=

Institute for Logic, Language and Computation

A NEW DEFINITION OF
SLDNF-RESOLUTION

Krzysztof R. Apt
Kees Doets

ILLC Prepublication Series
for Computation and Complexity Theory CT-92-03

(5385

University of Amsterdam

The ILLC Prepublication Series

1990
Logic, Semantics and Philosophy of Language
LP-90-01 Jaap van der Does A Generalized Quantifier Logic for Naked Infinitives
 LP-90-02 Jeroen Groenendijk, Martin Stokhof Dynamic Montague ar
LP-90-03 Renate Bartsch Concept Formation and Concept Composition
LP-90-04 Aarne Ranta Intuitionistic Categorial Grammar
LP-90-05 Patrick Blackburn Nominal Tense Logic
LP-90-06 Gennaro Chierchia The Variablity of Impersonal Subjects
LP-90-07 Gennaro Chierchia Anaphora and Dynamic Logic
LP-90-08 Herman Hendriks Flexible Montﬁgue Grammar
LP-90-09 Paul Dekker The Scope of Negation in Discourse, towards a Flexible Dynamic
Montague grammar
LP-90-10 Theo M.V, Janssen Models for Discourse Markers
LP-90-11 Johan van Benthem General Dynamics
LP-90-12 Serge Lapierre A Functional Partial Semantics for Intensional Logic
LP-90-13 Zhisheng Huang Logics for Belief Dependence
LP-90-14 Jeroen Groenendijk, Martin Stokhof Two Theories of Dynamic Semantics
LP-90-15 Maarten de Rijke The Modal Logic of Inequality
LP-90-16 Zhisheng Huang, Karen Kwast Awareness, Negation and Logical Omniscience
LP-90-17 Paul Dekker Existential Disclosure, Implicit Arguments in Dynamic Semantics

Mathematical Logic and Foundations
ML-90-01 Harold Schellinx Isomorphisms and Non-Isomorphisms of Graph Models

ML-90-02 Jaap van Oosten A Semantical Proof of De Jongh's Theorem

ML-90-03 Yde Venema Relational Games

ML-90-04 Maarten de Rijke Unary Interpretability Logic

ML-90-05 Domenico Zambella Sequences with Simple Initial Segments

ML-90-06 Jaap van Oosten . Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a
. Solution to a Problem of F. Richman

ML-90-07 Maarten de Rijke A Note on the Intcr%'setabﬂity Logic of Finitely Axiomatized Theories

ML-90-08 Harold Schellinx Some Syntactical Observations on Linear Logic

ML-90-09 Dick de Jongh, Duccio Pianigiani Solution of a Problem of David Guaspari

ML-90-10 Michiel van iambalgen Randomness in Set The

ML-90-11 Paul C. Gilmore The Consistency of an ggended NaDSet

Computation and Complexity Theory

CT-90-01 John Tromp, Peter van Emde Boas _ Associative Storage Modification Machines

CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette A Normal Form for PCSJ Expressions

CT-90-03 Ricard Gavalda, Leen Torenvliet, Osamu Watanabe, José L. Balcdzar Generalized Kolmogorov Complexity
in Relativized Separations

CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet Bounded Reductions

CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint Expressions

CT-90-06 Michiel Smid, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial

CT-90-07 Kees Doets Greatest Fixed Points of Logic Pro§rams ’

CT-90-08 Fred de Geus, Emest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas

. Physiol%ical Modelling using RL

CT-90-09 Roel de Vrijer Unique Normal Forms for Combinatory Logic with Parallel

Conditional, a case study in conditional rewriting
Other Prepublications

X-90-01 A.S. Troelstra %emgrks on Intuitionism and the P}: losophy of Mathematics, Revised
ersion
X-90-02 Maarten de Rijke Some Chapters on Interpretability Logic
X-90-03 L.D. Beklemishev On the Complexity of Arithmetical Interpretations of Modal Formulae
X-90-04 Annual Report 1989
X-90-05 Valentin Shehtman Derived Sets in Euclidean Spaces and Modal Logic
X-90-06 Valentin Goranko, Solomon Passy Using the Universal Modality: Gains and Questions
X-90-07 V.Yu. Shavrukov The Lindenbaum Fixed Point Algebra is Undecidable
X-90-08 L.D. Beklemishev l;rhovapility Logics for Natural Turing Progressions of Arithmetical
eories
X-90-09 V.Yu. Shavrukov On Rosser's Provability Predicate
X-90-10 Sieger van Denneheuvel, Peter van Emde Boas An Overview of the Rule Language RL/1
- X-90-11 Alessandra Carbone Provable Fixed points in IAg+£2,, revised version
X-90-12 Maarten de Rijke Bi-Unary Interpretability Logic
X-90-13 K.N. Ignatiev Dzhaparidze's Polymodal Logic: Arithmetical Completeness, Fixed
Point Pro , Craig's Pr%perty
X-90-14 L.A. Chagrova Undecidable Problems in Correspondence Theory
}1(-901-15 A.S. Troelstra Lectures on Linear Logic
99

Logic, Semantics and Philosophy of Langauge
LP-91-01 Wiebe van der Hoek, Maarten de Rijke Generalized Quantifiers and Modal Logic

LP-91-02 Frank Veltman Defaults in Update Semantics

LP-91-03 Willem Groeneveld amic Semantics and Circular Propositions

LP-91-04 Makoto Kanazawa e Lambek Calculus enriched with Additional Connectives

LP-91-05 Zhisheng Huang, Peter van Emde Boa% The Schl({)emnakcrs Paradox: Its Solution in a Belief Dependence
ramewor]

LP-91-06 Zhisheng Huang, Peter van Emde Boas_Belief Dependence, Revision and Persistence
LP-91-07 Henk Verkuyl, Jaap van der Does ~ The Semantics of Plural Noun Phrases

LP-91-08 Victor Sdnchez Valencia Categorial Grammar and Natural Reasoning

LP-91-09 Arthur Nieuwendijk Semantics and Comparative Logic

LP-91-10 Johan van Benthem Logic and the Flow of Information

Mathematical Logic and Foundations . .

ML-91-01 Yde Venema Cylindric Modal Logic . .

ML-91-02 Alessandro Berarducci, Rineke Verbrugge On the Metamathematics of Weak Theories i .
ML-91-03 Domenico Zambella On the Proofs of Arithmetical Completeness for Interpretability Logic
ML-91-04 Raymond Hoofman, Harold Schellinx Collapsing Graph Models by Preorders

ML-91-05 A.S. Troelstra History of Constructivism in the Twentieth Century

ML-91-06 Inge Bethke Fixﬂ&r%gpc Structures within Combinatory Algebras

ML-91-07 Yde Venema Modal Derivation Rules

ML-91-08 Inge Bethke Going Stable in Graph Models

ML-91-09 V.Yu. Shavrukov A Note on the Diagonalizable Algebras of PA and ZF

ML-91-10 Maarten de Rijke, Yde Venema Sahlqvist's Theorem for Boolean Algebras with Operators

E Institute for Logic, Language and Computation

Plantage Muidergracht 24
1018TV Amsterdam
Telephone 020-525.6051, Fax: 020-525.5101

A NEW DEFINITION OF
SLDNF-RESOLUTION

Krzysztof R. Apt
Kees Doets

Department of Mathematics and Computer Science
University of Amsterdam

ILLC Prepublications
for Computation and Complexity Theory
ISSN 0928-3323

Coordinating editor: Dick de Jongh received October 1992

A new definition of SLDNF-resolution

Krzysztof R. Apt
CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
and
Faculty of Mathematics and Computer Science
University of Amsterdam, Plantage Muidergracht 24
1018 TV Amsterdam, The Netherlands

Kees Doets
Faculty of Mathematics and Computer Science

University of Amsterdam, Plantage Muidergracht 24
1018 TV Amsterdam, The Netherlands

Abstract

We propose a new, “top-down” definition of SLDNF-resolution which retains the spirit
of the original definition but avoids the difficulties noted in the literature. We compare it
with the “bottom-up” definition of Kunen [Kun89].

1991 Mathematics Subject Classification: 68Q40, 68T15.
CR Categories: F.3.2., F.4.1, H.3.3,1.2.3.
Keywords and Phrases: SLDNF-resolution, computed answer substitutions.

1 The problem

The notion of SLD-resolution of Kowalski [Kow74] allows us to resolve only positive literals.
As a result it is not adequate to compute with general programs. Clark [Cla79] proposed to
incorporate the negation as finite failure rule. This leads to an extension of SLD-resolution
called SLDNF-resolution. The intuition behind it is quite simple: for a ground atom A,

A succeeds iff A finitely fails,
- A finitely fails iff A succeeds.

(The restriction to ground atoms was originally introduced to ensure soundness of SLDNF-
resolution.) However, this intuition is difficult to formalize. For example, consider the general
program P = {A «— A}. The query —A neither succeeds nor finitely fails, since the query A
neither succeeds nor finitely fails. So it is not clear whether there is a resolvent.

Next, for P = {A «— - A} and the query A we get

A succeeds iff — A succeeds iff A finitely fails,

which seems clearly wrong.
The problem is that success and finite failure are not the only possible outcomes of an
evaluation: also an unsuccessful tree which is not finitely failed can be generated.

This problem was not properly taken care of in the definition of SLDNF-resolution given in
Clark [Cla79] and reproduced in Lloyd [Llo84]. In Lloyd [Llo87] a revised definition of SLDNF-
resolution was proposed according to which the SLDNF-trees are constructed “bottom-up” by
induction on the number of alternations through negation. Unfortunately, according to this
definition for the above mentioned examples no SLDNF-trees or SLDNF-derivations exist. This
is clearly undesirable, especially if one reasons about termination — in both cases the top-down
interpreter diverges.

These problems were mentioned by Apt and Bezem [AB91, page 352] and Apt and Pedreschi
[AP91, pages 267-268]. They were tackled by Martelli and Tricomi [MT92] who proposed a
revision of the original definition in which the subsidiary trees used to resolve negative literals
are built “inside” the main tree. These authors consider trees whose nodes are formulas more
complicated than general goals, which necessitated the introduction of so-called “collapsing
cases” to simplify these formulas.

The solution proposed below seems simpler and more intuitive: as in the original definition
the subsidiary trees are kept “aside” but their construction is no longer viewed as an atomic
step in the resolution process. Instead, they are built in a stepwise “top-down” manner, by
constructing their branches in parallel. If during this subsidiary construction divergence arises,
the main derivation is considered to be infinite. This formalizes the intuitive solution suggested
in Apt and Pedreschi [AP91]. In the second part of this note we compare our definition of
SLDNF-resolution with that of Kunen [Kun89).

Various results concerning the “run time behaviour” behaviour of SLDNF-derivations, like
termination, absence of floundering, safety of the omission of the occur-check or the groundness
of the input positions of the selected literals under some syntactic conditions, can be correctly
stated and rigorously proved only once an appropriate definition of SLDNF-resolution is avail-
able. Some of these properties were studied in the literature and, strictly speaking, the cor-
responding proofs lacked the formal basis. Using the proposed definition of SLDNF-resolution
these arguments can be justified.

The approach taken here can also be readily used to define correctly several variants of
SLDNF-resolution proposed in the literature, for example SLDNFS-resolution of Shepherd-
son [She89] and the extension of SLD-resolution with so-called constructive negation of Chan
[Cha88].

2 A new definition
We start by recalling and introducing a number of auxiliary notions.

Definition 2.1 Var(E) is the set of variables in the expression E.

A substitution is a function from variables to terms. ¢ is the identity substitution. We write
‘za’ for the value of the substitution « at the variable .

The domain Dom(a) of a is the set of z’s for which za # 2. (Usually, this is taken to be a
finite set.) Its range Ran(a) is the set U,cpom(a) Var(za). (Thus, Dom(e) = Ran(e) = 0.) The
variables form Dom(a)U Ran(a) are said to occur in a.

If V is a set of variables, then the restriction a|V of a to V, is the substitution with domain
V N Dom(ca) which coincides on this domain with a. For an expression E, we write a|E :=
alVar(E).

An mgu of two atoms A and B is called relevant if every variable occurring in it belongs to
Var(A)U Var(B). O

A query is a finite sequence of literals. (Instead of queries, one usually considers general
goals which are expressions « C where C is a query.) The empty query is denoted by O.

Definition 2.2

(i) We say that C resolves to D via o w.m.¢. X, or: D (more explicitly, the pair (a, D)) is a
resolvent of C w.r.t. £, notation: C - D (2), if

either: ¥ = (L, R), L is (an occurrence of) a positive literal in C, R is a program clause, and
for some variant A — E (the input clause) of R: a is mgu of L and A and D = Ca[La := Eq]
is obtained from Ca by replacing La by FEa,

or: ¥ is (an occurrence of) a negative literal in C, a = ¢, and D = C — {¥} is obtained from C
by removing X.

(ii) A clause R is called applicable to an atom if it has a variant the head of which unifies with
the atom. O

a
Definition 2.3 A (finite or infinite) sequence Cy 9, .. -Chp il Cry1 - - - of resolution steps is
a pseudo derivation if for every step involving a program clause:

o (“standardisation apart”) the input clause employed does not contain a variable from the
initial query Cp or from an input clause used at some earlier step,

o (“relevance”) the mgu employed is relevant. a

Intuitively, an SLDNF-derivation is a pseudo derivation in which the deletion of every
(ground) negative literal is justified by means of a subsidiary (finitely failed SLDNF-) tree.
This brings us to consider special types of trees.

Definition 2.4 A tree is called
o successful if it contains a leaf marked as success,

o finitely failed if it is finite and all its leaves are marked as failed. a
In the sequel we consider systems of trees called (for lack of a better name) complex trees.

Definition 2.5 A complex tree is a system 7 = (7, T, subs) where
o T is a set of trees,
e T is an element of 7T called the main tree,
e subs is a function assigning to some nodes of trees in 7 a (“subsidiary”) tree from 7.

By a path in 7 we mean a sequence of nodes Ny, ..., N;,...such that for all ¢, N;;; is either an
immediate descendant of N; in some tree in 7 or the root of the tree subs(N;). o

Thus a complex tree is a special directed graph with two types of edges — the “usual” ones
stemming from the tree structures, and the ones connecting a node with the root of a subsidiary
tree. An SLDNF-tree is a special type of complex tree, built as a limit of certain finite complex
trees: pre-SLDNF trees.

Fot the rest of this paper, we fix a general program P.

Definition 2.6 A pre-SLDNF-tree (relative to P) is a complex tree whose nodes are (possibly
marked) queries of (possibly marked) literals. (For queries, there are markers failed, success,
and floundered, for literals, we have the marker selected.) The function subs assigns to nodes
containing a marked negative ground literal —A a tree in 7 with root A. The class of pre-
SLDNF-trees is defined inductively.

e For every query C, the complex tree consisting of the main tree which has the single node
C is a pre-SLDNF-tree (an initial pre-SLDNF tree),

o If 7 is a pre-SLDNF-tree, then any extension of T is a pre-SLDNF-tree.

Here, an extension of a pre-SLDNF-tree 7 is defined by performing the following actions for
every non-empty query C which is an unmarked leaf in some tree T € T

First, if no literal in C is marked yet as selected, mark one as selected. Let L be the selected
literal of C.

e L is positive.

— C has no resolvents w.r.t. L and a clause from P.
Then C is marked as failed.

— C has such resolvents.

For every clause R from P which is applicable to L, choose one resolvent (a, D) of
C w.rt. L and R and add this as immediate descendant of C in T. These resolvents
are chosen in such a way that all branches of T remain pseudo derivations.

e L = A is negative.

— A is non-ground. Then C' is marked as floundered.
— A is ground.

% subs(C) is undefined.
Then a new tree 7' with the single node A is added to 7 and subs(C) is set to
T

* subs(C) is defined and successful.
Then C is marked as failed.

% subs(C) is defined and finitely failed.

Then the resolvent (¢,C — {L}) of C is added as the only immediate descendant
of CinT.

Additionally, all empty queries are marked as success. a

Note that, if no tree in 7 has unmarked leaves, then trivially 7 is an extension of itself, and the
extension process becomes stationary.

Every pre-SLDNF-tree is a tree with two types of edges between possibly marked nodes, so
the concepts of inclusion between such trees and of limit of a growing sequence of such trees
have clear meaning.

Definition 2.7

o An SLDNF-tree is alimit of a sequence Ty,..., T, ... such that 7 is an initial pre-SLDNF-
tree, and for all ¢, 7;,; is an extension of 7;.

4

o An SLDNF-tree for C is an SLDNF-tree in which C is the root of the main tree.

e A (pre-)SLDNF-tree is called successful (resp. finitely failed) if the main tree is successful
(resp. finitely failed).

o An SLDNF-tree is called finite if no infinite paths exist in it. a
Next, we define the concept of SLDNF-derivation.

Definition 2.8 A (pre-) SLDNF-derivation for C is a branch in the main tree of a (pre-)
SLDNF-tree 7 for C together with the set of all trees in 7 whose roots can be reached from
the nodes of this branch. An SLDNF-derivation is called finite if all paths of 7 fully contained
within this branch and these trees is finite.]

Finally, it is clear how to define the notion of a computed answer substitution.

Definition 2.9 Consider a branch in the main tree of a (pre-) SLDNF-tree for C' which ends
with the empty query. Let ay,..., a, be the consecutive substitutions along this branch.

Then the restriction (a; - - -a,)|C of the composition a; - - - a, to the variables of C' is called
a computed answer substitution (c.a.s. for short) of C. a

Let us illustrate the above definitions by depicting the SLDNF-trees for the two problematic
cases considered in the beginning. The edges connecting a node with the root of a subsidiary
tree are drawn by dashed lines.

Example 2.10

(i) Consider P = {A «— A} and C = - A. The only SLDNF-tree has then the following form:

-A
N

N
N\

(ii) Consider now P = {A « - A} and C = A. Again, there is here only one SLDNF-tree, which
looks as follows:
Jf

(iii) It is important to realize that according to our definition the construction of a subsidiary
tree can go on forever even if the information about its “status” has already been passed to the
main tree. The following general program illustrates this point.

Consider P = {A «— -B, B« , B «— B}. Then the only SLDNF-tree for A looks as follows:

11

-B
failed ~ — _

/ B
D \B
success / \\
o
SUCCESS

Here the subsidiary tree with the root B grows forever. However, once an extension of the
initial subsidiary tree with the single node B becomes successful, in the next extension the node
B is marked as failed. Consequently, the SLDNF-tree for A is finitely failed even though it is
not finite. a

Pre-SLDNF-trees may keep growing forever. However, when the resulting SLDNF-tree is
successful or finitely failed, this fact becomes apparent after a finite number of steps already.
More precisely, we have the following result.

Theorem 2.11
(i) Every pre-SLDNF-tree is finite.

(ii) Every SLDNF-tree is the limit of a unique sequence of pre-SLDNF-trees.
(%) If the SLDNF-tree T is the limit of the sequence Ty, ..., T;,. .., then for all T

(a) T is successful and yields T as c.a.s. iff some 7T; is successful and yields T as c.a.s.,

(b) T is finitely failed iff some T; is finitely failed.

Proof.

(i) Obvious induction.

(ii) The only way in which extensions of a pre-SLDNF tree included in a given SLDNF-tree can
become different is by the selection of different literals in non-empty nodes. But this selection
is prescribed by the SLDNF-tree given.

(iii) (=) A branch of the main tree of 7 ending in O or a finitely failed main tree of 7 consists
of finitely many, possibly marked, nodes. Each of these nodes (markings included) belongs to

some 7; and the 7; with the largest ¢ is the desired pre-SLDNF-tree.
(<) Each 7; is contained (markings included) in 7. m]

This result allows us to associate with every successful or finitely failed SLDNF-tree 7 a
natural number, rank(7,7) which is the least ¢ for which the corresponding equivalence in (iii)
holds, with 7 = € when 7 is finitely failed.

A notion known to be difficult to define in the case of SLDNF-resolution is that of a selection
rule. Intuitively, a selection rule allows us to select a literal in the query which is to be resolved.
As pointed out in Shepherdson [She84, page 62] a correct definition of selection rule should take
into account the dependence on the already generated nodes, so that for example the “left-most,
right-most” selection rule can be defined. This can be easily achieved as follows.

In our definition of an SLDNF-tree, the selection rule is “incorporated” into the construction
of an extension — through the selection of literals in the lastly generated nodes.

Clearly, this selection process can be separated from the construction of an extension. Let us
drop the selection of literals in the lastly generated nodes from the definition of the pre-SLDNF
tree. Then a selection rule is a function defined on pre-SLDNF-trees selecting a literal in every
non-empty non-marked leaf.

In this revised set-up an SLDNF-tree is obtained by alternating the process of applying the
selection function with the process of extending the pre-SLDNF-tree.

One of the complications concerning SLDNF-resolution is so-called “floundering” — a gen-
eration of a node which consists exclusively of non-ground negative literals. In our definition
floundering is treated differently — it arises as soon as a non-ground negative literal is selected.
Clearly, this small change has no effect on the theory of SLDNF-resolution, since the original
notion of floundering can be easily defined.

3 Intermezzo on computed answer substitutions

This section proves some technical results about pseudo derivations needed in the last section.

Note that as a consequence of Definition 2.3, in a pseudo derivation Cp o, Cl—g—% Cy-vy
any variable occurring in ay41 or Cpyq occurs either in Cy or in an input clause used at some
step < n. Also, every subsequence of a pseudo derivation is a pseudo derivation.

Definition 3.1 The variables from Var(Ca)— Var(D) are said to be released at the resolution
step C 2, D. a

This notion was introduced in Doets [Doe92]. Its relevance was ilustrated there by showing
that the following lemma is responsible for lifting and maximal generality of derivations in the
SLD case.

Lemma 3.2 In a pseudo derivation, no variable released at some step occurs in a query or an
mgu of a later step.

Proof. Assume that Cy &, C1 - --is a pseudo derivation in which z is released at the first step.
Then z ¢ Var(C1) and « occurs in Cp or in e, thus z occurs in Cp or in the first input clause
if the selected literal in Cy is positive. Therefore, no input clause used in the pseudo derivation

C 22, (- - - contains . Since input clauses are responsible for the introduction of variables in
this pseudo derivation, the result follows. |

Lemma 3.3 If Cp &, 8 Cp (n > 2) is a pseudo derivation, then
Var(Coon) NVar(Craz - --a,) CVar(Ch).

Proof. Assume that 2 € Var(Coay) — Var(C1). That is, z is released at the first step. Clearly,
Var(Ciaz -+ a,) CVar(C1) U Ran(az) U -- - U Ran(ay,). By Lemma 3.2, z does not occur at
the right-hand side. Therefore, z ¢ Var(Ciaz - - - ay). o

Lemma 3.4 If Cy 2, ... 2, Cp (n > 2) is a pseudo derivation, then

(aa((az---an)|C1))|Co = (@1 - az)|Co.

Proof. If not, a variable z € Var(Co) exists such that za;((az:--an)|C1) # zay ---a,. Then
a variable y € Var(za;) exists such that y((az---a,)|C1) # yas---a,. Thus, y ¢ Var(Cy),
and y((az:--a,)|C1) = y. Since y € Var(Coay) — Var(C1), y is released at the first step.
But then, by Lemma 3.2, y ¢ Dom(az) U --- U Dom(ay,), hence yaz---a, = y. Therefore,
y=yaz - -an # y((az---a,)|C1) = y — a contradiction. O

Corollary 3.5 Suppose that the main tree of a (pre-) SLDNF-tree for C has a successful branch

with a corresponding c.a.s. T for C. If C 2, D is the first step of this branch, and the rest of
it yields the c.a.s. o for D, then 7 = (a0)|C.

Proof. Apply Lemma 3.4 to this successful branch. o

4 Comparison with Kunen’s definition

The difficulty of defining SLDNF-resolution was elegantly circumvented in Kunen [Kun89] where
a completeness theorem of SLDNF-resolution for allowed general programs and allowed queries
was proved.

In his considerations Kunen [Kun89] dealt only with success and finite failure, which allowed
him to define the concepts needed by a remarkably simple “bottom-up” inductive definition
avoiding the construction of SLDNF-trees and SLDNF-derivations altogether. This approach
is sufficient when dealing with completeness of SLDNF-resolution but cannot be used to rea-
son about properties which inherently refer to SLDNF-trees, like the ones mentioned in the
introduction.

We now clarify the relation between our definition of computed answer substitutions and of
finite failure and those of Kunen [Kun89]. Let us start by recalling Kunen’s definition.

Again, an arbitrary general program P is fixed.

Definition 4.1 The set F of queries and the set R of pairs (C,0) — C a query and o a

substitution for which Dom(¢) C Var(C) —are defined by a simultaneous inductive definition
as follows.

0) ORe,

R+) if C resolves to D via a w.r.t. some positive literal of C' and a clause from P and DRo,
then CR(a0)|C,

R-) if A is a ground atom in F and (C, C')Ro, then (C,-4,C")Ro,

F+) if L is a positive literal in C' and for every clause R from P which is applicable to L there
exist @ and D € F such that C -2 D (L, R), then C € F,

F-) if A is a ground atom such that ARe, then (C,-A4,C') € F. o

The intention here is that R is the set of pairs (C, o) such that o is a c.a.s. for C and F is
the set of queries C' such that there is a finitely failed tree for C.
Kunen’s original formulation of F+) could be interpreted as stating that

if L € C is positive and every resolvent of C' w.r.t. L and a clause of P is in F, then
CeF,

but we suspect that this does not change the notions of R and F; besides, this (unnecessarily)
complicates the proof of Theorem 4.3 (case bl)) below.

A modification.

The accompanying notion of soundness associated with Kunen’s definition is the following
one:

e if CRo, then comp(P) = Co, and
o if C € F, then comp(P) = -C.

These implications can be proved simultaneously by a straightforward induction along the clauses
of the definition. In fact, soundness still holds if the usual groundness conditions on the atom
A in R-) and F-) are left out. (The resulting notion is called SLDNFE, for SLDNF eztended.)
However, to get the optimal match between Kunen’s notions and ours, we have to change his
definition at one point.

The formulation of R+) does not ensure that the resulting answer substitutions are most
general. For instance, if P consists of the clauses

Q(z,y) « Qv,9),

Q(z,2)
then ORe (by 4.1.0), Q(y,y)R{y/z} (by R+) and the second clause) and consequently
Q(z,y)R{y/z} (by R+), since Q(z,y) resolves to Q(y,y) via € and the first clause). But {y/z}
is not a c.a.s. for Q(z,y) whereas {y/z'} is.

{y/z}

Note that the corresponding successful 2-step derivation Q(z,y) 5 Q(y,y) = O is not
obtained by properly standardizing apart: the input clause Q(z,z) « used at the second step
contains a variable used earlier. Also, it is worthwile to mention that this irregularity has no
bearing on the class of allowed programs and queries considered in Kunen [Kun89], since the
computed answer substitutions are then always grounding.

In order that R+) produces most general answer substitutions, we amend it as follows:

{R+) if C resolves to D via a w.r.t. some positive literal of C and a clause from P, DRo, and
Var(Ca)NVar(Do) C Var(D), (1)
then CR(ao)|C.

Note that this condition coincides with the claim of Lemma 3.3. Formulated slightly differ-

ently, it says that variables released at the step C -2, D do not occur in Do.
The following lemma will be needed later.

Lemma 4.2 If C€ F and CC D, then D € F.

Proof. By a straightforward induction using only clauses F+) and F-) of Definition 4.1. a

The next theorem uses Kunen’s definition as modified above.

Theorem 4.3 If C is a query, then
o CRr iff T is a c.a.s. for C,
e C € F iff C has a finitely failed SLDNF-tree.

Proof.

The left—to-right halves of these equivalences are proved simultaneously by induction along the
clauses of the modified Definition 4.1. Below, selected literals in queries are underlined. This
part of the proof requires the construction of SLDNF-trees. However, by Theorem 2.11, it
suffices to construct pre-SLDNF-trees only. In fact, we shall sometimes only indicate how to
construct a relevant part of the required pre-SLDNF-tree.

0)C=0anda=c
This case is trivial.

1R+) Suppose that C resolves to D via mgu a w.r.t. some positive literal. Furthermore, assume
that DRo, where (cf. the modification) condition (1) holds. We want to show that (ac)|C is
a c.a.s. for C.

By induction hypothesis, ¢ is a c.a.s. for D. That is, the main tree T' of an SLDNF-tree 7
for D has a branch ending in success and o is the c.a.s. along this branch. By condition (1),
Do does not contain variables from Var(Ca) — Var(D). Therefore, we may assume (renaming
variables in T if necessary) that T’ does not involve a variable from Var(Ca) — Var(D). But
then we can modify the SLDNF-tree by putting C on top of T as a new root, since the resulting
branches will be pseudo derivations. This produces part of an SLDNF-tree for C, showing C to
have the c.a.s. (ao)|C by Corollary 3.5:

SN

R-) Suppose that A € F is ground, and (C,C’)Ro. We want to show that o is a c.a.s. of
C,04,C".

By induction hypotheses, there exists a finitely failed SLDNF-tree 7' for A and there is an
SLDNF-tree T for C,C’ whose branch yields the c.a.s. o. Then

Ca _"_44.’ c'
N

AN
N
N
NN

A

c,c'
T I

10

is a successful SLDNF-tree for C, =4, C’ whose branch yields the c.a.s. o.

F+) Suppose that L is a positive literal in C and for every clause R from P which is applicable
to L there exist o« and D € F such that ¢ -% D (L, R). We want to show that C has a finitely
failing SLDNF-tree. Let D4,..., D, € F be resolvents of C w.r.t. L and, respectively, all clauses
Rq,...,R, of P applicable to L.

By induction hypothesis, choose a finitely failing SLDNF-tree 7; for every resolvent D;. Then

Dy D,

is the required finitely failing SLDNF-tree for C. Obviously, we can assume (compare case {R+)
that the 7; are such that the branches of the new main tree will be pseudo derivations.

F-) Suppose that the atom A is ground and ARe. We want to show that there is a finitely failed
SLDNF-tree for C,-A4,C".
By induction hypothesis, there exists a successful SLDNF-tree 7 for A. Then

C,o4, o
failed

is a finitely failed SLDNF-tree for C, -4, C".

The right-to-left halves of the two equivalences are proved simultaneously by induction on
rank(T,T) where
a) 7 is a successful SLDNF-tree for C' with a branch yielding the c.a.s. 7, or
b) 7 is a finitely failed SLDNF-tree for C and 7 = e.

rank(7,7) = 0.
Then 7 is successful (since C is not marked), so C = O and 7 = ¢. Thus CRe by clause 0).

rank(7T,7) > 0.
al) The selected literal of C' is positive.

Let D be the direct descendant of C' in 7 lying on the branch which yields the c.a.s. 7. D
is obtained from C using an mgu a. Let o be the c.a.s. for D along this branch. By induction
hypothesis, DRo. Moreover, by Lemma 3.3 we have Var(Ca)NVar(Do) C Var(D). Therefore
by clause {R+) we get CR(ao)|C. However, by Corollary 3.5 7 = (a0)|C.

a2) The selected literal of C' is negative.

Then C' = D,-A, D' where A is ground and subs(C) fails finitely. But rank(subs(C),¢) <
rank(T,7) and A is the root of the main tree of subs(C), so by induction hypothesis A €
F. Moreover, the only direct descendant of C in 7 is D, D’. Again by induction hypothesis
(D, D")Rr. Therefore by clause R-) we get CR7.

11

b1) The selected literal of C is positive. By induction hypothesis, all direct descendants of C' in
T are in F. Therefore by clause F+) we get C € F.

b2) The selected literal of C is negative.

Then C = D,=A, D' where A is ground.
Subcase 1. C is marked as failed.

Then subs(C') is successful. But rank(subs(C),¢) < rank(7,7) and A is the root of the
main tree of subs(C), so by induction hypothesis ARe. Therefore by clause F-) we get C' € F.
Subcase 2. C is not marked as failed.

T is finitely failed, so C' has a direct descendant. Therefore subs(C) is finitely failed, and
D, D' is the only direct descendant of C in 7. By induction hypothesis (D, D’) € F. Therefore
by Lemma 4.2 we get C € F. ad

References

[AB91] K. R. Apt and M. Bezem. Acyclic programs. New Generation Computing, 29(3):335—
363, 1991.

[AP91] K. R. Apt and D. Pedreschi. Proving termination of general Prolog programs. In
T. Ito and A. Meyer, editors, Proceeding of the International Conference on Theoretical
Aspects of Computer Software, Lecture Notes in Computer Science 526, pages 265-289,
Berlin, 1991. Springer-Verlag.

[Cha88] D. Chan. Constructive negation based on the completed database. In R.A. Kowalski
and K.A. Bowen, editors, Proceedings of the Fifth International Conference on Logic
Programming, pages 111-125. The MIT Press, 1988.

[Cla79] K. L. Clark. Predicate logic as a computational formalism. Res. Report DOC 79/59,
Imperial College, Dept. of Computing, London, 1979.

[Doe92] H. C. Doets. Levationis laus. Journal of Logic and Computation, 1992. To appear.

[Kow74] R.A. Kowalski. Predicate logic as a programming language. In Proceedings IFIP’7},
pages 569-574. North-Holland, 1974.

[Kun89] K. Kunen. Signed data depedencies in logic programs. Journal of Logic Programming,
7:231-246, 1989.

[Llo84] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1984.

[L1o87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, second
edition, 1987.

[MT92] M. Martelli and C. Tricomi. A new SLDNF-tree. Information Processing Letters,
43(2):57-62, 1992.

[She84] J. C. Shepherdson. Negation as failure: a comparison of Clark’s completed data base
Reiter’s closed world assumption. Journal of Logic Programming, 1(1):51-79, 1984.

[She89] J. C. Shepherdson. A sound and complete semantics for a version of negation as failure.
Theoretical Computer Science, 65(3):343-371, 1989.

12

The ILLC Prepublication Series

ML-91-11 Rineke Verbrugge Feasible Interpretability

ML-91-12 Johan van Benthem Modal Frame Classes, revisited

Computation and Complexity Theory Lo . . .

CT-91-01 Ming Li, Paul M.B. Vit4nyi Kolmogorov Complexity Arguments in Combinatorics

CT-91-02 Ming Li, John Tromp, Paul M.B. Vitdnyi How to Share Concurrent Wait-Free Variables

CT-91-03 Ming Li, Paul M.B. Vit4nyi Average Case Complexity under the Universal Distribution Equals
Worst Case Complexity

CT-91-04 Sieger van Denneheuvel, Karen Kwast Weak Equivalence
CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak Egtlul']\j/alence for Constraint Sets

CT-91-06 Edith Spaan Census T ques on Relativized Space Classes

CT-91-07 Karen L. Kwast The Incomplete Database

CT-91-08 Kees Doets Levationis Laus

CT-91-09 Ming Li, Paul M.B. Vit4nyi gmb}na'ton'al Properties of Finite Sequences with high Kolmogorov
mplexi

ty
CT-91-10 John Tromp, Paul Vitémg11 A Randomized Algorithm for Two-Process Wait-Free Test-and-Set
CT-91-11 Lane A. Hemachandra, Edith Spaan Quasi-Injective Reductions

CT-91-12 Krzysztof R. Apt, Dino Pedreschi ~ Reasoning about Termination of Prolog Programs

Computational Linguistics
CL-91-01 J.C. Scholtes Kohonen Feature Maps in Natural Language Processing
CL-91-02 J.C. Scholtes Neural Nets and their Relevance for Information Retrieval

CL-91-03 Hub Priist, Remko Scha, Martin van den Berg A Formal Discourse Grammar tackling Verb Phrase Anaphora

Other Prepublications

X-91-01 Alexander Chagrov, Michael Zakharyaschev The Disjunction Property of Intermediate Propositional Logics

X-91-02 Alexander Chagrov, Michael Zakharyaschev On the Undecidabigfy of the Disjunction Property of
Intermediate Pro&g;itional Logics

X-91-03 V. Yu. Shavrukov i\ﬁ)t?llglebras of Diagonalizable Algebras of Theories containing
etic
X-91-04 K.N. Ignatiev Partial Conservativity and Modal Logics
X-91-05 Johan van Benthem Temporal Logic
X-91-06 Annual Report 1990
X-91-07 A.S. Troelstra Lectures on Linear Logic, Errata and Supplement
X-91-08 Giorgie Dzhaparidze Logic of Tolerance
X-91-09 L.D. Beklemishev On Bimodal Provability Logics for IT;-axiomatized Extensions of
Arithmetical Theories
X-91-10 Michiel van Lambalgen Independence, Randomness and the Axiom of Choice
X-91-11 Michael Zakharyaschev Canonical Formulas for K4. Part I: Basic Results '
X-91-12 Herman Hen Flexibele Categgziale Syntaxis en Semantiek: de proefschriften van Frans
. Zwarts en Michael Moortgat
X-91-13 Max I. Kanovich The Multiplicative Fraﬂent of Linear Logic is NP-Complete
X-91-14 Max I. Kanovich The Horn Fragment of Linear Logic is NP-Complete
X-91-15 V. Yu. Shavrukov Subalgebras of Diagonalizable Algebras of Theories containing
Arithmetic, revised version
. X-91-16 V.G. Kanovei Undecidable Hggtheses in Edward Nelson's Internal Set Theo
X-91-17 Michiel van Lambalgen Independence, Randomness and the Axiom of Choice, Revised Version
X-91-18 Giovanna Cepparello New Semantics for Predicate Modal Logic: an Analysis from a
. standard point of view
X-91-19 Papers presented at the Provability Intelgretallii]i Arithmetic Conference, 24-31 Aug. 1991, Dept. of Phil.,
trecht Universi
1992 Annual Report 1991
Logic, Semantics and Philosophy of Langauge
LP-92-01 Victor Sdnchez Valencia Lambek Grammar: an Information-based Categorial Grammar
LP-92-02 Patrick Blackburn Modal Logic and Attribute Value Structures
LP-92-03 Szabolcs Mikulds g‘he Completeness of the Lambek Calculus with respect to Relational
emantics
LP-92-04 Paul Dekker An Update Semantics for Dynamic Predicate Logic
LP-92-05 David I. Beaver The Kinematics of Presult)g;osition
LP-92-06 Patrick Blackburn, Edith Spaan ealillodal Perspective on the Computational Complexity of Attribute
ue Grammar
LP-92-07 Jeroen Groenendijk, Martin Stokhof A Note on Interrogatives and Adverbs of Quantification
LP-92-08 Maarten de Rijke A System of ic Modal Logic
LP-92-09 Johan van Benthem Quantifiers in the world of Types
LP-92-10 Maarten de Rijke Meeting Some Neighbours (a dynamic modal logic meets theories of
change and knowledit;rreprescntation)
LP-92-11 Johan van Benthem A note on Dynamic Arrow Logic
Mathematical Logic and Foundations
ML-92-01 A.S. Troelstra Comparing the theory of Representations and Constructive Mathematics

ML-92-02 Dmitrij P. Skvortsov, Valentin B. Shehtman Maximal Kripke-type Semantics for Modal and
Superintuitionistic Predicate Lo(fics

ML-92-03 Zoran Markovi¢ On the Structure of Kripke Models of Heyting Arithmetic

ML-92-04 Dimiter Vakarelov A Modal Theory of Arrows, Arrow Logics I .

ML-92-05 Domenico Zambella Shavrukov’s Theorem on the Subalgebras of Diagonalizable
Algebras for Theories containing IA, + EXP

ML-92-06 D.M. Gabbay, Valentin B. Shehtman Undecidability of Modal and Intermediate First-Order Logics with
Two Individual Variables

ML-92-07 Harold Schellinx How to Broaden your Horizon

ML-92-08 Raymond Hoofman Information Systems as Coalgebras

Compution and Complexity Theory . .

CT-92-01 Erik de Haas, Peter van Emde Boas Obf'cct Oriented Application Flow Graphs and their Semantics

CT-92-02 Karen L. Kwast, Sieger van Denneheuvel Weak Equivalence: Theory and Applications

CT-92-03 Krzysztof R. Apt, Kees Doets A new Definition of SLDNF-resolution

Other Prepublications

X-92-01 f—leinrich Wansing The Logic of Information Structures . .

X-92-02 Konstantin N. Ignatiev 1}1)% Closed Fragment of Dzhaparidze's Polymodal Logic and the Logic
of X;-conservativi

X-92-03 Willem Groeneveld ﬂ'né\mlc Semanﬁg and Circular Propositions, revised version

X-92-04 Johan van Benthem odeling the Kinematics of Meaning

X-92-05 Erik de Haas, Peter van Emde Boas Object Oriented Application Flow Graphs and their Semantics, revised
version

