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Abstract

We describe a generalization of equivalence be-
tween constraint sets, called weak egquivalence.
This new equivalence relation takes into ac-
count that not all variables have the same func-
tion in a constraint set and therefore distin-
guishes between restriction variables and inter-
mediate variables. We explore the properties of
weak equivalence and its underlying notion of
weak implication with an axiomatic approach.
In addition a complete set of axioms for weak
implication is presented. With examples de-
rived from the declarative rule language RL we
show the applicability of weak equivalence to
constraint solving.

1 Introduction

Recently, constraint solving systems have emerged that
allow declarative constraint processing (see for exam-
ple Mathematica [Wolfram, 1988], Bertrand [Leler, 1988]
and CLP(R) [Jaffar and Michaylov, 1987]) whereas more
traditional systems required user intervention to direct
the solver towards a desired solution. From a general
point of view, a typical input specification for these sys-
tems consists of a set of constraints and a set of restric-
tion variables which are “interesting” variables as far as
the solver is concerned. The remaining variables in the
set of constraints are intermediate variables. For con-
straint solving, restriction variables can be further di-
vided in two mutually disjunct sets, namely known vari-
ables and wanted variables.

Given the above input specification the objective of
the constraint solver is to express all wanted variables
symbolically in terms of known variables (i.e. with-
out supplying actual values for the known variables).
In such a symbolic solution only restriction variables
are allowed and as a consequence all intermediate vari-
ables must be eliminated from the input constraint set.
As a simple example consider the input constraint set
{z = y+2,y = z+2} where z is known and z is wanted,
so z and z together are the restriction variables. A con-
straint solver set to solve this problem will probably re-
turn {z = z+4} as the solution, thereby eliminating the
intermediate variable y. For such a solver output, we
would like to say that it is in some way equivalent with

the input constraint set. Unfortunately the standard
definition for equivalence among constraint sets would
classify the example input and output as inequivalent,
since the output set does not impose any restriction to
the intermediate variable y.

Therefore we define a more general equivalence, called
weak equivalence which distinguishes between restriction
variables and intermediate variables.

2 The rule language family RL

Our primary motivation for investigation of weak equiv-
alence lies in its role in the integration of relational
databases and constraint solving. This integration is one
of the aims of the rule language family RL (see [Van
Emde Boas, 1986a, Van Emde Boas, 1986b]). In the RL
languages, knowledge can be represented in three differ-
ent types of rules: tabular rules, clauses and constraints.
Corresponding to these types of rules there are three ar-
eas of technology that support that style of knowledge
processing in isolation: Database Systems, Logic Pro-
gramming Systems, and Spreadsheets. A main goal of
RL is to integrate these three technologies in one knowl-
edge base system. Query processing should be executed
with the lLelp of an existing relational database system;
knowledge and queries expressed in RL are to be pre-
processed by a constraint solver, and to be compiled into
a database query language so that large amounts of data
can be processed effectively.

In the current prototype of RL/1 we focus on the inte-
gration of a constraint solver with a relational database
system; RL/1 has been presented elsewhere [Den-
neheuvel, 1990]. The RL/1 prototype system has
been implemented in Prolog which includes a language
parser, a database system and a constraint solver. The
examples presented in this paper were processed success-
fully by this prototype.

Terms in RL/1 are constructed inductively in the
usual way from constants, variables and functions. Both
numeric and string domains are supported. For use
in the database application we include binary functions
such as +, —, * and /. Constraints include expressions
of the form ¢, op t2 with op € {=,>, <, #, <, >} and two
special constraints false and true. Null values are not
available in the language itself but may be present in the
tables of the underlying database (cf. [Kwast, 1991]).

In RL/1 a distinction is made between eztensional



objects and intensional objects. Extensional objects
correspond to base tables in the underlying relational
database. Intensional objects on the other hand are ob-
jects whose relations can be materialized by evaluation
of their definition. An intensional object is defined by
one or more rules, alternatively called clauses. A rule
typically consists of a rule head and a rule expression
separated by the keyword WHEN. The rule expression
contains constraints or invocations of intensional and ex-
tensional objects, separated by the conjunctive AND op-
erator. Defining an intensional object with several rules
expresses disjunction between the rules. The question
whether a rule expression as a whole denotes a finite
or infinite relation is in general undecidable; partial in-
formation about this question is obtained from the con-
straint solver.

2.1 Query commands

Query commands in RL/1 result in an answer relation
which consists of attributes and a (possibly empty) set
of tuples. Optionally the result of a query command can
be stored in an extensional table object. There are the
following types of query commands:

INFER ( attribute-list ) WHEN
rule-exp [ TO table ]
SHOW rule-exp [ TO table ]

The INFER command yields an answer relation with
attributes equal to the attribute list between the INFER
and WHEN keywords. The SHOW command yields an
answer relation whose attributes are the variables occur-
ring in the rule expression.

Processing the above queries requires one or more in-
vocations of the constraint solver. The solver output is
used to compile the query into a database request. Sym-
bolic queries on the other hand work by presenting this
intermediate solver output to the user directly:

SYMINFER ( attribute-list ) WHEN
rule-exp [ TO file ]
SYMSHOW rule-exp [ TO file ]

The ‘TO file’ option allows the computed symbolic
answer to be stored in a text file. Symbolic query com-
mands produce one or more of the following answers:

condition= Condition set
solution= Solution set

The solution set contains elements of the form z = ¢
with z a wanted variable and ¢ a term. The terms ¢ in the
solution set contain only known variables. The condition
part consists of constraints over the known variables; it
states under what additional restrictions the obtained
solution is valid. Intermediate variables are eliminated
from both the condition and the solution set. Known
variables are determined by the rule expression of the
query and wanted variables by the attribute list of the

query.

3 Symbolic computation in RL/1

Intensional objects are declarative representations of
knowledge; therefore it is not known beforehand how the
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module resistors(number:vt:it:rt:
ri:r2:i1:i2:v:i:xr).

table experimentdata(vt,ri,r2)=
[[9,1200,400],[10,1200,400],
{11,1200,400],[12,1200,4001].

clause ohmlaw(v,i,r) when v=i*r.

clause maxwatt(v,i) when v*i<=0.25.

clause cstr(vt,rt,it,i1,i2,r1,r2) when
ohmlaw(vt,il,r1) and ohmlaw(vt,i2,r2)
and ohmlaw(vt,it,rt) and it=i1+i2.

clause circ(vt,it,rt,r1,r2) when
cstr(vt,rt,it,i1,i2,r1,r2)
and maxwatt(il,vt) and maxwatt(i2,vt).

Figure 1: Parallel resistors

attributes of an object are invoked. For instance con-
sider the module in Figure 1 for a parallel circuit of two
resistors. In the representation of the circuit both the
physical laws of basic electricity theory and the practi-
cal condition that the resistors should not be overloaded
are expressed in terms of constraints. We know from
elementary physics that the values given in the table ez-
perimentdata fully determine all quantities. How should
the RL/1 knowledge base determine that this is indeed
the case? The constraint solver is capable to figure out
the determinedness.

Suppose voltage is applied to the example circuit then
the current through the circuit and the total resistance
can be calculated:

show circ(9,it,rt,1200,400)
rt it
300 0.03

With other variables given, an answer is also computed:

show circ(vt,0.03,rt,1200,400)
vt rt
9 300

In the constraints for the circuit the law for parallel
resistors is not given directly, but the total resistance
r¢ can nevertheless be computed. Now suppose we ap-
ply various voltages to the two resistors as specified in
the ezperimentdata table in Figure 1. In the experiment
the voltage is slowly increased and the resistors stay the
same. Surely at some high voltage the circuit will break
down. Let’s run the experiment (the ‘(*)’ notation ex-
pands to all attributes of the involved object):

show experimentdata(*) and circ(*)
vt ri r2 rt it

9 1200 400 300 0.03

10 1200 400 300 0.033




In the answer relation the rows are corresponding to
the rows from the experiment data table but obviously
some rows are missing. In these missing rows the con-
straints were not satisfiable (i.e. the non-smoking condi-
tion mazwatt(i2,vt) was violated) so they do not appear
in the answer to the query.

The capability to produce symbolic output is an im-
portant feature of the RL/1 knowledge base. It allows
the user to analyze relationships between variables and
to infer relationships that hold in special circumstances.
A general relationship between the resistance of the indi-
vidual components and the total resistance can be found
with the following symbolic query:

syminfer(rt) when
known(ri,r2) and cstr(*)
solution= zrt=ri*r2/(ri+r2)

The constraint solver has inferred the law for parallel
resistors.

The classification of variables in the three disjoint par-
titions of wanted, known and intermediate variables is
crucial for derivation of relationships like the previous
example. By making 71 and r; known and r, wanted the
constraint solver of the RL/1 system was directed to-
wards a solution that expresses r; in terms of r; and rs.
The constraint solver actively applies this information in
its inference process to yield the desired result.

On the other hand suppose that variables of a con-
straint set were classified in only two partitions of wanted
and intermediate variables as is the case in many existing
constraint solving systems. The constraint solver would
correctly establish that the equation system is undeter-
mined (there are too many variables and not enough
equations to solve them).

In the next sections we formalize the notion of equiv-
alence that is used by the solver.

4 Weak equivalence and implication

First we introduce some definitions and notations. Vari-
able names are chosen from non capitals (z, y, z, .. .) and
sets of variables from capitals (X,Y, Z,...). V is the set
of all variables. Constants are denoted by ¢ and functions
by f. Terms are denoted by t. Sets of constraints are
represented as A, B,C or D. To denote the cardinality
of a set I we use the notation ||I}|.

Solutions are constraints of the form z =t with « ¢
var(t). The variable z is called the head variable and the
variables in the term t the tail variables.

Definition 1 A solution set is a finite set

{z1 =1t1,...,2Zn = ta}, satisfying:
1. |{z1,...,za}l| = n, (the variables are distinct)
2. {z1,...,za} Novar({t1,...,t,}) =0

Definition 2 A tuple is a solution set of the form
{z1=c1y...yZn = ¢} withcy,...,cq constants.

Solution sets are denoted by @, ¥ and © and tuples by
¢, and 8. For a solutionset ® = {z1 = t1,...,2n = tn}
the head variables zy, ..., z, are denoted as hv(®).

The operator restrict retains those solutions in ® that
have a head in X:

Definition 3 ®[X]={z=t|z € X,z =t € @}
Definition4 @ =x ¥ iff &[X]=¥[X]

Solution sets ® = {z1 = t1,...,Zn = o} can be in-
terpreted as substitutions [z := t1,..., &y := t,] which
can be applied to (collections of) items:

Definition 5 ®(4) = Afz1 :=1t1,...,2Zn :=1tn]
with ® = {z1 =t1,..., 20 =ta}

A tuple ¢ satisfies constraints in 4, ¢ |= A, if and only
if ¢ satisfies all constraints in 4. A set of constraints A

implies a set of constraints B, A [E B, if ¢ satisfies B
whenever ¢ satisfies A, for all tuples ¢.

Definition 6 (Strong equivalence)

1.¢EA if VaeA(dfEa)
2. AEB iff V¢(¢P=A=>¢I=B)
3.A=B if AEB&BEA

In the case of weak equivalence these definitions are
subscripted with the restriction variables X. The notion
of strong satisfaction is changed to weak satisfaction by
existentially quantifying the variables not in X (i.e. the
intermediate variables). As a consequence the values of
these variables in the tuple ¢ are no longer involved in
the satisfaction of A.

Definition 7 (Weak equivalence)
1L.¢ExA if W(WEA&S=x1)

2. AEx B if Vé(¢EA=>9¢Fx B)
S.A=xB iff AE,B&BEyA

Example 1 (Equivalence)
{e=1}#:y {y=1} {x<z+y,y>0}=; true
{fz=1}#{y=1} {z<z+yy>0}=, {y>0}

{z=y}l = {e =12} {z<z+yy>0}={y>0}

In the above definitions we presented strong impli-
cation between constraint sets as an implication using
strong satisfaction in both the premise and the conse-
quent. Weak implication was constructed from this def-
inition by weakening the consequent of the implication
to weak satisfaction. It may be conceivable that other
interesting definitions arise if instead only the premise
of the implication is weakened (single implication) or if
both the premise and the consequent are weakened (dou-
ble implication):

Definition 8 (Single and double implication)
1. AIE:,’(B if Vé(pEx A= ¢ E B)
2. AERB iff Vé(plExA=ékx B)

In the next proposition we compare these four possible
definitions of implication.

Proposition 9 (Relating implication definitions)
1. AEY B=AEB (AEB#A AEY B)
2.AEB=>AE,B (AEyB#AEB)
$. AEXBo AEL B

The relationships between the four definitions are
summarized in Figure 2 (arrows denote implication).
Single implication is too strong and only applicable when
var(B) C X, in which case it is equivalent to strong
implication. Double implication is equivalent to weak
implication and therefore superfluous.
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Figure 2: Overview of the implication definitions

4.1 Inconsistency, tautology and redundancy

Inconsistency is normally defined as strong equivalence
with the special constraint false. As a consequence tau-
tology and redundancy can be defined in terms of strong
and weak equivalence. The strong definitions are ob-
tained from the weak definitions by dropping the sub-
script X.

Definition 10 (Strong and weak inconsistency)

1. Incx(A) iff A=x false
2. Tautx(A) iff A=x true
3. Redx(A) iff 3IBC A (||B|| < ||All & A=x B)

It turns out that weak and strong inconsistency are ac-
tually equivalent:

Proposition 11

1. A Ey false & A [ false
2. A =x false & A = false
3. Inc(A) & Incx(A)

However, contrary to inconsistency, weak tautology is
truly weaker than strong tautology:

Proposition 12
1. Taut(A) = Tautx(A)
2. Tautx(A) # Taut(A)

It is easy comstruct a counter example such that
Tautx (A) but not Taut(A4). Let A= {z < z+y,y > 0}
then it holds that {z < = + y,y > 0} =(;} true
so Tautz(A). On the other hand —Taut(A) because
{x<z+y,y>0}={y>0}# true.

As a consequence weak redundancy is not equivalent
to strong redundancy:

Proposition 13
1. Red(A) = Redx(A)
2. Redx(A) # Red(A)

Again we can construct a counter example such that
Red x(A) but not Red(A). Let A = {x = y+2,y = z+2}
then it holds that A =(; 4} {z = y+2} so Redx(4). On
the other hand —Red(A4) because both {z = y + 2,y =
z+2}Z{z=y+2land {e=y+2,y=2z+2} Z{y=
z+ 2}.

5 Weak axioms

In this section we enumerate axioms that hold for impli-
cation and equivalence. We start with some properties
of strong implication that are maintained for weak im-
plication.

Proposition 14 (The equivalence relation =x)
1 AE, A
2. AE, BUBE,C=>AE,C
3. A=x

4. A=x B=>B=x A

5. A=x B& B=xC=>A=xC

Now we explore some axioms that are specifically con-
cerned with the restriction variables of weak implication.
As was to be expected, restriction variables can be harm-
lessly deleted:

Proposition 15 (Removal of restriction variables)
2. A=xyy B=>A=x B

A variable can be added to the set of restriction vari-
ables X in A [Ex B if it does not occur in B:

Proposition 18 (Addition of restriction variables)
1. AExB=>AEx,y B if wvar(B)NY CX
2.A=x B=>A=xuy B if var(AUB)NY CX

For strong implication we have, among others, the fol-
lowing axioms:

Proposition 17 (Azioms for strong implication)
.AUBEA

.AEB& AEC=>AEBUC
.AEB=>AUCEBUC
.AEBUC=AEB
AEB&BUCED= AUCED
.AEBUC&BED=AECUD
.AEB&CED= AUCEBUD

BT SN

The axioms (1) and (2) are known in Functional De-
pendency Theory [Vardi, 1988] as decomposition and
union respectively. From these axioms and transitiv-
ity (axiom (2) of Proposition 14) all other strong axioms
(3)-(7) can be derived. For weak implication however
the situation is different, since only (1) and (4) hold un-
conditionally:

Proposition 18 (Azioms for weak implication)

1. AUBE A

2. AEy B& A, C= A[E, BUC
if wvar(B)Nwvar(C)C X

3. AEyx B=> AUC £y BUC
if war(B)Nwvar(C)C X

4. AEx BUC=>AEL B

5. AEy B& BUCEy D=> AUCE, D
if wvar(B)Nwvar(C)C X

6. AExy BUCK BlEy D= AE, CUD
if wvar(C)Nwar(D)C X

7 AEx B&CEx D= AUCEx BUD
if war(B)Nwar(D)C X

The conditional axioms of Proposition 18 are more
general than their counterparts in Proposition 17 since
from the conditional axioms the unconditional axioms
can be derived. For instance axiom (2) in Proposition 17
can be derived from axiom (2) in Proposition 18 by as-
signing to X the set of all variables V in which case the
condition becomes trivially true.



Name Axiom Restriction
True A Ey true

False false Ex A

Weakening AUBEx A

Transitivity AExB&BExC = AEx C

Union AEx B& AExC = AEyxy BuC var(B) Nvar(C) C X
Substitution AU® E5 2(4)U S

Generalization P(A)UdE,AUD

Abstraction P(A)Ex AUS (@)NX =0
Removal AEyuy B = x

Irrelevance AEy B = AEy,y B var(B)NY C X

Figure 3: Axioms for

6 Completeness

A natural question that arises in the context of an ax-
iomatic approach is whether a sound and complete ax-
iomatization is feasible. As a first step we proved the
soundness of all axioms in Figure 3.

Proposition 19 For general constraints, the azioms in
Figure 3 are sound.

Both for weak and strong implication, a completeness
result can be derived. We proved completeness with re-
spect to primitive constraints, that is constraints of the
format ‘z =y’ or ‘¢ =c¢”:

Proposition 20 For primitive constraints, the azioms
in Figure 3 are sound and complete.

For completeness the axioms concerned with substitu-
tion have to be added to the ones we gave before. The
most interesting axiom is Abstraction that allows you to
add solutions for intermediate variables.

From the complete set for weak implication a complete
set of strong axioms can be easily inferred. Abstraction
is never applicable for strong implication so it is replaced
by the derived axiom Instantiation:

AE B = 3(4) E &(B)

7 Constraint elimination

Intuitively more constraints can be eliminated if weak
equivalence is used instead of strong equivalence. In this
section we provide a proposition that specifically exploits
weak equivalence for constraint elimination. A subset B
of a set of constraints A U B is redundant with respect
to the restriction variables if there exists a solution set
® for intermediate variables such that ®(B), the effect
of substituting ® on B, is equivalent with true:

Proposition 21

AU B =x A if there exists some ® such that:
1. ¥(B) = true

2. hw(®)NX =0

3. hv(®)Nvar(A) =0

Proof: i) AU B [Ex A: Weakening.

weak implication

= A Ex ®(4) Utrue

> AEx B(A)UB(B) «everernneririnaenarinnns. (1)
=> A Eyx ®(AUB)

S>AEyAUBU® ...l (2, Abstraction)
SAEYx AUB (it (Weakening)

Example 2 (Constraint elimination)
{z=y+2,y=2+2} =y {t=y+2}
with®={z2=y—2
{u>z,z2>v,u>v} =y, {u>v}
with & = {z = (u + v)/2}
{v=u+3,z>u} =y {v=1u+3}
with@:{x=u+1}
{v=u+3,z2> u} Zyp,e {v=u+3}
by (2) £ may not be substituted
{z+y=0,y>0}#; {z+y=0}
by (3) ® = {y = 1} i3 illegal

The proof of the proposition is added to illustrate the
convenience of reasoning by means of weak equivalence.

8 An elaborated example

As an illustrative example of application of weak equiv-
alence consider the circuit of Figure 4 derived from the
domain of electronics. The corresponding RL/1 repre-
sentation is listed in Figure 5. In ancient history the
bridge of Wheatstone was used to measure ohm resis-
tance. In the setup, 7y (or r3) is a variable resistor
and r4 (or r3) the unknown resistor. The component
in the center is an ampere meter with resistance rs. For
measurement the variable resistor is adjusted so that no
current flows through r5. In this balanced state the fol-
lowing relationship holds:

r1/re =r3/r4
To see if theory matches reality we apply 10 volt at
the clamps of the circuit. In case we choose the values
of the resistors all equal to 200 ohm then the circuit
is in balanced state and the RL/1 knowledge base can
compute the values for vy, v, and is:

show circ(10,vb,vc,0,i5,200,200,200,200,200)
vb ve is
5.00000 5.00000 O

To obtain this answer, the solver infers the following
weak equivalence:




Figure 4: Circuit overview of the bridge of Wheatstone

module wheatstone(number:x:v:i:r:

va:vb:vc:vd:ve:

i1:42:i3:14:i5:r1:x2:xr3:r4:1r5).
clause ohmlaw(v,i,r) when v=i*r.
clause circ(va,vb,vc,vd,i5,r1,r2,r3,r4,r5)
when ohmlaw(va-vb,i1,r1)

and ohmlaw(va-vc,i3,r3)

and ohmlaw(vc-vd,i4,r4)

and ohmlaw(vb-vd,i2,r2)

and ohmlaw(vc-vb,i5,r5)

and i1+i5=i2 and i4+i5=i3.

Figure 5: The bridge of Wheatstone

{ va — Vb = i1 * 71, Vg — Ve = i3 % T3,V — Vg = 14 * T4,
Vp — Vg = 19 * P, Ve — Vp = i5 * T's,
i1 + i5 = 12,44 + 15 = 13,
ry = 200, ro = 200, r3 = 200, r4 = 200, r5 = 200,
v = 10,v4 = 0,} ={vp,veris} {vs = 5,v. = 5,15 = 0}
If one of the resistors, say r;, is taken larger than the
others, a small positive current flows through the center
resistor:

show circ(10,vb,vc,0,1i5,400,200,200,200,200)
vb vc i5
3.84615 4.61538 0.00384

It might be quite interesting to see if the relationship
for r4 can be inferred symbolically from the represented
knowledge under the assumption that the circuit is in
balanced state. We want to express r4 in terms of 71, r2
and r3 so these latter variables are specified as known
variables. As an extra constraint we know that since the
circuit is in balanced state no current flows through rs:

syminfer(r4) when
circ(*) and i5=0 and known(ri,r2,r3).
solution= r4=r2*r3/ri

To obtain this answer, the solver had to infer the follow-
ing weak equivalence:
{ve — vp = @1 * 71, Vg — Ve = 3 ¥ T3, Ve — Vg = 14 * T4,
Vp — Vg = i3 ¥ T2,V — Vp = i5 * s,
i1+ 15 = ip,04 + 15 = i3,
i5 = 0} =(ry,ryyra,ra} {74 = r2*73/71}

These equations are nonlinear by the occurrences of
the terms iy *7q, ig* g, i3*T3, t4%7r4 and i5*r5 (note that
the known variables r;, ro and r3 are in fact not given
as a value and therefore contribute to the nonlinearity
of the constraint system).

9 Conclusion

In this paper we used weak equivalence to express, ex-
plicitly, the functional difference between wanted, known
and intermediate variables in a set of constraints. By a
complete set of axioms we established the main proper-
ties of weak equivalence. Using these axioms we proved
an application independent tool to simplify constraint
sets using this new form of equivalence.

With examples run on a prototype implementation we
showed practical applicability of weak equivalence for
constraint solving purposes. By distinguishing wanted,
known and intermediate variables in a constraint set the
solver can be guided towards a solution that discards in-
termediate variables and expresses wanted variables in
terms of known variables. Derivation of symbolic rela-
tionships is facilitated by the theoretical concepts intro-
duced in this paper in two ways. Firstly, weak equiva-
lence allows you to express formally the correspondence
between the derived relationship and the original con-
straint set. Secondly the reasoning necessary for in-
ference of symbolic relationships can be represented in
terms of weak equivalence.
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