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Weak equivalence

Sieger van Denneheuvel & Karen Kwast
Department of Mathematics and Computer Science
Plantage Muidergracht 24, 1018 TV, University of Amsterdam

Abstract

In this paper we describe a generalization of equivalence between constraint sets,
called weak equivalence. This equivalence relation takes into account that not all
variables have the same function in a constraint set and therefore distinguishes between
restriction variables and intermediate variables. We explore the properties of weak
equivalence and its underlying notion of weak implication with an axiomatic approach
and we present a complete set of axioms for weak implication. As an application
of the axiomatization we derive a general tool for constraint set simplification. Two
constraint solving strategies are described in terms of weak equivalence. Furthermore
we briefly compare the notion of weak equivalence with equivalence of substitution
with respect to a set of variables as used in unification theory. The paper ends with
a detailed proof of the soundness of the axioms inferred for weak implication.






1 Introduction

Recently, systems have emerged that allow declarative constraint processing (see for exam-
ple Mathematica [WOLF88], Bertrand [LELER88], CLP(R) [JAF87] and RL/1 [DEN90])
whereas more traditional systems required user intervention to direct the solver towards a
desired solution. From a general point of view, a typical input for these systems consists
of a set of constraints and a set of restriction variables which are “interesting” variables
as far as the solver is concerned. The remaining variables in the set of constraints are
intermediate variables. For constraint solving, restriction variables can be further divided
in two mutually disjunct sets namely known variables and wanted variables.

Given the above input the objective of the constraint solver is to express all wanted
variables symbolically in terms of known variables (i.e. without supplying actual values for
the known variables). In such a symbolic solution only restriction variables are allowed and
as a consequence all intermediate variables must be eliminated from the input constraint
set. As a simple example consider the input constraint set {z = y + 2,y = 2+ 2} where 2
is known and z is wanted, so z and z together are the restriction variables. A constraint
solver set to solve this problem will return {z = z+4} as the solution, thereby eliminating
the intermediate variable y. For such a solver output, we would like to say that it is in
some way equivalent with the input constraint set. Unfortunately the standard definition
for equivalence among constraint sets would classify the example input and output as
inequivalent, since the output set does not impose any restriction to the intermediate
variable y.

Therefore we define a more general equivalence, called weak equivalence which distin-
guishes between restriction variables and intermediate variables. In this paper we explore
the properties of weak equivalence and the underlying notion of weak implication with
an axiomatic approach. Weak equivalence can be used to express the unification problem
(see [SIEK89)).

Our primary motivation for investigation of weak equivalence lies in its role in the
integration of relational databases and constraint solving. This integration is one of the
aims of the declarative rule language family RL. In the RL languages, knowledge can
be represented in three different types of rules: tabular rules, clauses and constraints.
Corresponding to these types of rules there are three areas of technology that support that
style of knowledge processing in isolation: database systems, logic programming systems,
and spreadsheets. A main goal of RL is to integrate these three technologies in one system.
Query processing should be executed with the help of an existing relational database
system; knowledge and queries expressed in RL are preprocessed by a constraint solver,
and compiled into a relational algebra query language so that large amounts of data can
be processed effectively. In the current prototype implementation RL/1 we do not focus
on recursion as is done in the NAIL! system [ULL89] and the LDL deductive database
[NAQV89], but rather on the integration of a subsystem solving (numeric) constraints
and a relational database system; the architecture for such an integrated system has been
presented elsewhere [DEN8S8].

The RL language is a declarative representation of knowledge. This means that the
user who wants to express knowledge in RL rules should not have to worry about control
issues in the representation, but only needs to specify what he believes is true in the
represented domain. The representation of the rules should also be auditable in the sense
that the written text can be inspected by a non-technician in order to convince himself
that the rules in the system indeed represent those in the world outside.



In the RL language design a program consists of modules, each module describing a
system of relations. Relations are described using expressions originating from the worlds
of relational databases, logic programming and equational logic. Atomic relations can be
combined using operators originating from these worlds, providing maximal freedom and
full conceptual transparency to the user.

A main objective of RL is sharing of both rules and data. It is often desirable to
incorporate into a relational system a representation of common knowledge shared by
different users, so that multiple developments of similar programs can be avoided. At
this point the relational database becomes a knowledge base. In RL, representation of
common knowledge is facilitated by modularization. Modules enable the user to manage
and organize a large collection of rules in a structured way. For more complete information
on RL we refer to [VEMD86a] and [VEMD86b]. For information on the evaluation of
clausal rules on relational databases we refer to [VEMDB86c].

2 Weak equivalence and implication

First we introduce some definitions and notations. Variable names are chosen from non
capitals (z,y,2,...) and sets of variables from capitals (X,Y,Z,...). We denote the
set of all variables by V. Constants are denoted by ¢ and functions by f. For use in
the database application domain we include, for instance, binary operators in the set
{+,—,*,/}. Terms (s,t,...) are constructed inductively in the usual way from constants,
variables and functions. Constraints (a,b,...) include expressions of the form ¢, op to with
op € {=,>,<,#,<,>} and two special constraints false and true. Sets of constraints
are represented as A, B,C or D. To denote the cardinality of a set I we use the notation
1]

The output of a constraint solver will be a solution set, which expresses the wanted
variables in terms of known variables.

Definition 1 A solution set is a finite set {z1 = t1,...,2Z, = tn}, satisfying:
1. |{z1,-...,zn}|| = n, (the variables are distinct)
2. {z1,...,zn} Nvar({t1,...,tn}) =0

A tuple is a solution set of the form {z; = ¢1,...,2, = ¢,} where cy,...,c, are
constants. Solution sets are denoted by ®, ¥ and © and tuples by ¢, and 4.

Example 1 ( Solution sets and tuples )
{name = ‘bob’, age = 55, dep = ‘toy’} (a tuple)
{z =1,y =2,z =3} (a tuple)
{z=u+2,y=v+2} (a solution set)
{z =u+2,y =2+ 2} (not a solution set)
{z =u+ 2,2 =v+2} (not a solution set)

Definition 2 ( Head and tail variables of a solution set )
1. hv({zy =t1,.. ., Zn =t }) = {21,...,Zn}
2. tw({z1 =t1,.. s Tn = tn}) 1= var(ty,. .., 1)

Definition 3 ( The restriction of ® to X )
P X]|:={z=t|zeX,z=t€c B}



Definition 4 ( Restricted equality on solution sets)
d=x T iff ®[X]=T[X]

Solution sets ® = {z; = t,...,%, = t,} can be interpreted as substitutions [z; :=
t1,...,%yn = t,] which can be applied to (sets of) constraints. So we have an operation

apply:
Definition 5 ®(4) := Alzy :=t1,..., %5 1= tp] with ® = {z; =t1,...,2, = 1}

Example 2 ( Substitution )
{z=u+2}{z=v+1})={u+2=uv+1}
{z=u+2,y=v+2}({c>y})={v+2>v+2}

A tuple ¢ satisfies a set of constraints A, denoted ¢ |= A, if and only if ¢ satisfies all
constraints in A. A set of constraints A implies a set of constraints B, denoted A E B, if
¢ satisfies B whenever ¢ satisfies A, for all tuples ¢.

Definition 6 ( Strong satisfaction, implication and equivalence )
1. A iff Va€A(dEa)

2. AEB iff Vé($EA=¢E B)

3. A=B iff AEB&BEA if V¢ (pEAS $EB)

To construct weak equivalence the above definitions are subscripted with the restriction
variables X. Strong satisfaction is changed to weak satisfaction by existentially quantifying
the variables not in X (i.e. the intermediate variables):

Definition 7 ( Weak satisfaction, implication and equivalence )
1. ¢Fx A if I (PEA&PX]=9PX])

2. AEx B iff Vé(pEA=>¢Fx B)

3. A=x B iff AEx B&BEx A

Example 3 (Implication)
{fe=1}Enh{yv=1
{e=9}EEm{e=y+1}
{e=y}tEm{z#y}
{z=1} Epy {z =10}
{fy=1} iy {z=1}

Example 4 (Equivalence)
{£=1} #yy {y=1}
{z=1}# {y=1}
{z =1} =y {z =0}
false #y true
{name = ‘bob’} =( i,y {name = ‘cathy’}
=y} = {z=y+1}



3 Axioms for equivalence and implication

In this section we enumerate some axioms that hold for implication and equivalence. We
start with properties of strong equivalence that are maintained for weak equivalence.

Proposition 8 ( The equivalence relation =x )
1. A=x A

2. A=x B=>>B=x A

3. A=x B& B=xC=A=xC

The following axioms are specifically concerned with the restriction variables of weak
implication.

Proposition 9 ( Addition and removal of restriction variables )
1. AEx B=>AExyy B i war(B)NY CX

2. A=x B=>A=xyy B i wvar(AUB)NY CX

3. AExuy B=>AEx B

{4 AEB=>AEx B

Proposition 10 ( Azioms for weak implication )

AUBEy A

AE,B&BE;C=AE,C

AEx B& AExC=>AExBUC if war(B)nwvar(C)CX
AEx B=AUCEx BUC if war(B)Nnwar(C)C X

AEy BUC=AEyB

AEx B& BUCEx D= AUCEx D i war(B)Nwar(C)C X
AEy BUC&BExD=>AExCUD i war(C)nwvar(D)C X
AEx B& CEx D= AUCEx BUD if war(B)nwar(D)C X

P NSO e

The strong versions of axioms (1), (2) and (3) are known in Functional Dependency
Theory as weakening, transitivity and union respectively (cf. [ULL88] and [VARDISS]).
From these axioms all other axioms (4)-(8) can be derived. The axioms of Proposition 10
are truly more general than their strong counterparts, since from the axioms (1)-(8) strong
unconditional axioms can be derived. For instance A B& A EC = AE BUC can be
derived from (3) by assigning to X the set of all variables V in which case the condition
becomes trivially true.

Inconsistency is normally defined as strong equivalence with false and tautology as
strong equivalence with true. It turns out that weak and strong inconsistency are actually
equivalent. However, contrary to inconsistency, weak tautology is truly weaker than strong
tautology:

Proposition 11 ( Inconsistency and tautology )
1. A=x false & A = false
2. A =true => A =x true
3. A=x true # A = true

It is easy to construct an example for (3). Let A = {z < z + y,y > 0} then it holds
that A =g,y true. On the other hand A # true because {z <z +y,y > 0} = {y > 0}.
The equivalence relation =y has only two equivalence classes, true and false:



Name Axiom

True A E true

False false E A

Weakening AUBEA

Transitivity AEB&BEC=AEC
Union AEB& AEC=AEBUC
Substitution | AU ® = ®(4)

Generalization | $(4A)Uu @ E A

Instantiation | A E B = ®(A4) E ®(B)

Figure 1: Axiom system .AS for strong implication

Proposition 12 A =y true or A = false.

Note that A =j true does not imply that var(A) = 0 or that A = true. On the
contrary, A =p true expresses that A is consistent, and A =y false means that A is
inconsistent. For application of weak equivalence to constraint solving, the following
substitution axioms have to be added:

Proposition 13 ( Substitution azioms )

1. AU =x 3(A)U D

2. B(A)Ex AUS if ho(B)NnX =0

3. AE B= &(A) £ (B)

4. AEx B=>®(A)Ex ®(B) i wvar(®)Nuvar(B)C X

Axiom (2) allows you to add solutions for intermediate variables. Axiom (2) is never
applicable for strong implication.

4 Completeness for strong and weak implication

A natural question that arises in the context of an axiomatic approach is whether a
complete axiomatization is feasible. Fortunately both for weak and strong implication, a
completeness result can be derived. Completeness was proven with respect to primitive
constraints, that is constraints of the format ‘z = ¢’ or ‘¢ = ¢’.

Theorem 14 For primitive constraints the azioms in AS and AW are sound and com-
plete

The completeness proof of this theorem will be presented in [DEN91]. Section 7 con-
tains the soundness proof.

Using the axiom system AW a proposition can be established that specifically exploits
weak equivalence for constraint elimination. The idea is that a subset B of a set of
constraints A U B is redundant with respect to weak equivalence if there exists a solution
set @ such that ®(B), the effect of substituting ® on B, is equivalent with true:

Theorem 15 AU B =x A if there exists some ® such that
1. (B) = true

2. w(@)NnX =10

3. hv(®)Nwvar(A)=10



Name Axiom Condition
True A Ey true

False false Ex A

Weakening AUBEyx A

Transitivity AExy B&BExC=>AExC

Union AEy B& AEx C=>AEx BUC | var(B)Nwar(C)C X
Substitution Aud Ex ®(A)Uu

Generalization P(A)UP Ex AUR

Abstraction ®(A)Ex AUS h(@)nX =0
Removal Ay yB=>AEx B

Irrelevance AEx B=> AExuy B var(B)nY C X

Figure 2: Axiom system AW for weak implication

Proof: i) AU B Ex A: Weakening.

i) AEEy AU B:

AEx A =03) AEx ®(A) => AEx ®(A)Utrue =(1) AEx ®(A)U 2(B)

= AEyx 8(AUB) =(2, Abstraction) AEy AUBU® =>(Weakening) AEx AUB
|

Example 5 ( Constraint elimination )
{z=y+2,y=24+2}=y{z=y+2} withd={z=y-2}
{u>2z,2>v,u>v} =g {u>v} with @ = {z = (v +v)/2}
{fv=u+3,2>u} =g, {v=20+3} with ® = {z = v + 1}
{v=u43,2>u} Zrpe (v =20 +3} by (2) ¢ may not be substituted
{t4+y=0,9y>0} #,) {z+y=0} by (3) ® = {y = 1} is illegal

5 Application of weak equivalence

Solving a set of constraints is essentially a two stage process:

e Determine the solvability of the constraints.
e If found solvable then solve the constraints.

In this section we describe strategies S1 and S2 to perform this task when the con-
straints are to be solved repeatedly for a large collection of tuples 1 of a database table
R(K) with attributes K. The aim of constraint solving is to extend each tuple ¥ € R(K)
with a tuple 0 such that hv(f) = W. The set of extended tuples constitutes a new relation
with attributes K U W called answer relation S in the sequel.

With the strategies S1 and S2 two solver types T1 and T2 are associated:

Definition 16 ( The T1 solver and T2 solver )

T1(A,W,B,8) = T2(A, K, W, B, 3) :=

1. A=w BU® 1. A=guw BU @

2. W C var(4) 2. K Cwvar(A),W Cvar(A),KNW =10
3. B = true or B = false 3. var(B) C K

4. tw(®)=0 4. tv(@)C K

5 hv(®)=W 5. hv(®)=W



For type T1 the set of constraints A is to be solved for the set of wanted variables
W. For an input (4, W) a T1 solver generates a solution set ® and a condition set B
satisfying (T1.1). The T1 solver is a partial function in the sense that the output sets B
and & are only generated if A is not underdetermined on W. The solution set ® is a tuple
which contains values for all wanted variables W ((T1.4) and (T1.5)). The constraint set
A is either solvable if B = true or inconsistent if B = false (T1.3). In the latter case
an arbitrary solution @ can be constructed in accordance to (T1.4) and (T1.5) without
violating (T'1.1).

A type T2 solver generalizes a T1 solver by the introduction of known variables K. For
an input (A4, K, W) a T2 solver generates a symbolic solution & and a symbolic solvability
condition B. If B = false then the original constraint set A is inconsistent. Analogously to
T1 also T2 is a partial function. By (7'2.4) and (T2.5) a solution for all wanted variables
W can be calculated directly for a selected tuple 1 € R(K) by evaluation of 1(®). For a
particular tuple i the expression 1(B) either yields true or false (see (72.3) above). So
the actual checking of solvability of the constraints in A is reduced into simple evaluation of
an expression. The T2 solver eliminates all intermediate variables I (:= var(4) — K — W)
from both B and ®.

In general, the computation of the answer relation S can be achieved using two strategies:

1. In strategy SI the solver is invoked for each tuple ¥ € R(K) as follows:
T1(4(A), W, B, )

The solver returns either B = true or B = false. In the former case the tuple ®
contains values for all wanted variables W and the tuple 1)U ® is added to the answer
relation S. In latter case (i.e. the constraints in A are inconsistent for the selected
tuple 9) no tuple is added to S.

2. In strategy S2 the solver is invoked as follows:
T2(A,K,W,B,®)

The solver returns the symbolic solution ¢ and the condition set B that represents
the solvability of the original constraint set A. Inside the database the requested
answer relation S can be efficiently computed with the following relational algebra
operations:

S = k(o(R(K), B), ®)

In the above expression first the relation T = o(R(K),B) := {¢ | ¥ € R(K),% = B}
is computed. Next the tuples in T' are extended by the calculate operator which computes
the relation S = (T, ®) := {$ U0 | € T,0 = ()}

The validity of strategy S2 is verified by means of the following theorem:

Theorem 17
If T2(A, K, W, B, ®) then forall ¢ with hv(¢) = K and forall § with hv(8) = W:

6((4)) =p true & 9P(B) = true & 6 = ()



A serious drawback of strategy S1 is that the co-operation between solver and relational
database is based on tuple transfer and the solver is invoked separately for each tuple.
In this strategy special care must be taken to optimize this interface between database
and constraint solver (cf. CLP(R) [JAF87]). Moreover this approach prohibits the use of
existing relational database systems, since these are normally not equipped with constraint
solving capabilities.

In strategy S2 the answer relation S was obtained by translation to a relational query
that can be executed directly on the relational database. For the translation the solver is
invoked only once for all tuples 9 € R(K).

A T2 constraint solver has been implemented as a sequence of transformations of the
original constraint set A. The in- and outputs of each of these transformations were for-
mally specified and subsequently the transformations themselves were implemented. Using
the weak axioms presented in this paper we proved that after each of the intermediate
transformations, weak equivalence with respect to the original set A is kept as an invariant
[DEN91]. This implemented constraint solver uses, among others, the next proposition to
throw away unnecessary solutions:

Proposition 18 AUu{z =t} =guw 4 if
lLz¢g Kuw
2. z ¢ var(4A)

Proof: Let & = {z = t} then ®({z = t}) = {t = t} = true so (1) from Proposition 15
is satisfied. The conditions from Proposition 15 reduce directly to the conditions of this
proposition.
|

The above proposition serves as a theoretical justification for elimination of solutions
z = t for variables « that are intermediate and hence do not occur in the restriction set
K UW. In this case the condition (2) ensures that the variable z is indeed eliminated
from the constraint set A.

6 Comparison with unification theory

Omne of the referees of an earlier version of this paper drew our attention to the close
parallel between weak equivalence and equivalence of substitutions with respect to a set
of variables, as used in unification theory.

In general a unifier for a set of equations A is a substitution o such that o(4) = true.
Here we restrict ourselves to independent sets of solutions &, that is, substitutions that are
separated away from their head variables (see definition 1; cf. [SIEK89]). The unification
problem for a set of terms 7 over an equational theory FE is to find the most general
unifiers for a pair (s,t). In other words, find & such that E = & | s = t. The relation
between unification and constraint solving now becomes clear. We claim that T2 describes
the unification problem for unitary theories, since if

T2(A, K,W,true, ®)

with K UW = var(A), then A = ®,s50 ® = A and ® is a unifier. Moreover, since 4 &= @,
® is certainly the most general unifier. There is one major distinction between unification
and constraint solving and that is the assumption of the freeness azioms. To make sure



that the constraint f(z,b) = f(a,y) implies its unifier & = {¢ = a,y = b} we need a
freeness axiom f(z1,%2) = f(y1,%2) F 21 = ¥1,%2 = 72

Unfortunately, if f is also known to be commutative, or to distributes over a second
function g, the freeness axiom must be reformulated (adding the axiom f(z,y) = f(y,z)
would reduce the domain to a singleton !). Hence in general the “unification axioms” of a
function can be rather complicated.

In constraint solving, we are not looking for a unifier, but for the solved form of the
set of equations or constraints. Nevertheless, as soon as T2 is satisfied it yields a most
general unifier:

Example 6 T2(2% % 3Y = 2% x 3%, {a, b}, {z,y}, true, {z = a,y = b}).
In this case ® = {z = a,y = b} is the most general unifier of A = {2% x3¥ = 2% % 3b3.
T2(z+ a*b=1y*b+z,{z,a,b},{y}, true,y = a) with m.g.u. & ={y = a}.

Needless to say that T2 can only be used on the so called unitary unification problems,
and that the specification itself gives no indication as how to construct ®. The specification
T2 can be extended to yield a disjunctive constraint set B or, to cover finitary unifiers, a
set of sets with corresponding solutions, so:

A=guw (B1U®) V...V (B, U®,)

Since B need not be true or false, even if W is determined by A, we can also deal
with partial unification, reducing not only the number of equations to be unified, but also
the number of variables in the remaining constraints.

As an example consider the following sequence of examples:

Example 7
o T2({z+axb= yxb+z,27%3% = 29 3%}, {z,a,b},{y}, {27+ 3% = 22 %3}, {y = a})
o T2({2% 3% = 2% x 3%}, {a, b}, {z}{3% = 3%}, {z = a})
o T2({3* = 3°},{a}, {b}{true}, {b = a})

o To combine the above three steps we derive:

T2({z +axb=yxb+z,2°+3% = 2Vx3}, {a}, {b,z,y},true, {y = a,z = a,b = a})

The main motivation to use weak equivalence, however, is to remove intermediate
variables. As far as term unification is concerned, there are no intermediate variables, but
in constraint solving there are. For instance for

A={a-b=m,c—d=n,axz=c,bxz=d,n+c>bx*z}

we derive T2(A, {n,m},{z},{n > 0}, {z = n/m}). As aresult of Theorem 17 we can now
be sure that the answer relation S can be constructed from R(n, m) with the following
relational operations:

k(o(R(n,m),n > 0),z = n/m)

10



7 Proofs of the axioms of AW

In this section we proof the soundness of the axioms in AW.

Proposition 19 .. ....c.oeiiiiiiiiiiii i e [weakening]
AUBEx A

Proof:

Vo (4 AUB = ¢ Ex A)

|

Proposition 20 ... [transitivity]

AExyB& BExC=>AExC

Proof:

AExyB& BEx C

>Vp(pEA=¢ExB) & W EB=¢ExC)
>V (JFE A= (Y= B & p=x 1))

& Vip (b =B =30 (0= C &P =x b))

>V (pEA=>T0(0=C & ¢ =x0))

> Vo (sl A= dEx C)

=>AExC

|

Proposition 21 ..........iiiiii e [union]
AExB& AExC=>AExBUC if war(B)nwar(C)C X

Proof:

AExB& AExC

>V (A>3 (v EB&OI=x 1))

VOO EA=> W EC&I=x1))

SVI(OEA=>TP(PEBUCEOI=XP)) o (*)
= Ay BUC

To verify step (*) we construct an appropriate ¢ from 1 and 9"

¢ = Plvar(B)] U ¢[var(C)]

Clearly the tuple ¢ satisfies both B and C. Furthermore it can be easily established
that ¢ is well defined and that § =x ¢, as required.
|

Proposition 22 ... e [removal]

1. ¢f=xuy A= dEx A
2 AlEy,y B> AEy B

Proof:
1L.oExuwy A= (VE A& ¢=xur ¥)
> WEA&I=xP)

=>dkEx A

2. AExy B

11



=> V¢ (¢ = A= ¢ Exuy B)

SVP(PE A PEX B) oo (1)
=> AEx B

u

Proposition 23 ... ... [irrelevance]

1. ¢Ex A= dExuev A if war(A)nY C X
2. AExB=>AExyy B if wvar(B)nY CX

Proof:
LéoEx A=W WEA&S=x1))
= I (Y= A& ¢ =xur ¥))

= ¢Exuy A
2. Follows from (1). m

Proposition 24 ........i.iiiiiii e [substitution)
1.OEAUS = 0= 2(A)

2. AU = 3(4)

3. AU Ex B(A)U D

Proof:

1. Assume that & = {z; = t1,...,Z, = tn}.
f=AU®

&0 |=A(5131,...,fl:n)U{.’171 =ty Tn = tn}
=0 '= A(tl,...,tn)U {:1)1 =1,y Tp = tn}
=0 }Z A(tl,...,tn)

= 0 ®(4)

2. Follows from (1).

3. Follows from (2).

|

Proposition 25 ... ... i e [generalization]
1.0E®(A)Ud=>0EAUS

2. 3(A)ud AU

3. d(A)udEx AUR

Proof:

1. Assume that & = {z; = t1,...,2, = tn}.
0= e(4)u o

= 0= A(t,...,ts) U R

=0 F A(z1,...,2,)U S

S 0EAUD

2. Follows from (1).

3. Follows from (2).

|

Proposition 26 ... ... ... i [abstraction]

1.0 ®(A)=>0Ex AU if W(®)NX =0
2. 3(A)Ex AU® if W(@)NX =0

12



Proof:

1. Assume that & = {z; = t1,...,2, = tn}.

6 = ®(4)

$0|=A(t1,...,tn)

= 3 (P | A(Z1,. -y Tn) U{Z1 = tn,...,2n =t} & 0 =x %) ... (using (@) N X = 0)
&3 (PEAUD &0 =x ¢)

<=>0’=X AU®

2. Follows from (1).

|

13
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