
Institute for Language, Logic and Information

QUASI-INJECTIVE REDUCTIONS

Lane A. Hemachandra Edith Spaan

ITLI Prepublication Series for Computation and Complexity Theory CT-91-11

University of Amsterdam

```
The ITLI Prepublication Series
 1986
                                                                                        The Institute of Language, Logic and Information
 86-01
                                                                                        A Semantical Model for Integration and Modularization of Rules
Categorial Grammar and Lambda Calculus
A Relational Formulation of the Theory of Types
Some Complete Logics for Branched Time, Part I
Logical Syntax
Forward looking Operators
 86-02 Peter van Emde Boas
 86-03 Johan van Benthem
 86-04 Reinhard Muskens
86-05 Kenneth A. Bowen, Dick de Jongh
86-06 Johan van Benthem
1987 87-01 Jeroen Groenendijk, Martin

France
                                                                                        Logical Syntax
                                                                                        okhof Type shifting Rules and the Semantics of Interrogatives
Frame Representations and Discourse Representations
 87-02 Renate Bartsch
                                                                                        Unique Normal Forms for Lambda Calculus with Surjective Pairing
 87-03 Jan Willem Klop, Roel de Vrijer
                                                                                        Polyadic quantifiers
 87-04 Johan van Benthem
87-05 Victor Sánchez Valencia
                                                                                        Traditional Logicians and de Morgan's Example
Temporal Adverbials in the Two Track Theory of Time
 87-06 Eleonore Oversteegen
87-07 Johan van Benthem
87-08 Renate Bartsch
                                                                                        Categorial Grammar and Type Theory
The Construction of Properties under Perspectives
                                                                                       Type Change in Semantics: The Scope of Quantification and Coordination
 87-09 Herman Hendriks
 1988 LP-88-01 Michiel van Lambalgen Logic, Semantics and Philosophy of Language: Algorithmic Information Theory
                                                                                        Expressiveness and Completeness of an Interval Tense Logic
 LP-88-02 Yde Venema
                                                                                        Year Report 1987
 LP-88-03
                                                                                        Going partial in Montague Grammar
Logical Constants across Varying Types
 LP-88-04 Reinhard Muskens
 LP-88-05 Johan van Benthem
                                                                                        Semantic Parallels in Natural Language and Computation Tenses, Aspects, and their Scopes in Discourse
 LP-88-06 Johan van Benthem
 LP-88-07 Renate Bartsch
                                                                                       Context and Information in Dynamic Semantics
A mathematical model for the CAT framework of Eurotra
LP-88-08 Jeroen Groenendijk, Martin Stokhof
LP-88-09 Theo M.V. Janssen
ML-88-01 Jaap van Oosten
ML-88-02 M.D.G. Swaen
ML-88-03 Diek de Veen
                                                                             Ogic and Foundations: Lifschitz' Realizability

The Arithmetical Fragment of Martin Löfs Type Theories with weak Σ-elimination Provability Logics for Relative Interpretability

On the Early History of Intuitionistic Logic

Remarks on Intuitionism and the Philosophy of Mathematics

station and Complexity Theory.
 ML-88-03 Dick de Jongh, Frank Veltman
ML-88-04 A.S. Troelstra
ML-88-05 A.S. Troelstra
CT-88-01 Ming Li, Paul M.B.Vitanyi Computation and Complexity Theory: Two Decades of Applied Kolmogorov Complexity CT-88-02 Michiel H.M. Smid
CT-88-03 Michiel H.M. Smid, Mark H. Overmars
Leen Torenvliet, Peter van Emde Boas
CT-88-04 Diek de Lond Lee Torenvliet, Peter van Emde Boas
CT-88-04 Diek de Lond Lee Torenvliet, Peter van Emde Boas
CT-88-04 Diek de Lond Lee Torenvliet, Peter van Emde Boas
CT-88-05 Also internations of Dynamic Data Structures
CT-88-06 Diek de Lond Lee Torenvliet, Peter van Emde Boas
CT-88-07 Diek de Lond Lee Torenvliet, Peter van Emde Boas
CT-88-08 Diek de Lond Lee Torenvliet, Peter van Emde Boas
CT-88-09 Diek de Lond Lee Torenvliet, Peter van Emde Boas
CT-88-09 Diek de Lond Lee Torenvliet, Peter van Emde Boas
                                                                                        Computations in Fragments of Intuitionistic Propositional Logic
 CT-88-04 Dick de Jongh, Lex Hendriks
Gerard R. Renardel de Lavalette
                                                                                        Machine Models and Simulations (revised version)
 CT-88-05 Peter van Emde Boas
                                                              A Data Structure for the Union-find Problem having good Single-Operation Complexity
CT-88-06 Michiel H.M. Smid

A Data Structure for the Union-find Problem having good Single-Ope CT-88-07 Johan van Benthem

CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas

CT-88-09 Theo M.V. Jansen

Towards a Universal Parsing Algorithm for Functiona

Towards a Universal Parsing Algorithm for Functiona
CT-88-09 Theo M.V. Janssen

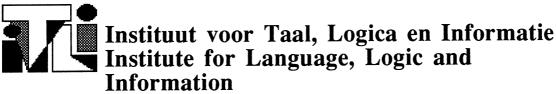
Towards a Universal Parsing Algorithm for Functional Grammar

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy

CT-88-11 Sieger van Dennetervel, Peter van Emde Boas

Towards implementing RL
 X-88-01 Marc Jumelet Other prepublications:
                                                                                        On Solovay's Completeness Theorem
 1989 LP-89-01 Johan van Benthem Logic, Semantics and Philosophy of Language: The Fine-Structure of Categorial Semantics
                                                                                       Dynamic Predicate Logic, towards a compositional, non-representational semantics of discourse
 LP-89-02 Jeroen Groenendijk, Martin Stokhof
                                                                        Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-03 Yde Venema
LP-89-04 Johan van Benthem
LP-89-05 Johan van Benthem
                                                                                       Language in Action
Modal Logic as a Theory of Information
LP-89-06 Andreja Prijatelj

LP-89-07 Heinrich Wansing
LP-89-08 Víctor Sánchez Valencia
LP-89-09 Zhisheng Huang


ML-89-01 Dick de Jongh, Albert Visser
ML-89-02 Roel de Vrijer

ML-89-03 Dick de Jongh France Monteer

Mondal Logic as a Theory of Information
Intensional Lambek Calculi: Theory and Application
The Adequacy Problem for Sequential Propositional Logic
Peirce's Propositional Logic: From Algebra to Graphs
Dependency of Belief in Distributed Systems

Mathematical Logic and Foundations: Explicit Fixed Points for Interpretability Logic
Extending the Lambda Calculus with Surjective Pairing is conservative
                                                                                       Extending the Lambda Calculus with Surjective Pairing is conservative Rosser Orderings and Free Variables
 ML-89-03 Dick de Jongh, Franco Montagna
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna On the Proof of Solovay's Theorem ML-89-05 Rineke Verbrugge E-completeness and Bounded Arithmetic
                                                                                       The Axiomatization of Randomness
ML-89-06 Michiel van Lambalgen
                                                                          Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
ML-89-07 Dirk Roorda
                                                       Investigations into Classical Linear Logic Provable Fixed points in I\Delta_0 + \Omega_1 Computation and Complexity Theory: Dynamic Deferred Data Structures
ML-89-08 Dirk Roorda
ML-89-09 Alessandra Carbone
CT-89-01 Michiel H.M. Smid
                                                                                       Machine Models and Simulations
 CT-89-02 Peter van Emde Boas
CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvliet, Peter van Emde Boas On Space Efficient Simula CT-89-04 Harry Buhrman, Leen Torenvliet A Comparison of Reductions on Nondeterministic Space CT-89-05 Pieter H. Hartel, Michiel H.M. Smid Leen Torenvliet, Willem G. Vree
                                                                                                                                          On Space Efficient Simulations
                                                                                       Finding Isomorphisms between Finite Fields
CT-89-06 H.W. Lenstra, Jr.
CT-89-07 Ming Li, Paul M.B. Vitanyi
                                                                                      A Theory of Learning Simple Concepts under Simple Distributions and Average Case Complexity for the Universal Distribution (Prel. Version)
                                                                                      Honest Reductions, Completeness and
Nondeterministic Complexity Classes
Total On Adaptive Resource Bounded Computations
CT-89-08 Harry Buhrman, Steven Homer
Leen Torcnvliet
CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet
                                                                                      The Rule Language RL/1
CT-89-10 Sieger van Denneheuvel
CT-89-11 Zhisheng Huang, Sieger van Denncheuvel Towards Functional Classification of Recursive Query Processing
                      Peter van Emde Boas Other Prepublications:
                                                                                                          An Orey Sentence for Predicative Arithmetic
X-89-01 Marianne Kalsbeek
                                                                                       New Foundations: a Survey of Quine's Set Theory
X-89-02 G. Wagemakers
X-89-03 A.S. Troelstra
                                                                                      Index of the Heyting Nachlass
                                                                                      Dynamic Montague Grammar, a first sketch
X-89-04 Jeroen Groenendijk, Martin Stokhof
                                                                                      The Modal Theory of Inequality
Een Relationele Semantick voor Conceptueel Modelleren: Het RL-project
X-89-05 Maarten de Rijke
X-89-06 Peter van Emde Boas
```

1990 SEE INSIDE BACK COVER

Faculteit der Wiskunde en Informatica (Department of Mathematics and Computer Science) Plantage Muidergracht 24 1018TV Amsterdam Faculteit der Wijsbegeerte (Department of Philosophy) Nieuwe Doelenstraat 15 1012CP Amsterdam

QUASI-INJECTIVE REDUCTIONS

Lane A. Hemachandra
Department of Computer Science
University of Rochester
Edith Spaan
Department of Mathematics and Computer Science
University of Amsterdam

ITLI Prepublication Series for Computation and Complexity Theory ISSN 0924-8374

Quasi-Injective Reductions

Lane A. Hemachandra*
Department of Computer Science
University of Rochester
Rochester, NY 14627

Edith Spaan[†]
Faculteit der Wiskunde en Informatica
Universiteit van Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam

July 24, 1991

Abstract

A reduction is said to be quasi-injective if no element of the range is mapped to by infinitely many elements. Via two natural families of quasi-injective reductions, we study the connection between degree of injectivity and strength of reduction. In particular, we completely determine the relative strengths of polynomial-time f(n)-to-1 reductions, and of polynomial-time k-to-k' reductions.

1 Introduction

A many-one reduction may, in general, map infinitely many domain elements to the same range element. A one-to-one reduction (often referred to as an injective reduction) maps at most one domain element to a given element of the co-domain. In some settings, these different degrees of injectivity coincide; a famous example is provided by the Myhill Isomorphism Theorem (see, e.g., [Soa87]), which implies that all sets \leq_m -complete for the r.e. sets are indeed $\leq_{1\text{-to-1}}$ -complete for the r.e. sets. In some other settings, it is not known whether differing degrees of injectivity coincide; the question of whether \leq_m^p -completeness and $\leq_{1\text{-to-1}}^p$ -completeness coincide for NP remains a central unresolved problem, and is a weaker version of the Berman-Hartmanis Isomorphism Conjecture ([BH77], see also the survey [You90]). In this paper, we study the extent to which lack of injectivity gives power to polynomial-time reductions.

^{*}Research supported in part by the National Science Foundation under grant CCR-8957604.

[†]Research supported in part by the NWO under grant SIR 13-785.

We focus on what we will call quasi-injective reductions—reductions that map at most a finite number of domain elements to a given element in their range. In particular, we study f(n)-to-1 reductions¹ and k-to-k' reductions. We observe that an f(n)-to-1 reduction is more powerful than a g(n)-to-1 reduction exactly when f(n) is greater than g(n) infinitely often. However, this result is definition-sensitive; it fails for f(n)-to-1 reductions. For the case of k-to-k' reductions—reductions for which no k' elements of the range are mapped to by more than k domain elements—we completely characterize when a c-to-d reduction is more powerful than an a-to-b reduction, namely when:

$$\left(\left| \frac{a}{b} \right| < \left| \frac{c}{d} \right| \right) \vee \left[\left(\left| \frac{a}{b} \right| = \left| \frac{c}{d} \right| \right) \wedge \left(a - b \left| \frac{a}{b} \right| < c - d \left| \frac{a}{b} \right| \right) \right].$$

2 Preliminaries

 Σ will represent any fixed finite alphabet. Our reductions will in general be from Σ^* to Σ^* . However, at times we will use \mathcal{N} instead of Σ^* , implicitly taking advantage of the standard nice correspondence between these two sets. Let |x| denote the length of string x, and let |S| denote the cardinality of set S. We will use the quantification symbol $(\exists_{\infty} x)$ to indicate "there exist infinitely many distinct x."

Let FP denote the class of total functions computable in polynomial time. We will usually assume that such functions map from Σ^* to Σ^* (equivalently $\mathcal{N} \to \mathcal{N}$). However, in certain cases we will allow more flexible co-domains (such as $\Sigma^* \cup \{YES, NO\}$).

Recall the standard definition of many-one reductions: $A \leq_m^p B$ if there is a function $h \in \text{FP}$ such that $(\forall x \in \Sigma^*)[x \in A \iff h(x) \in B]$ [HU79]. We will call a finite-to-one reduction quasi-injective.

Definition 2.1 We will say that $h \in \text{FP}$ is quasi-injective if $(\forall y \in \Sigma^*)[\{x \in \Sigma^* \mid h(x) = y\}]$ is a finite set].

Definitions 2.2 and 2.3 present the families of quasi-injective reductions that we will study.

Definition 2.2 We say that $A \leq_{f(n)-\text{to}-1}^p B$ if $A \leq_m^p B$ via a reduction $h \in \text{FP}$ satisfying $(\forall y \in \Sigma^*)[||\{x \in \Sigma^* \mid h(x) = y\}|| \leq f(|y|)].$

Definition 2.3 We say that $A \leq_{k-\text{to}-k'}^p B$ if $A \leq_m^p B$ via a reduction $h \in \text{FP}$ satisfying $(\forall S \subseteq \Sigma^*)[||S|| \leq k' \Rightarrow ||\{x \in \Sigma^* \mid h(x) \in S\}|| \leq k].$

¹The hat indicates reductions that can simply state acceptance or rejection ([AS87], see also [DGHM89]). This paper will also discuss the structure of reductions that lack this ability.

In Definition 2.2, the special case f(n) = 1 ($\leq_{1-\text{to}-1}^p$ reducibility) has been extensively studied, and is related to issues of isomorphism, one-way functions, and cryptography [BH77,GS88,KMR90,You90]. In Definition 2.2, the special case $f(n) = n^{\mathcal{O}(1)}$ (polynomial-time polynomial-to-one reducibility) has been studied by Allender and Rubinstein, who related this notion to the P = FewP question [AR88].

Unfortunately, the standard definition of many-one reductions gives problems in certain settings. For example, $\Sigma^* \not\leq_m^p \emptyset$, though both sets are computationally trivial. More generally, a many-one reduction from A to B may "know" whether its input is a member of A, but may not be able to find an appropriate string (in B or \overline{B}) to map to. Ambos-Spies proposed dealing with this by allowing a many-one reduction from A to B to either reduce a given input to an appropriate output, or to directly proclaim whether its input is in A [AS87,DGHM89]. This is reflected in the definition below.

Definition 2.4

- 1. [AS87] We say that $A \leq_{\widehat{m}}^p B$ if there is a reduction $h: \Sigma^* \to \Sigma^* \cup \{\text{YES}, \text{NO}\}$, $h \in \text{FP}$, satisfying $(\forall x \in \Sigma^*)[(h(x) = \text{YES} \Rightarrow x \in A) \land (h(x) = \text{NO} \Rightarrow x \notin A) \land (h(x) \in \Sigma^* \Rightarrow (h(x) \in B \iff x \in A))]$, where YES and NO are symbols not in Σ .
- 2. We say that $A \leq_{f(n)-\widehat{\text{to}}-1}^p B$ if $A \leq_{\widehat{m}}^p B$ via a reduction $h: \Sigma^* \to \Sigma^* \bigcup \{\text{YES}, \text{NO}\}, h \in \text{FP}$, satisfying $(\forall y \in \Sigma^*)[||\{x \in \Sigma^* \mid h(x) = y\}|| \leq f(|y|)].$

Note that, in the latter part of the above definition, those strings x for which $h(x) \in \{YES, NO\}$ do not "count against" the injectivity restriction.

At times, we will want to argue that there are maps from A to B with certain quasiinjectivity properties, but that no such map can be computed quickly. The following notion
will be useful; it should be compared with Goldsmith's related notion of sets to which
both Σ^* and \emptyset (and thus *every* set) reduce via reductions that are at most polynomially
length-increasing (see [Gol89, Lemma 2.2.2]).

Definition 2.5

- 1. We say that $A \leq_{f(n)-\text{to}-1}^{poly-length} B$ if there exist a function h and polynomial p satisfying:
 - (a) $(\forall x \in \Sigma^*)[(x \in A \iff h(x) \in B) \land |h(x)| \le p(|x|)]$ and
 - (b) $(\forall y \in \Sigma^*)[||\{x \in \Sigma^* \mid h(x) = y\}|| \le f(|y|)].$
- 2. We say that $A \leq_{k-\text{to-}k'}^{poly-length} B$ if there exist a function h and polynomial p satisfying:
 - (a) $(\forall x \in \Sigma^*)[(x \in A \iff h(x) \in B) \land |h(x)| \le p(|x|)]$ and

(b)
$$(\forall S \subseteq \Sigma^*)[||S|| \le k' \Rightarrow ||\{x \in \Sigma^* \mid h(x) \in S\}|| \le k].$$

As a final introductory note, we stress that we are comparing reductions between sets. If one looks at reductions of sets to classes, non-injective reductions can often be made injective. For example, it is easy to see the following, since if $A \in \mathbb{R}^p_{(n\mathcal{O}^{(1)})\text{-to-1}}(\text{SPARSE}),^2$ as certified by reduction f and sparse set S, then S is polynomial-time equivalent to the sparse set S is S in S in

Observation 2.6 $R^p_{(n\mathcal{O}^{(1)})-\text{to}-1}(\text{SPARSE}) = R^p_{1-\text{to}-1}(\text{SPARSE}) \subseteq E^p_{(n\mathcal{O}^{(1)})-\widehat{\text{to}}-1}(\text{SPARSE}) = E^p_{1-\widehat{\text{to}}-1}(\text{SPARSE}).$

3 Results

We first look at finite-to-one reductions, and then turn to the study of k-to-k' reductions. The following theorem completely characterizes whether f(n)-to-1 reducibility is more powerful than g(n)-to-1 reducibility.

Theorem 3.1 Let $f, g \in FP, f, g : \mathcal{N} \to \mathcal{N}$.

$$(\exists_{\infty} n)[f(n) > g(n)]$$

$$\iff$$

$$(\exists A, B)[A \leq_{f(n)-\widehat{\operatorname{to}}-1}^{p} B \ \land \ A \nleq_{g(n)-\widehat{\operatorname{to}}-1}^{p} B].$$

The left to right direction of Theorem 3.1 also holds for the case of f(n)-to-1 reductions. However, to make the theorem non-trivial (e.g., to ban separating 2-to-1 reductions from 1-to-1 reductions via sets A and B with ||A|| = 2 and ||B|| = 1), we must note that the sets witnessing $A \not\leq_{g(n)-\text{to}-1}^p B$ also have the property that A plausibly might reduce to B: $A \leq_{g(n)-\text{to}-1}^{poly-length} B$.

Theorem 3.2 Let $f, g \in \text{FP}, f, g : \mathcal{N} \to \mathcal{N}$. If $(\exists_{\infty} n)[f(n) > g(n)]$, then $(\exists A, B)[A \leq_{f(n)-\text{to}-1}^p B \text{ and } A \leq_{g(n)-\text{to}-1}^{poly-length} B, \text{ yet } A \nleq_{g(n)-\text{to}-1}^p B]$.

²Notation: SPARSE denotes the class of sparse sets. A set S is said to be *sparse* if there is a polynomial p such that $(\forall n)[||\{x \mid |x| = n \land x \in S\}|| \leq p(n)]$. $R_r^p(\mathcal{C}) = \{L \mid (\exists A \in \mathcal{C})[L \leq_r^p A]\}$; we'll also use the notation $E_r^p(\mathcal{C}) = \{L \mid (\exists A \in \mathcal{C})[L \leq_r^p A \land A \leq_r^p L]\}$. For discussion of reductions and equivalence to sparse sets, see [BK88,GW91,AH,AHOW,TB].

Theorems 3.1 and 3.2 are proven by direct diagonalizations, and are omitted. Though Theorem 3.2 shows that one direction of Theorem 3.1 holds for f(n)-to-1 reductions, the same claim cannot be made for the other direction.

Theorem 3.3 There are functions $f, g \in \text{FP}, f, g : \mathcal{N} \to \mathcal{N}$, and sets A and B such that:

- 1. $f(n) \leq g(n)$ almost everywhere,
- 2. $A \leq_{f(n)\text{-to-}1}^{p} B$, and
- 3. $A \leq_{g(n)\text{-to-}1}^{poly\text{-length}} B$, yet
- 4. $A \not\leq_{g(n)\text{-to-}1}^p B$.

The proof of Theorem 3.3 is a simplified version of the proof of Theorem 3.4, and thus is omitted. However, it should be noted that the counter-example described in the above theorem can be easily taken to be the case where f(0) = 2, g(0) = 1, and $(\forall n \ge 1)[f(n) = g(n) = 1]$.

Now we turn to our second family of quasi-injective reductions—k-to-k' reductions. We will refer to $\left\lfloor \frac{k}{k'} \right\rfloor$ as the base of the k-to-k' reduction, and $k - k' \left\lfloor \frac{k}{k'} \right\rfloor$ as the excess of the reduction. Intuitively, the base indicates the level of non-injectivity that can be tolerated infinitely often, and the excess indicates a cap on the total amount of non-injectivity beyond the base level. As an example, a 4-to-2 reduction can be (at most) 2-to-1 everywhere, or it can be (at most) 3-to-1 on one range point and (at most) 1-to-1 elsewhere.

For k-to-k' reductions with large values of k and k', the range of possibilities expands dramatically. Nonetheless, the notions of base and excess offer a complete characterization of the relative strength of k-to-k' reductions. In the sense made formal by Theorem 3.4, a c-to-d reduction is more flexible than an a-to-b reduction exactly when the former has a larger base, or, in the case of identical bases, when the former has a larger excess.

Theorem 3.4 Let $a, b, c, d \in \{1, 2, 3, ...\}, c \ge d, a \ge b$.

$$\left(\left\lfloor \frac{a}{b} \right\rfloor < \left\lfloor \frac{c}{d} \right\rfloor \right) \vee \left[\left(\left\lfloor \frac{a}{b} \right\rfloor = \left\lfloor \frac{c}{d} \right\rfloor \right) \wedge \left(a - b \left\lfloor \frac{a}{b} \right\rfloor < c - d \left\lfloor \frac{a}{b} \right\rfloor \right) \right]$$

$$(\exists A,\,B)[A\leq^p_{c\text{-to-}d}B\text{ and }A\leq^{poly\text{-}length}_{a\text{-to-}b}B,\text{ yet }A\not\leq^p_{a\text{-to-}b}B].$$

Indeed, in the case where $(\lfloor \frac{a}{b} \rfloor < \lfloor \frac{c}{d} \rfloor) \vee [(\lfloor \frac{a}{b} \rfloor = \lfloor \frac{c}{d} \rfloor) \wedge (a - b \lfloor \frac{a}{b} \rfloor < c - d \lfloor \frac{a}{b} \rfloor)]$ does not hold, it follows that $(\forall A, B : B \text{ and } \overline{B} \text{ are infinite}) [A \leq_{c-\text{to-}d}^{p} B \Rightarrow A \leq_{a-\text{to-}b}^{p} B].$

Before proving Theorem 3.4, we state and prove a useful lemma.

Lemma 3.5 If g is an a-to-b reduction and $||S|| \ge b$, then $||g^{-1}(S)|| \le a + (||S|| - b) \lfloor \frac{a}{b} \rfloor$.

Proof of Lemma 3.5

Let S' be a subset of S of size b such that $(\forall m \in S')(\forall m' \in S - S')[||g^{-1}(m)|| \ge ||g^{-1}(m')||]$. Since $||g^{-1}(S')|| \le a$, there is an element m of S' such that $||g^{-1}(m)|| \le \lfloor \frac{a}{b} \rfloor$. So $||g^{-1}(m')|| \le \lfloor \frac{a}{b} \rfloor$ for all $m' \in S - S'$. It follows that $||g^{-1}(S)|| = ||g^{-1}(S')|| + ||g^{-1}(S - S')|| \le a + (||S|| - b) \lfloor \frac{a}{b} \rfloor$.

Proof of Theorem 3.4

(\Rightarrow) Suppose $(\lfloor \frac{a}{b} \rfloor < \lfloor \frac{c}{d} \rfloor) \vee [(\lfloor \frac{a}{b} \rfloor = \lfloor \frac{c}{d} \rfloor) \wedge (a - b \lfloor \frac{a}{b} \rfloor < c - d \lfloor \frac{a}{b} \rfloor)]$. It follows immediately that there is an $m_0 \geq b$ such that $a + (m_0 - b) \lfloor \frac{a}{b} \rfloor < c + (m_0 - d) \lfloor \frac{c}{d} \rfloor$. Let $f : \mathcal{N} \to \mathcal{N}$ satisfy:

- $n \leq n' \Rightarrow f(n) \leq f(n')$,
- $||f^{-1}(0)|| = c + (1-d)|\frac{c}{d}|,$
- $||f^{-1}(m)|| = |\frac{c}{d}|$ for $1 \le m < m_0$, and
- $||f^{-1}(m)|| = \lfloor \frac{a}{b} \rfloor$ for $m \geq m_0$.

Clearly, f is uniquely defined and is computable in time polynomial in the size of its input. Since $\lfloor \frac{a}{b} \rfloor \leq \lfloor \frac{c}{d} \rfloor \leq c + (1-d) \lfloor \frac{c}{d} \rfloor$, for any set S of size d it holds that $||f^{-1}(S)|| \leq c + (1-d) \lfloor \frac{c}{d} \rfloor + (d-1) \lfloor \frac{c}{d} \rfloor = c$. Thus, for any set B, $f^{-1}(B) \leq_{c-\text{to}-d}^{p} B$, as certified by polynomial-time reduction f. We will construct $B = \bigcup_{i \geq 0} B_i$ in stages so that $f^{-1}(B) \leq_{a-\text{to}-b}^{p} B$, and $f^{-1}(B) \leq_{a-\text{to}-b}^{poly-length} B$. Let $\sigma_1, \sigma_2, \cdots$ be an enumeration of all polynomial-time a-to-b reductions.³

```
Stage 0: Set B_0 = \{0, \ldots, m_0\}.

Stage i: Let m be the largest element of B_{i-1}.

Choose n such that f(n) \in B_{i-1} and \sigma_i(n) \notin B_{i-1}.

If \sigma_i(n) > m then set B_i = B_{i-1} \cup \{\sigma_i(n) + 1\} \cup \{j \mid m+1 \le j \le \sigma_i(n) - 1\}, else set B_i = B_{i-1}.
```

If n can be chosen as described above, then $f^{-1}(B) \leq_{a-\text{to}-b}^{p} B$. Furthermore, $f^{-1}(B) \leq_{a-\text{to}-b}^{poly-length} B$, by the recursive reduction that is identical to f on elements not in $f^{-1}(B)$, f and that maps the nth element of $f^{-1}(B)$ to the $(n/\lfloor \frac{a}{b} \rfloor)$ th element of f. This

³One can construct a list of exponential-time machines that enumerate the \leq_{a-to-b}^{p} reductions. Thus, this step is effective; it is not hard to see that the sets B and $f^{-1}(B)$ will be recursive.

⁴Note that all such elements are greater than m_0 .

reduction is poly-length, since f is $\begin{bmatrix} \frac{a}{b} \end{bmatrix}$ -to-1 almost everywhere, and no two consecutive elements are in \overline{B} .

To prove that n can be chosen as specified above, it suffices to show that for all $i \geq 1$, $||\sigma_i^{-1}(B_{i-1})|| < ||f^{-1}(B_{i-1})||$. Since $||B_{i-1}|| \geq m_0 \geq b$, it follows from Lemma 3.5 and our choice of m_0 that:

$$\begin{aligned} ||\sigma_{i}^{-1}(B_{i-1})|| &\leq a + (||B_{i-1}|| - b) \lfloor \frac{a}{b} \rfloor \\ &= a + (m_0 - b) \lfloor \frac{a}{b} \rfloor + (||B_{i-1}|| - m_0) \lfloor \frac{a}{b} \rfloor \\ &< c + (m_0 - d) \lfloor \frac{c}{d} \rfloor + (||B_{i-1}|| - m_0) \lfloor \frac{a}{b} \rfloor \\ &= ||f^{-1}(B_{i-1})||. \end{aligned}$$

 $(\Leftarrow) \text{ Suppose } \left(\left\lfloor \frac{a}{b}\right\rfloor > \left\lfloor \frac{c}{d}\right\rfloor\right) \vee \left[\left(\left\lfloor \frac{a}{b}\right\rfloor = \left\lfloor \frac{c}{d}\right\rfloor\right) \wedge \left(a - b\left\lfloor \frac{a}{b}\right\rfloor \geq c - d\left\lfloor \frac{a}{b}\right\rfloor\right)\right]. \text{ We will prove that } (\forall A, B: B \text{ and } \overline{B} \text{ are infinite}) \left[A \leq_{c-\text{to}-d}^p B \Rightarrow A \leq_{a-\text{to}-b}^p B\right]. \text{ This proves the theorem, since for any sets } A \text{ and } B, \text{ if } A \nleq_{a-\text{to}-b}^p B \text{ and } A \leq_{a-\text{to}-b}^{poly-length} B, \text{ then } B \text{ and } \overline{B} \text{ are infinite.}$

Suppose $A \leq_{c-to-d}^p B$ via reduction f, B and \overline{B} are infinite, and f is not a-to-b. Since f is $\lfloor \frac{c}{d} \rfloor$ -to-1 (and therefore $\lfloor \frac{a}{b} \rfloor$ -to-1) almost everywhere and finite-to-one everywhere, there exists a finite set X such that $(\forall m \in \mathcal{N})[||f^{-1}(m) - X|| \leq \lfloor \frac{a}{b} \rfloor]$. To transform f to an $\lfloor \frac{a}{b} \rfloor$ -to-1 reduction from A to B, we need only change f on the (finite number of) elements in X. Since B and \overline{B} are both infinite, it suffices to show that f is $(\lfloor \frac{a}{b} \rfloor - 1)$ -to-1 almost everywhere.

This clearly is the case when $\left\lfloor \frac{a}{b} \right\rfloor > \left\lfloor \frac{c}{d} \right\rfloor$. In the case where $\left(\left\lfloor \frac{a}{b} \right\rfloor = \left\lfloor \frac{c}{d} \right\rfloor \right) \wedge \left(a - b \left\lfloor \frac{a}{b} \right\rfloor \geq c - d \left\lfloor \frac{a}{b} \right\rfloor \right)$ and b < d, let Y be such that ||Y|| = b and $||f^{-1}(Y)|| > a$. If—as will be the case if f is not $\left(\left\lfloor \frac{a}{b} \right\rfloor - 1 \right)$ -to-1 almost everywhere—for infinitely many m it holds that $||f^{-1}(m)|| \geq \left\lfloor \frac{a}{b} \right\rfloor$, then there exists a set $Y' \neq Y$ such that ||Y'|| = d and $c \geq ||f^{-1}(Y')|| > a + (d-b) \left\lfloor \frac{a}{b} \right\rfloor$. Then $c - d \left\lfloor \frac{a}{b} \right\rfloor > a - b \left\lfloor \frac{a}{b} \right\rfloor$, which contradicts our assumptions. Therefore, in this case f is $\left(\left\lfloor \frac{a}{b} \right\rfloor - 1 \right)$ -to-1 almost everywhere, as desired. In the final case, $\left(\left\lfloor \frac{a}{b} \right\rfloor = \left\lfloor \frac{c}{d} \right\rfloor \right) \wedge \left(a - b \left\lfloor \frac{a}{b} \right\rfloor \geq c - d \left\lfloor \frac{a}{b} \right\rfloor \right)$ and $b \geq d$. In this case, f is already an a-to-b reduction, since by Lemma 3.5, for any subset Y of size b, $||f^{-1}(Y)|| \leq c + (b-d) \left\lfloor \frac{c}{d} \right\rfloor \leq a$. This contradicts our assumption that f is not a-to-b.

Acknowledgments

We thank William Gasarch and Yenjo Han for helpful conversations and comments.

References

[AH] E. Allender and L. Hemachandra. Lower bounds for the low hierarchy. *Journal* of the ACM. To appear.

- [AHOW] E. Allender, L. Hemachandra, M. Ogiwara, and O. Watanabe. Relating equivalence and reducibility to sparse sets. SIAM Journal on Computing. To appear.
- [AR88] E. Allender and R. Rubinstein. P-printable sets. SIAM Journal on Computing, 17(6):1193-1202, 1988.
- [AS87] K. Ambos-Spies. Honest polynomial reducibilities, recursively enumerable sets, and the P = ?NP problem. In *Proceedings of the 2nd Structure in Complexity Theory Conference*, pages 60–68. IEEE Computer Society Press, June 1987.
- [BH77] L. Berman and J. Hartmanis. On isomorphisms and density of NP and other complete sets. SIAM Journal on Computing, 6(2):305-322, 1977.
- [BK88] R. Book and K. Ko. On sets truth-table reducible to sparse sets. SIAM Journal on Computing, 17(5):903-919, 1988.
- [DGHM89] R. Downey, W. Gasarch, S. Homer, and M. Moses. On honest polynomial reductions, relativizations, and P = NP. In *Proceedings of the 4th Structure in Complexity Theory Conference*, pages 3-14. IEEE Computer Society Press, June 1989.
- [Gol89] J. Goldsmith. Polynomial Isomorphisms and Near-Testable Sets. PhD thesis, University of Wisconsin-Madison, Madison, WI, January 1989. Available as Technical Report 816.
- [GS88] J. Grollmann and A. Selman. Complexity measures for public-key cryptosystems. SIAM Journal on Computing, 17:309-335, 1988.
- [GW91] R. Gavaldà and O. Watanabe. On the computational complexity of small descriptions. In *Proceedings of the 6th Structure in Complexity Theory Conference*, pages 89–101. IEEE Computer Society Press, June/July 1991.
- [HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.
- [KMR90] S. Kurtz, S. Mahaney, and J. Royer. The structure of complete degrees. In A. Selman, editor, Complexity Theory Retrospective, pages 108-146. Springer-Verlag, 1990.
- [Soa87] R. Soare. Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets. Perspectives in Mathematical Logic. Springer-Verlag, 1987.
- [TB] S. Tang and R. Book. Reducibilities on tally and sparse sets. *Theoretical Informatics and Applications (RAIRO)*. To appear. Preliminary version appears in *ICALP '88*.
- [You90] P. Young. Juris Hartmanis: Fundamental contributions to isomorphism problems. In A. Selman, editor, Complexity Theory Retrospective, pages 28– 58. Springer-Verlag, 1990.

```
The ITLI Prepublication Series
1990 Logic, Semantics and Philosophy of Language
                                                                                                                                                                                                                                                  A Generalized Quantifier Logic for Naked Infinitives
              LP-90-01 Jaap van der Does
               LP-90-02 Jeroen Groenendijk, Martin Stokhof
LP-90-03 Renate Bartsch
                                                                                                                                                                                                                                            Dynamic Montague Grammar
                                                                                                                                                                                                                                            Concept Formation and Concept Composition
Intuitionistic Categorial Grammar
               LP-90-04 Aarne Ranta
LP-90-05 Patrick Blackburn
A Functional Partial Semantics for Intensional Logic Logics for Belief Dependence

Two Theories of Dynamics

A Functional Partial Semantics for Intensional Logic Logics for Belief Dependence

Two Theories of Dynamic Semantics

The Modal Logic of Inequality

Awareness, Negation and Logical Omniscience

Existential Disclosure, Implicit Arguments in Dynamic Semantics

MI_90-01 Harold Schellinx

MI_90-02 Jaap van Oosten

MI_90-04 Maarten de Rijke

MI_90-05 Domenico Zambella

MI_90-06 Jaap van Oosten

MI_90-07 Maarten de Rijke

MI_90-08 Harold Schellinx

MI_90-09 Dick de Jongh, Duccio Pianigiani

MI_90-10 Michiel van Lambalgen

MI_90-11 Paul C. Gilmore

CT-90-01 John Tromp, Peter van Fm-3

CT-90-03 Ricard C-

CT-90-04 Tropologian in Discourse, towards a flexible dynamic N

Discourse Markers

General Dynamics

A Functional Partial Semantics for Intensional Logic

Logics for Belief Dependence

Two Theories of Dynamic Semantics

The Modal Logic of Inequality

Awareness, Negation and Logical Omniscience

Existential Disclosure, Implicit Arguments in Dynamic Semantics

Isomorphisms and Non-Isomorphisms of Graph

A Semantical Proof of De Jongh's Theorem

Relational Games

Unary Interpretability Logic

Sequences with Simple Initial Segments

A Note on the Interpretability Logic

Some Syntactical Observation

Some Syntactical Observation

Randomer

Tropologian in Discourse, towards a flexible dynamic Nematics

Two Theories of Dynamics

The Modal Logic of Inequality

Awareness, Negation and Logical Omniscience

Existential Disclosure, Implicit Arguments in Dynamic Semantics

The Modal Logic of Inequality

Awareness, Negation and Logical Omniscience

Existential Disclosure, Implicit Arguments in Dynamic Semantics

The Modal Logic of Inequality

Awareness, Negation and Logical Omniscience

Existential Disclosure, Implicit Arguments in Dynamics

Existential Disclosure, Implicit Arguments in Dynamics

Interpretability Logic

Sequences with Simple Initial Segments

Some Syntactical Observation

Some Syntactical Observation

Some 
                                                                                                                                                                                                                                             Nominal Tense Logic
                                                                                                                                                                                                                                            The Variablity of Impersonal Subjects
Anaphora and Dynamic Logic
Flexible Montague Grammar
The Scope of Negation in Discourse, towards a flexible dynamic Montague grammar
                                                                                                                                                                                                                                                     Isomorphisms and Non-Isomorphisms of Graph Models
Semantical Proof of De Jongh's Theorem
                                                                                                                                                              A Semantical Proof of De Jongh's Theorem
Relational Games
Unary Interpretability Logic
Sequences with Simple Initial Segments
Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a Solution to a Problem of F. Richman
A Note on the Interpretability Logic of Finitely Axiomatized Theories
Some Syntactical Observations on Linear Logic
               ML-90-10 Michiel van Lambaigen
ML-90-11 Paul C. Gilmore

CT-90-01 John Tromp, Peter van Emde Boas
CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette A Normal Form for PCSJ Expressions
CT-90-03 Ricard Gavaldà, Leen Torenvliet, Osamu Watanabe, José L. Balcázar Generalized Kolmogorov Complexity in Relativized Separations
CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint Expressions
CT-90-06 Michiel Smid. Peter van Emde Boas
Dynamic Data Structures on Multiple Storage Media, a Tutorial
               CT-90-06 Michiel Smid, Peter van Emde Boas
CT-90-07 Kees Doets
CT-90-08 Fred de Geus, Ernest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas
CT-90-09 Roel de Vrijer
Unique Normal
Tomanic Data Structures on Multiple Storage Media, a Tutorial
Greatest Fixed Points of Logic Programs
CT-90-08 Fred de Geus, Ernest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas
CT-90-09 Roel de Vrijer
Unique Normal
Tomas for Combinatory Logic with Parallel Conditional, a case study in conditional rewriting
CT-90-01 A.S. Troelstra

Normalization of DataOase and Constraint Expressions
Dynamic Data Structures on Multiple Storage Media, a Tutorial
Greatest Fixed Points of Logic Programs
Physiological Modelling using RL
Conditional, a case study in conditional rewriting
Remarks on Intuitionism and the Philosophy of Mathematics, Revised Version
Some Chapters on Interpretability Logic

On the Complexity of Arithmetical Interpretations of Model Formulae
                                                                                                                                                                                                                                             Some Chapters on Interpretability Logic
On the Complexity of Arithmetical Interpretations of Modal Formulae
Annual Report 1989
                  X-90-03 L.D. Beklemishev
                 X-90-04
                                                                                                                                                                                                                                           Annual Report 1989
Derived Sets in Euclidean Spaces and Modal Logic
Using the Universal Modality: Gains and Questions
The Lindenbaum Fixed Point Algebra is Undecidable
Provability Logics for Natural Turing Progressions of Arithmetical Theories
On Rosser's Provability Predicate
de Boas An Overview of the Rule Language RL/1
Provable Fixed points in IA<sub>0</sub>+Ω<sub>1</sub>, revised version
Bit Unexpure the Provability Logic
               X-90-05 Valentin Shehtman
X-90-06 Valentin Goranko, Solomon Passy
X-90-07 V.Yu. Shavrukov
X-90-08 L.D. Beklemishev
X-90-09 V.Yu. Shavrukov
Con Ross
X-90-10 Sieger van Denneheuvel, Peter van Emde Boas
X-90-11 Alessandra Carbone
X-90-12 Maarten de Rijke
X-90-13 K.N. Ignatiev
X-90-13 K.N. Ignatiev
X-90-15 A.S. Troelstra
Dzhaparidze's I
X-90-15 A.S. Troelstra
Dzhaparidze's I
Lectures
1991
Logic, Semantics and Philosophy
LP-91-01 Wiebe van der Hoek, Maarten de Rijke General
                  X-90-05 Valentin Shehtman
                                                                                                                                                                                                            Bi-Unary Interpretability Logic

Dzhaparidze's Polymodal Logic: Arithmetical Completeness, Fixed Point Property, Craig's Property

Undecidable Problems in Correspondence Theory
                                                                                                                                                                                                                                              Lectures on Linear Logic
                1991 Logic, Semantics and Philosophy of Langauge
LP-91-01 Wiebe van der Hoek, Maarten de Rijke Generalized Quantifiers and Modal Logic
LP-91-02 Frank Veltman
Defaults in Update Semantics
LP-91-03 Willem Groeneveld
Dynamic Semantics and Circular Propositions
ML-91-01 Yde Venema Mathematical Logic and Foundations
ML-91-02 Alessandro Berarducci, Rineke Verbrugge
On the Metamathematics of Weak Theories

On the Metamathematics of Weak Theories

On the Metamathematics of Mathematical Completeness for Interpretable Completeness 
             ML-91-01 Yde Venema Mathematical Logic and Foundations Cylindric Modal Logic
ML-91-02 Alessandro Berarducci, Rineke Verbrugge On the Metamathematics of Weak Theories
ML-91-03 Domenico Zambella On the Proofs of Arithmetical Completeness for Interpretability Logic
ML-91-04 Raymond Hoofman, Harold Schellinx Collapsing Graph Models by Preorders
ML-91-05 A.S. Troelstra History of Constructivism in the Twentieth Century
ML-91-06 Inge Bethke Finite Type Structures within Combinatory Algebras
ML-91-08 Inge Bethke Going Stable in Graph Models
CT-91-01 Ming Li, Paul M.B. Vitányi Computation and Complexity Theory Kolmogorov Complexity Arguments in Combinatorics
CT-91-02 Ming Li, Paul M.B. Vitányi How to Share Concurrent Wait-Free Variables
CT-91-04 Sieger van Denneheuvel, Karen Kwast Weak Equivalence
CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak Equivalence
CT-91-06 Edith Spaan Census Techniques on Relativized Space Classes
CT-91-08 Kees Doets
CT-91-09 Ming Li, Paul M.B. Vitányi Combinatorial Properties of Finite Sequences with high Kolmogorov Complexity
                                                                                                                                                                                                                                            Combinatorial Properties of Finite Sequences with high Kolmogorov Complexity A Randomized Algorithm for Two-Process Wait-Free Test-and-Set Quasi-Injective Reductions
                  CT-91-09 Ming Li, Paul M.B. Vitányi
CT-91-10 John Tromp, Paul Vitányi
CT-91-11 Lane A. Hemachandra, Edith Spaan
               X-91-01 Alexander Chagrov, Michael Zakharyaschev Other Prepublications The Disjunction Property of Intermediate Propositional Logics X-91-02 Alexander Chagrov, Michael Zakharyaschev On the Undecidability of the Disjunction Property of Intermediate Propositional Logics X-91-03 V. Yu. Shavrukov Subalgebras of Diagonizable Algebras of Theories containing Arithmetic Partial Conservativity and Modal Logics X-91-05 Johan van Benthem X-91-05 Johan van Benthem X-91-06 Aproal Board 1000
                                                                                                                                                                                                                                            Temporal Logic
Annual Report 1990
Lectures on Linear Logic, Errata and Supplement
Logic of Tolerance
                  X-91-06
                X-91-07 A.S. Troelstra
X-91-08 Giorgie Dzhaparidze
X-91-09 L.D. Beklemishev
X-91-10 Michiel van Lambalgen
X-91-11 Michael Zakharyaschev
                                                                                                                                                                                                                                            On Bimodal Provability Logics for \Pi_1-axiomatized Extensions of Arithmetical Theories Independence, Randomness and the Axiom of Choice Canonical Formulas for K4. Part I: Basic Results
                                                                                                                                                                                                             Flexibele Categoriale Syntaxis en Semantiek: de proefschriften van Frans Zwarts en Michael Moortgat
The Multaplicative Fragment of Linear Logic is NP-Complete
                  X-91-12 Herman Hendriks
```

X-91-13 Max I. Kanovich