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Abstract

We investigate to what extent finite binary sequences with high
Kolmogorov complexity are normal (all blocks of equal length occur
equally frequent), and the maximal length of all-zero or all-one runs
which occur with certainty.

1 Introduction

Infinite sequences generated by a (3, 3) Bernoulli process (flipping a fair coin)

have the property that the relative frequency of zeros in an initial n-length
segment goes to % for n goes to infinity. A related statement can be made
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for finite sequences, in the sense that one can say that the majority of all
sequences will have about one half zeros. However, whereas the earlier state-
ment is a property about individual infinite random sequences, the classical
theory of probability has no machinery to define or deal with individual finite
random sequences.

In [7], Kolmogorov established a notion of complexity (self-information)
of finite objects which is essentially finitary and combinatorial. Says Kol-
mogorov [8]: “Information theory must precede probability theory, and not
be based on it. By the very essence of this discipline, the foundations of
information theory must have a finite combinatorial character.” It is the aim
of this paper to derive randomness related combinatorial properties of high
complexity finite binary sequences by combinatorial arguments, without any
probabilistic assumptions at all.

It turns out to be quite natural to do combinatorial proofs by Kolmogorov
complexity arguments, which are of themselves combinatorial in nature. We
have demonstrated the utility of a Kolmogorov complexity method in com-
binatorial theory by proving several combinatorial lower bounds (like the
‘coin-weighing’ problem), [11]. Rather than doing combinatorics using Kol-
mogorov complexity, in this paper we are interested in combinatorial proper-
ties of individual finite binary sequences with high Kolmogorov complexity.

E. Borel (1909) has called an infinite sequence of zeros and ones ‘normal’
in the scale of two if, for each k, the frequency of occurrences of each block
y of length k in the initial segment of length n goes to limit 2~* for n grows
unbounded, [6]. It is known that normality is not sufficient for randomness,
since Champernowne’s sequence

123456789101112. ..

is normal in the scale of ten. On the other hand, it is universally agreed that
a random infinite sequence must be normal. (If not, then some blocks occur
more frequent than others, which can be used to obtain better than fair odds
for prediction.)

While in the infinite case one considers limiting values of quantitive prop-
erties which hold for each individual sequence of a set of probability 1, in
the finite case one considers the ezpected value of quantities over a set of all
sequences of a given length.

We would like to obtain statements that individual random finite se-
quences have such-and-such quantitative properties in terms of their length.
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But as the result of a sequence of n fair coin flips, any sequence of length n
can turn up. This raises the question which subset of finite sequences can be
regarded as genuinely random. In [12] the viewpoint is taken that finite se-
quences which satisfy all effective tests for randomness (known and unknown
alike), are as random as we will ever be able to verify. This form of ran-
domness of individual sequences turns out to be equivalent to such sequences
having maximal Kolmogorov complexity. In the sequel we use ‘complexity’
in the sense of ‘Kolmogorov complexity’.

We prove that each high complexity finite binary sequence is ‘normal’ in
the sense that each binary block of length k occurs about equally frequent
for k relatively small. In particular, this holds for £ = 1. We quantify the
‘about’ and the ‘relatively small’ in this statement.

To distinguish individual random sequences obtained by flipping a phys-
ical coin from random sequences written down by human subjects, psycho-
logical tests [the correct reference is unknown to the authors] have shown
that a consistent high classification score is reached by using the criterion
that a real random sequence of length, say 40, contains a run of zeros or ones
of length 6. In contrast, human subjects feel that short random sequences
should not contain such long uniform runs.

We determine the maximal length of runs of zeros or ones which are with
certainty contained in each high complexity finite sequence. We prove that
each such sequence must contain a relatively long run of zeros.

The properties must be related to length of the sequence. In a sequence
of length 1, or odd length, the number of zeros and ones cannot be equal. To
apply such properties in mathematical arguments, it is often of importance
that the precise extent to which such properties hold is known.

2 Kolmogorov Complexity

To make this paper self-contained we briefly review notions and properties
needed in the sequel. We identify the natural numbers N and the finite
binary sequences as

(0,¢€),(1,0), (2,1),(3,00), (4,01), ...,

where € is the empty sequence. The length I(z) of a natural number z is the
number of bits in the corresponding binary sequence. For instance, I(€) = 0.
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If A is a set, then |A| denotes the cardinality of A. Let <. >N XN - N
denote a standard computable bijective ‘pairing’ function. Throughout this
paper, we will assume that < z,y >= 11=)0zy.

Define < z,y,z2 > by < z,< y,z >>.

We need some notions from the theory of algorithms, see [13]. Let
¢1, b2, ... be a standard enumeration of the partial recursive functions. The
(Kolmogorov) complezity of z € N, given y, is defined as

C(zly) = min{l(< n,z >) : Pu(< y,2 >) = z}.

This means that C(z|y) is the minimal number of bits in a description
from which z can be effectively reconstructed, given y. The unconditional
complexity is defined as C(z) = C(z|e).

An alternative definition is as follows. Let

Cy(zly) = min{l(z) : ¥(< y,2 >) = z} (1)

be the conditional complexity of z given y with reference to decoding function
¥. Then C(z|y) = Cy(z|y) for a universal partial recursive function % that
satisfies Y(< y,n, 2 >) = da(< y, 2 >).

We will also make use of the prefiz complexity K(z), which denotes the
shortest self-delimiting description. To this end, we consider so called prefiz
Turing machines, which have only 0’s and 1’s on their input tape, and thus
cannot detect the end of the input. Instead we define an input as that part
of the input tape which the machine has read when it halts. When = # y are
two such input, we clearly have that  cannot be a prefix of y, and hence the
set of inputs forms what is called a prefiz code. We define K(z) similarly as
above, with reference to a universal prefix machine that first reads 1™0 from
the input tape and then simulates prefix machine n on the rest of the input.

A survey is [10]. We need the following properties. Throughout ‘log’
denotes the binary logarithm. We often use O(f(n)) = —O(f(n)), so that
O(f(n)) may denote a negative quantity. For each z,y € AN’ we have

Czly) < I(z) + O(1). 2)

For each y € N there is an z € A of length n such that C(z|y) > n. In
particular, we can set y = e. Such z’s may be called random, since they are
without regularities that can be used to compress the description. Intuitively,
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the shortest effective description of z is z itself. In general, for each n and
y, there are at least 2® — 27=¢ 4 1 distinct z’s of length n with

Claly) > n - (3)

In some cases we want to encode z in self-delimiting form z', in order
to be able to decompose z'y into z and y. Good upper bounds on the
prefix complexity of z are obtained by iterating the simple rule that a self-
delimiting (s.d.) description of the length of z followed by z itself is a s.d.
description of z. For example, z' = 1'®)0z and " = 1l*D0l(z)z are both
s.d. descriptions for z, and this shows that K(z) < 2I(z)+ O(1) and K(z) <
I(z) + 2l(I(z)) + O(1).

Similarly, we can encode z in a self-delimiting form of its shortest program
p(z) (I(p(z)) = C(z)) in 2C(x)+1 bits. Iterating this scheme, we can encode
z as a selfdelimiting program of C(z) + 2log C(z) + 1 bits, which shows that
K(z) < C(z) +2log C(z) + 1, and so on.

3 Expectation versus Complexity

To derive our results, we often use a common pattern of argument. Following
a suggestion of John Tromp, we can formulate it in the form of a general ‘Tail
Law’.

Consider the sample space S = {0,1}* with uniform probability Pr(z) =
2-2(=) Put S = {0,1}". Then, Pr(z|z € S™) = 27™. Let R : S —
Z, total recursive, be a function that (in our case) measures the deviation
between some function g of z and a reference value r({(z)) for all strings of
the same length. We are interested in the relation between the complexity
of a string = and this deviation. A natural choice of r would be the average
g(z) over S™. Fix a class D of deficiency functions § : N' — N for which
K(n|n—6(n)) = O(1). Thisis satisfied by every monotone sublinear recursive
function that we are interested in. The complexity of R can be identified with
the complexity of its index in the effective enumeration of recursive functions,
which we can assume equals some constant plus (optionally) the complexity
of its parameters.

Define the tail probability

p(R;n,m) = Pr{z € S™: |R(z)| > m}.



Lemma 1 (Tail Lemma) Let f be a function from N'x N to N satisfying
—logp(R;n, f(n, k) > K(R|n) + k + O(1).
Then for any 6§ € D, we have that all z with C(z) > n — §(n) (n = I(z)),

satisfy
|R(z)| < f(n,8(n)).

Proof. By contradiction. Assume that for some § € D, there exists an n
such that A = {z € S™: |R(z)| > f(n,8(n))} is non-empty. We can describe
such an z € A in the following way:

1. let s be a s.d. program for n given n — §(n), of length I(s) = K(n|n —
§(n)) = O(1).

2. let g be a s.d. program for R given n, of length I(q) = K(R|n).

3. let 7 be the index of z in an effective enumeration of A, from the z’s with
the highest | R(z)|’s down. From |A4| = 2" Pr(A) = 2"p(R; n, f(n,6(n)))
it follows that the length of the (not necessarily s.d.) description of
satisfies:

I(i) < log|A| = n+logp(R;n, f(n,8(n)))
1

< n—K(Rln) - 8(n) - O(1).

The string sqz has length at most n — §(n) — O(1) and can be padded to
a string z of length exactly n — §(n) — ¢, where ¢ is a constant determined
below. From z we can reconstruct z by first using its length plus ¢ to compute
n (and 6(n)) from s, then use n to obtain R from g, and finally enumerate
A to obtain the ¢th element. Note that we can enumerate A up to the ith
element without using f at all, since we enumerate from the z’s with the
highest |R(z)| down. So, if recursive function 3 embodies above procedure
for reconstructing =, we have, by Equation 1,

C(z) < Cy(z)+cy <n—68(n)—c+cy.

Choosing ¢ = ¢y, finishes the proof. O
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Corollary 1 (Tail Lemma Dual) The ezact same argument shows that
for sufficiently random z, the deviation |R(z)| is not too small. We thus ob-
tain a Tail Lemma Dual starting from g(R;n,m) = Pr{z € S™ : |R(z)| < m}.

4 Number of Zeros and Ones

Let z have length n. It is known that if C(z|n) = n+ O(1), then the number
of zeros it contains is, [12],

5 +O0(Vn).

4.1 Fixed Complexity

We analyse what complexity can say about the number of zeros and ones.
Let £ = z175...T, and § € D a deficiency function. Suppose,

C(z) > n - 6(n).

Let R(z) = X z; — % be the deviation in the number of ones in z. With
z € {0,1}" uniformly distributed, #ones(z) = ¥ z; is distributed according
to the binomial distribution.

A general estimate of the tail probability of the binomial distribution,
with s,, the number of successful outcomes in n experiments with probability
of success 0 < p < 1 and ¢ = 1 — p, is given by Chernoff’s bounds, [3, 2],

Pr(|s, —np| > m) < e~ /4npe (4)

The tail probability p(R; n,m) bounded by Equation 4 (with R(z) = s, — §
and p = ¢ = 1/2) yields:

m?loge

-1

—log p(R;n, m) >

n

Clearly, R is a recursive function with K(R|n) = O(1). Thus, choosing
f(n k) = \/(k + O(1))nln2, Lemma 1 gives us: all z with C(z) > n — §(n)
(n = I(z)), satisfy

|#ones(z) — g| < /(6(n) + O(1))nln2. (5)
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If the complexity of z satisfies that the conditional complexity C(z|n) >
n — §(n), clearly Equation 5 holds a fortiori.

4.2 Fixed Number of Zeros

It may be surprising at first glance, but there are no maximally complex
sequences with about equal number of zeros and ones. Equal numbers of
zeros and ones is a form of regularity, and therefore lack of complexity. Using
the same notation as before, if R(z) = O(1) then the randomness deficiency
§(n) = n — C(z) is relatively large. For instance,
g(Ryn,m) = Pr{z € S™:|R(z)| < m}
n m
< (2 1)27" = 0(—=).
< en+12( ], ) =0

Thus, setting f(n,k) = 27%"9(),/n, the Tail Law Dual (Corollary 1)
gives us: all z with C(z) > n — §(n) (n = I(z)), satisfy

|#ones(z) — -g| > 278m-0() /.
Perhaps more interestingly, we can define
R'(z) = #tones(z) — (g— +7),
so that K(R'|n) is about K(j). Applying the Tail Law Dual with
(n, k) = 27+-KO-0W
we then find that all z with C(z) > n — §(n) satisfy
[#ones(z) - (5 + )| > 27 KO0/,

This means that for a random z having exactly j +n/2 ones, K(j) must
be at least about logn.



5 Number of Blocks

An infinite binary sequence is called normal if each block of length k occurs
with limiting frequency of 27%. This justifies our intuition, that a random
infinite binary sequence contains about as many zeros as ones. But also,
blocks 00, 01, 10, and 11 should appear about equally often. In general we
expect that each block of length k occurs with about the same frequency. Can
we find an analogue for finite binary sequences? We analyse these properties
for high complexity finite binary sequences to obtain a quantification of a
similar statement in terms of the length of the sequence and its complexity.

5.1 Fixed Complexity

Let z = z; ..., be a binary sequence of length n, and y a much smaller string
of length I. Let p = 27" and #y(z) be the number of (possibly overlapping)
distinct occurrences of y in z. Put R,(z) = #y(z) — np. (So Ri(z) =
S z; — n/2.) For convenience, we assume that z ‘wraps around’ so that an
occurrence of y starting at the end of z and continuing at the start also
counts.

Theorem 1 All z with C(z) > n — 6(n) satisfy

|[#y(z) — np| < /anp,
with a = [K(y|n) + logl + 8(n) + O(1)](1 — p)l41In 2.

Proof. We prove by contradiction. Assume that n is divisible by 1. (If it
is not we can put z on a Procrustus bed to make its length divisible by [ at
the cost of having the above frequency estimate up to a [/2 additive term.)
There are | ways of dividing (the ring) z into N = n/l contiguous equal
sized blocks, each of length [. For each such division ¢ € {0,1,...,] —1}, let
R, ;(z) be the number of (now nonoverlapping) occurrences of block y minus
Np. Notice that Ry ;(z) is the deviation from the expectation of a Bernoulli
sequence of length N with probability of succes (a block matching y) p, for
which we can use the Chernoff bound 4.

p(Ry,i§ n, m) < 2e‘"‘2/4NP(1—p).



Taking the negative logarithm on both sides:

m?1
— logp(Ryi;n,m) > Wlog__e) - 1. (6)
Choose m = f(n, k), such that
2
T kJ7108S _ (R, dm) + £ +O(0). @

4Np(1 - p)
Equations 6, 7 enable us to apply the Tail Lemma 1. Application of the Tail
Lemma yields that all z with C(z) > n — §(n) satisfy |R, ()| < f(n,8(n)).
Substitution of f according to Equation 7, with K (R, ;|n) = K(y,%|n)+0(1),
gives:

\/K(y,zln )+ 6(n )+O(1)4Np(1 _p)

[ Ry loge

The theorem now follows by noting that R,(z) = ¥\y Ry (), and K (i|l) <
logl O

With C(z|n,R,) > n — 8(n), Theorem 1 holds a fortiori.

5.2 Fixed Number of Blocks

Similar to the analysis of blocks of length 1, the complexity drops below
its maximum in case some block y of length [ occurs in one of the ! block
divisions, say 1, with frequency exactly pN (p = 1/2'). Then we can point
out z by giving n,y,¢ and its index in a set of cardinality

(v )00 0<%"

Therefore,

C(z|n,y) < n—ilogn-i— (l+3logl)+0()

10



6 Length of Runs

It is known from probability theory, that in a randomly generated finite
sequence the ezpectancy of the length of the longest run of zeros or ones
is pretty high. For each individual finite sequence with high Kolmogorov
complexity we are certain that it contains each block up to a certain length
(like a run of zeros).

Theorem 2 Let = of length n satisfy C(z) > n — §(n). Then z contains all
blocks y of length

| = logn — loglogn — log(§(n) + logn) — O(1).

Proof. We are sure that y occurs at least once in z, if ,/anp in Theorem 1
is at most np. This is the case if a < np, that is:

K(yln) +logl + 6(n) + O(1)
loge

41 < np.

Substitute K (y|n) < I+ 2logl 4+ O(1) (since K(y|n) < K(y)), and p = 27!
with [ set at

| = logn — log(36(n)logn + 31og®n),
(which equals [ in the statement of the theorem up to an additive constant).
The result is

I+ 3logl +6(n)+ O(1)

< 3(6 2
Toge 41 < 3(6(n)logn + log” n),

and it is easy to see that this holds for sufficiently large n. O

Corollary 2 If§(n) = O(logn) then each block of length log n—2loglogn —
O(1) s contained in z.

Corollary 3 Analysing the proof of Theorem 2 we can improve this in case
K(y|n) is low. If §(n) = O(loglogn), then for each € > 0 and n large
enough, x contains an all-zero run y (for which K(y|n) = O(logl)) of length
[ =logn — (1+¢€)loglogn+ O(1).
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Corollary 4 (improving [2]) Since there are 2*(1 — O(1/ logn)) strings «
of length n with C(z) > n — loglogn + O(1), the expected length of the
longest run of consecutive zeros if we flip a fair coin n times, is at least | as
in Corollary 8. This improves the lower bound of logn — 2loglogn cited in
[2] by a loglogn additive term.

We show in what sense Theorem 2 is sharp. Let z = wvw, I(z) = n and
C(z) > n — §(n). We can describe z by giving

1. A description of v in K(v) bits.

2. The literal representation of uw.

3. A description of I(u) in logn + loglogn + 2logloglogn + O(1)
Then, since we can find n by n = [(v) + [(vw),

C(z) < n—I(v)+ K(v)+logn (8)
+ (1 +o(1))loglogn + O(1).

Substitute C(z) = n — §(n) and K(v) = o(loglogn) (choose v to be very
regular) in Equation 8 to obtain:

I(v) < 8(n) +logn + (14 o(1))loglogn.

This means that, for instance, for each € > 0, no maximally complex string
z with C(z) = n + O(1) contains a run of zeros (or the initial binary digits
of ) of length logn + (1 + €) loglog n for n large enough and regular enough.
By Corollary 3, on the other hand, such a string z must contain a run of
zeros of length logn — (1 + ¢€) loglog n + O(1).
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