynomial time computable
probability distribution. '

Here it is shown that under the Universal Distribution al// NP-complete problems are
hard to compute on the average unless P = NP.

2. The Universal Distribution

Let N, Q, and R denote the set of nonnegative integers, nonnegative rational numbers, and
nonnegative real numbers, respectively. A superscript ‘+’ excludes zero. We consider
countably infinite sample spaces, say S = N U {u}, where u is an ‘undefined’ element not
in N. A function P from S into R, such that Zx cs T =1 is defines a probability distri-

bution on S. (This allows us to consider defective probability distributions on the natural
numbers, which sum to less than one, by concentrating the surplus probability on u.) A
probability distribution P is called enumerable, if the set of points

{x,y):x EN,y €Q, P(x)>y},

is recursively enumerable. That is, P(x) can be approximated from below by a Turing
machine, for all x € N. (P(u) can be approximated from above. A probability distribution
P is recursive if P(x) can be approximated both from below and above by a Turing
machine, for all x.)

Levin has shown that we can effectively enumerate all enumerable probability distri-
butions, Py, Pj,.... In particular, there exists a universal enumerable probability distribution,
denoted by, say, m, such that

kENT ¢>0x € N[lcm(x) = Pr(x)]. )
That is, m dominates each P; multiplicatively. It is convenient to define
m(x) = 27X®), @

where K (x) is the prefix variant of Kolmogorov complexity [G1]. In equation (1), the con-
stant ¢ can be set to

c = 2K(Pk)+0(l) — 2K(k)+0(1) — O(klogzk). (3)
This means that we can take ¢ to be exponential in the length of the shortest self-
delimiting binary program to compute Py. ' '

The universal distribution (rather, its continuous version) was originally discovered by
R.J. Solomonoff in 1964, with the aim of predicting continuations of finite prefixes of

infinite binary sequences. We can view the discrete probability density m as the a priori
probability*

* Consider an enumeration Ty, T,... of Turing machines with a separate binary one-way input tape. Let T be
such a machine. If T halts with output x, then T has scanned a finite initial segment of the input, say p, and we
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of finite objects in absence of any knowledge about them [So]. Levin has shown that
Solomonoff’s definition, and the two definitions (1) and (2) given above, are equivalent up
to a multiplicative constant. Thus, three very different formalizations turn out to define
the same notion of universal probability. Such a circumstance is often taken as evidence
that we are dealing with a fundamental concept. See [ZL] for the analogous notions in
continuous sample spaces, [G2], and [LV1] or [LV2] for elaboration of the cited facts and
proofs.

This universal distribution has many important properties. Under m, easily describ-
able objects have high probability, and complex or random objects have low probability.
Other things being equal, it embodies Occam’s Razor, which says we should prefer simple
explanations over complicated ones. To give an example, with x =2" we have
K(x) <logn + 2loglogn + O(1) and m(x) =2(1/n log?n). If we generate the binary
representation of y by n tosses of a fair coin, apart from the leading ‘I’, then for the
overwhelming majority of outcomes we shall have K(y) >n and m(y) = O(27").

By Markov’s inequality, for any two probability distributions P and Q, for all k, we
have Q(x) < P(x)/k with P-probability at least 1 — 1/k. By equations (1) and (3) there-
fore, for each enumerable probability distribution P (x) we have

S{Px):K(P)m(x)=P(x)=m(x)/k} = 1—1/k, ©)

for all £ >0. In this sense, with high P-probability, P(x) is close to m(x), for each enu-
merable P. The distribution m is the only enumerable one which has that property. If the
problem instances are generated algorithmically, then the distribution is enumerable. In
absence of any a priori knowledge of the actual distribution therefore, apart from that it is
enumerable, studying the average behavior under m is considerably more meaningful than
studying the average behavior under any other particular enumerable distribution.

3. Average Case Complexity

Let x € N. Let I(x) denote the length of the binary representation of x. Let 7(x) be the
running time of algorithm A on problem instance x. Define the worst-case time complexity
of A as T(n) = max{z(x):/(x) = n}. Define the average time complexity of A with respect
to a a probability distribution P on the sample space S by

S PO
2I(x) = nP(x)

Example (Quicksort). Let us compare the average time complexity for Quicksort
under the Uniform Distribution L(x) and the one under the Universal distribution m(x).
Define L(x) =27 2®) such that the conditional probability L(x | /(x) =n)=2"". We
encode the list of elements to be sorted as nonnegative integers in some standard way.

vaerage (n) =

define T'(p) = x. The set of such p for which T halts is a prefix code: no such input is a proper prefix of anoth-
er one. Assume the input is provided by tosses of a fair coin. The probability that T halts with output x is
Pr(x) = ZT(p)=x 2719 where 1(p) denotes the length of p. Then Zx o Pr(x) <1, the deficit from one being
the probability that T doesn’t halt. Concentrate this surplus probability on Pr(u), such that Ex s Pr(x)=1.

It can be shown that P is an enumerable probability distribution iff P = O(Py) for some 7. In particular,
Py(x) = O(m(x)) for a universal machine U. From this, properties (1), (2), and (3) can be derived.
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For Quicksort, TaLvemge(n) = O(nlogn). We may expect that Tqeraee(n) = (nlogn).
But the Theorem will tell us much more, namely, Tgergee() = Qn?)! Let us give some
intuition why this is the case. With the low average time-complexity under the Uniform
Distribution, there can only be o((logrn)2"/n) strings x of length n with #(x) = Qn?).
Therefore, given n, each such string can be described by its sequence number in this small
set, and hence for each such x we find K(x | n) < n —logn + 3loglogn. (Since n is
known, we can find each n — k by coding k self-delimiting in 2logk bits. The inequality
follows by setting k =logn —loglogn.) Therefore, no really random x’s, with
K(x |n) =n, can achieve the worst-case run time Q(n?). Only strings x which are non-
random, with K (x |n) <n, among which are the sorted or almost sorted lists, and lists
exhibiting other regularities, can have 2(n 2) running time. Such lists x have relatively low
Kolmogorov complexity K(x) since they are regular (can be shortly described), and there-
fore m(x) = 27X® is very high. Therefore, the contribution of these strings to the average
running time is weighted very heavily. This intuition can be made precise in'a much more
general form. We assume that all inputs to an algorithm are coded as integers according to
some standard encoding.

Theorem. Let A be any algorithm, provided it terminates for all inputs in N. Let the
inputs to A be distributed according to m. Then the average case time complexity is of the
same order of magnitude as the corresponding worst-case time complexity.

Proof. We define a probability distribution P (x) on the inputs that assigns high pro-
bability to the inputs for which the worst-case complexity is reached, and zero probability
for other cases.

Let 4 be the algorithm involved. Let T(n) be the worst-case time complexity of 4.
Clearly, T(n) is recursive (for instance by running 4 on all x’s of length n). Define the
probability distribution P (x) by:

1 Foreachn=1,2,..,definea, := > mx);
Ix)=n
2 if I(x) =n and x is lexicographically least with ¢(x) = T'(n), then P(x) := a,, else

P(x):=0.

It is easy to see that a, is enumerable since m(x) is enumerable. Therefore, P(x) is
enumerable.  Setting  P(u) =m(u), we have defined P(x) such that
Ex E SP x)= Zx E Sm(x), and P(x) is an enumerable probability distribution. The aver-
age case time complexity Tgerqge(n) With respect to the m(x) distribution on the inputs,
using cpm(x) = P (x) by (1), is obtained by:

3y MOV £GO)

Tzlz‘:’erage (n) =

\%

1 P(x)
cp l(x)2=n21(x)=nm(x) T(n)

1 P(x)
cp l(x)2= na Zl(xs = nP(x) e

'

2
= —T
T,



where
_ El(x)z L) -
zl(x) - M)
The proof of the theorem is finished by the observation that
T(n) = Toerage(n)

holds vacuously. [

If P in the proof is Py in the standard effective enumeration Py, P5,... of enumerable
semimeasures, then we can set cp <klog’k by equation (3). Namely, considering the
binary representations of positive integers, c(k) =I(k)k is a prefix code with
I(c(k)) = logk + 2loglogk. Since there is a Turing machine halting with output k iff the
input is c(k), the length K (k) of the shortest prefix free program for k does not exceed
I[(c(k)). This gives an interpretation to the constant of proportionality between the m-
average complexity and the worst-case complexity: if the algorithm to approximate P (x)
from below is the kth algorithm in the standard effective enumeration of all algorithms,
then:

T(n
Tglverage(n) = -]jg_zz;

Hence we must code the algorithm to compute P as compact as possible to get the most
significant lower bound. That is, the ease with which we can describe (algorithmically) the
strings which produce a worst case running time determines the closeness of the average
time complexity to the worst-case time complexity.

It would seem that the result has implications for algorithm design. For large n,
average case analysis is misleading because real inputs tend to be distributed according to
the universal distribution, not according to the uniform distribution. But the constant of
proportionality in the high order term is something like 27K® _ Consider Quicksort again.
It runs in nlogn time under the uniform distribution but n? time worst case. So its real
average time complexity might be something like nlogn + n2~K®_ As long as the input
size n satisfies n logn = n?~X(®) like when K (P) = logn, experimental testing of the aver-
age running time of Quicksort must show a considerably improvement over the n? worst
case behavior, corresponding to the analysis for the uniform distribution. Here K(P) is the
size of the shortest program to generate the pseudo uniform distribution over the sample.
Frequently people use pseudo random permutations in order to kill off the worst case
behavior, or to choose the ‘pivot’ in the algorithm randomly. This results in randomized
Quicksort. Again, the Kolmogorov complexity of the random number generator must be
at least logn in order to drive the high order term down to n. Thus, random number gen-
erators should be selected with the input size to the final algorithm in mind. An interest-
ing question is whether any random number generator of Kolmogorov complexity logn is
sufficient -- or are they all sufficient?

We finish with some immediate corollaries.

Corollary. The analogue of the Theorem holds for other complexity measures (like
space complexity), by about the same proof.

Corollary. The m-average time complexity of Quicksort is 2(n2).
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Corollary. For each NP-complete problem, if the problem instances are distributed
according to m, then the average running time of any algorithm that solves it is superpoly-
nomial unless P = NP. (A result related to this corollary is suggested in [BCGL]
apparently using different arguments.)

Following the work reported here, related questions with respect to more feasible
classes of probability distributions (like polynomial time computable ones) have been stu-
died in [Mi].
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