Institute for Language, Logic and Information

WEAK EQUIVALENCE FOR CONSTRAINT SETS

Sieger van Denneheuvel Karen Kwast

ITLI Prepublication Series for Computation and Complexity Theory CT-91-05

University of Amsterdam

```
The ITLI Prepublication Series
    1986
                                                                                                                                                                                  The Institute of Language, Logic and Information
    86-01
                                                                                                                                                                                  A Semantical Model for Integration and Modularization of Rules Categorial Grammar and Lambda Calculus
    86-02 Peter van Emde Boas
    86-03 Johan van Benthem
                                                                                                                                                                                  A Relational Formulation of the Theory of Types
    86-04 Reinhard Muskens

86-05 Kenneth A. Bowen, Dick de Jongh

86-06 Johan van Benthem

1987

87-01 Jeroen Groenendijk, Martin
                                                                                                                                                                                  Some Complete Logics for Branched Time, Part I Logical Syntax Forward looking Operators
                                                                                                                                                                                  okhof Type shifting Rules and the Semantics of Interrogatives
Frame Representations and Discourse Representations
    87-02 Renate Bartsch
87-03 Jan Willem Klop, Roel de Vrijer
                                                                                                                                                                                  Unique Normal Forms for Lambda Calculus with Surjective Pairing
                                                                                                                                                                                 Polyadic quantifiers
Traditional Logicians and de Morgan's Example
Temporal Adverbials in the Two Track Theory of Time
    87-04 Johan van Benthem
87-05 Victor Sanchez Valencia
                                                                                                                                                                                Categorial Grammar and Type Theory
The Construction of Properties under Perspectives
Type Change in Semantics: The Scope of Quantification and Coordination
    87-06 Eleonore Oversteegen
    87-07 Johan van Benthem
87-08 Renate Bartsch
     87-09 Herman Hendriks
    1988 LP-88-01 Michiel van Lambalgen Logic, Semantics and Philosophy of Language: Algorithmic Information Theory
                                                                                                                                                                                  Expressiveness and Completeness of an Interval Tense Logic
    LP-88-02 Yde Venema
                                                                                                                                                                                   Year Report 1987
    LP-88-03
                                                                                                                                                                                 Going partial in Montague Grammar
Logical Constants across Varying Types
    LP-88-04 Reinhard Muskens
    LP-88-05 Johan van Benthem
                                                                                                                                                                                  Semantic Parallels in Natural Language and Computation Tenses, Aspects, and their Scopes in Discourse
    LP-88-06 Johan van Benthem
    LP-88-07 Renate Bartsch
                                                                                                                                                                                  Context and Information in Dynamic Semantics
A mathematical model for the CAT framework of Eurotra
     LP-88-08 Jeroen Groenendijk, Martin Stokhof
     LP-88-09 Theo M.V. Janssen
                                                                                                                                                                                  A Blissymbolics Translation Program
    LP-88-10 Anneke Kleppe
    ML-88-01 Jaap van Oosten

ML-88-02 M.D.G. Swaen

MI 28 02 D.J. J. Swaen

MI 28 03 D.J. J. Swaen
                                                                                                                                                                                                                                               Lifschitz' Realizabiility
                                                                                                                                                              The Arithmetical Fragment of Martin Löf's Type Theories with weak Σ-elimination Provability Logics for Relative Interpretability

On the Early History of Intuitions Logic

Provable State Stat
     ML-88-03 Dick de Jongh, Frank Veltman
    ML-88-04 A.S. Troelstra
ML-88-05 A.S. Troelstra
                                                                                                                                                                                  Remarks on Intuitionism and the Philosophy of Mathematics
     ML-88-05 A.S. Processia

CT-88-01 Ming Li, Paul M.B. Vitanyi Computation and Complexity Theory: Two Decades of Applied Kolmogorov Complexity

CT-88-02 Michiel H.M. Smid

General Lower Bounds for the Partitioning of Range Trees
    CT-88-02 Michiel H.M. Smid

CT-88-03 Michiel H.M. Smid, Mark H. Overmars

Leen Torenvliet, Peter van Emde Boas

Leen Torenvliet, Peter van Emde Boas

CT-88-03 Michiel H.M. Smid, Mark H. Overmars

Leen Torenvliet, Peter van Emde Boas

CT-88-04 Michiel H.M. Smid

Maintaining Multiple Representations of Dynamic Data Structures

CT-88-05 Michiel H.M. Smid

CT-88-06 Michiel H.M. Smid

CT-88-07 Michiel H.M. Smid

CT-88-08 Michiel H.M. Smid

CT-88-09 Mi
                                                                                                                                                                                  Computations in Fragments of Intuitionistic Propositional Logic
    CT-88-04 Dick de Jongh, Lex Hendriks
Gerard R. Renardel de Lavalette
                                                                                                                              Machine Models and Simulations (revised version)

A Data Structure for the Union-find Problem having good Single-Operation Complexity
    CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas

CT-88-09 Theo M.V. Janssen

CT-88-10 Edith Spaan Leen Torenvliet
      CT-88-05 Peter van Emde Boas
    Towards a Universal Parsing Algorithm for Functional Grammar CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy CT-88-11 Sieger van Denneheuvel, Peter van Emde Boas Towards implementing RL X-88-01 Marc Jumelet Other prepublications: On Solovay's Completences Theorem Theorem 1989 Theo
     1989 LP-89-01 Johan van Benthem Logic, Semantics and Philosophy of Language: The Fine-Structure of Categorial Semantics
Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals

LP-89-05 Johan van Benthem
LP-89-06 Andreja Prijatelj
LP-89-07 Heinrich Wansing
LP-89-08 Víctor Sánchez Valencia
LP-89-09 Zhisheng Huang
ML-89-01 Dick de Jongh, Albert Visser
ML-89-02 Roel de Vrijer
ML-89-03 Dick de Jongh, Franco Montagna
ML-89-04 Dick de Jongh, Marc Jumelet, Franco
ML-89-05 Rineke Verbrugge
ML-89-06 Michiel van Lambalgen
ML-89-07 Dirk Roords

Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
Language in Action
Modal Logic as a Theory of Information
Intensional Lambek Calculi: Theory and Application
The Adequacy Problem for Sequential Propositional Logic
Peirce's Propositional Logic: From Algebra to Graphs
Dependency of Belief in Distributed Systems
Dependency of Belief in Distributed Systems
Extending the Lambda Calculus with Surjective Pairing is conservative
Rosser Orderings and Free Variables
Montagna
On the Proof of Solovay's Theorem

E-completeness and Rounded

Compositional,

Language in Action
Modal Logic as a Theory of Information
Intensional Lambek Calculi: Theory and Application
The Adequacy Problem for Sequential Propositional Logic
Peirce's Propositional Logic: From Algebra to Graphs
Dependency of Belief in Distributed Systems

Extending the Lambda Calculus with Surjective Pairing is conservative

Rosser Orderings and Free Variables
Montagna
On the Proof of Solovay's Theorem

E-completeness and Rounded

E-completeness
                                                                                                                                                        Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
     ML-89-07 Dirk Roorda
                                                                                                                Investigations into Classical Linear Logic
Provable Fixed points in IΔ<sub>0</sub>+Ω<sub>1</sub>

Computation and Complexity Theory: Dynamic Deferred Data Structures
     ML-89-08 Dirk Roorda
     ML-89-09 Alessandra Carbone
     CT-89-01 Michiel H.M. Smid
                                                                                                                                                                                 Machine Models and Simulations
      CT-89-02 Peter van Emde Boas
                                                                                                                                                                                                                                                                                        On Space Efficient Simulations
     CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvliet, Peter van Emde Boas
                                                                                                                                                                                 A Comparison of Reductions on Nondeterministic Space
      CT-89-04 Harry Buhrman, Leen Torenvliet
                                                                                                                                                                                 A Parallel Functional Implementation of Range Queries
    CT-89-05 Pieter H. Hartel, Michiel H.M. Smid
Leen Torenvliet, Willem G. Vree
  CT-89-07 Ming Li, Paul M.B. Vitanyi

CT-89-08 Harry Buhrman, Steven Homer
Leen Torenvliet

CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet CT-89-10 Sieger van Denneheuvel

CT-89-10 Sieger van Denneheuvel

CT-89-11 Zhisheng Huang, Sieger van Denneheuvel Towards Functional Classification of Recursive Query Processing

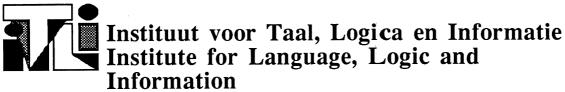
Peter van Emde Boas

Nam Foundations:

An Orey Sentence for Predicative Arithmetic

Nam Foundations
                                                                                                                                                                                 ations: An Orey Sentence for Predicative Arithmetic
New Foundations: a Survey of Quine's Set Theory
    X-89-02 G. Wagemakers
X-89-03 A.S. Troelstra
                                                                                                                                                                                Index of the Heyting Nachlass
    X-89-04 Jeroen Groenendijk, Martin Stokhof
X-89-05 Maarten de Rijke
X-89-06 Peter van Emde Boas
                                                                                                                                                                                 Dynamic Montague Grammar, a first sketch
                                                                                                                                                                                The Modal Theory of Inequality
Een Relationele Semantick voor Conceptueel Modelleren: Het RL-project
```

1990 SEE INSIDE BACK COVER



Faculteit der Wiskunde en Informatica (Department of Mathematics and Computer Science) Plantage Muidergracht 24 1018TV Amsterdam Faculteit der Wijsbegeerte (Department of Philosophy) Nieuwe Doelenstraat 15 1012CP Amsterdam

WEAK EQUIVALENCE FOR CONSTRAINT SETS

Sieger van Denneheuvel
Karen Kwast
Department of Mathematics and Computer Science
University of Amsterdam

Weak equivalence for constraint sets

Sieger van Denneheuvel & Karen L. Kwast

Department of Mathematics and Computer Science University of Amsterdam

Plantage Muidergracht 24, 1018 TV, Amsterdam

Preprint of IJCAI'91 Proceedings of the 12th International Joint Conference on Artificial Intelligence.

Abstract

We describe a generalization of equivalence between constraint sets, called weak equivalence. This new equivalence relation takes into account that not all variables have the same function in a constraint set and therefore distinguishes between restriction variables and intermediate variables. We explore the properties of weak equivalence and its underlying notion of weak implication with an axiomatic approach. In addition a complete set of axioms for weak implication is presented. With examples derived from the declarative rule language RL we show the applicability of weak equivalence to constraint solving.

1 Introduction

Recently, constraint solving systems have emerged that allow declarative constraint processing (see for example Mathematica [Wolfram, 1988], Bertrand [Leler, 1988] and CLP(R) [Jaffar and Michaylov, 1987]) whereas more traditional systems required user intervention to direct the solver towards a desired solution. From a general point of view, a typical input specification for these systems consists of a set of constraints and a set of restriction variables which are "interesting" variables as far as the solver is concerned. The remaining variables in the set of constraints are intermediate variables. For constraint solving, restriction variables can be further divided in two mutually disjunct sets, namely known variables and wanted variables.

Given the above input specification the objective of the constraint solver is to express all wanted variables symbolically in terms of known variables (i.e. without supplying actual values for the known variables). In such a symbolic solution only restriction variables are allowed and as a consequence all intermediate variables must be eliminated from the input constraint set. As a simple example consider the input constraint set $\{x=y+2, y=z+2\}$ where z is known and x is wanted, so x and z together are the restriction variables. A constraint solver set to solve this problem will probably return $\{x=z+4\}$ as the solution, thereby eliminating the intermediate variable y. For such a solver output, we would like to say that it is in some way equivalent with

the input constraint set. Unfortunately the standard definition for equivalence among constraint sets would classify the example input and output as inequivalent, since the output set does not impose any restriction to the intermediate variable y.

Therefore we define a more general equivalence, called weak equivalence which distinguishes between restriction variables and intermediate variables.

2 The rule language family RL

Our primary motivation for investigation of weak equivalence lies in its role in the integration of relational databases and constraint solving. This integration is one of the aims of the rule language family RL (see [Van Emde Boas, 1986a, Van Emde Boas, 1986b). In the RL languages, knowledge can be represented in three different types of rules: tabular rules, clauses and constraints. Corresponding to these types of rules there are three areas of technology that support that style of knowledge processing in isolation: Database Systems, Logic Programming Systems, and Spreadsheets. A main goal of RL is to integrate these three technologies in one knowledge base system. Query processing should be executed with the help of an existing relational database system; knowledge and queries expressed in RL are to be preprocessed by a constraint solver, and to be compiled into a database query language so that large amounts of data can be processed effectively.

In the current prototype of RL/1 we focus on the integration of a constraint solver with a relational database system; RL/1 has been presented elsewhere [Denneheuvel, 1990]. The RL/1 prototype system has been implemented in Prolog which includes a language parser, a database system and a constraint solver. The examples presented in this paper were processed successfully by this prototype.

Terms in RL/1 are constructed inductively in the usual way from constants, variables and functions. Both numeric and string domains are supported. For use in the database application we include binary functions such as +, -, * and /. Constraints include expressions of the form t_1 op t_2 with $op \in \{=, >, <, \neq, \leq, \geq\}$ and two special constraints false and true. Null values are not available in the language itself but may be present in the tables of the underlying database (cf. [Kwast, 1991]).

In RL/1 a distinction is made between extensional

objects and intensional objects. Extensional objects correspond to base tables in the underlying relational database. Intensional objects on the other hand are objects whose relations can be materialized by evaluation of their definition. An intensional object is defined by one or more rules, alternatively called clauses. A rule typically consists of a rule head and a rule expression separated by the keyword WHEN. The rule expression contains constraints or invocations of intensional and extensional objects, separated by the conjunctive AND operator. Defining an intensional object with several rules expresses disjunction between the rules. The question whether a rule expression as a whole denotes a finite or infinite relation is in general undecidable; partial information about this question is obtained from the constraint solver.

2.1 Query commands

Query commands in RL/1 result in an answer relation which consists of attributes and a (possibly empty) set of tuples. Optionally the result of a query command can be stored in an extensional table object. There are the following types of query commands:

The INFER command yields an answer relation with attributes equal to the attribute list between the INFER and WHEN keywords. The SHOW command yields an answer relation whose attributes are the variables occurring in the rule expression.

Processing the above queries requires one or more invocations of the constraint solver. The solver output is used to compile the query into a database request. Symbolic queries on the other hand work by presenting this intermediate solver output to the user directly:

The 'TO file' option allows the computed symbolic answer to be stored in a text file. Symbolic query commands produce one or more of the following answers:

The solution set contains elements of the form x=t with x a wanted variable and t a term. The terms t in the solution set contain only known variables. The condition part consists of constraints over the known variables; it states under what additional restrictions the obtained solution is valid. Intermediate variables are eliminated from both the condition and the solution set. Known variables are determined by the rule expression of the query and wanted variables by the attribute list of the query.

3 Symbolic computation in RL/1

Intensional objects are declarative representations of knowledge; therefore it is not known beforehand how the

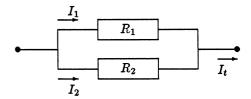


Figure 1: Parallel resistors

attributes of an object are invoked. For instance consider the module in Figure 1 for a parallel circuit of two resistors. In the representation of the circuit both the physical laws of basic electricity theory and the practical condition that the resistors should not be overloaded are expressed in terms of constraints. We know from elementary physics that the values given in the table experimentdata fully determine all quantities. How should the RL/1 knowledge base determine that this is indeed the case? The constraint solver is capable to figure out the determinedness.

Suppose voltage is applied to the example circuit then the current through the circuit and the total resistance can be calculated:

With other variables given, an answer is also computed:

In the constraints for the circuit the law for parallel resistors is not given directly, but the total resistance r_t can nevertheless be computed. Now suppose we apply various voltages to the two resistors as specified in the experiment data table in Figure 1. In the experiment the voltage is slowly increased and the resistors stay the same. Surely at some high voltage the circuit will break down. Let's run the experiment (the '(*)' notation expands to all attributes of the involved object):

show experimentdata(*) and circ(*) vt r1 r2 rt it 9 1200 400 300 0.03 10 1200 400 300 0.033

In the answer relation the rows are corresponding to the rows from the experiment data table but obviously some rows are missing. In these missing rows the constraints were not satisfiable (i.e. the non-smoking condition maxwatt(i2,vt) was violated) so they do not appear in the answer to the query.

The capability to produce symbolic output is an important feature of the RL/1 knowledge base. It allows the user to analyze relationships between variables and to infer relationships that hold in special circumstances. A general relationship between the resistance of the individual components and the total resistance can be found with the following symbolic query:

The constraint solver has inferred the law for parallel resistors.

The classification of variables in the three disjoint partitions of wanted, known and intermediate variables is crucial for derivation of relationships like the previous example. By making r_1 and r_2 known and r_t wanted the constraint solver of the RL/1 system was directed towards a solution that expresses r_t in terms of r_1 and r_2 . The constraint solver actively applies this information in its inference process to yield the desired result.

On the other hand suppose that variables of a constraint set were classified in only two partitions of wanted and intermediate variables as is the case in many existing constraint solving systems. The constraint solver would correctly establish that the equation system is undetermined (there are too many variables and not enough equations to solve them).

In the next sections we formalize the notion of equivalence that is used by the solver.

Weak equivalence and implication

First we introduce some definitions and notations. Variable names are chosen from non capitals (x, y, z, ...) and sets of variables from capitals (X, Y, Z, \ldots) . V is the set of all variables. Constants are denoted by c and functions by f. Terms are denoted by t. Sets of constraints are represented as A, B, C or D. To denote the cardinality of a set I we use the notation ||I||.

Solutions are constraints of the form x = t with $x \notin$ var(t). The variable x is called the head variable and the variables in the term t the tail variables.

Definition 1 A solution set is a finite set
$$\{x_1 = t_1, \ldots, x_n = t_n\}$$
, satisfying:
1. $||\{x_1, \ldots, x_n\}|| = n$, (the variables are distinct)
2. $\{x_1, \ldots, x_n\} \cap var(\{t_1, \ldots, t_n\}) = \emptyset$

Definition 2 A tuple is a solution set of the form $\{x_1=c_1,\ldots,x_n=c_n\}$ with c_1,\ldots,c_n constants.

Solution sets are denoted by Φ , Ψ and Θ and tuples by ϕ, ψ and θ . For a solution set $\Phi = \{x_1 = t_1, \dots, x_n = t_n\}$ the head variables x_1, \ldots, x_n are denoted as $hv(\Phi)$.

The operator restrict retains those solutions in Φ that have a head in X:

Definition 3 $\Phi[X] = \{x = t \mid x \in X, x = t \in \Phi\}$ Definition 4 $\Phi =_X \Psi$ iff $\Phi[X] = \Psi[X]$

Solution sets $\Phi = \{x_1 = t_1, \dots, x_n = t_n\}$ can be interpreted as substitutions $[x_1 := t_1, \ldots, x_n := t_n]$ which can be applied to (collections of) items:

Definition 5
$$\Phi(A) = A[x_1 := t_1, ..., x_n := t_n]$$

with $\Phi = \{x_1 = t_1, ..., x_n = t_n\}$

A tuple ϕ satisfies constraints in A, $\phi \models A$, if and only if ϕ satisfies all constraints in A. A set of constraints A implies a set of constraints $B, A \models B$, if ϕ satisfies Bwhenever ϕ satisfies A, for all tuples ϕ .

Definition 6 (Strong equivalence) 1. $\phi \models A$ iff $\forall a \in A \ (\phi \models a)$ $\forall \phi \ (\phi \models A \Rightarrow \phi \models B)$ $A \models B \& B \models A$ 2. $A \models B$ iff 3. $A \equiv B$

In the case of weak equivalence these definitions are subscripted with the restriction variables X. The notion of strong satisfaction is changed to weak satisfaction by existentially quantifying the variables not in X (i.e. the intermediate variables). As a consequence the values of these variables in the tuple ϕ are no longer involved in the satisfaction of A.

Definition 7 (Weak equivalence)

1.
$$\phi \models_X A$$
 iff $\exists \psi \ (\psi \models A \& \phi \models_X \psi)$

2. $A \models_X B$ iff $\forall \phi \ (\phi \models A \Rightarrow \phi \models_X B)$

3. $A \equiv_X B$ iff $A \models_X B \& B \models_X A$

Example 1 (Equivalence)

In the above definitions we presented strong implication between constraint sets as an implication using strong satisfaction in both the premise and the consequent. Weak implication was constructed from this definition by weakening the consequent of the implication to weak satisfaction. It may be conceivable that other interesting definitions arise if instead only the premise of the implication is weakened (single implication) or if both the premise and the consequent are weakened (double implication):

Definition 8 (Single and double implication)

1.
$$A \models'_X B$$
 iff $\forall \phi \ (\phi \models_X A \Rightarrow \phi \models B)$

2. $A \models''_X B$ iff $\forall \phi \ (\phi \models_X A \Rightarrow \phi \models_X B)$

In the next proposition we compare these four possible definitions of implication.

Proposition 9 (Relating implication definitions)

1.
$$A \models'_X B \Rightarrow A \models B$$
 $(A \models B \Rightarrow A \models'_X B)$

2. $A \models B \Rightarrow A \models_X B$ $(A \models_X B \Rightarrow A \models_X B)$

3. $A \models''_X B \Leftrightarrow A \models_X B$

The relationships between the four definitions are summarized in Figure 2 (arrows denote implication). Single implication is too strong and only applicable when $var(B) \subset X$, in which case it is equivalent to strong implication. Double implication is equivalent to weak implication and therefore superfluous.

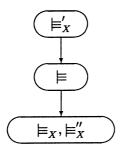


Figure 2: Overview of the implication definitions

4.1 Inconsistency, tautology and redundancy

Inconsistency is normally defined as strong equivalence with the special constraint false. As a consequence tautology and redundancy can be defined in terms of strong and weak equivalence. The strong definitions are obtained from the weak definitions by dropping the subscript X.

Definition 10 (Strong and weak inconsistency)

1. $Inc_X(A)$ iff $A \equiv_X false$ 2. $Taut_X(A)$ iff $A \equiv_X true$ 3. $Red_X(A)$ iff $\exists B \subset A (||B|| < ||A|| \& A \equiv_X B)$

It turns out that weak and strong inconsistency are actually equivalent:

Proposition 11

1. $A \models_X \text{false} \Leftrightarrow A \models \text{false}$

2. $A \equiv_X^{\bullet}$ false $\Leftrightarrow A \equiv$ false

3. $Inc(A) \Leftrightarrow Inc_X(A)$

However, contrary to inconsistency, weak tautology is truly weaker than strong tautology:

Proposition 12

1. $Taut(A) \Rightarrow Taut_X(A)$

2. $Taut_X(A) \not\Rightarrow Taut(A)$

It is easy construct a counter example such that $Taut_X(A)$ but not Taut(A). Let $A = \{x < x + y, y > 0\}$ then it holds that $\{x < x + y, y > 0\} \equiv_{\{x\}}$ true so $Taut_x(A)$. On the other hand $\neg Taut(A)$ because ${x < x + y, y > 0} \equiv {y > 0} \not\equiv {\text{true}}.$

As a consequence weak redundancy is not equivalent to strong redundancy:

Proposition 13

1. $Red(A) \Rightarrow Red_X(A)$

2. $Red_X(A) \not\Rightarrow Red(A)$

Again we can construct a counter example such that $Red_X(A)$ but not Red(A). Let $A = \{x = y+2, y = z+2\}$ then it holds that $A \equiv_{\{x,y\}} \{x = y+2\}$ so $Red_X(A)$. On the other hand $\neg Red(A)$ because both $\{x = y + 2, y =$ $\{x = 2\} \not\equiv \{x = y + 2\} \text{ and } \{x = y + 2, y = z + 2\} \not\equiv \{y = z$ z + 2.

Weak axioms

In this section we enumerate axioms that hold for implication and equivalence. We start with some properties of strong implication that are maintained for weak implication.

Proposition 14 (The equivalence relation \equiv_X)

1. $A \models_X A$ 2. $A \models_X B \& B \models_X C \Rightarrow A \models_X C$ 3. $A \equiv_X A$

4. $A \equiv_X B \Rightarrow B \equiv_X A$

5. $A \equiv_X B \& B \equiv_X C \Rightarrow A \equiv_X C$

Now we explore some axioms that are specifically concerned with the restriction variables of weak implication. As was to be expected, restriction variables can be harmlessly deleted:

Proposition 15 (Removal of restriction variables)

1. $A \models_{X \cup Y} B \Rightarrow A \models_{X} B$ 2. $A \equiv_{X \cup Y} B \Rightarrow A \equiv_{X} B$

A variable can be added to the set of restriction variables X in $A \models_X B$ if it does not occur in B:

Proposition 16 (Addition of restriction variables)

1. $A \vDash_X B \Rightarrow A \vDash_{X \cup Y} B$ if $var(B) \cap Y \subset X$ 2. $A \equiv_X B \Rightarrow A \equiv_{X \cup Y} B$ if $var(A \cup B) \cap Y \subset X$

For strong implication we have, among others, the following axioms:

Proposition 17 (Axioms for strong implication)

1. $A \cup B \models A$

2. $A \models B \& A \models C \Rightarrow A \models B \cup C$

3. $A \models B \Rightarrow A \cup C \models B \cup C$

4. $A \models B \cup C \Rightarrow A \models B$

5. $A \models B \& B \cup C \models D \Rightarrow A \cup C \models D$

6. $A \sqsubseteq B \cup C \& B \sqsubseteq D \Rightarrow A \sqsubseteq C \cup D$

7. $A \models B \& C \models D \Rightarrow A \cup C \models B \cup D$

The axioms (1) and (2) are known in Functional Dependency Theory [Vardi, 1988] as decomposition and union respectively. From these axioms and transitivity (axiom (2) of Proposition 14) all other strong axioms (3)-(7) can be derived. For weak implication however the situation is different, since only (1) and (4) hold unconditionally:

Proposition 18 (Axioms for weak implication)

1. $A \cup B \models_X A$

2. $A \models_X B \& A \models_X C \Rightarrow A \models_X B \cup C$ $if \quad var(B) \cap var(C) \subset X$

 $if \quad var(B) \cap var(C) \subset X$ $3. \ A \models_X B \Rightarrow A \cup C \models_X B \cup C$ $if \quad var(B) \cap var(C) \subset X$ $4. \ A \models_X B \cup C \Rightarrow A \models_X B$ $5. \ A \models_X B \& B \cup C \models_X D \Rightarrow A \cup C \models_X D$ $if \quad var(B) \cap var(C) \subset X$ $6. \ A \models_X B \cup C \& B \models_X D \Rightarrow A \models_X C \cup D$ $if \quad var(C) \cap var(D) \subset X$ $7. \ A \models_X B \& C \models_X D \Rightarrow A \cup C \models_X B \cup D$ $if \quad var(B) \cap var(D) \subset X$

The conditional axioms of Proposition 18 are more general than their counterparts in Proposition 17 since from the conditional axioms the unconditional axioms can be derived. For instance axiom (2) in Proposition 17 can be derived from axiom (2) in Proposition 18 by assigning to X the set of all variables V in which case the condition becomes trivially true.

Name		Axiom		Restriction
True			$A \models_X true$	
False			$\mathbf{false} \models_X A$	
Weakening			$A \cup B \models_X A$	
Transitivity	$A \models_{\mathbf{X}} B \& B \models_{\mathbf{X}} C$	\Rightarrow	$A \models_X C$	
Union	$\begin{vmatrix} A \models_X B & B \models_X C \\ A \models_X B & A \models_X C \end{vmatrix}$	\Rightarrow	$A \models_X B \cup C$	$\mid var(B) \cap var(C) \subset X \mid$
Substitution	1		$A \cup \widehat{\Phi} \models_X \Phi(A) \cup \Phi$	
Generalization			$\Phi(A) \cup \Phi \models_X A \cup \Phi$	
Abstraction			$\Phi(A) \models_X A \cup \Phi$	$hv(\Phi)\cap X=\emptyset$
Removal	$A \models_{X \sqcup Y} B$	\Rightarrow	$A \models_X B$	
Irrelevance	$\begin{array}{c} A \models_{X \cup Y} B \\ A \models_{X} B \end{array}$	⇒	$A \models_{X \cup Y}^{n} B$	$var(B) \cap Y \subset X$

Figure 3: Axioms for weak implication

6 Completeness

A natural question that arises in the context of an axiomatic approach is whether a sound and complete axiomatization is feasible. As a first step we proved the soundness of all axioms in Figure 3.

Proposition 19 For general constraints, the axioms in Figure 3 are sound.

Both for weak and strong implication, a completeness result can be derived. We proved completeness with respect to *primitive* constraints, that is constraints of the format x = y or x = c:

Proposition 20 For primitive constraints, the axioms in Figure 3 are sound and complete.

For completeness the axioms concerned with substitution have to be added to the ones we gave before. The most interesting axiom is Abstraction that allows you to add solutions for intermediate variables.

From the complete set for weak implication a complete set of strong axioms can be easily inferred. Abstraction is never applicable for strong implication so it is replaced by the derived axiom Instantiation:

$$A \models B \Rightarrow \Phi(A) \models \Phi(B)$$

7 Constraint elimination

Intuitively more constraints can be eliminated if weak equivalence is used instead of strong equivalence. In this section we provide a proposition that specifically exploits weak equivalence for constraint elimination. A subset B of a set of constraints $A \cup B$ is redundant with respect to the restriction variables if there exists a solution set Φ for intermediate variables such that $\Phi(B)$, the effect of substituting Φ on B, is equivalent with true:

Proposition 21

 $A \cup B \equiv_X A$ if there exists some Φ such that:

- 1. $\Phi(B) \equiv \text{true}$
- 2. $h\vec{v}(\Phi) \cap X = \emptyset$
- 3. $hv(\Phi) \cap var(A) = \emptyset$

Proof: i)
$$A \cup B \models_X A$$
: Weakening.
ii) $A \models_X A \cup B$:
 $A \models_X A$
 $\Rightarrow A \models_X \Phi(A)$ (3)

$$\Rightarrow A \models_X \Phi(A) \cup \text{true}$$

$$\Rightarrow A \models_X \Phi(A) \cup \Phi(B) \dots (1)$$

$$\Rightarrow A \models_X \Phi(A \cup B)$$

$$\Rightarrow A \models_X A \cup B \cup \Phi \dots (2, \text{Abstraction})$$

$$\Rightarrow A \models_X A \cup B \dots (\text{Weakening})$$
Example 2 (Constraint elimination)
$$\{x = y + 2, y = z + 2\} \equiv_{x,y} \{x = y + 2\}$$

$$\text{with } \Phi = \{z = y - 2\}$$

$$\{u > x, x > v, u > v\} \equiv_{u,v} \{u > v\}$$

$$\text{with } \Phi = \{x = (u + v)/2\}$$

$$\{v = u + 3, x > u\} \equiv_{u,v} \{v = u + 3\}$$

$$\text{with } \Phi = \{x = u + 1\}$$

$$\{v = u + 3, x > u\} \not\equiv_{u,v,x} \{v = u + 3\}$$

$$\text{by (2) x may not be substituted}$$

$$\{x + y = 0, y > 0\} \not\equiv_x \{x + y = 0\}$$

$$\text{by (3) } \Phi = \{y = 1\} \text{ is illegal}$$

The proof of the proposition is added to illustrate the convenience of reasoning by means of weak equivalence.

8 An elaborated example

As an illustrative example of application of weak equivalence consider the circuit of Figure 4 derived from the domain of electronics. The corresponding RL/1 representation is listed in Figure 5. In ancient history the bridge of Wheatstone was used to measure ohm resistance. In the setup, r_1 (or r_2) is a variable resistor and r_4 (or r_3) the unknown resistor. The component in the center is an ampere meter with resistance r_5 . For measurement the variable resistor is adjusted so that no current flows through r_5 . In this balanced state the following relationship holds:

$$r_1/r_2 = r_3/r_4$$

To see if theory matches reality we apply 10 volt at the clamps of the circuit. In case we choose the values of the resistors all equal to 200 ohm then the circuit is in balanced state and the RL/1 knowledge base can compute the values for v_b , v_c and i_5 :

To obtain this answer, the solver infers the following weak equivalence:

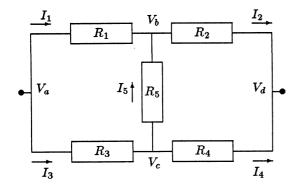


Figure 4: Circuit overview of the bridge of Wheatstone

```
module wheatstone(number:x:v:i:r:
    va:vb:vc:vd:ve:
    i1:i2:i3:i4:i5:r1:r2:r3:r4:r5).
clause ohmlaw(v,i,r) when v=i*r.
clause circ(va,vb,vc,vd,i5,r1,r2,r3,r4,r5)
when ohmlaw(va-vb,i1,r1)
    and ohmlaw(va-vc,i3,r3)
    and ohmlaw(vc-vd,i4,r4)
    and ohmlaw(vb-vd,i2,r2)
    and ohmlaw(vc-vb,i5,r5)
    and i1+i5=i2 and i4+i5=i3.
```

Figure 5: The bridge of Wheatstone

```
 \left\{ \begin{array}{l} v_a - v_b = i_1 * r_1, v_a - v_c = i_3 * r_3, v_c - v_d = i_4 * r_4, \\ v_b - v_d = i_2 * r_2, v_c - v_b = i_5 * r_5, \\ i_1 + i_5 = i_2, i_4 + i_5 = i_3, \\ r_1 = 200, r_2 = 200, r_3 = 200, r_4 = 200, r_5 = 200, \\ v_a = 10, v_d = 0, \right\} \equiv_{\{v_b, v_c, i_b\}} \left\{ v_b = 5, v_c = 5, i_5 = 0 \right\}
```

If one of the resistors, say r_1 , is taken larger than the others, a small positive current flows through the center resistor:

```
show circ(10,vb,vc,0,i5,400,200,200,200,200)
vb vc i5
3.84615 4.61538 0.00384
```

It might be quite interesting to see if the relationship for r_4 can be inferred symbolically from the represented knowledge under the assumption that the circuit is in balanced state. We want to express r_4 in terms of r_1 , r_2 and r_3 so these latter variables are specified as known variables. As an extra constraint we know that since the circuit is in balanced state no current flows through r_5 :

```
syminfer(r4) when
    circ(*) and i5=0 and known(r1,r2,r3).
solution= r4=r2*r3/r1
```

To obtain this answer, the solver had to infer the following weak equivalence:

```
 \begin{cases} v_a - v_b = i_1 * r_1, v_a - v_c = i_3 * r_3, v_c - v_d = i_4 * r_4, \\ v_b - v_d = i_2 * r_2, v_c - v_b = i_5 * r_5, \\ i_1 + i_5 = i_2, i_4 + i_5 = i_3, \\ i_5 = 0 \end{cases} \equiv_{\{r_1, r_2, r_3, r_4\}} \{r_4 = r_2 * r_3 / r_1 \}
```

These equations are nonlinear by the occurrences of the terms i_1*r_1 , i_2*r_2 , i_3*r_3 , i_4*r_4 and i_5*r_5 (note that the known variables r_1 , r_2 and r_3 are in fact not given as a value and therefore contribute to the nonlinearity of the constraint system).

9 Conclusion

In this paper we used weak equivalence to express, explicitly, the functional difference between wanted, known and intermediate variables in a set of constraints. By a complete set of axioms we established the main properties of weak equivalence. Using these axioms we proved an application independent tool to simplify constraint sets using this new form of equivalence.

With examples run on a prototype implementation we showed practical applicability of weak equivalence for constraint solving purposes. By distinguishing wanted, known and intermediate variables in a constraint set the solver can be guided towards a solution that discards intermediate variables and expresses wanted variables in terms of known variables. Derivation of symbolic relationships is facilitated by the theoretical concepts introduced in this paper in two ways. Firstly, weak equivalence allows you to express formally the correspondence between the derived relationship and the original constraint set. Secondly the reasoning necessary for inference of symbolic relationships can be represented in terms of weak equivalence.

References

[Denneheuvel, 1990] S. van Denneheuvel & P. van Emde Boas, The rule language RL/1, A. M. Tjoa & R. Wagner (eds.), Database and Expert Systems Applications, Proc. of the Int. Conf., Vienna, Austria, Aug, Springer Verlag Wien, 381-387.

[Jaffar and Michaylov, 1987] J. Jaffar & S. Michaylov, Methodology and Implementation of a CLP System, Logic Programming, Proc. of the Fourth Int. Conf., Ed. Jean-Louis Lassez, 196-218.

[Kwast, 1991] K. L. Kwast, The incomplete database, IJCAI'91, Morgan Kaufmann Publishers.

[Leler, 1988] Wm. Leler, Constraint Programming Languages: Their Specification and Generation, Addison-Wesly Series in Computer Science.

[Vardi, 1988] M. Y. Vardi, Fundamentals of Dependency Theory, In: Trends in Theoretical Computer Science, Egon Borger (ed.), Computer Science Press, 171-225.

[Van Emde Boas, 1986a] P. van Emde Boas, RL, a Language for Enhanced Rule Bases Database Processing, Working Document, Rep IBM Research, RJ 4869 (51299).

[Van Emde Boas, 1986b] P. van Emde Boas, A semantical model for the integration and modularization of rules, Proc. MFCS 12, Bratislava, Springer LNCS 233, 78-92.

[Wolfram, 1988] S. Wolfram, Mathematica, A System for Doing Mathematics by Computer, Addison-Wesly.

The ITLI Prepublication Series

1990 Logic, Semantics and Philosophy of Language LP-90-01 Jaap van der Does LP-90-02 Jeroen Groenendijk, Martin Stokhof LP-90-03 Renate Bartsch A Generalized Quantifier Logic for Naked Infinitives A Generalized Quantifier Logic for Naked Infinitives
Dynamic Montague Grammar
Concept Formation and Concept Composition
Intuitionistic Categorial Grammar
Nominal Tense Logic
The Variablity of Impersonal Subjects
Anaphora and Dynamic Logic
Flexible Montague Grammar
The Scope of Negation in Discourse, towards a flexible dynamic Montague grammar
Models for Discourse Markers
General Dynamics
A Functional Partial Semantics for Intensional Logic LP-90-02 Jeroen Groenentijk, Martin Stokhof
LP-90-03 Renate Bartsch
LP-90-04 Aarne Ranta
LP-90-06 Gennaro Chierchia
LP-90-07 Gennaro Chierchia
LP-90-08 Herman Hendriks
LP-90-09 Paul Dekker
LP-90-10 Theo M.V. Janssen
LP-90-11 Johan van Benthem
LP-90-12 Serge Lapierre
LP-90-13 Zhisheng Huang
LP-90-15 Maarten de Rijke
LP-90-16 Zhisheng Huang, Karen Kwast
LP-90-16 Zhisheng Huang, Karen Kwast
LP-90-17 Paul Dekker
Mathematical Logic and Foundations
ML-90-01 Harold Schellinx
ML-90-02 Jaap van Oosten
ML-90-03 Yde Venema
ML-90-04 Maarten de Rijke
ML-90-05 Domenico Zambella
ML-90-06 Jaap van Oosten General Dynamics
A Functional Partial Semantics for Intensional Logic
Logics for Belief Dependence
Two Theories of Dynamic Semantics
The Modal Logic of Inequality
Awareness, Negation and Logical Omniscience
Existential Disclosure, Implicit Arguments in Dynamic Semantics Isomorphisms and Non-Isomorphisms of Graph Models A Semantical Proof of De Jongh's Theorem Relational Games Relational Games
Unary Interpretability Logic
Sequences with Simple Initial Segments
Extension of Lifschitz' Realizability to Higher Order Arithmetic,
and a Solution to a Problem of F. Richman
A Note on the Interpretability Logic of Finitely Axiomatized Theories
Some Syntactical Observations on Linear Logic
Solution of a Problem of David Guaspari
Randomness in Set Theory
The Consistency of an Extended NaDSet ML-90-06 Jaap van Oosten ML-90-07 Maarten de Rijke
ML-90-08 Harold Schellinx
ML-90-09 Dick de Jongh, Duccio Pianigiani
ML-90-10 Michiel van Lambalgen
ML-90-11 Paul C. Gilmore
Computation and Complexity Theory
CT-90-01 John Tromp, Peter van Emde Boas
CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette
Osamu Watanabe, José L. Balcázar
CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet
CT-90-05 Sieger van Denneheuvel, Karen Kwast
CT-90-06 Michiel Smid, Peter van Emde Boas
CT-90-06 Michiel Smid, Peter van Emde Boas
CT-90-06 Michiel Smid, Peter van Emde Boas
Dynamic Data Structures on Multiple Storage Media, a Tutorial ML-90-07 Maarten de Rijke CT-90-06 Michiel Smid, Peter van Emde Boas CT-90-07 Kees Doets Dynamic Data Structures on Multiple Storage Media, a Tutorial Greatest Fixed Points of Logic Programs CT-90-08 Fred de Geus, Ernest Rotterdam,
Sieger van Denneheuvel, Peter van Emde Boas
CT-90-09 Roel de Vrijer

Physiological Modelling using RL
Emde Boas
Unique Normal Forms for Combine Unique Normal Forms for Combinatory Logic with Parallel
Conditional, a case study in conditional rewriting
Remarks on Intuitionism and the Philosophy of Mathematics, Revised Version
Some Chapters on Interpretability Logic
On the Complexity of Arithmetical Interpretations of Modal Formulae
Annual Report 1989
Derived Sets in Euclidean Spaces and Modal Logic
Using the Universal Modality: Gains and Questions
The Lindenbaum Fixed Point Algebra is Undecidable
Provability Logics for Natural Turing Progressions of Arithmetical Theories
On Rosser's Provability Predicate
Boas
An Overview of the Rule Language RL/1 CT-90-09 Roel de Vrijer

Cither Prepublications
X-90-01 A.S. Troelstra
X-90-02 Maarten de Rijke
X-90-03 L.D. Beklemishev
Con the
X-90-04
X-90-05 Valentin Shehtman
X-90-05 Valentin Goranko, Solomon Passy
X-90-07 V.Yu. Shavrukov
X-90-08 L.D. Beklemishev
X-90-09 V.Yu. Shavrukov
X-90-10 Sieger van Denneheuvel, Peter van Emde Boas
X-90-11 Alessandra Carbone
X-90-12 Maarten de Rijke
X-90-13 K.N. Ignatiev

Unique
Condit
X-90-08 L.D. Beklemishev
Provab
X-90-10 Sieger van Denneheuvel, Peter van Emde Boas
X-90-11 Alessandra Carbone
X-90-12 Maarten de Rijke
D2happ
Fixed Note that the Rule Language RL/1 Provable Fixed points in $I\Delta_0 + \Omega_1$, revised version Bi-Unary Interpretability Logic Dzhaparidze's Polymodal Logic: Arithmetical Completeness, Fixed Point Property, Craig's Property Undecidable Problems in Correspondence Theory X-90-14 L.A. Chagrova X-90-15 A.S. Troelstra Lectures on Linear Logic 1991 Mathematical Logic and Foundations

ML-91-01 Yde Venema

Cylindric Modal Logic

ML-91-02 Alessandro Berarducci, Rineke Verbrugge
On the Metamathematics of Weak Theories

ML-91-03 Domenico Zambella
On the Proofs of Arithmetical Completeness for Interpretability Logic

ML-91-04 Raymond Hoofman, Harold Schellinx

Collapsing Graph Models by Preorders

ML-91-05 A.S. Troelstra

Computation and Complexity Theory

CT-91-01 Ming Li, Paul M.B. Vitanyi

CT-91-02 Ming Li, John Tromp, Paul M.B. Vitanyi

CT-91-03 Ming Li, Paul M.B. Vitanyi

Average Case Complexity under the Universal Distribution Equals Wo Complexity CT-91-03 Ming Li, Paul M.B. Vitanyi

Average Case Complexity under the Universal Distribution Equals Worst Case Complexity

CT-91-04 Sieger van Denneheuvel, Karen Kwast Weak Equivalence

CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak Equivalence for Constraint Sets Other Prepublications hev The Disjunction Property of Intermediate Propositional Logics
On the Undecidability of the Disjunction Property of Intermediate Propositional Logics Subalgebras of Diagonizable Algebras of Theories containing Arithmetic Partial Conservativity and Modal Logics
Temporal Logic
Annual Report 1990 X-91-06

Lectures on Linear Logic, Errata and Supplement

X-91-07 A.S. Troelstra