Institute for Language, Logic and Information

A RANDOMIZED ALGORITHM FOR TWO-PROCESS
WAIT-FREE TEST-AND-SET

John Tromp
Paul M.B. Vitényi

ITLI Prepublication Series
for Computation and Complexity Theory CT-91-10

University of Amsterdam

3
&
23 ‘

The ITLI Prepublication Series

1986

86-01 The Institute of Language, Logic and Information

86-02 Peter van Emde Boas A Semantical Model for Integration and Modularization of Rules
Categorial Grammar and Lambda Calculus

86-03 Johan van Benthem

86-04 Reinhard Muskens A Relational Formulation of the Theory of Types

86-05 Kenneth A. Bowen, Dick de Jongh Some Complete Logics for Branched Time, Part I Well-founded Time,
86-06 Johan van Benthem Logical Syntax Forward looking Operators
1987 87-01 Jeroen Groenendijk, Martin Stokhof Type shifting Rules and the Semantics of Interrogatives

87-02 Renate Bartsch Frame Representations and Discourse Representations
87-03 Jan Willem Klop, Roel de Vrijer Unique Normal Forms for Lambda Calculus with Surjective Pairing

87-04 Johan van Benthem Polyadic quantifiers

87-05 Victor Sinchez Valencia Traditional Logicians and de Mo!Fan's Example

87-06 Eleonore Oversteegen Temporal Adverbials in the Two Track Theory of Time

87-07 Johan van Benthem Categorial Grammar and Type Theory

87-08 Renate Bartsch The Construction of Properties under Perspectives

87-09 Herman Hendriks Type Change in Semantics: The Scope of &:ntification and Coordination

Logic, Semantics and Philosophy of Language: Algorithmic Information Theory

LP-88-01 Michiel van Lambalgen
Expressiveness and Completeness of an Interval Tense Logic

LP-88-02 Yde Venema

LP-88-03 Year Report 1987

LP-88-04 Reinhard Muskens Going Fanial in Montague Grammar

LP-88-05 Johan van Benthem = Logical Constants across Varying Types

LP-88-06 Johan van Benthem Semantic-Parallels in Natural Language and Computation
LP-88-07 Renate Bartsch Tenses, Aspects, and their Scopes in Discourse
LP-88-08 Jeroen Groenendijk, Martin Stokhof Context and Information in Dynamic Semantics
LP-88-09 Theo M.V. Janssen A mathematical model for the CAT framework of Eurotra

A Blissymbolics Translation Program

LP-88-10 Anneke Kleppe . .
Mathematical Logic and Fourdations: | ifschitz’ Realizabiility

ML-88-01 Jaap van Oosten
ML-88-02 M.D.G. Swaen The Arithmetical Fragment of Martin L6f's Type Theorics with weak I-climination
ML-88-03 Dick de Jongh, Frank Veltman Provability Logics for Relative Interpretability

On the Early History of Intuitionistic Logic
. Remarks on Intuitionism and the Philosophy of Mathematics
CT-88-01 Ming Li, Paul M.B.Vitanyi Computation and Complexity Theory: Tyo Decades of Applied Kolmogorov Complexity
CT-88-02 Michiel HM. Smid General Lower Bounds for the Partitioning of Range Trees
CT-88-03 Michiel H.M. Smid, Mark H. Overmars Maintaining Multiple Representations of

Leen Torenvliet, Peter van Emde Boas Dynamic Data Structures
CT-88-04 Dick de Jongh, Lex Hendriks Computations in Fragments of Intuitionistic Propositional Logic

Gerard R. iena:del de Lavalette

Machine Models and Simulations (revised version)

CT-88-05 Peter van Emde Boas
CT-88-06 Michiel H.M. Smid A Data Structure for the Union-find Problem having good Single-Operation Complexity

CT-88-07 Johan van Benthem Time, Logic and Computation
CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas
CT-88-09 Theo M.V. Janssen Towards a Universal Parsing Algorithm for Functional Grammar

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy
CT-88-11 Sieger van Denncheuvel, Peter van Emde Boas Towards implementing RL
X-88-01 Marc Jumelet Other prepublications: On Solovay's Completeness Theorem

9 LP-89-01 Johan van Benthemlogic, Semantics and Philosophy of LanguageThe Fine-Structure of Categorial Semantics

LP-89-02 Jeroen Groenendijk, Martin Stokhof ~ Dynamic Predicate Logic, towards a compositional,
non-refrescnmioml scmantics of discourse

ML-88-04 A.S. Troclstra
ML-88-05 A.S. Troelstra

LP-89-03 Yde Venema Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-04 Johan van Benthem Language in Action

LP-89-05 Johan van Benthem Modal ic as a Theory of Information

LP-89-06 Andreja Prijatelj Intensional Lambek Calculi: Theory and Application

LP-89-07 Heinnch Wansin The Adequacy Problem for Scquential Propositional Logic

LP-89-08 Victor Sénchez Valencia Peirce's Propositional Logic: From Algebra o Graphs

LP-89-09 Zhisheng Huang Dependency of Belief in Distributed Systems
ML-89-01 Dick de Jongh, Albert Visser Mathematical Logic and Foundations: Explicit Fixed Points for Interpretability Logic
ML-89-02 Roel de Vrijer Extending the Lambda Calculus with Surjective Pairing is conservative

ML-89-03 Dick de Jongh, Franco Montagna Rosser Orderings and Free Variables
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna ~ On the Proof of Solovay's Theorem

ML-89-05 Rincke Verbrugge I-completencss and Bounded Arithmetic

ML-89-06 Michiel van Lambalgen The Axiomatization of Randomness

ML-89-07 Dirk Roorda Elementary inductive Definitions in HA: from Strictly Positive towards Monotone
ML-89-08 Dirk Roorda Investigations into Classical Linear Logic

ML-89-09 Alessandra Carbone . Provable Fixed points in 1Ag+£;

CT-89-01 Michicl HM. Smid Computation and Complexity Theory: Dynamic Deferred Data Structures

CT-89-02 Peter van Emde Boas Machine Models and Simulations

CT-89-03 Ming Li, Herman Ncuféglise, Leen Torenvliet, Peter van Emde Boas On Space Efficient Simulations

CT-89-04 Harry Buhrman, Leen Torenvliet A Comparison of Reductions on Nondcterministic Space
CT-89-05 Picter H. Hartel, Michicl HM. Smid A Parallel Functional Implementation of Range Querics
Leen Torenvlict, Willem G. Vree

CT-89-06 H.W. Lenstra, Jr. Finding Isomorphisms between Finite Fields
CT-89-07 Ming Li, Paul M.B. Vitanyi A Theory of Learning Simple Concepts under Simple Distributions and
Average Case Comchxily [l"or the Universal Distribution (Prel. Version)
CT-89-08 Harry Buhrman, Steven Homer Honest Reductions, Complecteness and
Leen Torenvliet Nondeterminstic Complexity Classes

CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet ~ On Adaptive Resource Bounded Computations

CT-89-10 Sieger van Dennchecuvel The Rule Language RL/1

CT-89-11 Zhisheng Huang, Sieger van Dennchcuvel Towards Functional Classification of Recursive Query Processing
Peter van Emde Boas

X-89-01 Mariannc Kalsbeek Other Prepublications: Ap Orey Sentence for Predicative Arithmetic

X-89-02 G. Wagemakers New Foundations: a Survey of Quine's Set Theory
X-89-03 A.S. Troclstra Index of the Heyting Nachlass
X-89-04 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar, a first sketch
X-89-05 Maarten de Rijke The Modal Thco?' of Inequality
emantick voor Conceptueel Modelleren: Het RL-project

?-88-06 Peter van e Boas Een Relationele
9 SEE INSIDE BACK COVER

Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and

Information
Faculteit der Wiskunde en Informatica
(Department of Mathematics and Computer Science)
Plantage Muidergracht 24
1018TV Amsterdam

Faculteit der Wijsbegeerte
(Department of Philosophy)
Nieuwe Doelenstraat 15
1012CP Amsterdam

A RANDOMIZED ALGORITHM FOR TWO-PROCESS
WAIT-FREE TEST-AND-SET

John Tromp
CwI
Paul M.B. Vitényi
Department of Mathematics and Computer Science
University of Amsterdam
& CWI

ITLI Prepublication Series

for Computation and Complexity Theory
ISSN 0924-8374

Received June 1991

A Randomized Algorithm for Two-Process
Wait-Free Test-and-Set

John Tromp Paul Vitanyi
CWI* CWI & UvA'f
Abstract

It is known to be impossible to implement wait-free test-and-set
deterministically in a concurrent setting using only atomic shared vari-
ables. It can be shown that n-process wait-free test-and-set can be
deterministically implemented from 2-process wait-free test-and-set.
Here we present a simple direct randomized algorithm for 2-process
wait-free test-and-set, implemented with two 4-valued single writer
single reader atomic variables. The worst-case (over all adversary
schedulers) expected number of steps to execute a test-and-set be-
tween two processes is at most 11, while the reset takes exactly 1
step. Based on a finite-state analysis, the proofs of correctness and
expected length are compressed into one table.

1 Introduction

A concurrent system consists of n processes communicating through concur-
rent data objects Ry, ..., R,—1. An implementation of a new concurrent data
object = (rather, a family of objects, one for each n) is wait-free if there is a
total function f, such that each process can complete any operation associ-
ated with z within f(n) steps, irrespective of the timing and execution speeds
of the other processes. A step to is a single access to one of the R;’s. Local

*Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam, The
Netherlands. email: tromp@cwi.nl
tFaculteit Wiskunde en Informatica, Universiteit van Amsterdam. email: paulv@cwi.nl

events, including coin-flips, are not counted. The paper develops a similar
definition of wait-freeness for randomized protocols based on the worst case
expected length of an operation.

A concurrent object is constructible if it can be implemented determinis-
tically with boundedly many safe bits, the mathematical analogues of elec-
tronic hardware ‘flip-flops’, [11]. What concurrent wait-free object is the most
powerful constructible one? It has been shown that wait-free atomic multi-
user variables, and atomic snapshot objects, are constructible [16, 11, 21,
10, 18, 13, 7, 4, 2|. In contrast, wait-free consensus—viewed as an object on
which each of n processes can execute just one operation—is not constructible
[6, 1], although randomized implementations are possible [6, 1, 5, 19]. Wait-
free concurrent test-and-set can deterministically implement 2-process wait-
free consensus, and therefore is not deterministically constructible [12, 8].
This raises the question of whether randomized algorithms for test-and-set
exist.

In [8] it is shown that repeated use of ‘consensus’ on unbounded hardware
can implement ‘test-and-set’. In [17, 19, 9] a solution can be obtained by
combining several intermediate constructions.

Wait-free n-process test-and-set can be implemented deterministically
from wait-free 2-process test-and-set, [3], showing that the impossibility of
a deterministic algorithm for n-process test-and-set is solely due to the 2-
process case. We present a simple randomized algorithm which directly im-
plements wait-free test-and-set between 2 processes. Randomization means
that the algorithm contains a branch conditioned on the outcome of a fair
coin flip (as in [20]). We use a finite-state based proof technique for verifying
correctness and worst-case expected execution length.

The solution is very simple: it uses two 4-valued 1-writer 1-reader atomic
variables. The worst-case expected number of steps in a test-and-set opera-
tion is 11, whereas a reset always takes 1 step.

2 Preliminaries

A test-and-set bit is a concurrent data object X shared between n processes
0,...,mn — 1. The value of X is 0 or 1. Each process i has a local binary
variable z;. At any time exactly one of X, z,...,z,_1 has value 0, all others
have value 1. A process 7 with z; = 1 can atomically execute a test-and-set

operation
read z; := X; write X := 1; return z;.

A process 1 with z; = 0 can execute a reset operation
z; := 1; write X := 0.

This naturally leads to the definition of the state of the test-and-set bit,
or 0-owner as a member of {1,0,...,n — 1} according to which of X and
the z;’s is 0.

2.1 Test-and-Set Definition

Instead of assuming an atomic test-and-set, we want to implement it with ac-
tions that are sequences of accesses to atomic shared variables, Ry, ..., Rp_1,
executed by processes 0, ...,n — 1, according to some protocol. Since the ex-
ecutions by the different processes happen concurrently and asynchronously,
the implementation should guarantee that each system execution of the im-
plementation is equivalent to a system execution of the above defined con-
struct. This leads to the following set of definitions.

Definition. For a given execution of the system, denote the set of actions
that have been started as A = RUT,T = TOU T1, where R is the set of
resets, and T'z is the set of test-and-sets returning =, z = 0,1. By r,t,10,t1
we denote elements from R,T,T0,T1, respectively. We partition the set
of actions according to the processes executing them: define A; to be the
actions by process ¢, and similarly define R; = A; N R, and T'z; = A; N Tz,
z = €,0,1. Define an event as an execution of a statement in a protocol,
that is, a write or a read on a R; or a coin-flip. A read event is qualified by
the value obtained and a coin-flip by its outcome. Every new execution of
a statement represents a unique event. Number the events of a test-and-set
or reset action a € A as a.l,a.2,.... Let | = l(a), the length of a, be its
number of events in the execution (possibly infinite). Denote a.1, the start
of a, as s(a). If a finishes during the execution, then denote a.l, the finish
of a, as f(a). Each event is assumed to execute atomically. The sequence of
the events of all actions in A is called the history. A history induces a partial
ordering of the actions: a — b iff f(a) < s(b) (the last event of a precedes
the first of b in the history). The number of b such that b — a is assumed to
be finite for each a.

The pair (A4, —) is called a run. An implementation of a concurrent object
shared between processes 0,...,n—1, such that each run (A, —) satisfies the
following atomicity axiom, is an atomic test-and-set.

Atomicity: We can extend — on A to a total order = on A in which
the sequence of actions satisfies the test-and-set semantics:

1. the system is initially in state L.

2. from state L, an action t0 € T'0; moves the system to state 1.

w

. from state 7, an action r € R; moves the system to state L.

>

. from state 7, an action t1 € T'1 — T'1; leaves the system in state 1.

5. no other state transitions than the above are allowed.

2.2 Randomization, Adversaries and Wait-Freeness

In the above definition of atomicity we did not use the notion of adversary.
The reason is that atomicity must hold for all possible histories, and hence
for all possible outcomes of coin-flips. The adversary is introduced to enable
a quantification of the wait-freeness. While it is inevitable that for some
histories a test-and-set action may last arbitrarily many steps, the probability
of such histories occurring should be minimized. This leads us to define the
probability of a certain history occurring.

Fix a protocol P. Let H (H*) be the set of finite (infinite) histories that
can arise from this protocol. I.e. the set of h such that

1. for all ¢ < n, h|A;, the restriction of h to events by process i, satisfies
the protocol for process 7, and

2. for all j < m, h|R;, the restriction of h to events that access R;, satisfies
the usual semantics of such an atomic variable (a read event returns
the value written by the last write event preceding it).

For h € H, let the cylinder T, be the set of all histories in H* that start
with h. Write he to denote history A followed by event e.
An adversary is then defined as a probability measure yu on H* satisfying:

1. u(T¢) =1, where € is the empty history;

4

2. w(Th) = Xheer #(Tre), for h € H and e is a single event; and

3. ”(ic(heads)) = /“‘(ic(tails))’ for each coin-flip event ¢() with he() €
H

The first two conditions—already implied by the notion of probability
measure—are included for completeness. The third condition ensures that
the adversary has no control over the outcome of a fair coin flip: both out-
comes are equally likely. This definition is readily generalized to biased coins
and multi-branch decisions.

Note that this notion of adversary is the strongest possible short of allow-
ing it to predict the future. For example, it includes nonrecursive adversaries
using omniscient oracles and randomization.

Now that adversaries have been defined, we can define the expected length
E(h,1) of process i's current (next if idle) action following a finite initial
history segment h. Let w € I, be an infinite history starting with h. Let
Ini(w) be the length (number of events) of process i’s current action following
h in w. If process 1 is idle at h, then by ‘current’ we mean ‘next’, leaving I, ;
undefined for w in which a doesn’t start a new action. Define

VT, B{w €Tk hy(w) = k})
E(h,i) = I; k i) .

The summation includes the case & = 0o so that the expected length is
infinite if (but not necessarily only if) the set of infinite histories in which
an operation execution has infinitely many events, has positive measure.
The normalization w.r.t. h gives the adversary a free choice of ‘starting’
configuration.

Definition. An implementation of a concurrent object shared between
n processes is wait-free, if there is a constant f(n) bounding the expected
length E(h, 1), for all h, i, under all adversaries.

3 Solution for Two Processes

We give a test-and-set implementation between two processes, process 0 and
process 1. The construction uses two 4-valued shared variable objects, R,
and R;. The four values are ‘me’, ‘he’, ‘choose’, ‘rst’. Process 4 solely writes

1(me)
r(he)

r(choose)

r(choose)

w(choose)

Figure 1: test-and-set protocol

variable R;, its own variable, and solely reads R;_;. For this reason the
reads and writes in the protocol don’t need to be qualified by the shared
variables they access. The protocol, for process ¢, is first presented as a finite
state transition diagram, figure 1. The transitions are labeled with reads
r(value) and writes w(value) of the shared variables, where value denotes
the value read or written. The 11 states of the protocol are split into 4 groups
enclosed by dotted lines. Each group is an equivalence class consisting of the
set of states in which that process’s variable has the same value. That is,
the states in a group are equivalent in the sense that process 1 — ¢ cannot
distinguish between them by reading R;. Accordingly, the inter-group events
are writes to R;, whereas the intra-group events are reads of R;_;. Each
group is named after the corresponding value of the shared variable. The
diagram is deterministic, but for a coin flip which is modeled by the two
r(choose) transitions from the choose state.

A more conventional representation of the protocol, for process ¢, is given
below. An occurrence of R; not preceded by ‘write’ (resp. R;—; not preceded
by ‘read’) refers to the last value written to it (resp. read from it), stored
in correspondingly named local variables. The conditional ‘rnd(true,false)’
represents the boolean outcome ‘true’ or ‘false’ of a fair coin flip. The system
is initialized with all local and global variables in state rst.

test_and_set:

if R; = he AND read R;_; # rst
then return 1
write R; := me
while read R;_; = R; do
write R; := choose
if read R;_; = he OR (R;_; = choose AND rnd(true,false))
then write R;:= me
else write R;:= he
if R; = me
then return 0
else return 1

reset:

write R; := rst

It can be verified in the usual way that the transition diagram represents
the operation of the program. The intuition behind the protocol is as follows.
The default situation is where both processes are idle in the rst state. If
process 1 starts a test-and-set then it writes R; := me (indicating its desire
to take the 0), and checks whether process 1 —1 agrees (by not having R;_; :=
me). If so, then it has successfully completed a test-and-set of 0. It is easy
to see that in this case process 1 — 7 can not get 0 until process 7 does a
reset by writing R; := rst. While R; = me, process 1 —1 can only move from
state ‘me’ to state ‘notme’ and on via states ‘choose’, ‘tohe’ and ‘he’ to ‘tst1’,
where it completes a test-and-set of 1.

Problems arise only if both processes see each other’s variable equal to
‘me’. In this case they are said to disagree or in conflict. They then proceed
to the choose state from where they decide between going for 0 or 1, according
to what the other process is seen to be doing. (It is essential that this decision
be made in a neutral state, i.e. without a claim of preference for either 0 or
1. If, for example, on seeing a conflict, a process would change preference at
random, then a process cannot know for sure whether the other one agrees
or is about to write a changed preference.)

The deterministic choices, those made if the other’s variable reads differ-
ent from ‘choose’, can be seen to lead to a correct resolution of the conflict.
A process ending up in the tstl state makes sure that its test-and-set of 1
is justified, by remaining in that state until it can be sure that the other
process has taken the 0. Only if the other process is seen to be in the rst
state need it try to take the 0 itself.

Suppose now that process ¢ has read R;_; = choose and is about to flip
a coin. Assume that process 1 — 1 has already moved to one of the states
tome/tohe (or else reason with the processes interchanged). With 50 percent
chance, process ¢ will move to the same state as process 1 — 1 did and thus
the conflict will be resolved.

So, intuitively, the probability of each loop through the choose state is at
most one half and the expected number of ‘choices’ (transitions from state
choose) at most two. This shows that the worst case expected test-and-set
length is 11. Namely, starting from the tstl state, it takes 4 steps to get
to state choose, another 4 steps to loop back to choose and 3 more steps to
reach tst0/tstl. The reset operation always takes 1 step.

8

4 Proof of correctness of the 2-Process So-
lution

Let h be a history corresponding to a run (4, —) of our implementation. Let
B = {s(t),f(t): t € T}U{s(r) = f(r) : 7 € R} be the set of events which
start or finish an action. Note that h|B, the restriction of h to events in B,
completely determines the partial order of actions —. Let C = {tx : t €
T} U R be the set of atomic occurrences of actions.

The definition of atomic test-and-set for 2 processes, process 0 and process
1, is captured by DFA2, the DFA in figure 2, which accepts all possible
sequences of atomic operations (all states final). The states are labeled with
the owner of the bit. The arcs representing actions of process 1 are labeled,

whereas the non-labeled arcs represent the corresponding actions of process
0.

tasl

Figure 2: DFA2: specification of 2-process atomic test-and-set

Figure 3 shows the DFA, DFA3, that accepts the possible sequences of
the following events of one process (all states final):

e the start of a test-and-set action, denoted s(tas),
e the atomic occurrence of a test-and-set 0, denoted tas0,

e the atomic occurrence of a test-and-set 1, denoted tasl,

the finish of a test-and-set 0 action, denoted f(tas0),

the finish of a test-and-set 1 action, denoted f(tasl),

9

e the reset action, denoted rst.

These are the events in BUC. The reason for not splitting a reset action into
start, atomic occurrence, and finish is that it’s implemented in our protocol
as a single atomic write where the above three transitions coincide.

ISt
f(tas1) S(tas) tas0 f(tas0)
QT

- -
B

Figure 3: DFA3: non-atomic specification of 1-process test-and-set

The proof is based on the finite state diagram DFA4 in figure 4 below
(again all states are final).

It is drawn as a cartesian product of the two component processes—
transitions of process 0 are drawn vertically and those of process 1 hori-
zontally. For clarity, the transition names are only given once and only for
process 1. Identifying the starts and finishes of test-and-set executions with
their atomic occurrences by collapsing the s() and f() arcs, the diagram re-
duces to the atomic test-and-set diagram. Identifying all nodes in the same
column (row) reduces the diagram to the diagram of process 0 (process 1).

In the states labeled ‘a’ through ‘h’, neither process owns the 0; the bit
is in state L. In the states labeled ‘i’ through ‘n’, process 1 owns the 0; the
bit is in state 1. In the states labeled ‘o’ through ‘t’, process 0 owns the 0;
and the bit is in state 0.

Formally [14], DFA4 is the composition of DFA2 with 2 copies of DFA3,
in the I/O Automata framework.

Let NFA4 be the NFA obtained from DFA4 by turning the broken tran-
sitions of figure 4 into e-steps.

We claim that acceptance of h|B by NFA4 implies atomicity of (4, —).
This is proven as follows. If NFA4 accepts h|B, then, corresponding to the
¢ transitions, we can augment h|B with an atomic transition t* between
the start s(¢) and finish f(¢) of each test-and-set action t € T, to get a
history h' accepted by DFA4. Therefore, DFA2, which composes DFA4,
accepts h'|C,the sequence of atomic events in h'. Furthermore, if a — b,
then ax < f(a) — s(b) < bk, so =, the total order of actions in A'|C,
extends —. This proves atomicity of (4, —).

10

Figure 4: DFA4: non-atomic specification of 2-process test-and-set

11

To show that for all histories A € H of our implementation, h|B is ac-
cepted by NFA4, and thus the correctness of our construction, we assign to
each reachable combination of process states (s, s1) a nonempty set Sy, 4, of
NFA4 states, such that: for each history h ending in process states (sg, s1),
the set of states in which NFA4 can be after processing h|B contains S, s,
(*). The assignment is given in figure 5. The table entries were chosen so as
to minimize the number of e-steps that can be made from each assigned set
of NFA4 states. This gives the most insight into the workings of the protocol.

In the table below each row (column) is labeled with a state of process 1
(process 0) as in diagram figure 1. An entry in the table is labeled with
roman letters representing a set of atomicity states in figure 4, assigned
to that row/column pair of process states. The number ending an entry
gives E(h,0), the expected number of steps to finish the current operation
execution of process 0.

We use induction on the length of the history to check (*):

Base: After processing the empty history, NFA4 can be in {initialstate} D
{d} = Srst,rst-

Induction Step: This reduces to checking whether for all transitions (sg, s1)
to (to,t1) and all NFA4 states y € Si,4,, there is an NFA4 state z €
Sso,s1, such that NFA4 can move from z to y by processing: either the
event corresponding to the transition if it belongs to B, or no event
otherwise (there is a sequence of e-steps from z to y).

It is straightforward to check all transitions (state process 0, state process
1) to (newstate process 0, state process 1) or to (state process 0, newstate
process 1), corresponding to the atomic transitions in the two copies of pro-
tocol figure 1 concerned, to do the induction on the length of the runs to
verify correctness, explained above. Simultaneously, the wait-freeness can be
checked.

We give an example of checking a few transitions below, and give the
interpretation. Verification consists in checking all transitions in the table.

In the default state both processes are in state rst. The table entry
d10 gives corresponding state d, the start state, in figure 4. The worst-case
expected number of steps for a test-and-set by process 0 is 10. Process 0
can start a test-and-set by executing w(me) and entering state me. The
corresponding table entry gp9 indicates in figure 4 that the system is now

12

rst tst0 notme me tome choose tohe he nothe tstl free
rst d10 110 cekl0 ekl10 ek10 cl0 cl0 cl0 cl0 d10 eklO
tst0 sl * rtl rtl rtl rl rl rl rl sl rtl
notme | agp8 jn8 imoq8 imoq8 * imoq8 imogq8 o4 * p4 *
me gp9 jn9 imoq9 imoq9 imoq9 ol ol ol ol pl imoq9
tome | gpl0 jnl0 * imoql0 imoql0 imoq6 02 02 imoq6 p2 *
choose | a3 i3 imoq7 i3 imoq7 imoq7 imoq7 03 imoq7 p3 *
tohe a2 j2 imoqg6 i2 i2 imogq6 imoqlQ0 imoql0 * pb *
he al j1 i1 i1 il i1 imoq9 imoq9 imoq9 pb *
nothe ad 4 * 4 imog8 imoq8 * imoq8 imoq8 p4 *
tstl di1 111 k1l k11 k11 k11 k11 k11 k1l * *
free | gpl0 jnl0 * imoql0 * * * * * * *

Figure 5: table to verify correctness and wait-freeness

either in state g meaning that process 0 has executed s(tas), or in state p
meaning that process 0 has executed s(tas) and also tasO atomically. The
expected number of steps is now 9 < 10 — 1. Suppose process 1 now starts a
test-and-set: it executes w(me) and moves to state me. The corresponding
table entry imog9 gives the system state as one possibility in {1,m,0,q} in
figure 4 and the expected number of steps for execution of test-and-set by
process 0 is still 9. State m says process 1 has executed s(tas) and tas0
atomically, while process 0 has only executed s(tas)—hence the system was
previously in state g and not in state p. State i says process 1 has executed
s(tas) and tas0 atomically, while process 0 has executed s(fas) and tasl
atomically—and hence the system was previously in state g and not state p.
States o and g imply the same state of affairs with the roles of process 0 and
process 1 interchanged, and the previous system state is either p or g.

Note that it is also consistent for the system to be in state h—neither
process having executed tas. However, if both processes have started a test-
and-set execution, then necessarily, one of them must return 0. We have
optimized the table entries by eliminating such spurious states.

Process 0 might now read R, = me, and move via state notme (table
entry imog8) by writing Ry := choose, to state choose. Process 1 is idle in
the meantime. The table entry is now ¢3. This says that process 1 has atom-
ically executed tst0, and process 0 has atomically executed tstl. Namely,
all subsequent schedules lead in 3 steps of process 0 to state tstl—hence the

13

expectation 3.

The expected number of remaining steps of process 0’s test-and-set has
dropped from 8 to 3 by the last step since 8 was the worst-case which could
be forced by the adversary. Namely, from the system in state (notme, me),
the adversary can schedule process 1 to move to (notme, notme) with table
entry imog8, followed by a move of process 1 to state (notme,choose) with
table entry imog8, followed by a move of process 0 to state (choose, choose)
with table entry tmoq7. Suppose the adversary now schedules process 0. It
now flips a fair coin to obtain the conditional boolean rnd(true, false). If the
outcome is true, then the system moves to state (tome, choose) with entry
imog6. If the outcome is false, then the system moves to state (tohe, choose)
with table entry imog6. Given a fair coin, this step of process 0 correctly
decrements the expected number of steps. Suppose the adversary schedules
process 1 in state (choose, choose). Process 1 flips a fair coin. If the outcome
is true the system moves to state (choose,tome) with table entry imogqT;
if the outcome is false then the system moves to state (choose,tohe) with
table entry tmoqT7.

This way the correctness of the implementation can be checked exhaus-
tively by hand. We have done the verification by hand, to optimize the
entries, and again by machine.

For the finite-state system as we described, the expected number of re-
maining steps in a test-and-set execution is always bounded by a fixed num-
ber. The table shows that, trivially, 1 < E(k,0) < 11 Hence the algorithm
is wait-free.

5 On the Difficulty of Multi Process Test
And Set

The obvious way to extend the given solution to more than 2 processes would
be to arrange them at the leafs of a binary tree. Then, a process wishing to
execute an n-process test-and-set, would enter a tournament, as in [15], by
executing a separate 2-process test-and-set for each node on the path up to
the root. When one of these fails, it would again descend, resetting all the
tas-bits on which it succeeded, and return 1. When it succeeds ascending up
to the root, it would return 0 and leave the resetting descend to its n-process

14

reset.

The intuition behind this tree approach is that if a process ¢ fails the
test-and-set at some node N, then another process j will get to the root
successfully and thus justify the value 1 returned by the former.

The worst case expected length of the n-process operations is only logn
time more than that of the 2-process case.

Unfortunately, this straightforward extension does not work. The prob-
lem is that the other process j need not be the one responsible for the failure
at node N, and might have started its n-process test-and-set only after pro-
cess i completes its own. Clearly, the resulting history cannot be linearized.

Nonetheless, it turns out that with a somewhat more complicated con-
struction we can deterministically implement n-process test-and-set using
2-process test-and-set as primitives, [3]. This shows that the impossibility of
deterministic wait-free atomic n-process test-and-set is completely due to the
impossibility of deterministic wait-free atomic 2-process test-and-set. This
latter problem we have just solved by a simple direct randomized algorithm.

References

[1] K. Abrahamson, On achieving consensus using shared memory, Proc.
7th ACM Symposium on Principles of Distributed Computing, 1988, pp.
201-302.

[2] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, N. Shavit, Atomic
snapshots of shared memory, Proc. 9th ACM Symposium on Principles
of Distributed Computing, 1990, pp. 1-13.

[3] Y. Afek, E. Gafni, J. Tromp, P.M.B. Vitanyi, Wait-free test-and-set,
submitted to WDAG91.

[4] J.H. Anderson, Composite registers, Proc. 9th ACM Symposium on Prin-
ciples of Distributed Computing, 1990, pp. 15-29.

[5] J. Aspnes, Time- and space-efficient randomized consensus, Proc. 9th
ACM Symposium on Principles of Distributed Computing, 1990, pp. 325-
331.

15

[6] B. Chor, A. Israeli, M. Li, On processor coordination using asynchronous
hardware, Proc. 6th ACM Symposium on Principles of Distributed Com-
puting, pp. 86-97, 1987.

[7] D. Dolev and N. Shavit, Bounded Concurrent Time-Stamp Systems Are
Constructible, Proc. 21th ACM Symposium on Theory of Computing, pp.
454-466, 1989.

[8] M.P. Herlihy, Impossibility and Universality Results for Wait-Free Syn-
chronization, Proc. Tth ACM Symposium on Principles of Distributed
Computing, 1988, pp. 276-290.

[9] M.P. Herlihy, Randomized Wait-Free Concurrent Objects, Proc. 10th
ACM Symposium on Principles of Distributed Computing, 1991.

[10] A. Israeli and M. Li, Bounded Time-Stamps, Proc. 28th IEEE Sympo-
sium on Foundations of Computer Science, pp. 371-382, 1987.

[11] L. Lamport, On Interprocess Communication Parts I and II, Distributed
Computing, vol. 1, pp. 77-101, 1986.

[12] M. Loui, H.H. Abu-Amara, Memory requirements for agreement among
unreliable asynchronous processes, pp. 163-183 in: Advances in Comput-
ing Research, JAI Press, 1987.

[13] M. Li, J. Tromp, P.M.B. Vitényi, How to construct concurrent wait-free
variables, Tech. Rept. CS-8916, CWI, Amsterdam, April 1989. See also:
pp. 488-505 in: Proc. International Colloquium on Automata, Languages,

and Programming, Lecture Notes in Computer Science, Vol. 372, Springer
Verlag, 1989.

[14] N. Lynch and M. Tuttle, Hierarchical correctness proofs for distributed
algorithms, Proc. 6th ACM Symposium on Principles of Distributed Com-
puting, 1987.

[15] G.L. Peterson, M. Fischer, Economical solutions for the critical section
problem in a distributed system, Proc. 9%th ACM Symp. on Theory of
Computing, pp. 91-97, 1977.

16

[16] G.L. Peterson, Concurrent reading while writing, ACM Transactions on
Programming Languages and Systems, vol. 5, No. 1, pp. 46-55, 1983.

[17] S. Plotkin, Sticky bits and universality of consensus, Proc. 8th ACM
Symposium on Principles of Distributed Computing, pp. 159-175.

[18] R. Schaffer, On the correctness of atomic multi-writer registers, Tech-
nical Report MIT/LCS/TM-364, MIT lab. for Computer Science, June
1988.

[19] M. Saks, N. Shavit, and H. Woll. Optimal time randomized consensus —
making resilient algorithms fast in practice, Proc. of SODA 90, 1990.

[20] M.O. Rabin, The choice coordination problem. Acta Informatica, vol.
17, pp. 121-134, 1982.

[21] P.M.B. Vitanyi, B. Awerbuch, Atomic Shared Register Access by Asyn-
chronous Hardware, Proc. 27th IEEE Symposium on Foundations of
Computer Science, pp. 233-243, 1986. (Errata, Ibid.,1987)

17

The ITLI Prepublication Series

1990 Logic, Semantics and Philosophy of Langm(zﬁe . .

LP-90-01 Jaap van der Does, . A Generalized Quantifier Logic for Naked Infinitives

LP-90-02 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar

LP-90-03 Renate Bartsch Concept Formation and Concept Composition

LP-90-04 Aame Ranta Intuitionistic Categorial Grammar

LP-90-05 Patrick Blackburn Nominal Tense Logic

LP-90-06 Gennaro Chierchia The Variab;ligr of Impersonal Subjects

LP-90-07 Gennaro Chierchia Anaphora and Dynamic Logic

LP-90-08 Herman Hendriks Flexible Mo e Grammar

LP-90-09 Paul Dekker The Scope of Negation in Discourse, towards a flexible dynamic Montague grammar
LP-90-10 Theo M.V. Janssen Models for Discourse Markers)

LP-90-11 Johan van Benthem General Dynamics

LP-90-12 Serge Lapierre A Functional Partial Semantics for Intensional Logic

LP-90-13 Zhisheng Huang . Logics for Belief Dependence

LP-90-14 Jeroen Groenendijk, Martin Stokhof Two Theories of ic Semantics

LP-90-15 Maarten de Rijke The Modal Logic of Inequality

g-gg-{g l?nsm'llh]gg Huang, Karen Kwast g;visamnggls,geg?ﬁon Imlpﬁlgxcakr Omniscience ic Se .

-90- er , . ten isclosure, cit Arguments in Dynamic Semantics
ML-90-01 Harold Schellinx Mathematical Logic and Foundations 1somorphisms and Non-Isomorphisms of Graph Models
ML-90-02 Jaap van Oosten A Semantical Proof of De Jongh's Theorem
M Yo e e 1o

- aarten mary Inte: ic
ML-90-05 Domenico Zambella . Sequences with Simple Ix%nal Seg;nents
ML-90-06 Jaap van Oosten Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a Solution to a Problem of F. Richman
ML-90-07 Maarten de Rijke A Note on the retability Logic of Finitely Axiomatized Theories
ML-90-08 Harold Schellinx Some Syntactical Observations on Linear Logic
ML-90-09 Dick de J on%l;rln)uccio Pianigiani Solution of a Problem of David Guaspari
ML-90-10 Michiel van balgen Randomness in Set Theory
ML-90-11 Paul C. Gilmore The Consistency of an Extended NaDSet
CT-90-01 John Tromp, Peter van Emde Boas Computation arid Complexity Theory pqsociative Storage Modification Machines
CT-90-02 Sieger van euvel, Gerard R. Renardel de Lavalette A Normal Form for PCSJ Expressions

CT-90-03 Ricard Gavald3, Leen Torenvliet, Osamu Watanabe, José L. Balc4zar Generalized Kolmogorov Complexity in Relativized Separations
CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet Bounded Reductions

CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint Expressions

CT-90-06 Michiel Smid, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial

CT-90-07 Kees Doets Greatest Fixed Points of Logic Programs
CT-90-08 Fred de Geus, Emest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas Physiological Modelling using RL
CT-90-09 Roel de Vrijer Um%:i Normal Forms for Combinatory Logic with Parallel
Other Prepublications Conditional, a case study in conditiol rewntm%/I
X-90-01 A.S. Troelstra Remarks on Intuitionism and the Philosophy of Mathematics, Revised Version
X-90-02 Maarten de Rijke Some Chapters on Interpretability Logic .
X-90-03 L.D. Beklemishev On the Complex.it§ of Arithmetical Interpretations of Modal Formulae
X-90-04 Annual Report 1939
X-90-05 Valentin Shehtman Derived Sets in Euclidean Spaces and Modal Logic
X-90-06 Valentin Goranko, Solomon Passy UsinE]:Ihe Universal Modality: Gains and Questions
X-90-07 V.Yu. Shavrukov The Lindenbaum Fixed Point Algebra is Undecidable
X-90-08 L.D. Beklemishev Provability Logics for Natural Turing Progressions of Arithmetical Theories
X-90-09 V.Yu. Shavrukov On Rosser's Provability Predicate
X-90-10 Sieger van Denneheuvel, Peter van Emde Boas _ An Overview of the Rule Language RL/1
X-90-11 Alessandra Carbone Provable Fixed points in IAg+£2,, revised version
X-90-12 Maarten de Rijke Bi-Unary Interpretability Logic
X-90-13 K.N. Ignatiev Dzhaparidze's Polymodal Logic: Arithmetical Completeness, Fixed Point Property, Craig's Property
X-90-14 L.A. va Undecidable Problems in Correspondence Theory
X-90-15 A.S. Troelstra Lectures on Linear Logic
1991 Logic, Semantics and Philosophy of Langagie
LP-91-01 Wiebe van der Hoek, Maarten de Rijke Generalized Quantifiers and Modal Logic
Lb.91.03 Willem Groaneveld Dt % Semantics and Circular Pr
- em ne , , c Semantics and Circular sitions
ML-91-01 Yde Venema Mathematical Logic and Foundations (Cylindric Modal Logic PO
ML-91-02 Alessandro Berarducci, Rineke Verbrugge On the Metamathematics of Weak Theories
ML-91-03 Domenico Zambella the Proofs of Arithmetical Completeness for Interpretability Logic
ML-91-04 Raymond Hoofman, Harold Schellinx Collapsing Graph Models by Preorders
ML-91-05 A.S. Troelstra History of Constructivism in the Twentieth Century
ML-91-06 Inge Bethke Finite Structures within Combinatory Algebras
ML-91-07 Yde Venema Modal l’%?pe atioP Rulﬁ
CT-91-01 Ming Li, Paul M.B. Vitdnyi Computation and Complexity Theory Kolmogorov Complexity Arguments in Combinatorics

CT-91-02 Ming Li, John Tromp, Paul M.B. Vitinyi How to Share Concurrent Wait-Free Variables

CT-91-03 Ming Li, Paul M.B. Vitényi Average Case Complexity under the Universal Distribution Equals Worst Case Complexity
CT-91-04 Sieger van Denneheuvel, Karen Kwast Weak Equivalence

CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak Equivalence for Constraint Sets

CT-91-06 Edith Spaan Census Techniques on Relativized Space Classes

CT-91-07 Karen L. Kwast The Incomplete Database

CT-91-08 Kees Doets Levationis Laus

CT-91-09 Ming Li, Paul M.B. Vit4nyi Combinatorial Properties of Finite Sequences with hi%_h Kolm_cgorov Complexity

CT-91-10 John Tromp, Paul Vitényi A Randomized Algorithm for Two-Process Wait-Free Test-and-Set

Other Prepublications X_91.01 Alexander Chagrov, Michael aschev The Diﬁjuncﬁon Property of Intennediatenm:ﬁonal Logics .
X-91-02 Alexander Chagrov, Michael Zakharyaschev On the Undecidability of the Disjunction Property of Interm Propositional Logics
X-91-03 V. Yu. Shavrukov Slalll_nﬁa:febras of Diagonizable Alaglebras of Theories containing Arithmetic

X-91-04 K.N. Ignatiev Partial Conservativity and Modal Logics

X-91-05 Johan van Benthem Temporal Logic

X-91-06 Annual Report 1990

X-91-07 A.S. Troelstra Lectures on Linear Logic, Errata and Supplement

X-91-08 Giorgie Dzhaparidze Logic of Tolerance

X-91-09 L.D. Beklemishev On-Bimodal Provability Logics for IT;-axiomatized Extensions of Arithmetical Theories

X-91-10 Michiel van Lambalgen Independence, Randomness and the Axiom of Choice

X-91-11 Michael Zakharyaschev Canonical Formulas for K4. Part I: Basic Results .

X-91-12 Herman Hendriks Flexibele Categoriale Syntaxis en Semantiek: de proefschriften van Frans Zwarts en Michael Moortgat

X-91-13 Max I. Kanovich The Multaplicative Fragment of Linear Logic is NP-Complete

