L=

Institute for Logic, Language and Computation

WEAK EQUIVALENCE:
THEORY AND APPLICATIONS

Karen L. Kwast
Sieger van Denneheuvel

ILLC Prepublication Series
for Computation and Complexity Theory CT-92-02

535385

University of Amsterdam

The ILLC Prepublication Series

1990

Logic, Semantics and Philosophy of Language . . .

LP-90-01 Jaap van der Does A Generalized Quantifier Logic for Naked Infinitives

LP-90-02 Jeroen Groenendijk, Martin Stokhof Dynamic Montague ar

LP-90-03 Renate Bartsch Concept Formation and Concept Composition

LP-90-04 Aarne Ranta Intuitionistic Categorial Grammar

LP-90-05 Patrick Blackburn Nominal Tense Logic

LP-90-06 Gennaro Chierchia The Variablity of Impersonal Subjects

LP-90-07 Gennaro Chierchia Anaphora and Dynamic Logic

LP-90-08 Herman Hendriks Flexible Montﬁgue Grammar

LP-90-09 Paul Dekker The Scope of Negation in Discourse, towards a Flexible Dynamic
Montague grammar

LP-90-10 Theo M.V. Janssen Models for Discourse Markers

LP-90-11 Johan van Benthem General Dynamics

LP-90-12 Serge Lapierre . A Functional Partial Semantics for Intensional Logic

LP-90-13 Zhisheng Huang Logics for Belief Dependence

LP-90-14 Jeroen Groenendijk, Martin Stokhof Two Theories of Dynamic Semantics

LP-90-15 Maarten de Rijke The Modal Logic of Inequality

LP-90-16 Zhisheng Huang, Karen Kwast Awareness, Negation and Logical Omniscience

LP-90-17 Paul Dekker Existential Disclosure, Implicit Arguments in Dynamic Semantics

Mathematical Logic and F oundations
ML-90-01 Harold Schellinx Isomorphisms and Non-Isomorphisms of Gra;}h Models

ML-90-02 Jaap van Oosten A Semantical Proof of De Jongh's Theorem

ML-90-03 Yde Venema Relational Games

ML-90-04 Maarten de Rijke Unary Interpretability Logic

ML-90-05 Domenico Zambella Sequences with Simple Initial Segments

ML-90-06 Jaap van Oosten Extension of Lifschitz' Realizability to Higher Order
Arithmetic, and a Solution to a Problem of F. Richman

ML-90-07 Maarten de Rijke %’h Note on the Interpretability Logic of Finitely Axiomatized

eories

ML-90-08 Harold Schellinx Some Syntactical Observations on Linear Logic

ML-90-09 Dick de Jongh, Duccio Pianigiani ~ Solution of a Problem of David Guaspari

ML-90-10 Michiel van Lambalgen Randomness in Set Theory

ML-90-11 Paul C. Gilmore The Consistency of an Extended NaDSet

Computation and Complexity Theory
CT-90-01 John Tromp, Peter van Emde Boas _ Associative Storage Modification Machines
CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette
. A Normal Form for PCSJ Expressions
CT-90-03 Ricard Gavalda, Leen Torenvliet, Osamu Watanabe, José L. Balcizar Generalized Kolmogorov
. Complexity in Relativized Separations
CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet Bounded Reductions
CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint ressions
CT-90-06 Michiel Smid, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial
CT-90-07 Kees Doets Greatest Fixed Points of Logic Programs
CT-90-08 Fred de Geus, Emest Rotterdam, Sieger van Denneheuvel, Peter van Emg Boas
. Physiological Modelling using RL
CT-90-09 Roel de Vrijer Unique Normal Forms for Combinatory Logic with Parallel
Conditional, a case study in conditional rewriting
Other Prepublications

X-90-01 A.S. Troelstra Remarks on Intuitionism and the Philosophy of Mathematics,

Revised Version

X-90-02 Maarten de Rijke Some Chapters on Interpretability Logic

X-90-03 L.D. Beklemishev gn th:l Complexity of Arithmetical Interpretations of Modal

ormulae

X-90-04 . Annual Report 1989

X-90-05 Valentin Shehtman Derived Sets in Buclidean Spaces and Modal Logic

X-90-06 Valentin Goranko, Solomon Passy Using the Universal Modality: Gains and Questions

X-90-07 V.Yu. Shavrukov The Lindenbaum Fixed Point Algebra is Undecidable

X-90-08 L.D. Beklemishev Provability Lo_I%ics for Natural Turing Progressions of
Arithmetical Theories

X-90-09 V.Yu. Shavrukov On Rosser's Provability Predicate

X-90-10 Sieger van Denneheuvel, Peter van Emde Boas An Overview of the Rule Language RL/1

X-90-11 Alessandra Carbone Provable Fixed points in IAy+£Q,, revised version

X-90-12 Maarten de Rijke Bi-Unary Intergretability Logic

X-90-13 K.N. Ignatiev Dzhaparidze's Polymodal Logic: Arithmetical Completeness, Fixed
Point Proj , Craig's Prcg)erty

X-90-14 L.A. Chagrova Undecidable Problems in Correspondence Theory

X-901-15 A.S. Troelstra Lectures on Linear Logic

199

Logic, Semantics and Philosophy of Langauge
LP-91-01 Wiebe van der Hoek, Maarten de RijkeGeneralized Quantifiers and Modal Logic

LP-91-02 Frank Veltman Defaults in Update Semantics
LP-91-03 Willem Groeneveld %lynamic Semantics and Circular Propositions
LP-91-04 Makoto Kanazawa e Lambek Calculus enriched with Additional Connectives

LP-91-05 Zhisheng Huang, Peter van Emde Boas The Schoenmakers Paradox: Its Solution in a Belief
Dependence Framework

LP-91-06 Zhisheng Huang, Peter van Emde Boas_Belief Dependence, Revision and Persistence

LP-91-07 Henk Verkuyl, Jaap van der Does The Semantics of Plural Noun Phrases

LP-91-08 Victor Sénchez Valencia Categorial Grammar and Natural Reasoning
LP-91-09 Arthur Nieuwendijk Semantics and Comparative Logic
LP-91-10 Johan van Benthem Logic and the Flow of Information

Mathematical Logic and Foundations .

ML-91-01 Yde Venema Cylindric Modal Logic . .

ML-91-02 Alessandro Berarducci, Rineke Verbrugge On the Metamathematics of Weak Theories

ML-91-03 Domenico Zambella On the Proofs of Arithmetical Completeness for
Interpretability Logic

ML-91-04 Raymond Hoofman, Harold Schellinx Collapsing Graph Models by Preorders

E Institute for Logic, Language and Computation

Plantage Muidergracht 24
1018TV Amsterdam
Telephone 020-525.6051, Fax: 020-525.5101

WEAK EQUIVALENCE:
THEORY AND APPLICATIONS

Karen L. Kwast
Sieger van Denneheuvel

Department of Mathematics and Computer Science
University of Amsterdam

ILLC Prepublications
for Computation and Complexity Theory
ISSN 0924-8374

Coordinating editor: Dick de Jongh received July 1992

Weak Implication: Theory and Applications

Karen L. Kwast & Sieger van Denneheuvel?
University of Amsterdam
Department of Mathematics & Computer Science,
Plantage Muidergracht 24, 1018 TV, Amsterdam.

Abstract

We study a generalization of the classical notion of implication, called weak
implication. It extends unquantified predicate logic with a single level of ezisten-
tial quantification. We present a sound and complete set of deduction rules for
weak implications. The notion of weak implication was introduced for the sake
of a formal specification of a symbolic constraint solving system. Other practical
applications of can be found in the realm of relational database theory: query
normalization and integrity constraints in the context of views.

*Present address: Syllogic BV, postbus 26, 3990 DA, Houten, NL.

Contents
1 Introduction
2 Related Work

3 Definitions
3.1 Clashing Variables
3.2 Substitution e e e

4 Rules for Weak Implication

4.1 Propositional Logic L

4.2 System WZ is Complete
5 Constraint Solving

5.1 An Example

5.2 Solvable Constraints

5.3 Symbolic Solutions Lo

6 Query Normalization
7 Integrity Constraints

8 Conclusion

12
12
14
16

17

19

21

1 Introduction

Weak equivalence is a generalization of the classical notion of equivalence. Two formulas
are equivalent if they are satisfied by the same values; they are weakly equivalent if they
are equivalent ‘on’ a set of variables X, that is, if their projections on X are equivalent.
Consider for instance the non-equivalent constraints

r=y+2,y=24+3 #Z z=2+5 (1)

If one wants to express z in terms of the known variable z, it makes sense to ask for the
strongest condition on z and z that is entailed by the left-hand side. The actual value
of y is irrelevant and becomes existentially quantified. Formally:

r=y+2,y=2+3 =, =245 (2)

A more interesting example derives from the context of constraint solving. The following
set of constraints is underdetermined:

r4+u=v, y+tu=v, z+y=6m, u<v (3)
One can solve z and y in terms of m by means of the equivalent,,,, constraints
r=3xm,y=3xm, m>0 (4)

Obviously, these 2 sets of constraints are not equivalent, but they express the same
relation between z, y and m.

In this paper, we present the logical theory of weak implications. § 2 summarizes
related research. Basic notions and definitions are provided in § 3. The system WZ of
derivation rules for weak implications is discussed in § 4. Applications are given in § 5:
constraint solving, § 6: query normalization and § 7: integrity constraints.

2 Related Work

There are several areas of research that are related to the present subject. Obviously,
the present system will be a subsystem of first order predicate logic, namely the logic of
V3-sentences. This reduction in expressive power will be compensated for by an increase
in transparency: the absence of (nested) quantifiers. Moreover, this fragment is known
to be decidable.

Restrictions to the language are not uncommon: in logic programming (e.g. [1]), the
language is restricted to unquantified predicate logic with equality and functions. All
free variables are (implicitly and globally) universally quantified. Here we add in effect
a second layer of quantification: (local) existential quantification.

In unification theory (see [7]), one studies the possibility to find a most general unifier
® for a set of equations I' in the context of an equational theory E. One can check ® in
terms of equivalence: E = I'[®] = TRUE, or, equivalently, E = I' = ®. Here we study
the more general issue: I' =x A (in the context of E), where & may be part of A.

The present theory originates from yet another area: symbolic constraint solving.
A good example is the system Mathematica ([9]). It allows one to declare a set of

3

constraints, which can be simplified by the system. Moreover, one can ask for a symbolic
solution, expressing some wanted variables in terms of the others (: the known variables).
When the set of constraints (such as (3) above) is underdetermined, the system will fail.

Weak equivalence has been developed as a tool to describe and validate the RL/1
symbolic constraint solving system, which allows for the specification of intermediate
variables. This system is capable of producing a conditional solution: if the known
variables satisfy some condition, then they define the wanted variables in the specified
manner (cf. (4) above). We will illustrate this idea in § 5 by means of an example; for
all details on RL/1 see [2].

The system RL/1 has much in common with CLP ([5]), where global constraints
are combined with local conditions into rules and goals (: as in PROLOG). If a goal is
satisfiable, a successful derivation will yield a set of answer constraints as symbolic output.
In CLP the answer constraints are represented in solved form, which depends on the
type of constraints. In RL/1, however, the answer consists of a reduced constraint and a
solution set, that is, a symbolic solution expressing some variables in terms of others (see
§ 5). This has the advantage that the symbolic answer can be evaluated on a (relational)
database, in accordance with the RL objective to integrate logic programming with
database systems. On the other hand, it restricts the types of constraints that can be
dealt with; RL/1 does not cover recursive rules.

In § 5 we employ weak equivalence to give a formal specification of the RL/1 con-
straint solver; its technical details and a comparison to other systems for constraint
solving can be found in [2].

There are many other possible applications of the notion of weak implication. It
can be applied to study the implication problem of any phenomenon that requires but
a single level of existential quantification. In the present formalism, all quantifiers are
removed and replaced by implicit quantification, by means of the implication variables.
These variables connect the antecedent of the implication with the consequence and are
(implicitly) universally quantified. All remaining variables are more or less irrelevant:
they are (implicitly) existentially quantified, locally, that is, the scope of quantification
is restricted to antecedent cq consequence.

The advantage of the weak implication formalism is that it corresponds with the al-
gebraic projection operator: the projection set contains the relevant variables, all others
can be ignored (: existentially quantified). As a consequence, weak implication state-
ments are more intuitive and transparent, at least to people that are used to the relational
algebra.

Weak implications can be applied to normalize terms of the relational algebra, high-
lighting the natural boundaries of the projection normal form, IIxo,(R X S), which
corresponds with the basic SQL statement, SELECT X FROM R, S WHERE ¢. Normalization
theory does not require weak implications, of course, but its description can be simplified
by means of weakly equivalent (sub)terms.

In a similar manner, weak implication can be applied to derive integrity constraints.
There exist several formalisms to study the integrity implication problems, but none that
includes views and equivalent term rewriting in a uniform manner.

The applications we give of the notion of weak implication are mainly illustrative.
The results on term rewriting are freely adapted from previous work on term rewriting, by

ourselves ([4]) as well as by others (e.g. [10]), only ‘translated’ into the weak implication
formalism to illustrate the usefulness of the latter. The examples of derived integrity
constraints have not yet been systematically developed; for the basics of database theory
we refer to [8].

3 Definitions

Let £ be a predicate language, consisting of constants CON (a, b, ¢, ...), variables VAR
(z,v,2z,...), predicates (R, S,T,...) and functions (f,g,...). Terms (s,t,...) and formu-
las FORM (¢, 1), ...) are constructed as usual. £ contains an identity symbol = and the
propositional constants TRUE and FALSE. a(¢) is the set of free variables of a formula
. Attributes .4 and variables will be used indifferently; sets of attributes are denoted
by X or x.

A solution is an equation z =t with = & a(t). A solution set (: ®,¥,...) is a finite
set of independent solutions, that is:

Definition 1 A solution set ® is a finite set { & = 1, ..., 7, = t, }, such that for all
ivj <nim £ g (i #5) and g € alty).

The syntactic independence restriction on a solution set ¢ can be reformulated in terms
of its head- and tail attributes:

Definition 2 ag(®) = {z1,...,2,} ar(®) = a(t1))U...Ualt,).

The set & = {z; =t1,...,2, = t,} is a solution set iff the number of head attributes is
n, that is, #(ag(®)) = #(®), and ax(®) N ar(®) = 0. Considered as a substitution, ®
is separated on its head attributes away from its tail attributes.

Let M = < D,7 > be a model for a language £ and H the set of assignments
h: VAR — D. M |= ¢[h] is defined by the usual induction. Obviously, if h =4(,) ',
that is, if h(z) = /() for all z € a(yp), then M |= ¢[h] iff M = ¢[h/].

The notion of a valid implication is completely standard: ¢ |= 9 iff every model and
assignment that satisfies ¢ satisfies 1 as well. It is called strong here to discriminate it
from its weaker generalization.

Weak implication is more general in the sense that it includes strong implication as a
special case, but it is weaker in the sense that any weak implication is logically implied
by its strong counterpart. Before we give the formal definition, an example will illustrate
this point.

Example 1 Some strong and weak implications.
z=y+l EFz>y z>ypFe=y+1
r=y+1 'za:y T>y T>Y l#my r=y+1
c=y+lF, 2>y >y, z=y+1

Weak implication is defined on model-level as well as in general:

Definition 3 Weak implication
I M:pExty = YVheH: ME@h = 30 e H: M =x h& M |= [}
2. pEx ¢ = forallmodels M: M:plx v

5

The relevance of the notion M : ¢ |=x 9 can be explained by means of an example:
t=-1lFk,z=y*Az+1=0

It depends on the model (: is v/—1 defined?) whether or not there exists a satisfying
assignment h'. As we do not want to fix the models from the outset, we must be able
to conceive weak implications as a notion valid in a model M or in a class of models C.
Note that we do not define weak implication on assignment-level, that is, as a language
connective. To see why, suppose we would define a connective Dx.

Definition 4 Weak connective
MEpDxplh] = ME@h] = 30 e H: I =x h& M = ¢[I]

Given this definition we would derive at a system in which even transitivity is unvalid:
¢ Dx ¥, ¥ Dx X ¥ ¢ Dx x-

Example 2 Suppose h(z) = 3, h(y) = 5, h(z) = 2, then
MEz=3D,y=>5%z[h]

MEy=5%2z Dy x=11[h]
Mz =3 D4z =11[h]

Note that this is not a counterexample under a higher level reading; the rule

eExY, vEXX = eExX

is valid, but most models will falsify the second assumption (: y = 5 * z =4y ¢ = 11),
thus avoiding the undesirable consequence (: z = 3 =4 « = 11).

Definition 5 o =x ¢ = o Ex v &Y Ex ¢

Before we turn to the logic of weak implications, we will try to demystify this notion by
exploring its translation into quantified predicate formulas.

3.1 Clashing Variables

The major effect of indexing implication with a set of attributes x is that the remaining
attributes (: y and z respectively) get existentially quantified. Hence:

Lemma 1 Lety = a(p) \ x and z = a(¢) \ x, then
M:pEx ¥ iff MEVx(3y e(xy) D Iz ¢(x2))

Example 3 m<z |, c=m+nAn>0
corresponds with Vz(Im: m<z D Im,n: z=m+nAn>0)

In general a weak implication may contain clashing variables (such as: m in the example
above), that is, variables that appear on both sides of the implication sign but not in X.
If that is the case, an implication must be rectified or at least purified, before it can be
transformed into V3-normal form.

Definition 6 An implication ¢ |=x 9 is rectified iff a(p) € X.

6

Strong implication is a special case of weak implication: put X = A, the set of all
(relevant) attributes, thatis: ¢ = ¢ iff ¢ a4 ¥.

As a consequence, every strong implication is rectified. Moreover, every rectified
equivalence is bound to be strong (cf. the rule irrelevance, see below). Hence we prefer a
somewhat weaker property:

Definition 7 An implication ¢ |=x ¥ is purified iff a(p) Na(y) C X.

The absence of clashing variables guarantees that all variables that are shared by ¢ and
¥ must be relevant (: in X).

Example 4 Compare:

m < & FEgm € =m+nAn >0 is rectified and purified,
m < T FEem € =k+nAn>0 is rectified and purified,
m<zlE,z=k+nAn>0 is purified.

Every implication can be transformed into an equivalent purified or rectified implication.
On account of the confusing outlook of z < y =, z > y it is advisable to purify an
implication as soon as possible. Moreover, the corresponding predicate formula can
be brought into V3-normal form, that is, a sentence with prefix of the format V3 and
unquantified prenex.

Lemma 2 Lety = a(¢) \x,z=a(¥) \x andy Nz =0 (: purified), then:
M:pEx iff ME Vxydz(e(xy) D ¥(xz))

(Note the change in quantifier for y; cf. universally quantified Horn clauses.)

Example 5 The weak implications of example 4 correspond with, respectively:
Ve,mIn(m <z Dz =m+nAn>0),

Ve,m Ik,n(m <z Dz =k+nAn>0),

Ve Im,k,n(m <z Dz =k+nAn>0).

3.2 Substitution

In the sequel we will employ solution sets as substitutions. The notation ¢[®] refers to
the result of the substitution ® on ¢. Any solution set can be used as a substitution,
replacing the head variables of ® in ¢ by the corresponding tails. Note that the result
is well-defined, on account of the well-formedness conditions on solution sets, which
guarantee that the individual substitutions are independent.

Substitution has some well-known properties, which will be used here without further
justification. In particular:

Lemma 3 For all formulas ¢,v and every solution set ®:
1. ag(®) Na(p[®]) = 0.

2. If a(p) Nag(®) = 0, then p[@] = ¢.

3. If & = &, U &y, then ¢[®] = ¢[®1][®2] = ¢[P2][®1].

4. If & =4() ¥, then p[®] = ¢[¥].

5. ®[®] = TRUE.

Any effective procedure that computes ¢[®] from ¢ and ® satisfies these properties. A
trivial example of (3.5) is: ¢ = 8[z = 8] (:= 8 =8) = TRUE.

7

4 Rules for Weak Implication

The inference rules for strong implications can be generalized for weak implications. A
list of them is given in figure 1: the system WZ of derivation rules for weak implications.
Figure 2 contains some derived rules and meta-rules.

All rules in figure 1, except for abstraction, are in fact strong, which means that these
rules hold for strong implications as well as for arbitrary weak implications.

Some restrictions are placed on the meta-rules, since they are not sound unrestrict-
edly. This can be shown by means of examples; for instance, to explain the restriction
on union:

Example 6 Bothz <3 |, t<yAy=4andz<3 |, t<yAy=5.
Still, <3 W, e<yANy=4ANy=5, since(t <yAy=4Ay=>5)=FALSE.

Similar examples can be given for all restrictions (see [6]).

Contraposition is de facto only valid for strong implications (: on account of the strong
rule), but this is compensated for by the general validity of absurdum.

A rule worth noticing is all cases. Whereas union is restricted to compatible conse-
quences, all cases is valid for all pairs of antecedents. In particular, putting ¢ := p A9
and ¢ := ¢ A 9, it implies the derived rule either or.

The cut rule is only applicable if the untrimmed implication is non-trivial. Another
remarkable rule is implication. Its validity is restricted to antecedents with explicitly
mentioned variables.

Theorem 4 The rules and meta-rules of system WZ (: figure 1) are all sound.

Proof: Straightforward; see [6].
n

Theorem 5 All rules in figure 2 can be derived from WZI.

Proof: We will only prove instantiation, by way of example.
To be proven: ¢ Ex ¥ = ¢[®] Ex ¥[®], where a(®) N a(y) C X.
Define Y := a(¢[®] A ¥[®]), which implies Y N ay(®) = 0.

1 given ¢ Ex ¢

2 weakening pN® Ex ¢

3 transitivity: 2,1 oA ® Ex ¢

4 weakening eAN® Ex @

5 union: 3,4 OAN® E=x YAND a(®)Nna(y) CX)
6 removal: 5 OAN® Exny VAP

7 abstraction ¢o[® By oA ® (YNna(®)=0)

8 removal: 7 0[®] Exny oA ®

9 transitivity: 86 ¢[®] Exny YA

10 substitution: 9 ¢[®] Exny ¥[®]

11 irrelevance: 10 ¢[®] Ex ¢[®] (: (¢[®]) CY)

For strong implications the restriction is trivial, so: ¢ =9 = ¢[®] = ¥[®].
n

Name Rule Restriction
true ¢ Ex TRUE
false @ A—p [Ex FALSE
weakening eANY Ex VX
duality e AY Ex (e VY)
substitution e A® Ex ¢[®]
generalization P[®IAN® Ex oA
abstraction o[®] Ex oA®| ag(®)NX =0
removal e Exy ¥ = ¢ Ex ¥
irrelevance v Ex v = ¢ Exy ¢ YNa(y) CX
transitivity e FEx v, ¥ Fx x = ¢ Bx x
union o Ex ¥ o FEx x = ¢ Fx vAx|a®)Na(x) CX
all cases o Ex b, dEx ¥ = oV Ex ¥
contraposition o Ex W = Y Exo a(p) CX
Figure 1: Rules and meta-rules of WZT.
Name Rule Restriction
tertium TRUE |=x ¢ V —p
absurdum FALSE Ex ¢
independence TRUE |=¢ ®
Leibniz s=tAp(s) | o(t)
strong T Fx ¥ > ¢vF v G CX
instance TRUE =x ¢(y) = TRUE |=x ¢(a) yeX
instantiation oExY = @ Ex ¥[®|a(®)na(y) CX
MP TRUE =x ¢, ¢ Fx ¥ = TRUE =x ¢
MT TRUE = 9, ¢ Ex ¥ = TRUE | —p
augmentation vExY => eAdEx VYA a(d)Na(y) CX
implication dPEXxXPDY = dANpExY a(p) CX
deduction dANpEXxY = dExp DY
either or oAy Ex X, A% Ex x = ¢Ex X
reduction ANV EXxY = olEx Y
cut AV Ex X pExY = pExx|[a(p)Na(¥) CX

Figure 2: Derived rules of the system WZ

4.1 Propositional Logic

At first glance, WZ can be partitioned into 3 parts: propositional rules (8), “quantifica-
tion” rules to vary the implication variables (2) and rules dealing with identity in terms of
solution sets (3). However, abstraction is in essence a quantification rule: the quantified
analogon of [z = |y ¢ (z ¢ Y) is the 3-introduction rule ¢(c) | Iz ¢(z).

The rules in system WZ are still incomplete in the sense that basic properties of
the propositional connectives are not listed, namely those that derive from basic set
theory, such as X = X U X and X UY =Y U X. In particular, we need thinning and
permutation rules (: V and A are idempotent, symmetric and associative) and the law
of double negation (: =g =).

The rules in WZ have been choosen to pinpoint where weak implications differ from
strong ones. It should be obvious that all propositional valid inferences are derivable by
the present system.

4.2 System WIT is Complete

Let Fx be the smallest relation over unquantified formulas and sets of variables that
satisfies all rules and meta-rules of the system WZ, listed in figure 1 and figure 2.
Lemma 4 expresses that all rules derivable from WZ are sound:

o bFx v implies ¢ Ex ¥

The converse holds as well. This can be proven by means of a Henkin construction.
The definition of x is extended to sets of formulas (I, A,...), in order to get a
standard deduction system. Compactness guarantees that this does not affect the con-
sequence relation.
A Henkin construction involves maximal consistent sets of formulas. Consistency is
by definition strong; maximality will be relative to a set of variables X. FORM(X) is
the set of formulas with free variables in X.

Definition 8 T' is X -mazimal consistent iff
1. T' is consistent: T lf FALSE.
2. for any ¢ € FORM(X) such that ¢ € I': T U ¢ inconsistent.

Every maximal consistent set satisfies a truth lemma.

Lemma 6 Let A be X-mazimal consistent. For all p,9 € FORM(X):
1. pe A or np€eA

2. pVYEA iff peAorpe A

3 oANYEA iff peAandp €A

Proof: Straightforward: since ¢, € FORM(X) all rules reduce to their standard strong

format. m
The existence of maximal X-consistent extensions will be the central issue in the com-

pleteness proof of WZ.

Theorem 7 ¢ =x ¢ implies ¢ Fx .

10

Proof: Outline; for further details see [6].

Suppose for some formulas g, ¥y and some variables Xg that ¢o l#x, ¥o.

We will construct a family of maximal consistent sets such that ¢y € A & 9y & A.
It can be assumed, without loss of generality, that a(ypy) C X,.

The construction contains a number of steps:

1 Put Y, := o) \ Xo,
so Yy is the set of existentially quantified variables in 1)g.

2 Fix an enumeration {6;}; of all equational solution sets 6 : Yo = TERM(X,),
where TERM(X,) is the set of all object terms with variables in Xj.

3 Define I' := o U {~¢0[6i] }:,
the extension of ¢y with the set of all instantiations of —)g.

Fact 1 T is consistent.
This can be proven formally in WZ, by deriving ¢g Fx, %o from I' - FALSE.

4 Embed T in a Xp-maximal consistent set 'y, by means of an enumeration {;}; of
FORM(X,), all formulas ¢ with a(¢) C X,.

1. Po =T
2. Tip1:=T; U {&}, if this is consistent, I';;;:=T};, otherwise.
3. T, := ;T

The restriction to FORM(X,) entails that all implications are strong, so it is easy to
prove the truth lemma (see lemma 6), restricted to formulas in FORM(X).

5 Define At := T', U {6;} for each 6; in the enumeration.
Since already —1[0;] € T, this implies, by generalization, A* F —),.

Fact 2 Every A‘is consistent.

6 Construct X Yp-maximal extensions for each set Af, as before, by means of an enu-
meration {£;}; of FORM(X,Yy), all formulas § with a(¢) C XY, (cf. 4).

The truth lemma is extended to FORM(X,Y}).
The resulting family of X,Yp-maximal sets is a counterexample to ¢o =x, %o:

7 Define a model M =< D,Z > with D the set of equivalence classes generated by T,
and Z induced by T, as follows:

1. D := {t|at) C Xo}, wheret := {s|]s=1t €I}

2. I(c) := ¢, for all constants c.

3. I(P) := {<ty...t, > | P(t1...t,) € I}, for all predicates P.

4. IZ(f): D™ —>D = I(f)(t1-.-ta) = f(t1...t,), for all functions f.

Obviously, Leibniz’ Law is essential to make this a meaningful definition (see below).

8 The relevant assignments h; : A — D are defined relative to the larger sets A:
hi(y) =t, if y € Yo, y =t € 0,
hi(z) =z, if z € X,.

11

This model is well-defined, that is, it satisfies the following properties.
Fact 3 For this model < D,7 > and these assignments h;:

1. M= P(ty...t)[h] iff P(t;...t,) € AL, t, € TERM(X,Yo)
2. ME f(ty...t,) = s[h;] iff f(t1...t,) =s €Al

3. M= glhy] iff p € Al

4. M = €[h;] iff M = €[h;] forall € € T, & € FORM(X,)

9 < D,T > is a well-defined countermodel for ¢y F=x, %o:
for all i: o € A%, but ¥y & AL

As a consequence, M = olh;] and for all A =x, h;, since h = h; for some j (!)
M = tho[h], so M £ o Dx, %o and ¢o Ex, Yo.

To summarize, we have constructed a countermodel to prove ¢q [~x, 9o for an arbi-
trary pair of formulas ¢, 1y and arbitrary set of variables X, on the assumption that
wo Fx, Yo. Therefore, if @y =x, 1o, then @ Fx, ¥o; the system WZ is complete.

]

5 Constraint Solving

The original motivation to introduce the notion of weak equivalence was to validate the
RL/1 symbolic constraint solving system (cf. [2], [3]). In this paper we do not discuss
the technical details of this constraint solver, which can be found in [2]. We will illustrate
the aims of the solver system by means of an example and give a formal specification
based on weak equivalence.

5.1 An Example

Consider a large set of user-defined constraints, such as the arithmetic laws dealing with
ages, wages and commissions on sales. These laws can be expressed in terms of universal
constraints with several parameters and variables. Not all queries make use of these laws
in the same manner: some queries may compute taxes over net prices, others require
gross prices, but a curious buyer may want to reconstruct rates from gross and net prices.
In all these queries the same equations are involved:

TaxConstraints:

gross-price = net-price + taxes,
taxes = rates * net-price,
etcetera.

For some applications gross prices are listed in the database, other products, that are
mainly sold to business customers, are stored with their net prices: the known variables
may vary with the query as well. Note that in a spreadsheet, such as EXCEL, all
constraints are ‘directed’ in that new fields are computed out of given ones. Arithmetic

12

equations as used in the relational database language SQL are directed as well: one may
define new attributes as a function of given ones.

Informally, we would like to extend a database system with facilities to store relevant
arithmetic laws in constraints. Queries concerning these constraints and the related
database tables should be formulated in a user-friendly manner, for instance by allowing
unrestricted selections in the SQL where-clause, either explicitly or by means of imported
modules:

SELECT net-price
FROM Orders, Clients, Rates
WHERE client-name = ‘Me’
net-price > 1000
TaxConstraints(*)

(The natural join equations are suppressed; Rates contains the tax-rates that may vary
per product.) The constraints in TaxConstraints may include equations that are ir-
relevant to the present query, such as boundaries on commissions per salesman, as a
percentage of his salary. In principle, each tuple in the join Orders X Clients X Rates
can be used to instantiate the constraints, testing for satisfiability to decide inclusion
(: inconsistency leads to rejection). This type of evaluation is rather inefficient, how-
ever, since for all accepted tuples the constraint solver must be invoked to compute the
net-price. :

In a more efficient system, all unrestricted queries such as the one given above are
preprocessed by a symbolic constraint solver, yielding a restricted query to be evaluated
on the database:

CREATE VIEW Query (met-price)
AS SELECT gross-price / (rates + 1)
FROM Orders, Clients, Rates
WHERE client-name = ‘Me’
gross-price > 1000 * rates + 1000

The necessity to employ a view, in order to identify net-price as the result of gross-price
/ (rates + 1),is of course an idiosyncrasy of the language SQL. However, it illustrates
the difference between the symbolic solution and the actual answer. Note also the new
restricted condition.

The symbolic answer is evaluated after the subsequent query:

SELECT net-price
FROM Query

In this query only those tuples that will satisfy the constraints are selected to compute
the net-price directly. The constraint solver has been invoked only once, to establish
the symbolic solution and the remaining conditions, that is, the view definition.

More formally, the purpose of symbolic constraint solving is to determine whether
or not a set of constraints is separable and if so, give an equivalent solution: the system
should express the wanted variables W in terms of the known variables K, that have
to satisfy some derived conditions. The input of a symbolic constraint solver is the

13

unrestricted query [Ixo,(R). Ris a database relation (or a view or join) to resolve known
variables. The condition ¢ expresses all relevant knowledge; ¢ consists of equations
and comparisons involving K, W and possibly some intermediate variables I, variables
that are irrelevant to the present query, but that help to formulate the constraints in
a user-friendly manner. The optimized output is a restricted database query of the
format IIx (ke (0y(R))), which can be evaluated directly on the database, without further
intervention of the constraint solving system. The formal description and verification of
the constraint solver can be formulated quite elegantly by means of the concept of weak
equivalence.

5.2 Solvable Constraints

In general, a constraint solver is invoked to compute a relation S(KW) from a relation
R(K) in accordance with the set of constraints ¢. Let ¢ contain variables a(p) =
K UW U I, that is, the disjoint union of known, wanted and intermediate variables. ¢
must be separated into a symbolic solution ® and reduced condition %, but this will
not be possible for all and arbitrary ¢. The constraints ¢ are solvable in K and W if
all variables in W can be expressed in terms of K; ¢ is reducible in K if the implicit
condition ¢ poses on K can be expressed in terms of K alone.

e ¢ is solvable in K and W iff
there exists a solution set ® with ag(®) = W and ar(®) = K, such that ¢ =gw ®.

e ¢ is reducible in K iff
there exists a 9 with a(¢) C K, such that ¢ =g .

e ¢ is separable in K and W iff
there exists a solution set ® with ag(®) = W and ar(®) = K, and
there exists a ¢ with a(¢) C K, such that ¢ =gw & A 9.

We say that ¢ is underdetermined on KW, if it is not solvable on K and W. (Note that
in CLP the term solvable denotes satisfiability, ¢ =g TRUE, that is, ¢ is not reducible
to FALSE.)

A good optimization strategy first tries to establish whether or not a constraint ¢ is
separable. To be separable ¢ must be solvable as well as reducible:

Theorem 8 ¢ is separable in K and W iff
@ is reducible in K and ¢ is solvable in K and W.

Proof: This can be proven formally in WZ, see figure 3 & 4.

]

Separability is a necessary requirement for efficient query evaluation. If the constraint ¢
is separable, then the constraint solver is only invoked once and the wanted variables can
be computed by means of the symbolic solution ® for all tuples that satisfy the reduced
constraint ¥. In case ¢ is not separable, then only the more elaborate strategy remains
of invoking the constraint solver for every tuple of known values, checking solvability for
each individual tuple of known variables.

14

given: separable
def: 1
weakening: 2
weakening: 2
removal: 2
abstraction
def:1

transitivity

def: 5,8

© 00 O Ui W N+

0 =xw ®AY

o Exw @AY

v Exw ® (: solvable)
© Exkw ¥

¢ Ex Y

YEK AP

YA Ekw @

VK
¢ =k ¥ (: reducible)

Figure 3: Separable implies solvable and reducible.

given: solvable
given: reducible
def: 2
irrelevance: 3
union: 14

def: 2
weakening: 6
augmentation: 1
9 transitivity: 7,8
10 substitution: 9
11 irrelevance: 10
12 weakening

13 union: 11,12

14 generalization
15 transitivity: 13,14
16 transitivity: 15
17 def: 5, 16

0O O T W N -

¢ Fxw ®

Yo=K

¢ Ex Y

o Exw ¥
oErkwPNS
Yk p

YAR k@

o Exw NP
YAk [P

v A® Exw o[
YA® =gw @
YAR Exw @A p[2]
2 A (@] Exw oA O
¢/\§>[=KW<,0/\<§

VAR Exw o
© =gw ¥ A ® (: separable)

Figure 4: Solvable and reducible implies separable.

15

5.3 Symbolic Solutions

We would like to verify that the symbolic solution yields all and only correct answers, at
least for separable constraints. Hence we must compare two types of constraint solvers,
say T'1 and T2. T1 corresponds with tuple-wise evaluation, and T2 with the more
efficient evaluation strategy that employs symbolic solutions.

Definition 9 Two types of constraint solvers.
T1 input: ¢, W; output: ¢, . T2 input: ¢, K, W, output: ¢, ®.

2. W C a(p) 2. KW C afp), KNW = §
3.7 = TRUE or 1 = FALSE 3.a(¢p) CK
4. aT(<I>) = @ 4, aT(<I>) g K

Both solvers are partial in the sense that the output constraint 9 and the solution ® are
only generated if ¢ is not underdetermined on KW.

For a type T'1 solver the solution ® is a tuple which contains values for all wanted
variables W. The constraint ¢ is solvable if) = TRUE, and inconsistent if) = FALSE.
In the latter case a dummy ® can be constructed to satisfy the specification. The type
T1 solver is invoked for each tuple in the relation R, with input W and ¢[r], the result
of the substitution r on ¢. Its output is a new tuple s (: over the attributes W) and
an error-indicator ¢. In case i) = TRUE, then ¢[r] = s, and the tuple s U r is added
to the answer relation S. If ¢ = FALSE, then 7 is incompatible with ¢, that is, ¢[r] is
inconsistent, and no tuple is added to S.

A type T2 solver generalizes a T'1 solver by the introduction of known variables. It
generates a symbolic solution ® and a symbolic solvability condition %. In case 1) = FALSE
the query is rejected. Otherwise, solvability can be checked by simple evaluation of
for all tuples r in R. Those tuples 7 that pass the test can be extended to tuples r U s
on KW by calculating s := ®[r]. Therefore, the requested answer relation S can be
computed with the following restricted database expression:

S = ke(oy(R)) = {t€S|IreR:t=rUs&r ¢ &s=2[r]}
This is formalized in the following lemma.

Lemma 9 If ¢ is separable, ¢ =gw ¥ A ®, and a(R) = K, then for all T € R and all
seDV: p[rUs] = TRUE iff rEv¢ & s=®[r].

Proof:

1. Suppose p[r L s] =p TRUE.

Then r U s =xw @, so, since ¢ =gw Y A ®, U s Exw ¥ A @, and, since a() C a(r),
r Exw ¥, that is,)[r] = TRUE. Moreover, from 7 U s [=gw @, by instantiation,
(rus)[r] Exw ®[r], that is, s =xkw ®[r]. On account of the scopes involved this means
that s = @[r].

2. Suppose that ¥[r] = TRUE and s = ®[r].

Then r |= 9 and s |= ®[r], so, by mixed union rLis |= ®&[r] Ar A1, and, by generalization

16

rlUs k= ®A. Since ¢ =gw ¥ A ®, this implies rU s Egw ¢, hence p[rUs] =y TRUE.
]

As soon as W is determined by ¢ in terms of K the T2 solver must be preferred to the
direct strategy that invokes T'1 for each individual tuple. If the problem is underdeter-
mined, however, it may turn out that some tuples are capable of being solved, as in the
following example.

Example 7 T2: input: axz+bxy=c, K ={a,b,c}, W = {z}; output: ? ? ?
For r such that r(b) = 0 the T'1 solver gets input ax x + bxy = c[r], {z}, yielding the
answer TRUE, {z = (¢/a)[r]}. Indeed, if 7(a) * z = r(c), then z = 7(c)/r(a).

The T'1 strategy is more complete in the sense that it can deal with inseparable con-
straints that happen to be separable after substitution for all tuples in R. Never-
theless, it may be assumed that the 7’1 solver is not invoked for all tuples of R on
account of the general underdeterminedness of the constraint. Hence it is not un-
fair to change the constraint of example 7 for both solvers into the determined query
(axz+bxy=c) AN (a=0VvVb=0).

The T'2 constraint solver that was described in this section has been implemented in
the RL/1 optimization strategy developed at the University of Amsterdam by S. van
Denneheuvel (see [2]).

The T'1 constraint solver corresponds with algorithms like Gauss elimination to solve
sets of linear equations ¢, where W = a(y), and with the binary REDUCE procedure
from Mathematica.

The system CLP ([5]) has a different strategy. A successful derivation (based on
unification, as in PROLOG) expands a goal ¢ relative to the program P to yield a set of
answer constraints. This corresponds with evaluating ¢[6] for a tuple 6 (: atomic data)
and does not require constraint solving. Then a type T'1 solver is invoked to solve the
remaining variables W from ¢[f] for each tuple §. However, symbolic answers can be
computed as well, by invocation of a type T2 solver with input ¢, K = a(p), W =0
and output 9, ® = 0 such that ¢ =4, ¥.

6 Query Normalization

Query optimization techniques appreciate standardized input, but, unfortunately, there
is no general normal form for terms in the relational algebra. There are unconditional
rewrite rules for a large fragment of the algebra though, leaving but a small set of
cumbersome queries. In this section we will illustrate how weak equivalence can be used
to normalize relational terms, yielding a normal form for almost all terms.

Relational terms are constructed from relation names by means of algebraic operators
II (: projection), o (: selection), U (: union), X (: join), \ (: relational difference) and]
(: renaming). Every term T is interpreted as a finite relation over its scope a(T'), both
defined by the usual induction (cf. [8] or [6]).

Definition 10 Two relational terms R and S are equivalent, R = S, if for every
database < D, A, T >: ZI(R)=Z(S).

17

Example 8 0,04(R) = oony(R),
0o(R)\ 04(S) = Opry(R)Uay(R\ S).

Renaming is essentially a syntactic operation, that is, R[B/A] is a notational variant of R,
renaming all attributes A in the constituent relations in R to B and actually performing
the renaming in the projection- and selection sets. For basic relations R[B/A] is a view
over R, the same table with a new heading. Hence we may ‘perform’ all occurrences
of renaming instantaneously on the terms themselves, leaving only 5 operations to be
normalized.

Many relational equivalences are straightforward and well-known: cascades of projec-
tions and selections, set equivalences, union distribution, miscellaneous selection equiv-
alences and the like (see e.g. [8] or [10]). Here only the projection equivalences will be
mentioned.

Lemma 10 R X [Ix(S) = Ixuar) (R X S[Y/Z]),
where Y := (a(R) N a(S)) \ X and Z N a(T) = 0, for all basic relations T'.

Proof: See [6], pg 52 ff.

]

The proof of this lemma is not very complicated, but it is tricky and a little messy.
However, it can be formulated as a weak equivalence by means of a view @ for the
projection subterm ITx(S) and a solution set ® with ‘new’ variables as tails for the
appropriate renaming of clashing variables:

Lemma 11 If Q : — IIx(S), then R X Q =xuqr) R X S[®],
where ag(®) := (a(R) N a(S)) \ X and ar(®) N a(T) = 0, for all basic relations T'.

Proof: Since a(Q) =X, Q@ =x S. f a(R) N a(S) C X, then R X Q =xuqm) B X S.
No need to give a proof; this is the augmentation rule! To avoid the condition, define
a renaming solution set ® := {A4; = By, ...}, with ag(®) = (a(R) N a(S)) \ X and
ar(®) N a(T) = B, for all basic relations T. From abstraction we infer @ =x S iff
Q =x S[®]. Moreover, a(R) N a(S[®]) C X by definition of .

n

Example 9 If R(ABC) and S(BCD), then: RX ¢p(S) = Mapcp(R X S[E/B]), in
other words, if Q =cp S, then RX Q =4pcp R X S[B = E].

By a similar argument, we can pull projection over selection:

Lemma 12 If Q : — IIx(R), then 0,(Q) =xua(p) To(R[®]),
where ag(®) := (a(R) Na(p)) \ X and ar(®) Na(T) = 0, for all basic relations T'.

The union operator interchanges freely with projection, though the resulting union need
not be of compatible terms.

Lemma 13 If Q : — IIx(R), then QU S =xuar) R[®]U S
where ag(®) = (a(R) N a(S)) \ X and ar(®) N a(T) = 0, for all basic relations T'.

The difference operator interchanges with projection on the positive side:

18

Constraint type Example format

functional / primary key | R(zyz), R(zy'z') E y=1v

inclusion / foreign key | R(zy) . S(zz)

embedded multivalued | R(zyzw), R(zy'z'w') oy R(zy'zw")
lossless join R(zyzw) =440 R(zyz'w'), R(zy'zw'), R(z'yzw)

Figure 5: Examples of integrity constraints

Lemma 14 If Q : — IIx(R), then Q\ S =xuar) R[®]\ S,
where ag(®) := ((R) Na(S)) \ X and ar(®) N a(T) =0, for all basic relations T

Projection cannot be pulled over the negative side of a difference operator. This corre-
sponds with the restriction on contraposition: from @) =x S we cannot infer -Q) =x -,
except when a(S) = X (in which case the projection would be trivial). Hence R\ IIx(S)
cannot be expressed by a single equivalence statement (see [6]).

All positive occurrences of projection can be pulled to the outside, so if ¢ is a formula
to express the projection-free subterm R, then @ : — IIx(R) is expressed by Q(x) =x ¢.
In this manner any relational term can be translated into a finite set of weak equivalences,
one for every occurrence of the projection operator (cf. [8], pg 154 ff.). In particular, if all
occurrences of projections in a relational term T are ‘positive’, then a single equivalence
statement suffices to express T'.

7 Integrity Constraints

There is yet another possible application of the notion of weak equivalence, namely to
describe integrity constraints. Consider a set of functional- and inclusion dependencies,
or a set of primary - and foreign key dependencies or even a set of embedded multivalued
dependencies. If these constraints must be translated into predicate formulas one needs
universal and existential quantifiers:

functional dependency Vz,y,y' : R(zy) AR(zy')Dy=1v
inclusion dependency Vz,y: R(zy) D 3z: S(zz2)

Note that identical variables are used to match attributes in R with corresponding at-
tributes in S. To avoid quantification one can use weak implications, see figure 5.

The Armstrong axioms for functional dependencies and similar rules for other types
of dependencies translate into valid implications that are derivable from WZ. To give an
example of a more complicated rule, consider the mixed rule for functional and inclusion
dependencies:

R[XY] C S[XY], R[XZ] C S[XZ], S: X »Y = R[XYZ]|C S[XYZ]

This rule translates into the following weak implication rule:

19

Rzyzu =,y Szyzw,
Rzyzu |=,, Szyzw, = Rzyzu gy, STyzw
Szyzw A Sey'Zv' Ey=y

Given this notation for the mixed rule we can employ the (meta-) rules of weak implica-
tions to prove its correctness. The resulting proof is rigorous and simple and compares
favourably with the usual informal argument in terms of R and S tuples.

Generally speaking, the formulation of integrity constraints by means of weak impli-
cation statements is hardly preferable to the standard notation. Still, it is very convenient
for formal verification arguments, and can be used as a tool to integrate integrity with
query optimization and views.

For instance, a foreign key dependency FK(R, X, Q) may link the relation R to a
previously defined view @ with primary key PK(S) = X. The expanded definition of Q
contains a set of basic relations. One would like to infer the induced constraints on these
basic relations from the constraints on Q).

Any view can be expressed by a finite set of weak equivalences, a single one if we
ignore projection on the negative side of a difference (see § 6). Once views and integrity
constraints are formulated in the same framework, it is possible to integrate the impli-
cation problems. We will only give a simple example to explain the basic idea: weak
implications can be applied to constraints on views in order to induce constraints on
basic relations:

Lemma 15 Let FK(R,X,Q) and Q :— SXTUSNXU.
Suppose X is such that both X C a(S) and o(T X U)N X = 0. Then FK(R, X, S).

Proof: In terms of weak equivalences:
given : foreign key R(XY) Ex Q(XZ)

given : view def. Q(XZ) =xz S(XYW) A (T(YWZ)VU(Y Z))
weakening Q(XZ) Exz S(XYW)

removal Q(XZ) Ex S(XYW)

transitivity R(XY) Ex S(XYW)

This proves that R[X] C S[X]. By a similar argument one can show that PK(S) = X. m
The integration works both ways: it can also be employed for query optimization pur-
poses. In the following example the number of relations under a projection is reduced
on account of the integrity constraint.

Lemma 16 If X = a(R) N a(S) and FK(R, X, S), then RX S =x R.
Proof: Let Y = o(R) \ X and Z = o(S) \ X, then we need to prove:
R(XY) x S(XZ) = R(XY),S(XZ)=x R(XY).

Straightforward, cf. [2] (§ Join optimization).

|

The examples in this section are not very profound, but they are only simple illustrations
of a fundamental possibility: the application of the notion of weak equivalence on in-
tegrity constraints, views and query optimization. To do so in a systematic way remains
as a future task.

20

8 Conclusion

We have given a sound and complete set of deduction rules for weak implications. This
notion of implication generalizes unquantified predicate logic with a single level of V3
quantification. This reduced class of predicate formulas is adequate for a large variety of
subjects, ranging from formal specifications for constraint solving systems to implication
problems in database theory. Since weak equivalence combines notational transparency
with formal elegance, it offers a convenient semantic tool for knowledge representation.

References

[1] W.F. Clocksin & C.S. Mellish. Programming in Prolog. Springer-Verlag, 1981.

[2] S. van Denneheuvel. Constraint solving on database systems. Design and implemen-
tation of the rule language RL/1. Thesis. University of Amsterdam, 1991.

[3] S. v Denneheuvel & K.L. Kwast. Weak equivalence for constraint solving. In: Pro-
ceedings of IJCAI’91: Int. Joint Conference on A.I. Sydney. Morgan Kaufmann,
1991.

[4] S. v Denneheuvel, G.R. Renardel de Lavalette, E. Spaan & K.L. Kwast. Query
optimization using rewrite rules. In: R. Book (ed.), Proceedings of RTA’91: Int.
Conference on Rewriting Techniques and Applications. Como, LNCS488, 1991.

[5] J. Jaffar & S. Michaylov. Methodology and Implementation of a CLP System. In:
J-L. Lassez (ed.), Proceedings of the 4th Int. Conference on Logic Programming,
MIT Press, 1987.

[6] K.L. Kwast. Unknown values in the relational database system. Thesis. University
of Amsterdam, 1992.

[7] J.H. Siekmann. Unification Theory. In: Journal of Symbolic Computation, Vol. 7,
1989.

[8] J.D. Ullman. Principles of Data and Knowledge-Base Systems, Vol. I & II. Com-
puter Science Press, 1989.

[9] S. Wolfram. Mathematica, a System for Doing Math by Computer. Addison-Wesley,
1988. ‘

[10] H.Z. Yang & P.A. Larson. Query Transformation for PSJ-queries. In: Proceedings
of the 13th VLDB: Int. Conference on Very Large Databases, 1987.

21

The ILLC Prepublication Series

ML-91-05 A.S. Troelstra History of Constructivism in the Twentieth Century
ML-91-06 Inge Bethke Finite Structures within Combinatory Algebras
ML-91-07 Yde Venema Modal Derivation Rules

ML-91-08 Inge Bethke Going Stable in Graph Models

ML-91-09 V.Yu. Shavrukov A Note on the Diagonalizable Algebras of PA and ZF

ML-91-10 Maarten de Rijke, Yde Venema Sahlqvist's Theorem for Boolean Algebras with Operators

ML-91-11 Rineke Verbrugge "~ Feasible Interpretability

ML-91-12 Johan van Benthem Modal Frame Classes, revisited

Computation and Complexity Theory

CT-91-01 Ming Li, Paul M.B. Vitinyi Kolmogorov Complexity Arguments in Combinatorics

CT-91-02 Ming Li, John Tromp, Paul M.B. Vitdnyi How to Share Concurrent Wait-Free Variables

CT-91-03 Ming Li, Paul M.B. Vitinyi Average Case Complexity under the Universal Distribution Equals
Worst Case Complexity

CT-91-04 Sieger van Denneheuvel, Karen Kwast Weak Equivalence

CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak Eq}tg}ralence for Constraint Sets

CT-91-06 Edith Spaan Census Techniques on Relativized Space Classes

CT-91-07 Karen L. Kwast The Incomplete Database

CT-91-08 Kees Doets Levationis Laus

CT-91-09 Ming Li, Paul M.B. Vitényi Combinatorial Properties of Finite Sequences with high
Kolmo‘forov Complexity

CT-91-10 John Tromp, Paul Viténgi A Randomized Algorithm for Two-Process Wait-Free Test-and-Set

CT-91-11 Lane A. Hemachandra, Edith Spaan Quasi-Injective Reductions

CT-91-12 Krzysztof R. Apt, Dino Pedreschi ~ Reasoning about Termination of Prolog Programs

Computational Linguistics
CL-91-01 J.C. Scholtes
CL-91-02 J.C. Scholtes

Kohonen Feature Maps in Natural Ltarr‘ltguage Processing
Neural Nets and their Relevance for Information Retrieval

CL-91-03 Hub Priist, Remko Scha, Martin van den Berg A Formal Discourse Grammar tackling Verb Phrase

Other Prepublications

Anaphora

X-91-01 Alexander Chagrov, Michael Zakharyaschev The Disjunction Property of Intermediate Propositional Logics
X-91-02 Alexander Chagrov, Michael Zakharyaschev On the Undecidability of the Disjunction Property of

X-91-03 V. Yu. Shavrukov

X-91-04 K.N. Ignatiev
X-91-05 Johan van Benthem
X-91-06

X-91-07 A.S. Troelstra
X-91-08 Giorgie Dzhaparidze
X-91-09 L.D. Beklemishev

X-91-10 Michiel van Lambalgen
X-91-11 Michael Zakharyaschev

Intermediate Propositional Logics

Sul_iia]lI%eb.ras of Diagonalizable Algebras of Theories containing
etic

Partial Conservativity and Modal Logics

Temporal Logic

Annual Report 1990

Lectures on Linear Logic, Errata and Supplement

Logic of Tolerance

On Bimodal Provability Logics for Il;-axiomatized Extensions of

Arithmetical Theories

Independence, Randomness and the Axiom of Choice

Canonical Formulas for K4. Part I: Basic Results

Flexibele Categoriale Syntaxis en Semantiek: de

X-91-12 Herman Hendri
roefschriften van Frans Zwarts en Michael Moortgat
X-91-13 Max I. Kanovich e Multi%Iicative Fragment of Linear Logic is NP-Complete
X-91-14 Max I. Kanovich The Hom Fragment of Linear Logic is NP-Complete
X-91-15 V. Yu. Shavrukov Subalgebras of Diagonalizable Algebras of Theories containing
Arithmetic, revised version
X-91-16 V.G. Kanovei Undecidable Hﬁpothescs in Edward Nelson's Internal Set Theory

X-91-17 Michiel van Lambalgen {,ndependenoe, andomness and the Axiom of Choice, Revised
ersion

X-91-18 Giovanna Cepparello New Semantics for Predicate Modal Logic: an Analysis from a

standard point of view

X-91-19 Papers presented at the Provability Integretabi]j Arithmetic Conference, 24-31 Aug. 1991, Dept. of Phil.,
trecht Universi

1992 Annual Report 1991

Logic, Semantics and Philos%hy of Langauge

LP-92-01 Victor Sdnchez Valencia Lambek Grammar: an Information-based Categorial Grammar

LP-92-02 Patrick Blackburn Modal Logic and Attribute Value Structures .

LP-92-03 Szabolcs Mikul4s gche Completeness of the Lambek Calculus with respect to Relational
mantics

LP-92-04 Paul Dekker An Update Semantics for Dynamic Predicate Logic

LP-92-05 David I. Beaver The Kinematics of Presupposition) .

LP-92-06 Patrick Blackburn, Edith Spaan ealidodgl Perspective on the Computational Complexity of Attribute

ue Grammar

LP-92-07 Jeroen Groenendijk, Martin Stokhof A Note on Interrogatives and Adverbs of Quantification

LP-92-08 Maarten de Rijke A System of Dynamic Modal Logic

Mathematical Logic and Foundations i

ML-92-01 A.S. Troelstra Comparing the theory of Representations and Constructive

Mathematics

ML-92-02 Dmitrij P. Skvortsov, Valentin B. Shehtman Maximal Kripke-type Semantics for Modal and
Superintuitionistic Predicate Logics .

ML-92-03 Zoran Markovic On the Structure of Kripke Models of Heyting Arithmetic

ML-92-04 Dimiter Vakarelov A Modal Theory of Arrows, Arrow Logics I

Compution and Complexity Theory

CT-92-01 Erik de Haas, Peter van Emde Boas Object Oriented szplication Flow Graphs and their Semantics
CT-92-02 Karen L. Kwast, Sieger van Denneheuvel Weak Equivalence: Theory and Applications

Other prepublications

X-92-01 Heinrich Wansing
X-92-02 Konstantin N. Ignatiev

X-92-03 Willem Groeneveld

The Logic of Information Structures .

The Closed Fra%ment of Dzhaparidze's Polymodal Logic

and the Logic of Z;-conservativi . . .
Dynamic Semantics and Circular Propositions, revised version

