Institute for Language, Logic and Information

LEVATIONIS LAUS

Kees Doets

ITLI Prepublication Series
for Computation and Complexity Theory CT-91-08

&3
&3
5

University of Amsterdam




The ITLI Prepublication Series

1990 Logic, Semantics and Philosop
LP-90-01 Jaap van der Does

LP-90-02 Jeroen Groenendijk, Martin Stokhof
LP-90-03 Renate Bartsch

LP-90-04 Aarne Ranta

LP-90-05 Patrick Blackburmn

LP-90-06 Gennaro Chierchia

LP-90-07 Gennaro Chierchia

LP-90-08 Herman Hendriks

LP-90-09 Paul Dekker

LP-90-10 Theo M.V, Janssen

LP-90-11 Johan van Benthem

LP-90-12 Serge Lapierre

LP-90-13 Zhisheng Huang

LP-90-14 Jeroen Groenendijk, Martin Stokhof
LP-90-15 Maarten de Rijke

LP-90-16 Zhisheng Huang, Karen Kwast
LP-90-17 Paul Dekker

Mathematical Logic and Foundations
ML-90-01 Harold Schellinx

ML-90-02 Jaap van Oosten

MIL-90-03 Yde Venema

ML-90-04 Maarten de Rijke

ML-90-05 Domenico Zambella

ML-90-06 Jaap van Oosten

ML-90-07 Maarten de Rijke

ML-90-08 Harold Schellinx

ML-90-09 Dick de Jon%lérlguccio Pianigiani
ML-90-10 Michiel van balgen
ML-90-11 Paul C. Gilmore

Computation and Complexity Theory
CT-90-01 John Tromp, Peter van Emde Boas
CT-90-02 Sieger van
CT-90-03 Ricard Gavald3, Leen Torenvliet

hy of Languggee
A Generalized Quantifier Logic for Naked Infinitives
Grammar

Dynamic Montague

Concept Fonnt:t;gcl)ln and Concept Composition

Intuitionistic Categorial Grammar

Nominal Tense Logic

The Variablity of Impersonal Subjects

Anaphora and Dynamic Logic

%fxgble Mort!ta . Gramnl))ar ards a flexible d M grammar
e Scope of Negation in Discourse, tow: a flexible dynamic Montague

Models for Discogu’;se Markers

General Dynamics

A Functional Partial Semantics for Intensional Logic

Logics for Belief Dependence

Two Theories of D¥nanﬁc Semantics

The Modal Logic of Inequality

Awareness, Negation and Logical Omniscience

Existential Disclosure, Implicit Arguments in Dynamic Semantics

Isomorphisms and Non-Isomorphisms of Graph Models
A Semantical Proof of De J ongifs Theorem
%elatiolrlxlal Gamegﬂi Logi
nary Interpretability c
Sequcncesr\l;)vrieth Simple Itgnlual Segments
Extension of Lifschitz' Realizability to Higher Order Arithmetic,
and a Solution to a Problem of F. Richman
A Note on the Interpretability Logic of Finitely Axiomatized Theories
Some Syntactical Observations on Linear Logic
Solution of a Problem of David Guaspari
Randomness in Set Theory
The Consistency of an Extended NaDSet

Associative Storage Modification Machines

eheuvel, Gerard R. Renardel de Lavalette A Normal Form for PCSJ Expressions

Generalized Kolmogorov Complexity

Osamu Watanabe, José L. Balcdzar  in Relativized Separations

CT-90-04 Harry

Buhrman, Edith Spaan, Leen Torenvliet

Bounded Reductions

CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint Expressions
CT-90-06 Michiel Smid, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial

CT-90-07 Kees Doets

CT-90-08 Fred de Geus, Emnest Rotterdam, Sieger van Denneheuvel, Peter van Emde

CT-90-09 Roel de Vrijer
Other Prepublications
X-90-01 A-S. Troelstra
X-90-02 Maarten de Rijke
X-90-03 L.D. Beklemishev
X-90-04

X-90-05 Valentin Shehtman
X-90-06 Valentin Goranko, Solomon Passy
X-90-07 V.Yu. Shavrukov
X-90-08 L.D. Beklemishev
X-90-09 V.Yu. Shavrukov

X-90-10 Sieger van Denncheuvel, Peter van Emde Boas

X-90-11 Alessandra Carbone
X-90-12 Maarten de Rijke
X-90-13 K.N. Ignatiev

X-90-14 L.A. Chagrova
X-90-15 A.S. Troelstra

1991

Mathematical Logic and Foundations

ML-91-01 Yde Venema Cy
ML-91-02 Alessandro Berarducci, Rineke Verbruy,
ML-91-03 Domenico Zambella

ML-91-04 Ra;

ML-91-05 A.S. Troelstra

ML-91-06 Inge Bethke

Computation and Complexity Theory

CT-91-01 Ming Li, Paul M.B. Vitanyi

Greatest Fixed Points of Logic Pro%ams
I 0as Physiological Modelling using RL

Unique Normal Forms for Combinatory Logic with Parallel

Conditional, a case study in condition: rewritin%/I

Remarks on Intuitionism and the Philosophy of Mathematics, Revised Version

Some Chapters on Interpretability Logic

On the Complexitg of Arithmetical Interpretations of Modal Formulae

Annual Report 1989

Derived Sets in Euclidean Spaces and Modal Logic

Using the Universal Modality: Gains and Questions

The Lindenbaum Fixed Point Algebra is Undecidable

Provability Logics for Natural Turing Progressions of Arithmetical Theories

On Rosser's Provability Predicate

An Overview of the Rule Language RL/1

Provable Fixed points in IA;+Q;, revised version

Bi-Unary Interpretability Logic

Dzhaparidze's Polymodal Logic: Arithmetical Completeness,

Fixed Point Property, Craig's Property

Undecidable Problems in Correspondence Theory

Lectures on Linear Logic

lindric Modal Logic
On the Metamathematics of Weak Theories
the Proofs of Arithmetical Completeness for Interpretability Logic

ond Hoofman, Harold Schellinx I(_chi)sliapsin% Graph Models by Preorders
Ory O

Constructivism in the Twentieth Century
Finite Type Structures within Combinatory Algebras

Kolmogorov Complexity Arguments in Combinatorics

CT-91-02 Ming Li, John Tromli,rPaul M.B. Vitanyi How to Share Concurrent Wait-Free Variables
i

CT-91-03 Ming Li, Paul M.B. Vitanyi

verafe Case Complexity under the Universal Distribution Equals Worst Case
Complexity

CT-91-04 Sieger van Denneheuvel, Karen Kwast Weak Equivalence

CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak

CT-91-06 Edith Spaan

uivalence for Constraint Sets
Census Techniques on Relativized Space Classes

CT-91-07 Karen L. Kwast The Incomplete Database

CT-91-08 Kees Doets Levationis Laus

Other Prepublications . . . . .

X-91-01 Klexander Chagrov, Michael Zakharyaschev The Disjunction Property of Intermediate Propositional Logics

X-91-02 Alexander Chagrov On the Undecidability of the Disjunction Property of Intermediate
Michael Zakharyaschev Propositional Logics . . . .

X-91-03 V. Yu. Shavrukov Subalgebras of Diagonizable Algebras of Theories containing Arithmetic

X-91-04 K.N. Ignatiev Partial Conservativity and M Logics

X-91-05 Johan van Benthem Temporal Logic

X-91-06 Annual Report 1990

X-91-07 A.S. Troelstra Lectures on Linear Logic, Errata and Supplement

X-91-08 Giorgie Dzhaparidze Logic of Tolerance

X-91-09 L.D. Beklemishev
X-91-10 Michiel van Lambalgen

On Bimodal Provability Logics for IT;-axiomatized Extensions of Arithmetical Theories

Independence, Randomness and the Axiom of Choice



Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and
Information

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)
Plantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam 1012CP Amsterdam

LEVATIONIS LAUS

Kees Doets
Department of Mathematics and Computer Science
University of Amsterdam

ITLI Prepublication Series
for Computation and Complexity Theory
ISSN 0924-8374

Received June 1991



Levationis Laus

Kees Doets

Dept. of Mathematics and Computer Science
University of Amsterdam

Plantage Muidergracht 24

1018 TV Amsterdam

e-mail: doets @ fwi.uva.nl

Abstract. Praising the lifting-phenomenon, we present an expression-directed, but also
variant-independent, approach to lineair resolution, eliminating most (if not all) problems involving
substitutions in existing expositions and culminating in a strengthened form of lifting.
Subsequently we give a twist to lifting ground derivations and obtain fast proofs for standard
theorems, results on infinite derivations, greatest fixed points, and the question when these are
reached after ® steps in the downward fixed point hierarchy.

1. Introduction.

The last part (section 4) of this paper centers around lifting ground derivations. As a key tool, we
introduce the sheaf of all ground derivations which possess a lift in a given SLD search tree. There
are three basic results on sheaves: on success, on finite height, and on well-foundedness. From
these, we quickly deduce standard results such as the strongest form of completeness (involving
computed answers as well as rule-independency), finite failure characterization, and soundness and
completeness of negation as failure. We characterize the algebras J for which T =T"l® (where
TI=T}! is the operator on the space of models over J associated with an arbitrary program P) and
we relate this condition to recursive saturation. As a corollary, short shrift is given to the result of
[Blair/Brown 199?] that countable algebras satisfying T"{=T\ for any program-associated T’
exist.

However, for the proper exposure of these topics, we felt the need for an almost complete revision
of the usual formulation of the syntax of lineair resolution. Some motivation for such an
undertaking, independent of the contents of section 4, runs as follows.

Suppose that goals N and M are variants of each other and we have refutations for them which are
similar : they select variant-atoms at corresponding places and apply variant-rules. Then if o and 3
are the two computed answers, the corresponding instances No and M should be variants as
well.

The usual formulation of lineair resolution makes results like this - obviously, a conditio sine qua
non for a sensible theory - awkward to prove, to put it mildly. (Cf. the Variant Lemma, [Apt 1990]
lemma 2.8.)

In our opinion, this is due to a number of artificialities in the usual formulation of resolution. The
unification-algorithm is used only to unify expressions without common variables. (In particular,
stressing the fact that unifiers always can be taken idempotent must be qualified a red herring.) The
emphasis on most general unifiers (substitutions) instead of most general common instances
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(expressions) brings along subtleties (e.g., the usual notion of "more general than" for
substitutions behaves highly irregular) which easily cause mistakes. If 0 is a most general unifier
of an atom A in the goal N and the head of a program-rule, only the restriction 8/Var(N) of 6 is
relevant for the resolution-mechanism. Finally, the standardization-apart routine for obtaining
computational generality is ad-hoc and usually introduces hosts of apparently unnecessary
variables. It may be a useful trick for a machine-directed implementation of SLD-resolution, but for
theoretical purposes it has drawbacks.

Consequently, the first half of this paper (section 3) presents an expression-directed and
variant-independent reformulation of lineair resolution. Resolvents and derivations are defined
simply by the property which we want them to have, which is maximal generality. Most general
unification only recurs in an existence result. The (simple) proof of the main result - a generalized
lifting-theorem - clearly shows exactly what is essential about the separation of variables in
derivations. Thanks to the way matters are organized, most, if not all, existing problems with
substitutions are eliminated.

To start with, section 2 contains some well-known preliminaries.

We refer to [Apt 1990] and [Lloyd 1987] for unexplained notions.

Thanks are due to Krzysztof Apt for discussion and comments improving the exposition with
respect to the notion of derivation.

Remark. When an earlier version of this paper had been completed, Krzysztof Apt made available
to me a copy of [Ko/Nadel 1990]. This work has hygienic aims similar to the ones of section 3
below, though it mainly deals with refutations, i.e., succesful, and hence finite, derivations. It
signalizes a number of errors concerning substitutions in the existing literature. The remedy Ko
and Nadel propose essentially consists in patching up the usual formulation of resolution;
consequently, the rather formidable result is not too inviting. We insist that both simplicity and
correctness can be, and hence, should be regained by focussing on expressions instead of
substitutions.
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2. Preliminaries on substitution and unification.
There are several possible definitons of substitution. The one that we shall use (the choice is not
critical but we need to be definite first and consistent next) is the following: a substitution is a map
o from a finite set Dom(cx) of variables to the set of terms (built using some fixed set of function
symbols). We use postfix notation in the context of substitutions: henceforth, xo denotes the value
of a at x. Note that our definition does not imply ax#x for xe Dom(ct). As usual, we may write o
as {Xy/X;0,....Xy/X,0t} When Dom(0)={X;,...,X,}. Ran(o) denotes the set of variables occurring
in terms xo for xe Dom(a).
Var(A) denotes the set of variables occurring in the expression A.
Notations such as xa, Aa, fo. do not imply a commitment as to whether, e.g., xe Dom(at),
Var(A)cDom(o) or Ran(B)cDom(ar) respectively: as usual, we put xo=x in case x& Dom(c).
If o is a substitution and V a (finite) set of variables, then alV - the restriction of a.to V - denotes
the substitution f with Dom()=V and xP=xa for xe V. Hence, Dom(a| V)=V, irrespective of the
extent of Dom(ct). For A an expression, alA:=clVar(A). € is the identity-map on the set VAR of all
variables. €IV is a substitution whenever VCVAR is finite.
2.1 Lemma. Ao=Ap iff alA=BIA.
o is a renaming for the expression A if alA is injective and takes its values in VAR.
2.2 Lemma. If o is a renaming for A and B is any expression, then a renaming [3 for both A and

B exists such that BIA=alA.
Proof. Suitably modify o on the variables in Var(B)\Var(A). X

B is an instance of A, notation: B<A, if B=Ao for some substitution .
If o is a renaming for A, B:=Aa is called a variant of A; notation: B~A.
2.3 Lemma. A~B iff A<B and B<A.

A <-greatest element of K is called most general in K. By 2.3, most general elements (if they
exist) are unique up to ~.

(This notion of most general is not to be confused with the one in most general unifier which
applies to substitutions instead of expressions.)

On the set of atoms, < is a quasi-ordering (it is reflexive and transitive). Its quotient with respect to
~ is a partial ordering. In this quotient, by most general unification, every two elements with a
common lower bound have an infimum. (As a matter of fact, two elements with either a lower- or
an upper bound have a supremum - but this is not needed in what follows.)



3. Resolution in logic programming.

I. Expressions.

A clause is considered here to be a multiset of atoms. (Logically, a clause K represents the
first-order sentence 3/\K - the existential closure of the conjunction of the elements of K.)

If K and L are clauses and A is an atom then K,L=KUL and K, A=A K=KU{A};ifaisa
substitution then Ko.={AalAeK}. O is the empty clause.

The reasons for considering multisets (the order of presentation does not count but repetitions do)
are: first, simplicity of presentation; and second, even if o unifies A and B, {A,B}a~={Ao,Ba}
can be considered to have two elements, corresponding to the two of {A,B}.

In definite logic programming, derivations are made up of goals, i.e., expressions of the form
<K, where K is a clause. (<K represents — IAK, or VV {—AlAeK}.) Derivations are
constructed using (program) rules which are expressions of the form A<K (representing
V(/\K—)A) ) where A is an atom and K a clause.

IL. Resolvents.

Unrestricted resolution occurs in [Lloyd 1987].

3.1 Definition.
1. The pair o;M - where M is a goal and o is a substitution - is an unrestricted
resolvent (u.resolvent) of the goal N=«K,A with respect to the atom A and the rule P if
(i) Dom(o)=Var(N), and
(ii) there is an instance Aoa«—L of P such that M=«Koa.,L.

In the situation described, A is called the selected atom and o the specification.
2. M is an u.resolvent of N (w.r.t. an atom and a rule) if a substitution o exists such that
o;M is an u.resolvent in the sense of 1.

Example.

o;<—S(x) forms an u.resolvent of «~R(x) w.r.t. the atom R(x) and the rule R(x)«-S(y) for every o

such that Dom(a)={x}.

3.2 Remarks.

1. In the context of the usual definition of resolvent involving a mgu 6, the restriction 6IN of 0 to
the initial goal N is the specification. We feel that the "remaining" part of 6 really is irrelevant.

2. Ground-resolvents of ground-instances and resolvents (both in the usual sense and in the sense
defined below) are examples of unrestricted resolvents: they form the two extreme cases of
u.resolvents, so to speak. Below, we exploit the advantages of bringing ground-resolution and
resolution under the common heading of unrestricted resolution.

Defining resolvents as most general unrestricted ones is not good enough if we want maximal

computational generality.
3.3 Example. In that case, <0 would be resolvent of <—R(x) and the rule Rx)«0[1, witha

specification mapping X to some constant.
We need the notion of resultant (cf. [Apt 1990]) and make the lifting-property part of the definition

of resolvent .



3.4 Definitions.
1. If a;;<-D is an u.restricted resolvent of «—C, the implication D—Ca is called the
associated resultant, notation: rest(C,o; D) or rest(«—C,0;¢-D). .
Logically speaking, the (universal closure of the) resultant is what is being proved by the
u.resolution-step: it is a logical consequence of the rule involved. This fact is useful when proving
soundness. Here, the logical content of the resultant is of motivational importance only.
2. A resolvent (of a clause, w.r.t. some rule and selected atom) is an u.resolvent (w.r.t.
these same things) the associated resultant of which is most general.
In other words, o;M is a resolvent of the goal N w.r.t. A and the program-rule P if (next to being
an u.resolvent) for every u.resolvent o;M' of N w.r.t. A and P, there exists ¢ such that both
(i) No'=Nac and (ii) M'=Mo.
Again, we'll say that M is a resolvent of N w.r.t. A and P if o exists such that o;M is a resolvent
in the sense defined above.
Example. {x/x};<S(x) does not form a resolvent of <—R(x) w.r.t. the rule R(x)¢=S(y).
However, <S(x) is a resolvent: use the specification {x/y} instead.

3.5 Existence.
If a goal has an u.resolvent (w.r.t. a rule and a selected atom), then it has a resolvent (w.r.t.
these things) as well.
Proof.
Via separation of variables and most general unification, as in the usual approach.
For completeness' sake, here are the details.
Suppose that the following is an unrestricted resolution-step:
N=«K,A
P=B«L, Aa =B, specification o,
«Ko,LB.
Let & be a renaming for P such that Var(N)nVar(P&)=@. Choose &1 such that PEE-1=P. Choose Y
such that Dom(y)=Var(N)UVar(P), yIN=ca IN and y [P =(§-1B)IPE.
Since Ay =Ac. =Bp =BEE-1p =BEy, v unifies A and BE. Let 6 be a most general unifier for A and
BE. Say, Y =00. The following now is an u.resolution-step as well:
N=K,A
P=B«L, A6 =BEP, specification OIN,
M=«K®0,LED.
Claim: 0IN;M is a resolvent of N w.r.t. A and P.
Proof: note that the definition of 8 does not depend on 0., B above. So, without loss of generality,
it suffices to show that the resultant here is > the one above. Now the resultant of the last step is
R:=K0,LEB—KO,AH; the resultant above is Ka,LB—Ka,Ao, and this is the ¢ -instance of R,
since (K,A)00 =(K,A)y=(K,A)o and LEOG =LEy =LEE 1P =LP.
Remark. The proof makes it obvious that every resolvent in the usual sense is a resolvent in our

sense as well.



In what follows, 3.6-9 will not be needed.
Let A be an atom of the clause or goal K and £ a substitution. We say that A and Ag are
corresponding atoms of K resp. K&.
3.6 Lemma. Suppose that o;M is an u.resolvent of N w.r.t. AeN and P.
Assume that M-<M, N<N+, P<P*, and A+e N*corresponds to AeN;
say, M~=M3§, N=N*&.
Then 1. (£08)IN*;M- is u.resolvent of N* w.r.t. A* and Pt;
2. rest(N+,Ead;M-)=rest(N,0; M)3.
Proof. Immediate verification. X
3.7 Corollary. Under the same hypotheses as the previous lemma:
if § is in fact a renaming for M and 8* is a renaming for rest(N,o;M) such that 6*IM=3 IM,
then rest(N+,Ead*; M-)=rest(N,o; M)d*;
and hence rest(N+,Ead*;M-)~rest(N,o; M).
Proof. Immediate. X
N.B.1: Note that existence of such a 6* follows by 2.2.
N.B.2: We need not have rest(N+,Ead;M-)~rest(N,0;M).
3.8 Corollary. Under the same hypotheses as the previous corollary:
if P ~ P*, E=¢ (or, more generally, if  is a renaming for N*) and if ;M
is in fact a resolvent of N, then Eod*;M- is a resolvent as well.
3.9 Unicity and variant-independency.
If M and M' are resolvents of N w.r.t. A and P then, by definition, M ~ M'.
More generally, suppose that N' ~ N, P' ~ P and the atom A'e N' corresponds to A€ N.
If M is a resolvent of N w.r.t. A and the rule P, then the following are equivalent:

1. M~M,
2. M'is aresolvent of N' w.r.t. A'and P'.
Proof.

1=2. This says that being a resolvent is variant-independent.

The result is immediate from the previous corollary.

2=>1. This expresses that resolvents are unique, up to ~.

By the lemma, since M ~ M trivially, it follows that M is u.resolvent of N' w.r.t. A"and P". By
maximality of resolvents, M<M'. Similarly, M' is u.resolvent of N w.r.t. A and P; hence M'<M.
Combining: M ~M'. KX

3.10 Lifting once.
Suppose that A is an atom of the goal N, 7y is a substitution and P is a rule.
1. If ;M is u.resolvent of Ny w.r.t. Ay and P, then (yo)IN;M is u.resolvent of N w.r.t. A
and P with the same resultant.
2. Therefore, if Ny has an u.resolvent w.r.t. Ay and P then N has a resolvent w.r.t. A and P.
3. If R- is resultant of a (u.)resolvent of Ny w.r.t. Ay and P, and R is resultant of a resolvent
of N w.r.t. A and P, then R"<R.
Proof.
1. This is a special case of 3.6.



2. From 1 and 3.5.
3. Immediate from 1 and resultant-maximality of resolvents.

II1. Derivations.
In the sequel, A always denotes an ordinal <®, measuring the length of a derivation.
3.11 Definitions.
1. The sequence I': Ny, 0 1; Ny,..., 0 3415 Ny, (i<A) is an u.derivation of length A
relative to a program if, for every 1<7», 0; ;413N is an wresolvent of N; w.r.t. some rule of
the program.
We refer to the transition Ny=>0; ;,.1; Nj,; as the (i+1)st step of I (we start counting at 1).
2. The resultant of the (finite) u.derivation
I': «~Cp,0;¢—Cj,...,0,;¢—C,,; notation: rest(I'), is the implication C;—Cy0y... 0, .
(This is in accordance with the former definition for n=0.)
Suppose that a 1-1-correspondence between the atoms in the clause C and those in D is given such
that corresponding atoms have the same relation symbol. Then if <~C* and «-D* are u.resolvents
of «C resp. <D using corresponding atoms and the same rule, the correspondence is transformed
naturally into one between the atoms of C* and those of D* such that, again, corresponding atoms
have the same relation symbol.
3. We say that u.derivations I" and A are similar (with respect to some initial
correspondence between their initial goals) if they have the same length and, at corresponding
places, apply the same rule and select atoms which correspond in the sense explained.
We are now ready for the definition of derivation.
4. A derivation of length A relative to a program is an u.derivation
I': N, 0 15 Niseos 045415 Niygs... (i<A) relative to that program such that the resultant of
every finite subdenvauon [i5=Nj, %5005 Niggseons 0515 Nj (0<i<j<A) is most general in
the class of resultants of snmlar u.derivations start:mg from the same goal N;.

Note that a derivation necessarily is a sequence of consecutive resolvents. (Just consider the
one-step subderivations.) However, the converse may fail. There can be two reasons for a
sequence of consecutive resultants not to form a derivation.

To make the following examples more illuminating, we first make the crucial

3.12 Definition. Suppose that o;M is (u.)resolvent of N. The variable x is released at the
transition N=o;M if xe Var(No)\Var(M)=Ran(a)\Var(M).

Of course, variables can be released only when a rule B<-L is applied for which

Var(B\Var(L)=Q.

3.13 Examples.

1. The sequence: <R(x,y), {x/X,y/y};<L(y), {y/y};<—K(x,y) is an u.derivation using resolvents,
given the rules R(x,y)<L(y) and L(y)<K(x,y). It shows that the resultant K(x,y)—R(X,y)
follows logically from these rules. However, changing the specification {y/y} to {y/z}, the more
general resultant K(z,y)—R(x,y) is obtained.
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The reason for not obtaining maximal generality here is the re-introduction of the variable x
(released at the first step) in the last goal of the derivation.
2. The sequence: <R(x,y), «<L(y), <0 together with the specifications {x/x,y/y} and {y/x}
forms a refutation using resolvents given the rules R(x,y)<L(y) and L(y)«-[]. It shows that the
resultant [ -R(x,x), i.e.: R(x,x), logically follows from the rules. But of course, the more
general R(x,y) can be obtained replacing {y/x} by {y/y}.
The reason for not obtaining maximal generality here is the re-introduction of the variable x
(released at the first step) by the second specification.

These examples suggest a simple syntactic criterion [1] on (u.)derivations, which in fact will turn
out to be a necessary and sufficient condition for a sequence of resolvents to be a derivation.
3.14 Definition.

The (u.)derivation A: Ny, By 13 Ny, By 23 Ny,... of length A is variables-separated, or is

a f-(u.)derivation, if
[¥] for every i<, for every variable x released by A at the (i+1)-st step N;=B; ;,1;Nii1

(which means that xe Ran(B;;,,1)\Var(Ny,) ), and for every j such that i<j<):

x does not occur in Ny, y, nor does it occur in Nifl; ., ;=Ran(B; j,1)-

In other words, a T-(u.)derivation is a sequence of successive (u.)resolvents in which a variable,
once released, never is re-introduced, either by a goal or by a specification.
Remark. [Bol 1991] and [Doets 1990] note that every derivation in the usual sense in fact is a
t-derivation.

Note that, in constructing derivations, we can trivially satisfy [T]:

3.15 Lemma. Suppose that A: Ny, Bg 13N, - -,By ne15Np41 is @ T-derivation.
If N, has a resolvent w.r.t. an atom and a rule then it has a resolvent ;N w.r.t. the same
atom and rule such that Ny, Bg 1;N,---,Bp n+15Npe1, B;N is a -derivation.

The next definition brings some order in the ways of the variable.
3.16 Definition.

Suppose that A: Ny, Bg 1:N1,.. By 141 N4 15+ i8 @ T-(u.)derivation of length A.
For each n<A, define sets R, and V, of variables as follows.

:
"~ > o+l

v‘j — VBI{Nnﬁn,nH} S v
" ﬁ ' n+1
n...n+1 \“‘—Fﬂ/
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R, is the set of variables released in A at some step <n.
Thus: Ry, =0,
Rpy = RpU(Var(NgBy e \VarNy,)).

V,, is the set of variables "relevant” at stage n.

Thus: V, =Var(Np)UR,;

or, equivalently: Vo =Var(Np);

Vi1 = Var(Nyy ) Var (Nnﬁn,n+l)URn'

Note that, except for the last set V,,; in case A=m+1<, these sets can be defined in terms of the
sequence of specifications of A, independently of the occurring goals: Var(N,B,, ,41)=Ran(B, 1)
anyway, and for n<A we always have Var(N,)=Dom(B, 1)
Therefore, these definitions make sense also with respect to, e.g., an infinite sequence of
substitutions By 1,1 2, -
Observation. [1] exactly says that, for all n< A: RyN(Var(Ny, )oVar(N,B, 1,1))= 9.
We shall not use the fact that V,;=Var(NoBg ..By 1 5 N1B1 2+ Bt - No-1Pre1,00 No)-
Remark. A slightly different definition of u.derivation could run as follows: A sequence
A: Ng, Bo,;Nys... such that for all i: Dom(p;3,1)=V;, and B;;,1/N;;N; 5,1 is w.resolvent of N;.
The proof of 3.19 below would become even simpler yet; but it is questionable whether the
additional freedom in specifying variables would make much sense. (There is little point in going
on transforming variables which do not occur in the goals any longer.)

IV. Lifting.

3.17 Definition. Suppose that Ng<M,, (say, Ny=M,0 ).
If T: Ng,... is an unrestricted derivation and A: My,... is a derivation (resp., a {-derivation)
which is similar to I" (w.r.t. the initial correspondence between Ny and M,
mapping A€ M, to Ac €Nj), then we say that A is a lift (resp. a T-lift) of I' w.r.t. G.

The proper handling of domains is critical for the following lemma (which otherwise is trivial and
standard equipment in the context of commuting diagrams).
If 8: 09,1, 81 2-++» 0341+~ (i<A) is a sequence of substitutions of length A, we use the notation
0, ; for the composition 6;;,;...6;1; (0<i<j<h).
3.18 Lemma.
Suppose that A: No, By 1:Np...,Bpne13Np415---(0<A) is an v.derivation of length A.
Let Qi 0t 1,01 2,02 3,... and g: 6%,61,62,... be sequences of substitutions such that for
all i<\:
Dom(c?) = V,, and
(ol 14 )IV; = (By 110DV,
Then for all i,j: if i<j<A then (ciog)IV; = (B; GNIV;.
Proof. Induction w.r.t. j-i.
j=i+1: This is the hypothesis.
j>i+1: Suppose that xe V.
Then: XB; 4109 =xBy501Bi jr O
=XB; 14101044 j41, Since Var(xP;;,1)cViyy, by induction hypothesis
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=X6i(xi,i+10ti+1 G+ by hypotheSiS

The following (or rather, its corollary 3.21) is the main result of this section.
3.19 Lifting Often.
1. Every u.derivation I': My=N0,... has a {-lift A: Nj,... .
2.1 A: Ny, Bo ;;Ny,... is a f-lift of the u.derivation I': Mg=NG, 0t 1;Mj.... of length &,
then there exists a (unique) sequence g: 69,61,62,... of substitutions such that:
1.0%=0c;
for all j<1+A:
2. Dom(o:i)=Vj :
3. Mj=N;oi;
and if i<j:
4, (GiaiJ)IVi=(Bi JGj)IVi ;
5. rest(T; ))=rest(A; J)Gj .
(N.B. T is the subderivation of I" which derives M; from M;.)

Conditions 2-4 are visualized by the following diagram, commuting on the domains indicated:
A: NO _9 BO,I;NI %. .e _9 Bn—l ;Nn —9 Bn,n+1.Nn+1 _>. ..
o \l«o‘):c ol \EG“ on+l
I MO — aO,l;Ml —_...— an_l’n;Mn —> an’n_'_l;Mn_'_l —...

Proof. Part 1 easily follows from "lifting once" and 3.15. We concentrate on part 2.
Note that 5 is an immediate consequence of 3/4.
Suppose that 69,...,6" have been found, satisfying 1-4 for j<n.
By "lifting once", a substitution T exists such that both M,,,;=N,,;7 and
Nno-nan,n+1=Mnan,n+1=Nan,n+IT'
Since A satisfies [1], by observation 3.16 we have RynVar(N,,1,NB;, 1.1)= 9.
Therefore, we can define o7+! on V=R UVar(Np,1,N,Bp 41) by:
ont| Var(Nn+1’Nan,n+1) =T Var(Nn+1’Nan,n+1);
o™ Ry, =(6704, 41)! Ry
It follows that Ny, ;6%*1=N,,,;7=M_,,;, and (620, p,1)! V;=(Bp 5107+ DIVy: for xe Var(N,),
XBn,n+10n+1=XBn,n+IT=cha‘n,n+l; and for xeR,, XBn,n+10n+1=X0’n+1=XG“(Xn,n+l.
We have satisfied conditions 2,3 and 4 for i=n and j=n+1. To obtain 4 for i<j<n+1 generally,

apply lemma 3.18.

Remarks.
1. Part 5 of 3.19.2 is what constitutes (a "local" version of) usual formulations of lifting. Note

that 3/4 actually are somewhat stronger than 5 as they may involve more variables (cf. the end of
3.16).

2. A special case of 3.19.2 arises when I"is ground (or even, if " is "J-ground", where J is an
arbitrary algebra extending the the standard Herbrand-algebra of closed terms). The specifications



;+1 of T then are empty and the o transform easily into model-theoretic assignments into the
Herbrand-algebra (resp. into J). This is the type of situation prominent in section 4.
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3.20 Corollary. An u.derivation is a derivation iff it is a {-derivation.

Proof. Suppose that A is a 1-derivation. Let A* be a finite subderivation of A. Then obviously,
A* is a t-derivation as well. Hence by 3.19, if " is similar to A*, starting with the same goal, then
rest(IN<rest(A*). It follows that A is a derivation.

Conversely, suppose that A: <—C, 0,5;¢—C;,... is a derivation which is not a t-derivation. Say,
xeRan(oy)\Var(C;,;) and j>i is such that either xe Var(C;,;) or xe Ran(oy). Consider the
subderivation I'=A; ;;;: <~C;, 043¢—Ciyq,..., 043¢Cjyy. It is easy to see that, since I
"unnecessarily" identifies variables, rest(I) is not most general among the resultants of similar
derivations from the same goal; whence A cannot have been a derivation. X

3.21 Generalized lifting theorem.
In 3.19.1/2, replace "}-lift" by "lift". The resulting statements continue to hold.

V. Miscellaneous.

Of course, a (u.)refutation is a (u.)derivation of the empty goal.

3.22 Corollary. If Ny has an u.refutation by the program P in n steps via specifications
0lg,-.-,0, then N has a (similar) refutation by P in n steps via relevant B,...,,, such that
for some o: N 7y ay...0,=NBy...,0.

Proof. A suitable lift will do.

Remarks. Note that we do not assert the "global" result that for some o: 7y o¢...0,=fy...B,0.
Cf. [Apt 1990], lemma 3.19, where this is claimed for the mgu's of which our specifications are
restrictions, and then only for the case that the first u.refutation is a refutation. By [Ko/Nadel
1990], this will be false without further conditions.

As we suggested above, the sensibility of such a global result may be questioned, since the mgu's
will have "irrelevant” parts. Proposition 3.2.1 of [Ko/Nadel 1990] is a version of our 3.22, but
both statement and proof are much more involved. However, they also have a global result
(corollary 3.2.1).

The following is a version of a result due to Lloyd and Shepherdson (cf. [Apt 1990] lemma 2.8)
which, instead of being awkward to prove and dependent on the special way resolvents are
constructed, now becomes a triviality:

3.23 The variant lemma. Suppose that Ny~ M, .
If A: Ny,... and I': M,... are finite derivations which are similar, then rest(A) ~ rest().
Proof. Immediate from 3.21.2. K
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4. Sheaves of ground derivations and "reverse lifting".
Introduction.
Let «C be a goal which is ground. By lifting, a resolvent of <—C in a sense represents all ground
u.resolvents of <—C. More generally, an SLD search-tree for <—C represents a sheaf of ground
u.derivations.
The main virtue of an SLD search-tree is that it is finitely splitting. On the negative side, search
trees are not able to distinguish between atoms in TINTT and TVeNT! : the corresponding goals
will generate infinite failing trees always. The sheaves of ground u.derivations they represent have
an opposite behaviour in these respects: generally, these will be not finitely splitting, but do
distinguish such goals, as we shall show - and make use of - below.
Some of our basic results on sheaves are obtained by what might be called reverse lifting, that is:
constructing ground derivations which have a lift in an SLD search tree given in advance.
We first formally introduce sheaves of ground u.derivations represented by search trees (see 4.3
below). However, we generalize the discussion, allowing for non-standard algebras as well. Cf.
[Apt 1990] for more detail.

Algebras.

An algebra (or pre-interpretation) is a model of the free equality axioms interpreting all function
symbols (but no relation symbol). The canonical Herbrand algebra over the Herbrand universe HU
of closed terms forms but one example. (Algebras satisfying a suitable domain-closure axiom are
nothing but elementary equivalents of HU.) Within isomorphism, every algebra extends HU. It is
non-standard if it extends HU properly.

There are two types of non-standardness (which may coexist). First, we can extend HU with extra
generators: let V be any set of variables, and consider the canonical algebra of all terms over V.
This simple type of algebra spoils the domain-closure axiom, but we find a use for it below.
Second, we can extend HU with "non-well-founded" elements. A simple example is the successor
structure on a type-o+{ ordering, which is an elementary equivalent of the standard algebra
(N,0,S) of the natural numbers (one individual constant, one unary function symbol).

We shall deal with this type of extension extensively.

For the sequel, let an arbitrary algebra J be fixed.

Operators.

Extend the language, admitting all elements of J as new individual constants.

Since we may assume JOHU and elements of HU are (named by) closed terms, it in fact suffices
to add constants for elements in NHU only.

HBJ, the Herbrand base over J, is the set of all atomic formulas R(a;,...,a,) where a;,...,a, are
either new constants from NHU or closed terms from HU. Note that this definition makes HBJ
extend the standard Herbrand base HB of closed atoms of the old language.

A model over J is identified with a subset of HBJ.

Every program P induces a monotone operator T =Ty over HBY. TV T is the least fixed point of
TJ, T0 its greatest fixed point, and T? l the w-th approximation thereof.
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J-ground resolution.
A J-assignment is a map from variables to elements of J.
If t is a term and © is a J-assignment such that Var(t)cDom(c), then to=t![c] denotes the value of t
in J under o. If A=R(t;,...,t,) is an atom then Ac:=R(t;0...., t,0)€ HBY; if K is a goal then
Ko:={AclAeK}. Atoms and goals of these forms are called J-ground.
We sometimes write L<K also if L=Kc for some J-assignment G.
The J-ground goal M is called J-ground resolvent of the J-ground goal N=(<—A,K)G w.r.t. AG
and the rule P if for some L: M=«L,Ko and (Ac«L)<P; of course, we put rest(M,N) equal to
the implication L, Ko—Ac ,Ko.

The material of the previous section can be easily transferred to the present context:
3.10A Lifting a J-ground resolution step.
2. If the J-ground goal No has a J-ground resolvent w.r.t. Ac and P then N has a resolvent
w.r.t. A and P.
3. If R- is resultant of a J-ground resolvent of the J-ground goal N6 w.r.t. AG and P,
and R is resultant of a resolvent of N w.r.t. A and P, then R"<R.
Proof. Similar to 3.5, by noting that the Martelli-Montanari-algorithm "works over J" as well as
over the canonical Herbrand-algebra, since J is assumed to satisfy the free equality-axioms; cf.
[Apt 1990], corollary 5.22. Le.: if A unifies over J with the head B of P (that is: if Ac=B7 for
some J-assignments ¢ and T) then A unifies with B over the standard Herbrand algebra as well
(that is: Ao=Bp for some substitutions o and B). In fact, if Ac=B'c for some J-assignment ¢ (B'
the head of a variables-separated variant P' of P) then A6=B'0 for an algorithmically produced
mgu 0 with the property that 6=0c on all variables, etc. X

Realizing a sequence of substitutions.

Suppose that 8: 6 ;, 6; 5, 6,3 ... is a sequence of consecutive specifications, which may be

thought of as taken from a derivation I': Ny, 90,1;N1, 0; ,2;N2,. .. of any length A<.

As before, R, is the set of variables released by I' at some stage <n; V, is the set of variables

relevant at stage n. Again, we use the notation 6; ; for the composition 6;,;.. 051 A<i<M).

The following notion will be central to this section.

4.1 Definition. The sequence of J-assignments g: 09, 61, 62, ... of length A realizes 6 in the
algebra J if for all j<A: Dom(c¥)=V; and 6ilV;=(8; ;0))IV; whenever i<j.

Example: if o: o9, ... realizes the constant sequence of infinite length {x/Sx},{x/Sx},{x/Sx}, ...

in J, then we must have 69%(x)=S c!(x)=SS 0%(x)=... =SSS ... inJ.

Lifting a J-ground derivation.

A J-ground derivation is nothing but a (finite or infinite) sequence of successive J -ground
resolvents.

The notions of similarity, lift and resultant are easily adapted to this situation.
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3.19A Lifting theorem for J-ground derivations.
1. Every J-ground derivation I': No,... has alift A: N,... .
2.If A: Ny, 6 13Ny, ... lifts the J-ground derivation I': Mg=Ng0, My,...,
then a (unique) sequence o: 69=cINj, o1, 62,... exists such that for all j:
@) Dom(cj)sz
(i) Mj=Nj0'j
(i) o realizes 0: 64, 01 5,... .
Proof. Compare 3.19. X

A realization of a sequence of substitutions transforms any derivation involving it into a J-ground
derivation:
4.2 Lemma. Suppose that A: Ny, 6 ;Ny, 6 2;Ny,... is a (finite or infinite) derivation,

and 8 is the associated sequence 6y ;, 0; 5,... of specifications.

If 5: 09, 61,... realizes 8 in J, then I': Nyo9, N;Gl,... is a J-ground-derivation of which A

is a lift.
Proof.
By inspection. Suppose that the following is a resolution-step w.r.t. A and P:
N: «<AK
(A6«L)<P, specification 0
M: «LK®6.

Assume that ¢ and T are J-assignments such that =01 on Var(N), i.e, that (c,t) realizes 0.
Then the following is a J-ground resolution-step:
No: <Ac Ko
Ao—L1=(A0«L)t<P
Mr1: «LtKor.

Remark. By 3.19A and 4.2, for a given derivation A: N,... and J-assigment ¢:Var(N)—J,
realizing sequences for (the specifications of) A starting with ¢ on the one hand and J-ground
derivations I": No,... starting from No on the other are tantamount.

Sheaves of realizations. ‘
The following defines our main tool: the sheaf of J-realizations (or J-ground derivations)
represented by an SLD search-tree.
4.3 Definition. Suppose that B is an SLD search-tree for the goal Ny and 6:Var(Ngy)—J.
SH(B,5)=SH(B,J,0), the sheaf of realizations over J and ¢ represented by B is the set
of pairs (A, ¢ ) such that for some n:
1. A: Np, 89 1;Ny,...,0, 1 3Ny is (initial of) a derivation through B
2.0: 09,..., onis a sequence of J-assignments with 69=c
3. g realizes O: 90,1,...,6,,_1 a
We make SH(B,o) into a tree by putting (I',z) before (A,o) iff both I" extends A and T
extends G.
By the remark following 3.19A and 4.2, we could have defined SH(B,0) equivalently as a sheaf
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of J-ground derivations, i.e., as the set of (A,I') where I': NyG,... is a finite J-ground derivation of
which the lift A: Ng,... is in B.
NOTE. In the sequel, we shall take the viewpoint which suits best for the situation at hand.

If B is infinite, then, by Konig's lemma, it necessarily is non-well-founded.

Nevertheless, J need not at all realize any of the infinite sequences of specifications going with an
infinite derivation through B and hence SH(B,G) may very well be well-founded.

The complete picture is given by 4.4/6 below.

The height of a well-founded tree is measured by an ordinal. (By results of [Blair 1982], greatest
fixed-point hierarchies and hence, sheaf-trees over J=HU, can have any height <w;K.)
To have infinite height means to have either ordinal height > or being non-well-founded.

Reverse lifting.

A derivation can be looked at as the result of playing a game in which two players I and II move
alternatingly, I selecting an atom in the goal at hand and II picking an applicable rule, after which a
resolvent w.r.t. atom and rule emerges which forms a next position in the game.

Thus, an SLD search-tree can be seen as the space of all plays (given some initial goal) in which I
uses a specific selection rule, which is nothing but a strategy for the first player.

The first halves of the basic results 4.4/6 below are obtained by an argument for which we coin the
name reverse lifting. A selection rule/strategy for the first player is given by means of a search tree.
The second player counters by lifting a shadow-J-ground derivation which he has to construct
simultaneously. Hence, we could view the procedure a producing a ground derivation from its lift

in the tree (instead of the other way around).

4.4 Success Theorem.

Let B be an SLD search-tree for the goal Ny=«-C, and assume 6:Var(Cg)—1J.

The following are equivalent:

1. CyocT*T.

2. SH(B,o) contains an element (A,g) of which the first component A is a refutation.
Remark. If A: <~Cy, 8 1;¢-Cy,...,0.1 n;¢—C, is a refutation, i.e., C;=[1, then clearly rest(A)
can be identified with Cy8 ,.

If in condition 2, g is: 09,...,0%, then Cyo=C09=Cy8, ,0%; i.e.: Coosrest(A).

The following corollary is mentioned by [Apt 1990] section 3.11 as the "strongest completeness
result" of the subject. Our proof employs the simplest type of non-standard algebra. (The proof in
[Apt 1990] for the weaker 3.18 uses "fresh” individual constants and can be looked at as a
proof-theoretic counterpart of our model-theoretic argument.)
4.5 Strong Completeness. (Clark)
If V(C0) logically follows from P, then every SLD search tree for «C contains a refutation
A such that CO<rest(A). |
Proof. Let V:=Var(C0). Let J be the canonical algebra of all terms over V. If V(C8) logically
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follows from P then, since TY T is a model of P, COcTIT. The result now is immediate from the
1=>2-half of the theorem. X

Proof of 4.4.

2=>1. Suppose that B contains a refutation A such that Cyo<rest(A).

Since TIT is a model of P, Vrest(A) logically follows from P, and (since Cyo<rest(A)) Coo
logically follows fromVrest(A), we must have Cyoc T? T.

1=2.

The proof is by reverse lifting and uses induction along a certain well-founded relation between
finite multisets cT9T.

Verifying well-foundedness of the relation can be done most easily by employing a map to ordinals
<.

The rank of Ae T, notation: r(A); is the least n such that Ae TV T(n+1). Let K<T?T be a finite
multiset. Define R:={r(A)IAeK}. R is finite and may be enumerated as R={n(i)li<k }, where
n(0)>n(1)>...>n(k-1). Put m(i) equal to the number of A€ K with rank n(i) (i<k).

Finally, define the rank of the clause K by: r(K)=w*®-m(0)+...+@r&D-m(k-1).

(Of course, r([1)=0.)

The point of this assigning ordinal-values to multisets K< TIT is the

Claim: If <L is a J-ground resolvent of <K, KcTY T, then r(L)<r(K).

Proof: clear.

Now suppose that CooT?T. Construct a J-ground derivation <Dy, <~Dy,... with Dy=C0,
D,cT!T, using the selection rule of B, i.e., such that it has a lift A: «-Cy, 00,15 Cp,... in B.

As long as D, is non-empty, the construction must continue by 3.10A2. In detail: supposing
D,cT’T and C;e B constructed and non-empty, let A be the atom of D; corresponding to the atom
in C; which is selected by B. Choose a J-ground resolvent <-D;,; of <-D; w.r.t. A (D;,; exists
since Ae DT T=TH(T’T)). Let 0, ;,1;¢-Cj,; be its lift in B.

Therefore, by the claim, we cannot fail to reach empty goals (in the J-ground derivation and,
hence, in A) eventually.

The infinite derivation I': ¢<~Cy, 8¢ 1;¢~Cj,... is fair if for all i and A€ C; there exists j2i such that
the descendant A9;;of A in C;is selected in <C;.

The SLD search-tree B is fair if all its infinite branches are fair.

A selection rule is fair if every infinite derivation produced by it is fair.

4.6 Failure Theorem.
Let B be an SLD search-tree for the goal Ny=«C, and assume c:Var(Cyp)—J.
1. On (in)finite height.
a. Suppose not CoocTIT.
If CyocT? do then SH(B,o) has infinite height.
b. Suppose that B is fair.
Conversely: if SH(B,o) has infinite height then COGCTJJ«O).

2. On well-foundedness.
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a. Suppose not C,oT?T.
If CyocT?{ then SH(B,o) is not well-founded.
b. Suppose that B is fair.
Conversely: if SH(B,0) is not well-founded then CoocTi.

Remarks.

1.It is easy to deduce the theorem on the characterization of finite failure ([Apt 1990], theorem 5.6)
from 4.6.1. Just take J=HU, A a ground atom, Cy=A and ¢ empty.

In fact, if Ae Tl and B fails, then (by 4.4) A¢ TT, whence, by 4.6.1a, SH(B,o) has infinite
height, and it follows that B must be infinite.

Also, if A¢ Tlw then, by 4.6.1b, if B is fair, SH(B,o) has finite height; whence B is finite.

2. Similarly, 4.6.2 generalizes the theorem on soundness and completeness of negation as failure.
For completeness, see below.

Soundness asserts that every ground atom in the finite failure set of the program P is refuted by the
completion Comp(P) of P. To see this, assume the model M of Comp(P) satisfies the ground atom
A. Let J be the underlying algebra of M. Clearly then, McT? 1; whence Ae T9. Apply the
following lemma with ¢ empty (also, compare [Apt 1990], lemma 6.2):

Lemma. If Ace T?{ then no search tree for <A is finite.

Proof. Assume AceTJ  and let B be any search tree for <—A. By 4.6.2a, SH(B,J,0) has an
infinite branch, whence B cannot be finite. X

Proof of 4.6. We begin with 2a/b since there, the argument is slightly simpler.

2a. Reverse lifting. We need to show that SH(B,o) has an infinite branch.
Simultaneously, produce the infinite derivation A=¢<-Cg, 8 ;;<—C;.... through B and a J-ground
derivation I': <Dy, <~Dj,... (where Dy=C(0), of which A is a lift, such that, for all i: DT
To start with, by hypothesis: DycT'!.
Suppose that A and I" have been constructed up to and including stage i such that D,cT? .
Let B select the atom A in C;. Let Aot be the atom of D; corresponding to A.
Since Acie D,cT=T/(T'\), «D; has a J-ground resolvent «D;,; W.r.t. AG".
By 3.10A, this can be lifted to a resolvent 6;;,;;¢—C;,; of <-C;in B.

2b. Suppose that A=¢<Cy, 6 ;;¢-Cj,... is an infinite derivation through B realized by the
sequence O: 69=0,... inJ. Define the model X over J by: X:={Ac!l AeCj}.
It suffices to prove the
Claim. XcT/(X).
For then XcT¥ (since T? is the greatest model with this property), and the required result
follows. '
To prove the claim, suppose that Acie X, i.e., Ae C;. We have to show that Acie TI(X).
Since A is fair, at some place j>i the descendant of A at that place, which is AGLj, must be
selected.
Then for some instance B«K of a P-rule, A®;;,;=A8;;8;;,,=B and K is part of Cj, ;.
By definition of X we have Koi*1cX.
Therefore, Boi+le TI(X). However, AGI=A8, ;,,Gi*1=Boi*l.
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1a. Reverse lifting. Fix n. We want to show that SH(B,o) has a branch of length at least n.
Simultaneously, produce A=¢<Cy, 6 1;¢=Cj,...,0;.1 n;<C, through B and and a J-ground
derivation I': <Dy, <-D;,... (where Dy=CG ), of which A is a lift, such that:
[*] for all j<n: DT (n-j).
By assumption, Dy=CyocT? lwcTIn; which means that we satisfy the requirement [*] for n=0.
Suppose that A and T have been constructed up to and including index i<n, satisfying [*] for n=i.
If C;=01 then D;=00 as well and we have a J-ground refutation of <-Cyc, whence CooT! T,
contrary to hypothesis. Therefore, C;#[].
Suppose then, that B selects the atom A in C;. Let Ac!in D; correspond to A.
Since Acie D;e T?d(n-i), n-i>0, <D, has a J-ground resolvent «-Dj,; w.r.t. AcL
By 3.10A, «C; has a resolvent 6 ;,1;—C;,; W.r.t. A in B, as required.

1b. Let B* be the subtree of B consisting of all derivations I" which possess a realization ¢ in
J with o as first element, i.e., such that (I',g)e SH(B,o). By assumption, B* has infinite height.
Since B* is finitely splitting, by Konig's lemma, it must have an infinite branch
A=¢Cy, B 1;¢-Cy,... .
Fix n. We show that CoocT {n.
By fairness, choose indices m(0)=0<m(1)<...<m(n) (in that order) such that (a descendant of)
every atom in Cp,; has been selected in A at or before stage m(i+1) (i<n).
Choose o: 69=0,...,6m® realizing 8: 6y .- -,0m(n)-1.mm)-
It follows that, for i<n, Cm(i)o‘m(i)cTJ L(n-1) (induction w.r.t. n-i); whence, in particular,
CoocT¥n. K
Remarks.
1. The proof of 2b constitutes, in simplified form, half of the usual argument for the so-called
completeness of negation as failure - cf. 4.8. (The other half consists in the construction af an
algebra realizing the sequence of specifications of A; cf. the remark following 4.7.)
2. There is an obvious connection between 4.6.2 and the Kleene-Spector analysis of ITl;-sets, cf.,
for instance [Doets 1997].
3. [Doets 1990] contains refinements of 4.6.2 connecting the ordinal height of sheaf-trees to the
drop-out stage in the greatest fixed-point hierarchy. (The connection is not completely exact, due to
the fact that in a derivation, we can only resolve one atom at the time.)

The interplay of search trees and sheaves: T and T/l w.
The following is a compactness phenomenon for the present context.
4.7 Lemma. Let B be an SLD search-tree for the goal Ny=«C, and suppose o:Var(Cp)—J.

If SH(B,J,0) has infinite height, then for some IoJ, SH(B,I,0) is not well-founded.
Proof. Suppose that SH(B,J,0) has infinite height. Argue as in the proof of 4.6.1b above. Let B*
be the subtree of B consisting of all I" which possess a realization g in J starting with o, i.e., such
that (I,o)e SH(B,o). By assumption, B* has infinite height. Since B* is finitely splitting, by
Konig's lemma, it must have an infinite branch A=¢«-C, 6, 1;¢—C;,... . By assumption on B*,
every finite sequence 8 ;,...,8, 1 , is realized in J by a sequence starting with 6. By the
compactness theorem for first-order logic, the infinite sequence 6y ;.,... is realized in some
elementary extension I of J by a sequence starting with 6. But then, SH(B,I,0) is not
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well-founded. X
Remark. For J=HU, there is an easy, "algebraic" proof for 4.7, not using the compactness
theorem. In that case, I is obtained from J=HU by the adjunction of non-standard elements, the
exact nature of which is prescribed by the sequence 8y ;... .

The next result generalizes the theorem on completeness of negation as failure.
4.8 Corollary. Let A be an atom and ¢:Var(A)—J.

If Ace TV then for some IoJ: Ace TL.
Proof. Assume Ace TH . If Ace T'T, then we may take I=J; so assume Acg T? T.LetBbea
fair SLD search-tree for <—A. By 4.6.1a, SH(B,J,0) has infinite height. By the lemma, for some
IoJ, SH(B,1,0) is not well-founded. By 4.6.2b, Ace T. K

4.9 Lemma. If JcI then TV.cTU..
Proof. 1t suffuces to show that T?c TYT?{), since TW is the largest set satisfying this inclusion.
Now obviously for all XcHB': TIH(X)cTY(X); hence in particular T =TT L)cT(T*)).

The following is the main result of [Blair/Brown 199?]. Note that the proof below avoids the
relativized resolution-machinery of that paper.

4.10 Theorem. There exist countable J such that T\ =T\ @ for all program-associated T’.

Proof. Construct a sequence of countable algebras J;=HUcJ,cJ,c... such that for all atoms A,
program-associated T=Tp, and 6:Var(A)—J,: if Ace T'alw then Ace Th+d.

J,, constructed, J,,, is taken to be the union of a countable sequence of countable algebras obtained
from 4.8 - note that the number of atoms and programs is countable and the number of

J -assignments to be considered is countable if J is countable. By 4.9, once an instance AG is
manoeuvred into a greatest fixed point, it remains so upon extending the algebra any further.

Now, just let J be the union of the J..

We have the following easy characterization of the algebras J for which T=T"l® - T'=Ty' , P
any program.
4.11 Theorem. Let p be any fair selection rule and T'=T}’ , P any program.

The following are equivalent:

1. =T

2. every well-founded sheaf-tree SH(B,J,0), where B is a failing p-produced search-tree for

an atomic goal <A, has finite height.

Proof.
1=>2. Suppose that the search-tree B for <A fails, is p-produced, and SH(B,J,0) is well-founded
of infinite height. If Ace TY T then, by 4.4, it follows that B cannot fail, contrary to assumption.
Therefore, Ace T'T. By 4.6.2a, Ao TI. By 1., Ace Tl o, contradicting 4.6.1b.
2=>1. Suppose that Ace T’ lw. We may assume that Ace TIT, since TVT<TI!. By 4.6.1a,
SH(B,J,o) has infinite height, B the p-produced search-tree for «<A. By 2., SH(B,J,0) has an
infinite branch. By 4.6.2b, Ace T?{. K



20
The selection rule p is lifting-invariant if for all derivations I" and A: T is p-produced iff A is
p-produced whenever A is a lift of I,

4.12 Lemma.
There exists a (primitive) recursive selection rule which is both fair and lifting-invariant.

Proof.
The rule keeps a stack of atoms to be selected and uses it first-in first-out. Thus:

derivation: , stack:

«ABK —A,BK
a; «L,Ba,Ko —Bo,Ko,L
B; «LB.M,Kof —Kof,LB.M

etc. etc.
Note that the stack is a list : in the stack, order and repetitions count.
Fairness can be obtained automatically by just replacing the successive goals by the corresponding
stacks, i.e., using the Prolog left-most selection rule in combination with a repeated
moving-around of the atoms of the goals.
Remark. The neat trick of obtaining fairness by spinning around constituents in goals is due to
L&b ([Lob 197-]) and was used by him to construct a notion of derivation for first-order logic with
an incredibly fast and elegant proof of completeness.
Of course, as does logic programming, Lob's syntax needs a disjunction of indefinite arity,
applying to arbitrarily many arguments - i.e., it works with "generalized goals", so to speak.

Viewing (as we do) search trees as sets of finite derivations closed under "initial-of", obviously,
search trees produced by recursive selection rules will be recursive. (If we consider search trees as
sets of resolvents, recursively produced trees will be recursively enumerable only.)

Together with the easy existence theorem for countable recursively saturated models (cf.
[Chang/Keisler 1990] for elementary facts on recursive saturation), the following produces a
shortcut to the Blair/Brown theorem 4.10.

([Doets 1990] notes that 4.14 follows from the two facts (i) the least admissible set above a
recursively saturated structure J has height O(J)=0, and (ii) ("Gandy's theorem") elementary
inductive definitions over J close at O(J) at the latest. See [Barwise 1975].)

4.13 Theorem.
If J is recursively saturated, then every well-founded sheaf-tree SH(B,J,0) over a recursive

search-tree B has finite height.

4.14 Corollary.

If J is recursively saturated, then for every program-induced operator T? over it: =T .
Proof of 4.12. Take the recursive fair selection rule of 4.12. Recursive rules produce recursive
search trees. Therefore, the result follows by 4.11 and 4.13. X

Proof of 4.13. Let B be a recursive search tree. Suppose that the sheaf-tree SH(B,J ,00) has
infinite height.



21

Clearly then, for every n:

there exists 61 such that for some resolvent 8 ;N; of Ny in B:

(09,01) realizes 6 (i.e., 00=6, ;0! on Var(Ny)) and SH(B(Ny),J ,01) has height >n.
Here, B(N,) is the subtree of B with top N;.
Trivially then also, for every n:

there exists ¢! such that, for all m<n:
[[m]]: for some resolvent 6 1;N; of Ny in B:

(09,01) realizes 8, ; and SH(B(N),J,0;INy) has height >m.

It is not hard to see (since B is finitely splitting and recursive) that condition [[m]] can be
expressed by a first-order formula (which, in fact, does not depend on J) computable in m.
Therefore, by recursive saturation of J:

there exists o! such that for all m, condition [[m]] is satisfied.
Fix such a ol. Since B has only finitely many resolvents 8, ;;N; of Ny, by the pigeon-hole
principle:

there exists a resolvent 6 1;N; of Ny in B such that, for all m:

(09,01) realizes 6 ; and SH(B(N,),J,01IN;) has height 2m.

Le., SH(B(N,),J,61IN;) has infinite height, and we can repeat the argument to find a resolvent
6 2;N, of Ny in B and 62 such that (69, 6, 62) realizes (6, 0; 5) and SH(B(N,),J,62IN,) has
infinite height, etc.; eventually constructing our infinite branch through SH(B,J,09). Kl

Note that the recursive types involved in the proof of 4.13 only contain formulas built using A, v
and 3. In particular, — and V are not needed. This suggests a

4.15 Question. Is the condition: for all programs, TM =T/l ®, equivalent with saturation w.r.t.
recursive types of positive formulas?

4.16 Example. Let J be the non-standard algebra which is the successor-structure on a type-w+{
ordering for the language with one individual constant 0 and one unary function symbol S
mentioned before. J is far from being recursively saturated (this would need infinitely many type-C
constituents), but it does satisfy TN =T\ for all T7.

4.17 Remark. By an example of [Kleene 1952], we cannot expect the branch through B
constructed in the proof of 4.14 to be recursive: there are recursive search trees without recursive .
branches. An element of an algebra has a (by the free equality axioms, unique) parsing tree. It
follows that a recursively saturated algebra for at least two operations or one binary operation (this
excludes algebras of the 4.16-type) has elements with a non-recursive parsing tree. (It is easy to
see that, if " =Tl for all T, all recursive functions will be represented as parsing trees of
elements of J; cf. [Blair/Brown 199?].) -
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