Institute for Language, Logic and Information

- CENSUS TECHNIQUES ON
RELATIVIZED SPACE CLASSES

Edith Spaan

ITLI Prepublication Series
for Computation and Complexity Theory CT-91-06

University of Amsterdam

%
&
%

The ITLI Prepublication Series

1986
86-01 The Institute of Language, Logic and Information
86-02 Pcter van Emde Boas A Semantical Model for lnleir;lion and Modularization of Rules

86-03 Johan van Benthem Categorial Grammar and Lambda Calculus

86-04 Reinhard Muskens A Relational Formulation of the Theory of Types

86-05 Kenneth A. Bowen, Dick dc Jongh Some Complete Logics for Branched Time, Part I Well-founded Time,
86-06 Johan van Benthem Logical Syntax Forward looking Operators

1987 87-01 Jeroen Grocnendijk, Martin Stokhof Type shifting Rules and the Semantics of Interrogatives
87-02 Renate Bartsch Frame Representations and Discourse Representations
87-03 Jan Willem Klop, Roel de Vrijer Unique Normal Forms for Lambda Calculus with Surjective Pairing

87-04 Johan van Benthem Polyadic quantifiers

87-05 Victor Sinchez Valencia Traditional Logicians and de Mo¥an'l Example
87-06 Eleonore Oversteegen Temporal Adverbials in the Two Track Theory of Time
87-07 Johan van Benthem Categorial Grammar and Type Theory

The Construction of Properties under Perspectives

87-08 Renate Bartsch
87-09 Herman Hendriks

8 Lp.88-01 Michicl van Lambalgen

Type Change in Semantics: The Scope of Quantification and Coordination
Logic, Semantics and Philosophy of Language: Algorithmic Information Theory

LP-88-02 Yde Venema Expressiveness and Completeness of an Interval Tense Logic
LP-88-03 Year Report 1987

LP-88-04 Reinhard Muskens Going Fa.rﬁal in Montague Grammar

LP-88-05 Johan van Benthem = Logical Constants across Varying Types v
LP-88-06 Johan van Benthem Semantic - Parallels in Natural Language and Computation
LP-88-07 Renate Bartsch Tenses, Aspects, and their Scopes in Discourse

LP-88-08 Jeroen Groenendijk, Martin Stokhof Context and Information in Dynamic Semantics
LP-88-09 Theo M.V. Janssen A mathematical model for the CAT framework of Eurotra

LP-88-10 Anneke Kleppe . . A Blissymbolics Translation Program

ML-88-01 Jaap van Oosten Mathematical Logic and Fourdations: | jfschitz' Realizabiility

ML-88-02 M.D.G. Swaen The Arithmetical Fragment of Martin L&fs Type Theories with weak Z-climination
ML-88-03 Dick de Jongh, Frank Veltman Provability Logics for Relative Interpretability

ML-88-04 A.S. Troclstra On the Early History of Intitionistic Logic

ML-88-05 A.S. Troelstra . Remarks on Intuitionism and the Philosophy of Mathematics

CT-88-01 Ming Li, Paul M.B.Vitanyi Computation and Complexity Theory: Tywo Decades of Applied Kolmogorov Complexity
CT-88-02 Michiel HM. Smid General Lower Bounds for the Partitioning of Range Trees

CT-88-03 Michicl H.M. Smid, Mark H. Overmars Maintaining Multiple Representations of

Leen Torenvliet, Peter van Emde Boas Dynamic Data Structures
CT-88-04 Dick de Jongh, Lex Hendriks Computations in Fragments of Intuitionistic Propositional Logic

Gerard R. Renardel de Lavalette
CT-88-05 Peter van Emde Boas Machine Models and Simulations (revised version)
CT-88-06 Michiel H.M. Smid A Data Structure for the Union-find Problem having good Single-Operation Complexity

CT-88-07 Johan van Benthem Time, Logic and Computation
CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas
CT-88-09 Theo M.V. Janssen Towards a Universal Parsing Algorithm for Functional Grammar

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy
CT-88-11 Sicger van Denncheuvel, Peter van Emde Boas Towards implementing RL
X-88-01 Marc Jumeler Other prepublications: On Solovay's Completeness Theorem

9 1P-89-01 Johan van Bentheml-08i¢, Semantics and P hilosophy of Language:The Fine-Structure of Categorial Semantics

LP-89-02 Jeroen Groenendijk, Martin Stokhof ~ Dynamic Predicate Logic, towards a compositional,
non-representational secmantics of discourse

LP-89-03 Yde Venema Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-04 Johan van Benthem Language in Action

LP-89-05 Johan van Benthem Modal ic as a Theory of Information

LP-89-06 Andreja Prijatelj Intensional Lambek Calculi: Theory and Application

LLP-89-07 Heinnch Wansin The Adequacy Problem for Scquential Propositional Logic

LP-89-08 Victor Sénchez Valencia Peirce't?ropositioml Lo%:, rom Algebra to Graphs

LP-89-09 Zhisheng Huang Dependency of Belief in Distributed Systems

ML-89-01 Dick de Jongh, Albent Visser Mathematical Logic and Foundations: Explicit Fixed Points for Interpretability Logic
ML-89-02 Roel de Vrijer Extending the Lambda Calculus with Surjective Pairing is conservative

ML-89-03 Dick de Jongh, Franco Montagna Rosser Orderings and Free Variables
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna On the Proof of Solovay's Theorem

ML-89-05 Rincke Verbrugge I-completencss and Bounded Arithmetic

ML-89-06 Michiel van Lambalgen The Axiomstization of Randomness

ML-89-07 Dirk Roorda Elementary inductive Definitions in HA: from Strictly Positive towards Monotone
ML-89-08 Dirk Roorda Investigations into Classical Linear Logic

ML-89-09 Alessandra Carbone . Provable Fixed points in [Ag+£2

CT.89-01 Michicl H.M. Smid Computation and Complexity Theory: Dynamic Deferred Data Structures

CT-89-02 Peter van Emde Boas Machine Models and Simulations

CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvliet, Peter van Emde Boas On Space Efficient Simulations
CT-89-04 Harry Buhrman, Leen Torenvliet A Comparison of Reductions on Nondcterministic Space

CT-89-05 Pieter H. Hartel, Michicl HM. Smid A Parallel Functional Implementation of Range Querics

Leen Torenvlict, Willem G. Vree
CT-89-06 H.W. Lenstra, Jr. Finding Isomorphisms between Finite Ficlds

CT-89-07 Ming Li, Paul M.B. Vitanyi A Theory of LcarninF Simple Concepts under Simple Distributions and
Average Case Complexity Tor the Universal Distribution (Prel. Version)
CT-89-08 Harry Buhrman, Steven Homer Honest Reductions, Complcteness and
Torenvliet Nondeterminstic Complexity Classes

CT-89-09 Harry Buhrman, Edith Spaan, Lecn Torenvliet On Adaptive Resource Bounded Computations
CT-89-10 Sieger van Dennchcuvel The Rule Language RL/1
CT-89-11 Zhisheng Huang, Sieger van Denncheuvel Towards Functional Classification of Recursive Query Processing

Peter van Emde Boas .
X-89-01 Mariannc Kalsbeek Other Prepublications: Aq Orey Sentence for Predicative Arithmetic

X-89-02 G. Wagemakers New Foundations: a Survey of Quine's Set Theory

X-89-03 A.S. Troclstra Index of the Heyting Nachlass

X-89-04 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar, a first sketch

X-89-05 Maarten de Rijke The Modal Theory of Inequality

{-983-06 Peter van e Boas Een Relationele Semantick voor Conceptueel Modelleren: Het RL-project

SEE INSIDE BACK COVER

Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and

L3
Information
Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)
Plantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam 1012CP Amsterdam

CENSUS TECHNIQUES ON
RELATIVIZED SPACE CLASSES

Edith Spaan
Department of Mathematics and Computer Science
University of Amsterdam

ITLI Prepublication Series

for Computation and Complexity Theory
ISSN (0924-8374

Received April 1991

Census Techniques on Relativized Space Classes

Edith Spaan
Departments of Mathematics and Computer Science
University of Amsterdam
edith@fwi.uva.nl

Abstract

Recent results ([2], [4], [3], [8], [7]) have focused the attention of research in struc-
tural complexity theory to the development and applications of census techniques. In
this paper we will develop several new techniques with which we can show the equality

of SPACE(S)NTIME(t) classes in the sense of Ladner and Lynch [5] to known classes.

1 Introduction

Using census techniques, a number of time hierarchies have been shown to collapse.
Hemachandra proved that the strong exponential hierarchy collapses to PNE [2], and
Kadin proved that, if co-NP C NPS for some sparse S € NP, then the polynomial hi-
erarchy collapses to PNFllogn] 4],

In (7], Schéning and Wagner prove a more general theorem, from which the above
follow, as well as some new collapses, e.g. NEXPNE« Pol > = PNE (where < Pol >
stands for a polynomial length restriction on the query length). This is essentially proved
by computing, using binary search, the census function of the oracle.

Now what happens if we look at classes like NPSPACENE? This obviously depends on
the definition of relativized space classes. If we assume that the space bound applies to
the query tape, it follows from [7] that NPSPACENE = PNE,

However, if we use the classical model of Ladner and Lynch [5], i.e. the space bound
doesn’t apply to the query tape, a SPACE(s) machine can ask queries of length 2°. We
know less about the structure of these classes, since Savitch’s theorem [6] and the Immer-
man/Szelepcsényi result [3], [8] do not relativize in this setting.

In this paper, we will look at classes DSPACE(S)NTIME(t) and NSPACE(S)NTIME(t) in
the Ladner and Lynch sense. For DSPACE machines, we can still apply a variation of the
census method, since a DSPACE(s) machine can query at most 2°° strings in its entire
oracle tree. For instance, we will prove that PSPACENY = PNE | In the computation tree
of an NSPACE(s) machine however, all queries of exponential length can occur. We will
prove that NPSPACENP = NEXPNP | since an NPSPACE machine can guess a computa-
tion of the NEXP machine and all certificates for the YES-queries in this computation.
This method won’t work if the oracle is too powerful. Using a new census technique,
we will show that, even though in this model PSPACE = NPSPACE doesn’t relativize,
NPSPACENE = PSPACENE.

The inclusions PSPACEN? C NPSPACENY and PSPACENE C EXPNE remain open.
A separation would imply that P # NP, and hence such a result will be hard to obtain. In
the last section we will prove relativized separations for these classes, so equality of these
classes is probably hard to prove as well.

2 Preliminaries

We assume that the reader is familiar with the standard Turing machine model. An oracle
machine is a multi-tape Turing machine with an input tape, an output tape, work tapes,
and a query tape. Oracle machines have three distinguished states QUERY, YES and
NO, which are explained as follows: at some stage(s) in the computation the machine may
enter the state QUERY and then goes to the state YES or goes to the state NO depending
on the membership of the string currently written on the query tape in a fixed oracle set.

The computation tree of an oracle machine M on input z, is the tree of all possible
computations of M in input z which is generated by assuming both YES and NO answers
to the queries.

An oracle Turing machine M runs in time ¢(n), iff for all z every path of M on input
z halts in < ¢(|z]) steps.

An oracle Turing machine M runs in space s(n), iff for all z every path of the com-
putation tree of machine M on input z halts, and scans no more than s(|z|) cells of the
work tapes. The tape cells of the input- and oracle tape are not counted. Note that M
runs in time 2°%(") for some constant ¢, and therefore the length of the queries that M
can ask is bounded by 2¢(").

Define DTIME#(¢(n)) (DSPACEA(s(n))) as the class of sets that are accepted by
deterministic Turing machines which run in time ¢(n) (space (s(n)), and use A as oracle set.
Let NTIME(¢(n)) and NSPACE“(s(n)) be the corresponding nondeterministic classes.

In the sequel, we will consider the following classes (Pol is the class of all polynomial
functions)

LOGSPACE4

fj DSPACE*(c - log(n))

c=1

o0
DLIN4 = [JDTIME*(c-n)
c=1
P4 = |J DTIME*(p(n))
pGPOl
PSPACE* = |J DSPACE*(p(n))
pe Pol

oo
E4 = |J DTIME#(2e")
c=1
U DTIMEA(2r()
pePol

EXPA

And their nondeterministic analogs NLOGSPACE#, NLIN“, NP4, NPSPACE4, NE4 and

NEXP#. For any two classes Cq, Cq, define 0102 = Uaec, ci.

Since we are interested in simulating one type of machine on another machine, we will
need the space and time bounds to be well-behaved.

A function f is time-constructible, iff there is a Turing machine which on every input
of length n halts in exactly f(n) steps.

A function f is space-constructible, iff there is a Turing machine which on every input
of length n scans exactly f(n) cells of the work tapes.

3 Collapses

We will first consider deterministic space classes. Recall that in our definition the space
bound doesn’t hold for the query tape, which enables a space(s) machine to ask queries
of length 2°(™ on inputs of length n. An application of the binary search technique in [7],
leads to the following theorem:

Theorem 1 DSPACE(s(n))N"™E(tM) ¢ DTIME(Pol (s(n)))NTTME(Fol (¢(27)
For s time constructible, ¢ at least linear.

Proof: Let M; be an arbitrary DSPACE(s(n)) oracle machine, and My an arbitrary

NTIME(¢(n)) machine. The number of IDs of a DSPACE(s(n)) machine on input z is

bounded by 2¢#(2]), Since the machine is deterministic, each ID can lead to at most one

query, i.e. there are at most 2¢*(I%l) different queries in the computation tree of My(z).
Define oracle set A as follows:

A = {z#k4#0°°0e) ; at least k queries in the computation tree of M (z) are in L(M3)}.

Using oracle A, we can by binary search compute the exact number of queries in the
computation tree of M;(z) that are answered YES, in DTIME(Pol (s(n))).

Decision procedure for A:
input z#k405(12) (k < 2°'s(|”|))
guess k different strings qi,. .., q of length < 2¢s(1=)
verify that each ¢; is asked in the computation tree of M; on input z
i.e.Guess a path of M7 on input z
And check that ¢; is asked on this path
For each ¢;, guess an accepting path of My on input g;

Nondeterministic time complexity of A:
2¢s(J=1) (bound on the value of k)
x 2¢8(l2)) (maximal length of an M; path on input z)
xt(205U=D) (time to verify that a query € L(M,)

Since the length of the input is larger than ¢ - s(|z|), and ¢ is at least linear, A can be
accepted by an NTIME(Pol (¢(2")) bounded Turing machine.

Define oracle set B such that: If k£ is the exact number of different queries in the
computation tree of M;(z) that are answered YES, then z#k#0°(2l) ¢ B iff ¢ € M,(M2),
Therefore, we can recognize M;*™2) with a DTIME(Pol (s(n))) machine that uses A@® B
as oracle.

Decision procedure for B:
input z# k#0312 (£ < 20s(l2]))
guess k different strings qq,..., gk of length < 2¢¢(l=})
verify that each g¢; is really asked by M; on input z. as in A
and verify that each ¢; is a YES string
Simulate Mj on input z
For each query ¢ that is asked do
if ¢ = ¢; for some ¢
then proceed in the YES state
else proceed in the NO state
ACCEPT iff the simulation accepts.

Nondeterministic time complexity of B for inputs of length n:
Pol (t(2")) for guessing and verifying the £ YES-queries
+2" to simulate M, on input z.
which is in Pol (¢(27)).

X

Corollary 2 PNP = PSPACENP

PNE C PSPACENP by padding the queries
PSPACENF C pNE by theorem 1

Now we turn our attention to nondeterministic space bounded oracle machines. In the
previous proof it was essential that the number of different queries in the computation
tree is bounded by 2¢*("). An NSPACE(s(n)) machine, however, can query all strings of
length 25(") in its computation tree, which may lead to a double exponential number of
queries in the computation tree.

In fact, it turns out that NPSPACENF can recognize the same languages as NEXPNP |
because the NPSPACE machine can guess an accepting path of the NEXP machine and
accepting paths of the NP-oracle machine on the YES queries. We will now prove a more
general result of which the above is a corollary.

Theorem 3 NTIME(s(n))NT™E((") ¢ NSPACE(O(log(t(s(n))))) "N
For log(t(s(n))) space constructible.

Proof: Let M; be an arbitrary NTIME(s(n)) oracle machine, and M, an arbitrary
NTIME(¢(n)) machine.

We will prove that M;“M2) can be recognized by a nondeterministic space(O(logt(s(n)))
machine M with oracle A € NLIN.

Our NSPACE-machine M will work as follows: on input z, copy = to the oracle tape
and write an arbitrary string o of length < s(|z|) on the oracle tape. This is the guessed
accepting path of M; on input z. Guess k < s(|z|): the number of YES-queries in this
computation on this path. Write k arbitrary strings o1,..., 0% of length < #(s(|z])) on

the oracle tape (separated by #). These are the guessed accepting paths of M, on the
k Yes-queries. To ensure that the oracle has enough time, write 01(¢(12D)) on the oracle
tape. All this can be done in NSPACE(O(log(t(s(|z]))))), since the only thing we have to
remember is the length of the query, and the value of k.

The oracle set A will be constructed in such a way that: z#o#o1# - -#or ¢ A iff
o encodes an accepting path of M; on input z, with exactly ¥ YES-queries, o; is an
accepting path of M on the i-th YES-query, and the NO-queries on the M; path o are
really NO-queries.

Machine M accepts iff the answer to the query is NO. z € M;*M2) iff some query
asked by M is not in A. Thus, ¢ € M;*M2) iff z € MA.

It remains to prove that A € NLIN

Input z#o#o17 .. .#ak#Ozp(lzD
if o does not encode an accepting path of My on input z
or there are not exactly k£ Yes-queries on this path

then ACCEPT.

else determine g¢,...,q: the k¥ Yes-queries in o.
if o; does not encode an accepting path of M; on input ¢;
then ACCEPT.

else guess a NO-query ¢ in computation o,
and guess a computation of My on input gq.
ACCEPT iff this computation accepts.

Verifying the computations o, 01,...0; and determining the queries can be done in
linear deterministic time in the length of the input.

Since the length of any query of M; on input z is bounded by s(|z|), guessing a
computation of My on a NO-query can be done in nondeterministic time #(s(|z|)), which
is linear in the length of the input. X

Corollary 4 PNE = PSPACEN? C EXPNP C NPSPACEN? = NEXPNP,

Corollary 5 NLOGSPACENP = NpNP

Theorem 3 doesn’t give any nice equivalences for classes like NPSPACENE. Surpris-
ingly, it turns out that this class doesn’t have more power than PSPACENE | as follows
from the following theorem.

Theorem 6 NSPACE(S(n))NTIME(t(n)) C DSPACE(O(S(n)))NTIME(Pol (t(n)))
For s time constructible, ¢ at least exponential.

Proof: Let M; be an arbitrary NSPACE(s(n)) oracle machine, and M, an arbitrary
NTIME(¢(n)) machine. We assume that IDs of M; with an empty query tape are marked.
The number of IDs of M; on inputs of length n is bounded by 2¢*(") for some constant c.

Since M can ask 22¢°(") queries on inputs of length n, we can’t keep track of the
number of YES queries with a DSPACE(O(s(n))) machine.

The trick we will use is that we won’t look at the number of queries of My, but at pairs
of IDs of M; between which a query can be generated, i.e. we look at pairs <4d, 1d’ > such

that 7d has an empty query tape, id’ is in the QUERY state, and there exists a queryless
path from id to id’.

z € M;"™2) iff there exists a sequence of IDs ido, idg, idy,1dy, . . ., td;, 4d}, 1d; 1 such
that:

o id is the initial ID of M; on input z
¢ id; is in the QUERY state (V5 < 1)
e V5 < ¢ one of the following situations holds

— either 4d;4; is the YES-successor of id; and there exists a queryless path from
id; to id; where the generated query is in L(My)

— or id;4q is the NO-successor of of id; and there exists a queryless path from id;
to id; where the generated query is not in L(M;)

o There exists a queryless accepting path from ¢d;;; to an accepting ID

Our DSPACE-machine will work as follows on input z: First we compute (e.g. by
binary search) the exact number of ID pairs <id,id’ > such that:

*) id and id’ represent space s(|z|)-bounded IDs
1d has an empty query tape and id’ is the QUERY state
and for each queryless path of M;(z) from id to id’,
the answer to the generated query is YES.

A= {m#k#OQMWD : there are at least k pairs of IDs that satisfy (*)}.

The number of ID pairs is bounded by 22¢("), Therefore, (e.g. by binary search), we can
determine the exact number of pairs fulfilling (*) in DSPACE(O(s(]z|)) with oracle A.

Decision procedure for A:
input z#k#02° 1)
Guess k different pairs of space s(|z|) IDs of M;
For each guessed pair <1id,id'> do
if 1d does not have an empty query tape
or id’ is not in the query state
then REJECT
else for each queryless path of M(z) from id; to idy of length < 2¢¢(I2D) do
Determine query ¢
Guess computation of My on input q.

If this computation rejects, then REJECT
ACCEPT

Nondeterministic time needed for inputs of length n:
2" (maximal value of k)
x2" (number of paths between two IDs)
Xt(n) (time to simulate M, on a query)

Since t is at least exponential, A can be accepted in NTIME(Pol (t(n)).
Define another oracle set B:

B = {m#k#02“(|zl) : if k£ is the ezact number of ID pairs fulfilling (*),
then M;M2 accepts z}

Using oracle A @ B, we can recognize M;*™2) in DSPACE(O(s)).

Decision procedure for B:
Input: w4027 (D
Guess k different pairs of space s(|z|)-bounded IDs of M;
<ID4,ID} >,...,<ID,ID} >
And verify nondeterministically that these pairs fulfill (*) asin A
Guess a sequence of < 2¢°(2l space s(|z|) bounded IDs
tdo, 1dg, 1dy, 1), . . ., id;, 1d}, 1d;4q such that:
1dg is the initial ID of M7 on input z
id} is in the query state
1d;41 is a successor of ¢d}
there exists a queryless path from ¢d; to id;
there exists a queryless accepting path from id; 1,
Now we only have to check that the queries are answered correctly:
for j:=1to 7 do
if <idy,4d;> is in the list
then the answer to the query must be YES
if 4d;41 is in the NO-state then REJECT
else if ¢d;44 is in the YES-state
then guess a queryless path from id; to id;«

and guess an accepting computation of M, on the generated query.
ACCEPT

Nondeterministic time needed for inputs of length n:
Pol (t(n)) (for guessing and verifying the k ID pairs fulfilling (*))
Xn (number of IDs in the sequence)
xt(n) (time to simulate M5 on a query)

Since t is at least exponential, B can be accepted in NTIME(Po! (¢(n)). R

Corollary 7 LOGSPACENE = NLOGSPACENE,

Combining theorem 1 with theorem 6, we obtain the following analog of theorem 1 for
nondeterministic space classes.

Corollary 8 NSPACE(s(n))NT™ME(() ¢ DTIME(Pol (s(n)))NTIME(Pel (¢(27)))
For s time constructible, ¢ at least exponential.

Pol
Corollary 9 PNTIME(? ”) _ pgpaACENE = NPSPACENE C EXPNE = NEXPNE

C: By padding the queries
Pol

NPSPACENE C PNTIME(2*" ™) By corollary 8

NEXPNE C EXPNE . Follows from [7]

4 Relativized Separations

We’ll now focus on the following relations between classes as proved in corollary 4 and 9
of the previous section: .

1. PNE = PSPACENP ¢ EXPNP € NPSPACENP = NEXPNP

Pol
2. PNTIME(2*"") _ pgpACENE = NPSPACENE € EXPNE — NEXPNE

We can’t hope to prove any of the inclusions to be strict, since that would imply that
P # NP.

EXPNP = EXPP = EXP C PNE

P=NP = { EXPNE = EXPE = DTIME(22P ol) € PNTIME(
NEXPNP = NEXPF = NEXP C EXPNP

22Pol)

‘We will construct for each inclusion an oracle such that the inclusion becomes strict.

Theorem 10 There exists a set A such that: EXPNP* # NEXPNP*,

Using a similar construction as in [1], where an oracle is constructed such that PNP* #
NPNPA, we can diagonalize such that:

La:={0":3y(lyl = 2" A V(2| = |y| - y= € 4))} ¢ EXPNP*
Theorem 11 There ezists a set A such that PNE* #* EXPNPY,

We will use a similar construction as in [4], where it is shown that for any function
f € o(log) there exists a relativized world such that: PNPIf(n)] £ pNPllogn]
For every oracle A4, let L4 be the following language:

Ly :={0": the lexicographically largest string y of length 2"
such that 3z(|z| = 2" and yz € A), is odd}

For every oracle A, L4 € EXPNP4,
NPA machine: input y
guess 7', z such that |y| = |y| = |z| and o/ > y
Accept if and only if ¥’z € A.
EXP machine: binary search on strings of length 27,

To determine the lexicographically largest string ¥ of length 2" such that:
Jz such that |2| = 2" and yz € 4
Accept if and only if last bit of y is 1.

We will construct A such that Ly ¢ PNE”, Note that PNE* = pK(4) , where K(A) is the
standard many-one complete set for NE4.

K(4) :={<M,z,k>| M is a nondeterministic machine that

accepts = with oracle A in at most k steps}

Let My, M,,... be a recursive enumeration of P oracle machines. Our construction
will ensure that for each machine M;, there exists an integer n; such that:

M,-K(A) accepts 0™ iff 0™ & L4
stage 0: 4:=0

stage 1: Diagonalizing against the -th machine M;. Let p(n) be a polynomial such that
p(n) bounds the running time of M; on inputs of length n. The number of queries in the
computation tree is bounded by 2°(™). Choose n; such that:

1. None of the previous diagonalization steps deal with strings of length > 2™,
2. 22" > 2%(ni)

During stage m;, we will only add strings of length 2 - 2™ to A. At any iteration of the
loop oprey Will be the lexicographically largest string of length 2™, that occurs as a prefix
of a string of length 22" in A. In the construction, some strings will be reserved for the
complement. We will keep these strings in set A..

A.=0
Consider the tree of M; on input 0™.
All queries in the tree are unmarked.
Opref = 02",
A= Au{0%?"}
LOOP: For each unmarked query ¢ =< M,z,k > in the computation tree of M; do
if g€ K(4)
then Take some accepting path of M# on input z
*Length of path < k < ¢ < 2pP(n:) *
For each NO-query ¢’ on this path do
A=A U{d}
Mark query ¢
If M»K(A)(O”i) accepts and opr is even
1 pref
or MiK(A)(O"") rejects and oppepis odd
then We are done (0™ is a counterexample for M;)
else Opref := lexicographic successor of o of length 27
Choose some string 7 of length 2 - 2™, such that
Opref is a prefix of 7 and 7 ¢ A,
A:=Au{r}
Go back to LOOP.

We only add strings to A, if we mark some query of M;, and for each query, we add at
most 2P(n) strings to A.. Since we never unmark queries and the number of queries in the
computation tree of M; is bounded by 2P(") we add at most 22P(ni) strings to A, during
stage n;. Since 22" > 22P(") for any prefix o of length 2™, there must exist a string 7 of
length 2 - 2™ such that o is a prefix of 7, and 7 is never added to A..

Now we only have to prove that the number of iterations of the loop is bounded by
22" Suppose we are at some iteration of the loop, and we do not exit the loop. Suppose

the value of oy at this iteration is 0. Then, the path of M; is accepting iff o is odd.
Suppose that at the next iteration of the loop no new queries of M; are marked. Then the
path of M; in this iteration is the same as in the previous iteration of the loop. But then
M; accepts iff o is odd iff the lexicographic successor of o is even, and we exit the loop.
Therefore, the number of iterations of the loop is bounded by the number of queries in the
computation tree of M;. Since the number of queries is bounded by 2°(%) the number of
iterations of the loop is certainly bounded by 22 as required.

Pol
Theorem 12 There exists a set A such that: PNTIMEA(2 ™) # EXPNE*

Use the same construction as in the previous theorem, this time using the following
language L 4.

Ly :={0": the lexicographically largest string y of length 2"
such that 3z(|z| = 22" and yz € A), is odd}

Acknowledgements I would like to thank Lane Hemachandra, Leen Torenvliet, Peter
van Emde Boas and Rineke Verbrugge for fruitful discussions and proof reading.

References

(1] Heller, H., Relativized polynomial hierarchies extending two levels, Mathematical Sys-
tems Theory 17 (1984), 71-84.

(2] Hemachandra L.A., The strong ezponential hierarchy collapses, Proc 19th STOC
conference (1987), 110-122.

[3] Immerman, N. Nondeterministic space is closed under complementation. SIAM J. on
Computing 17 (1988) pp. 935-938.

[4] Kadin, J., PNPllogn] 44 sparse Turing-complete sets for NP, Proc. of 2nd conference
on Structure in Complexity Theory (1987), 33—40.

[5] Ladner, R.E., Lynch, N.A., Relativization of questions about Logspace computability.
Mathematical Systems Theory 10 (1976) 19-32.

[6] Savitch W.J. Relationships between nondeterministic and deterministic tape complez-
ities. J. Computer and System Sciences 4 (1970) 177-192.

[7] Schéning, U., Wagner, K.W., Collapsing oracle hierarchies, census functions and

logarithmically many queries, Proc. 5th Symp. on Theoretical Aspects of Computer
Science (1988) 91-98.

(8] Szelepcsényi, R. The method of forcing for nondeterministic automata. Bulletin of
the EATCS 33 (1987) pp. 96-100.

10

The ITLI Prepublication Series

1990

Logic, Semantics and Philosophy of Language
LP-90-01 Jaap van der Does

LP-90-02 Jeroen Groenendijk, Martin Stokhof
LP-90-03 Renate Bartsch

LP-90-04 Aarme Ranta

LP-90-05 Patrick Blackburn

LP-90-06 Gennaro Chierchia

LP-90-07 Gennaro Chierchia

LP-90-08 Herman Hendriks

LP-90-09 Paul Dekker

LP-90-10 Theo M.V, Janssen

LP-90-11 Johan van Benthem

LP-90-12 Serge Lapierre

LP-90-13 Zhisheng Huang

LP-90-14 Jeroen nendijk, Martin Stokhof
LP-90-15 Maarten de Rijke

LP-90-16 Zhisheng Huang, Karen Kwast
LP-90-17 Paul Dekker

Mathematical Logic and Foundations
ML-90-01 Harold Schellinx

ML-90-02 Jaap van Oosten

ML-90-03 Yde Venema

ML-90-04 Maarten de Rijke

ML-90-05 Domenico Zambella

ML-90-06 Jaap van Oosten

ML-90-07 Maarten de Rijke

ML-90-08 Harold Schellinx

ML-90-09 Dick de Jon%ll, Duccio Pianigiani

ML-90-10 Michiel van Lambalgen

ML-90-11 Paul C. Gilmore

Computation and Complexity Theory

CT. -50—01 John TromEePeter van Emde Boas

CT-90-02 Sieger van

CT-90-03 Ricard Gavald3, Leen Torenvliet
Osamu Watanabe, José L. Balcézar

CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet

A Generalized Quantifier Logic for Naked Infinitives

Dynamic Montague Grammar

Concept Formation and Concept Composition

Intuitionistic Categorial Grammar

Nominal Tense Logic

The Variablity of Impersonal Subjects

Anaphora and Dynamic Logic

Flexible Montague Grammar

The Scope of Negation in Discourse, towards a flexible dynamic Montague grammar
Models for Discourse Markers

General Dynamics

A Functional Partial Semantics for Intensional Logic

Logics for Belief Dependence

Two Theories of Dynamic Semantics

The Modal Logic of Inequality

Awareness, Negation and Logical Omniscience

Existential Disclosure, Implicit Arguments in Dynamic Semantics

Isomorphisms and Non-Isomorphisms of Graph Models
A Semantical Proof of De Jongh's Theorem
%elatiolrjllal Gamegﬂ Lo
nary Interpretability Logic
Sequences with Simple Initial Segments
Exiension of Lifschitz' Rea}izabihtﬁlto Higher Order Arithmetic,
and a Solution to a Problem of F. Richman
A Note on the Inte(%retability Logic of Finitely Axiomatized Theories
Some Syntactical Observations on Linear Logic
Solution of a Problem of David Guaspari
Randomness in Set Theory
The Consistency of an Extended NaDSet

Associative Storage Modification Machines

enneheuvel, Gerard R. Renardel de Lavalette A Normal Form for PCSJ Expressions

Generalized Kolmogorov Complexity
in Relativized Separations
Bounded Reductions

CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint Expressions

CT-90-06 Michiel Smid, Peter van Emde Boas
CT-90-07 Kees Doets
CT-90-08 Fred de Geus, Emest Rotterdam,

Sieger van Denneheuvel, Peter van Emde

Dynamic Data Structures on Multiple Storage Media, a Tutorial
Greatest Fixed Points of Logic Programs

Physiological Modelling using RL

oas

CT-90-09 Roel de Vrijer Uni%llle Normal Forms for Combinatory Logic with Parallel
e ugl,- tions Conditional, a case study in condition: rewritin%v[
%%Sf RS Htoclstra Remarks on Intuitionism and the Philosophy of Mathematics, Revised Version
X-90-02 Maarten de Rijke Some Chapters on Interpretability Logic
X-90-03 L.D. Beklemishev On the Complexit% of Arithmetical Interpretations of Modal Formulae
X-90-04 Annual Report 1989
X-90-05 Valentin Shehtman Derived Sets in Euclidean Spaces and Modal Logic
X-90-06 Valentin Goranko, Solomon Passy Using the Universal Modality: Gains and Questions
X-90-07 V.Yu. Shavrukov The Lindenbaum Fixed Point Al%ebra is Undecidable
X-90-08 L.D. Beklemishev Provability Logics for Natural Turing Progressions of Arithmetical Theories
X-90-09 V.Yu. Shavrukov On Rosser's Provability Predicate
X-90-10 Sieger van Denneheuvel, Peter van Emde Boas An Overview of the Rule Language RL/1

X-90-11 Alessandra Carbone
X-90-12 Maarten de Rijke
X-90-13 K.N. Ignatiev

X-90-14 L.A. Chagrova

Provable Fixed points in IAj+£,, revised version

Bi-Unary Interpretability Logic

Dzhaparidze's Polymodal Logic: Arithmetical Completeness,
Fixed Point Property, Craig's Property

Undecidable Problems in Correspondence Theory

X-90-15 A.S. Troelstra Lectures on Linear Logic

1991

Mathematical Logic and Foundations

ML-91-01 Yde Venema Cylindric Modal Logic

ML-91-02 Alessandro Berarducci, Rineke Verbrugse On the Metamathematics of Weak Theories

ML-91-03 Domenico Zambella n the Proofs of Arithmetical Completeness for Interpretability Logic

ML-91-04 Ra
ML-91-05 A.S. Troelstra

Computation and Complex}i? Theory
CT-gl-Ol Ming Li, Paul M.B. Vitanyi
CT-91-02 Ming Li, John Tromp, Pai
CT-91-03 Ming Li, Paul M.B. Vitanyi

ond Hoofman, Harold Schellinx Collapsing Graph Models by Preorders

History of Constructivism in the Twentieth Century

Kolmogorov Complexity Arguments in Combinatorics

M.B. Vitanyi How to Share Concurrent Wait-Free Variables

verage Case Complexity under the Universal Distribution Equals Worst Case
Complexity

CT-91-04 Sieger van Denneheuvel, Karen Kwast Weak Equivalence

CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak

CT-91-06 Edith Spaan

Other Pre‘ﬂtblications

X-91-01

X-91-02 Alexander Chagrov
Michael Zakharyaschev

X-91-03 V. Yu. Shavrukov

X-91-04 K.N. Ignatiev

X-91-05 Johan van Benthem

X-91-06

X-91-07 A.S. Troelstra

exander Chagrov, Michael Zakharyaschev

uivalence for Constraint Sets
Census Techniques on Relativized Space Classes

The Disjunction Property of Intermediate Propositional Logics
On the Undecidability of the Disjunction Property of Intermediate
Propositional Logics :

Sub?;ll%ebras of Diagonizable Al%ebras of Theories containing Arithmetic
Partial Conservativity and Modal Logics

Temporal Logic

Annual Report 1990

Lectures on Linear Logic, Errata and Supplement

