i

Institute for Logic, Language and Computation

THE VANILLA META-INTERPRETER FOR DEFINITE
LOGIC PROGRAMS AND AMBIVALENT SYNTAX

Marianne Kalsbeck

ILLC Prepublication Series
for Computation and Complexity Theory CT-93-01

%
X
X

University of Amsterdam

The ILLC Prepublication Series

1990

Logic, Semantics and Philosophy of Language
LP-90-01 Jaap van der Does A Generalized Quantifier Logic for Naked Infinitives
LP-90-02 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar .
LP-90-03 Renate Bartsch - Concept Formation and Concept Composition
LP-90-04 Aarne Ranta Intuitionistic Categorial Grammar

LP-90-05 Patrick Blackburn Nominal Tense Logic

LP-90-06 Gennaro Chierchia The Variablity of Impersonal Subjects

LP-90-07 Gennaro Chierchia Anaphora and Dynamic Logic

LP-90-08 Herman Hendriks Flexible Montague Grammar

LP-90-09 Paul Dekker The Scope of Negation in Discourse, towards a Flexible Dynamic Montague grammar
LP-90-10 Theo M.V. Janssen Models for Discourse Markers

LP-90-11 Johan van Benthem General Dynamics

LP-90-12 Serge Lapierre - A Functional Partial Semantics for Intensional Logic
LP-90-13 Zhisheng Huang Logics for Belief Dependence

LP-90-14 Jeroen Groenendijk, Martin Stokhof Two Theories of Dynamic Semantics

LP-90-15 Maarten de Rijke The Modal Logic of uality

LP-90-16 ZhishenE Huang, Karen Kwast Awareness, Negation and Logical Omniscience

LP-90-17 Paul er Existential Disclosure, Implicit Arguments in Dynamic Semantics
Mathematical Logic and Foundations

ML-90-01 Harold Schellinx Isomorphisms and Non-Isomorphisms of h Models

ML-90-02 Jaap van Oosten A Semantical Proof of De Jongh's Theorem

ML-90-03 Yde Venema Relational Games

ML-90-04 Maarten de Rijke Unary Interpretability Logic

ML-90-05 Domenico Zambella Sequences with Simple Initial Sleﬁments

ML-90-06 Jaap van Oosten Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a Solution to a
Problem of F. Richman

ML-~90-07 Maarten de Rijke A Note on the Interpretability Logic of Finitely Axiomatized Theories

ML-90-08 Harold Schellinx Some Syntactical Observations on Linear Logic

ML-90-09 Dick de Jongh, Duccio Pianigiani ~ Solution of a Problem of David Guaspari

ML-90-10 Michiel van balgen Randomness in Set Theory

ML-90-11 Paul C. Gilmore The Consistency of an Extended NaDSet

Computation and Complexity Theory

CT-90-01 John Tromp, Peter van Emde Boas _ Associative Storage Modification Machines

CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette A Normal Form for PCSJ Expressions

CT-90-03 Ricard Gavalda, Leen Torenvliet, Osamu Watanabe, José L. Balcdzar Generalized Kolmogorov Complexity in Relativized

Separations
CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet Bounded Reductions
CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint Expressions
CT-90-06 Michiel Smid, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial
CT-90-07 Kees Doets Greatest Fixed Points of Logic Pro
CT-90-08 Fred de Geus, Emest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas

Physiological Modelling using RL

CT-90-09 Roel de Vrijer Unique Normal Forms for Combinatory Logic with Parallel
Q, epublicatio Conditional, a case study in conditional rewritin;
-M{K'g MVEIRIY Remarks on Intuitionism and the Philosophy of ematics, Revised Version
X-90-02 Maarten de Rijke Some Chapters on Interpretability Logic
X-90-03 L.D. Beklemishev On the Complexity of Arithmetical Interpretations of Modal Formulae
X-90-04 Annual Report 1939
X-90-05 Valentin Shehtman Derived Sets in Euclidean Spaces and Modal Logic
X-90-06 Valentin Goranko, Solomon Passy ~ Using the Universal Modality: Gains and Questions
X-90-07 V.Yu. Shavrukov The Lindenbaum Fixed Point Algebra is Undecidable
X-90-08 L.D. Beklemishev Provability Logics for Natural Turing Progressions of Arithmetical Theories
X-90-09 V.Yu. Shavrukov On Rosser's Provability Predicate
X-90-10 Sieger van Denneheuvel, Peter van Emde Boas An Overview of the Rule Language RL/1
X-90-11 Alessandra Carbone Provable Fixed points in IA;+€Q;, revised version
X-90-12 Maarten de Rijke Bi-Unary Interpretability Logic
X-90-13 K.N. Ignatiev IC)ral agrdze's olymodal Logic: Arithmetical Completeness, Fixed Point Property,
s Pro
X-90-14 L.A. Chagrova Undgcidab e Problems in Correspondence Theory
)1(-901-15 A.S. Troelstra Lectures on Linear Logic
99
Logic, Semantics and Philosgfhy of Langauge
LP-91-01 Wiebe van der Hoek, Maarten de Rijke Generalized Quantifiers and Modal Logic
LP-91-02 Frank Veltman Defaults in Update Semantics
LP-91-03 Willem Groeneveld amic Semantics and Circular Propositions
LP-91-04 Makoto Kanazawa e Lambek Calculus enriched with Additional Connectives
LP-91-05 Zhisheng Huang, Peter van Emde Boa% The Schlgenmakers Paradox: Its Solution in a Belief Dependence
Tamewor
LP-91-06 Zhisheng Huan% Peter van Emde Boas_Belief Dependence, Revision and Persistence
LP-91-07 Henk Verkuyl, vander Does The Semantics of Plural Noun Phrases
LP-91-08 Victor Sénchez Valencia Categorial Grammar and Natural Reasoning
LP-91-09 Arthur Nieuwendijk Semantics and Comparative Logic
LP-91-10 Johan van Benthem Logic and the Flow of Information
Mathematical Logic and Foundations
ML-91-01 Yde Venema Cylindric Modal Logic . .
ML-91-02 Alessandro Berarducci, Rineke Verbrugge On the Metamathematics of Weak Theories » .
ML-91-03 Domenico Zambella On the Proofs of Arithmetical Completeness for Interpretability Logic
ML-91-04 Raymond Hoofman, Harold Schellinx Co]lapsiné Graph Models by Preorders
ML-91-05 A.S. Troelstra History of Constructivism in the Twentieth Century
ML-91-06 Inge Bethke Finit:rzigpe Structures within Combinatory Algebras
ML-91-07 Yde Venema Modal Derivation Rules
ML-91-08 Inge Bethke Going Stable in Graph Models
ML-91-09 V.Yu. Shavrukov A Note on the Diagonalizable Algebras of PA and ZF
ML-91-10 Maarten de Rijke, Yde Venema Sahlq;'ist's Theorem for Boolean Algebras with Operators
ML-91-11 Rineke Verbrugge Feasible Interpretability
ML-91-12 Johan van Benthem) Modal Frame Classes, revisited
Computation and Complexity Theory
Cr’ilgl-Ol Ming Li, Paul M.B. Vitdnyi Kolmogorov Complexity Arguments in Combinatorics
CT-91-02 Ming Li, John Tromp, Paul M.B. Vitdnyi How to Share Concurrent Wait-Free Variables
CT-91-03 Ming Li, Paul M.B. Vitdnyi éveraﬁe Case Complexity under the Universal Distribution Equals Worst Case

exity
CT-91-04 Sieger van Denneheuvel, Karen Kwast % Equivalence .
CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak E({unil:ralence for Constraint Sets
CT-91-06 Edith S; Census Techniques on Relativized Space Classes
CT-91-07 Karen L. Kwast The Incomplete Database
CT-91-08 Kees Doets Levationis Laus

Plantage Muidergracht 24 :
1018TV Amsterdam
Telephone 020-525.6051, Fax: 020-525.5101

‘ ‘E Institute for Logic, Language and Computation

THE VANILLA META-INTERPRETER FOR DEFINITE
LOGIC PROGRAMS AND AMBIVALENT SYNTAX

Marianne Kalsbeek
Department of Mathematics and Computer Science
University of Amsterdam
ILLC Prepublications
for Computation and Complexity Theory Research supported by
ISSN 0928-3323 the Netherlands Organization for Scientific Research (NWO)

Coordinating editor: Dick de Jongh received January 1993

The Vanilla Meta-Interpreter for Definite Logic Programs
and Ambivalent Syntax

Marianne Kalsbeek™

Department of Mathematics and Computer Science
University of Amsterdam
Plantage Muidergracht 24, 1018 TV Amsterdam

e-mail: marianne@fwi.uva.nl

Abstract
This paper presents a simple syntax and semantics for the Vanilla meta-interpreter. We
discuss ambivalent syntax, which is characterised by the occurrence of formulas as terms,
and provide it with a suitable semantics. We show that ambivalent syntax is appropriate
for the Vanilla meta-interpreter. We prove correctness of the Vanilla meta-interpreter for
definite programs.

1 Introduction: Correctness of Meta-Logic Programming

In this paper we will study the simplest meta-interpreter for definite logic programs,
usually known as the Vanilla meta-interpreter. The Vanilla meta-interpreter is a definite
logic program which consists of two parts: a general part M, which consists of an
intensional formalisation of derivability by SLD-resolution from definite object
programs, and an object program-specific part meta-P, which consists of a meta-level
description of the clauses of an object program.

Definition 1.1 The standard Vanilla meta interpreter Mp for definite object programs P.
M [M1] demo(empty) «—

[M2] demo(x) « clause(x,y), demo(y)
[M3] demo(x&y) < demo(x), demo(y)
meta-P [M4] clause(A, B1&...&Bp) <

for every clause A « By,...,.Bpin P
[M5] clause(A, empty)
for every fact A < inP

* I want to thank Frank van Harmelen for many pleasant discussions and careful commenting on drafts; [
want to thank Dov Gabbay for discussions on meta-languages.

Example Consider the following object program P:

p(c) «
r(x) «
q(x) < p(x)

The associated Vanilla meta-interpreter Mp is:
demo(empty) «
demo(x) « clause(x,y), demo(y)
demo(x&y) <« demo(x), demo(y)
clause(p(c), empty) <«
clause(r(x), empty) ¢
clause(q(x), p(x)) «—

Now consider the variables which occur in Mp above. The variables occurring in the
second and third clause are intended to range over object level atoms, whereas the
variables which occur in the last three clauses are meant to range over the domain of the
object program. Thus, intuitively, the Vanilla meta interpreter is a typed program with
two types: the variables occurring in the clauses M2 and M3 are intended as meta-
variables which range over object level atoms; the variables that occur in the part which
represents the object level program, are meant to be object level variables ranging over
object level terms. Motivated by the observation that the intuitive interpretation of the
Vanilla meta-interpreter is typed, Hill and Lloyd advocate a typed version of the Vanilla
meta-interpreter in their paper [HL] and prove its correctness.

However, it is the untyped version of the Vanilla meta interpreter, and extensions of it,
that is used in general Prolog-practise and in applications (see [SS] and [KK]). Typically,
it does not distinguish between object- and meta-level variables and terms. As a result it
employs a non-standard syntax, which is mainly characterised by the occurrence of atoms
as terms. This syntax admits atoms like 'demo(c)’ and 'clause(q(demo(r(empty))),
q(empty))', which are not admissable in any standard syntax. In this paper we will give a
definition of this syntax, which was introduced in [R]. We call this syntax 'ambivalent
syntax', for the dual role played by atoms. This phenomenon of duality can also be
interpreted as overloading of the predicate symbols of the language, which double as
function symbols. We will define a suitable (Herbrand style) semantics for first-order
logic with ambivalent syntax, which also gives us a (least Herbrand) semantics for the
Vanilla meta-interpreter. This enables us to prove satisfying correctness results for the
untyped Vanilla meta-interpreter.

The main result of this paper is a proof of the following theorem, which expresses
correctness of the Vanilla meta-interpreter with respect to definite object programs, by
connecting the least Herbrand model Hp of an object program P with a part of the least
Herbrand model Hyp of Mp:

Main Theorem (Theorem 5.10) Let P be a definite program and Mp the Vanilla meta

interpreter associated with P. Then for all p(t) in the Herbrand base of P,
p(t) € Hp iff demo(p(t)) € Hump.

The part of the main theorem that expresses completeness (if p(t) is derivable from the
object program P, then demo(p(t)) is derivable from Mp), has a straightforward proof.
Because the Vanilla meta-interpreter may be considered as a formalisation of derivability
from a definite object program, each derivation from the object program can be mimicked
by a derivation via the associated Vanilla meta-interpreter.

It is not completely trivial, however, to show that Mp is sound with respect to P. The
problem partly originates in the ambivalent syntax of the Vanilla meta interpreter, which
causes Herbrand models of Mp (even its least Herbrand model) to contain meta-language
atoms like demo(p(demo(empty))), which cannot be directly related to object level atoms.
The main idea behind the soundness proof is made explicit in Lemma 5.6. Subterms
occurring in derivations from the Vanilla meta interpreter which are terms of the meta-
language but not terms of the object language, have universal force. L.e., within certain

boundaries, such terms can be replaced by arbitrary terms.

The outline of this paper is as follows: In Section 2 we will develop some basic theory of
languages with ambivalent syntax. In Section 3 we will define a Herbrand style semantics
for these languages. In Section 4 we will study some properties of substitutions in
ambivalent syntax which we need in the remainder of the paper. In Section 5 we apply the
results of the preceding sections to the theory of the Vanilla meta interpreter, and we
prove our main theorem, the correctness result. In Section 6 we discuss our results and
related results by Hill and Lloyd [HL] and Martens and De Schreye [SM, MS].

2 Ambivalent Syntax

In this paragraph we will give a formal definition of the syntax underlying the Vanilla
meta- interpreter. It has the following main features:

1. There is no typing. No distinction is made between object and meta-level variables, nor
between object and meta-level function symbols, predicates, and constants.

2. Atoms may occur as terms. This can be interpreted as a naive naming mechanism:
instead of using a code to refer to an atom, one uses the atom proper - atoms serve as
their own names (the metalevel representation of an object level expression is the object
level expression itself).

The first feature is easily established by taking as the predicates of the language of the
Vanilla meta-interpreter the (meta-) predicates 'clause’ and 'demo’ together with the
predicates of the object level program, do the same for the constants, and take as function
symbols the function symbols of the object program and the conjunction '&'. We will thus
adopt the following convention: The non-logical constants of the underlying language of
an object program P are given by a triple (Rp, Fp, Cp), where Rp, Fp, and Cp are,
respectively, the set of relation symbols, the set of function symbols and the set of
constants occurring in P. The non-logical constants of the underlying language of the
associated interpreter Mp are then given by a triple (Rmp,FmMp,CMmp), where RMp = Rp L
{demo(-), clause(-,")}, Fmp = Fp U {(")&(")}, Cmp = Cp U {empty}.

The second feature is really where one sees that the syntax involved is non-standard.
Because of the double role that formulas play in this syntax, we will call it ambivalent
syntax. In the Vanilla meta interpreter, there are only two syntactical categories to be
dealt with: terms and atoms of the language. We will take a more general approach and
define ambivalent syntax for first order predicate logic.

In this paper we will not consider ambivalent syntax for languages with equality.

Definition 2.1 The non-logical constants of a language with ambivalent syntax Lamp are
given as a triple (R, Fy, Cr), where R is a set of relation symbols, F/ is a set of
function symbols, C is a set of constants. The alphabet of Lamp also contains
countably many variables and the usual connectives and auxiliary symbols and one
proposition symbol: L. The sets of atoms, formulas, and terms of Lamp are defined as
follows:

ATOM,, (1) p()isanatomif pe Rp,p,and t€ TERMg,,
(2) there are no other atoms.
FORM/,., (1) @€ FORMy, ., if @ € ATOMyp;
(2) ory, oV, 9>y € FORM ., if ¢ and y € FORM ;5

(3) L € FORM 15
(4) =9 € FORM,,;, if ¢ € FORM s
(5) Vx@, Ixp € FORM,;, if x is a variable
and @ € FORM, 1
(6) there are no other formulas.
TERM ., (1)c € TERM,,, forallce Cpypps
(2) x € TERM,,,, for all variables x;
(3)t € TERM,p, if t € FORM 1
(4) f(t) € TERM,p if t € TERM,p and f € Fpys

(5) there are no other terms.

Note that these definitions differ from the corresponding definitions for standard syntax
in the following way: the definition for the term set refers to the set of formulas. Also
note that FORM, ., € TERM/, ..

Example Let the nonlogical constants of £ be ({p},{f},{c}). Then p(c), f(p(c)) and f(x)
are terms of £, ., whereas f(x) is a term of £ with the standard syntax, but p(c) and
f(p(c)) are not; p(c) is both an atom of £ with standard syntax and of £,;;; p(p(c) v

p(f(c))) is both an atom and a term of L,.;,, but neither of those in L with standard

syntax.

One part of the Unique Readability Property holds for ambivalent syntax: formulas and
terms can only be written in one unique way. We wil not give the proof, as it is identical
to the corresponding proof for standard syntax. But by the very definition of ambivalent
syntax, the part of the Property that states that expressions of the language are either
formulas or terms or none of these, does not hold, of course: all formulas are terms.
However, if one focuses on occurrences of formulas in well formed expressions, one
notes that in each occurrence a formula either serves a formula or as a term, but not as
both. A simple way to study occurrences is identifying terms t with term trees. We then
define a formula @ to occurin t iff ¢ is a subtree of t. Specific occurrences of ¢ in t
are identified with specific subtrees t' of t. We define a subtree t' of t to be a term
occurrence of ¢ in t iff t' isequal to @ and thereisanode n in t above t which is
a predicate or a function symbol; an occurrence t' of ¢ in t is a formula occurrence
otherwise. By this definition, an occurrence can never be both a term occurrence and a

formula occurrence.

Next we give a definition of the set of free variables of terms and formulas, in order to
define ground formulas and closed terms. The definitions are standard.

Definition 2.2 The set FV(t) of free variables of a term t is inductively defined as
follows:

FV(x) =x for all variables x;
FV(c) = @;
FV(f(t,...,tn)) = FV(t)) U ... UFV(ty), for fe Fy and ty,...,tn € TERM 15
FV(p(t1,....tn)) = FV(t)) U ... UFV(ty), for pe Ry and ty,...,tn € TERM[;.1
FV(oAy) = FV(ovy) = FV(p—-y)=FV(p) UFV(y), for ¢ and y € FORM[,.+s
FV(—¢) = FV(¢), for ¢ € FORM/ 1
FV(Vx@)= FV3x) =FV(p)\{x}, for ¢ € FORM[b

Definition 2.3 The sets GRFORM,,,,, GRATM_,,., and CLTERM_,,;, of ground
formulas, ground atoms and closed terms of L, ., are defined as follows:
t € GRFORM,, , iff @ € FORMp,., and FV(¢) = @;
t € GRATMy,, iff @ € ATOM,,, and FV(¢) = @;
t € CLTERMp,,, iff t € TERMp,, and FV(t) = @.

3 Semantics for Ambivalent Syntax

The semantics we propose for languages with ambivalent syntax is the class of term
models in which every closed term of the language is interpreted by the identity function.
Herbrand models fall within this class. With respect to this class, strong completeness
holds and can be proven in the standard way (Theorem 3.6). We will assume T to be a
consistent first order predicate theory with a language £=(R,F.,C,) with ambivalent
syntax. We will identify theories with sets of axioms, which are closed formulas; a theory
need not be closed under derivability. We work with a standard system of natural
deduction, in which the deduction rules are defined in a standard way. Note however that
Vxp(x) / p(3xp(f(x))) is now an instance of the standard rule " Vx¢ / ¢(t), for all closed

terms t".

Definition 3.1 A pre-interpretation J for L consists of
a) a domain D such that
(1) CLTERM, c D.
(2) for all t(xy,....xn) € TERM with xi,...,x, free,

and for all di,...,d, € D, t(dy,...,dp) € D.
b) for each term t € CLTERM, the assignment of te D.

Definition 3.2 An interpretation M of L consists of a pre-interpretation J with
domain D and, for each n-ary predicate symbol in P, the assignment of a subset of
Dn,

Definition 3.3 Let M be an interpretation of a language L. Truth of closed formulas of
L in M is inductively defined as follows:
MEDp(t) for p € Ryand t an n-tuple of closed terms of L, iff (the
interpretation of) t is in the subset of D™ assigned to p.
ME @Ay iff ME@ and MFEvy,
ME—¢ iff M Eo,
ME vy iff ME@ or MEV,
ME -y iff MEo or MF vy,
MEVx@ iff MEo@ [x/a], forall a € Dy,
ME3x@ iff thereisana € Dy such that ME ¢ [x/al.

Definition 3.4 Let T be a theory in a language L.Let M be an interpretation of L. M

is a model for T if all the axioms of T are true in M.

Definition 3.5 A Herbrand pre-interpretation J of L is a pre-interpretation for which
the domain D consists of CLTERM; .
A Herbrand interpretation is an interpretation based on a Herbrand pre-interpretation.
A Herbrand model is a model based on a Herbrand interpretation.

Theorem 3.6 First order predicate logic with ambivalent language is sound and complete
with respect to the semantics defined in Definitions 3.1-3.4.

Proof We leave the checking of soundness to the reader.

The completeness proof we present here is strikingly similar to the completeness for

standard syntax.

Let T be a consistent first order predicate theory with a language L=(R .,F,C) with

ambivalent syntax. Extend T to a Henkin theory T* in the following way:

Extend the language of T with infinitely many fresh constants cp. The result will be a

new language £ =(R,F.,Cp), with Rp=Ry, Fp=F while Cp= Cp U {cp:e o).

Let @g, 91, P2, ... be an enumeration of all formulas of £ with only x free. Define Cy
as the set of constants that occur in QgA...A@p. Define:

To := T,

mg := min{k : cx ¢ Cp},

Ty := To U {Ixpo(x) = ¢o(Cmo)},

mp41 = min{k>mp: tx ¢ Cp},

Tn+2 = Tne1 U {3xQ (%) = @i (Cmps))

T* := UTp.
For all n, consistency of Tp41 can be inferred from consistency of Ty in the usual way.
So T* is consistent. Extend T* to a maximally consistent theory T™. The language of
Tm is £, the language of T*. A model M for TM can now be constructed as follows:
Take as the domain D of M the set of closed terms of L'. (As we are dealing with
ambivalent syntax, every closed formula of £' will be an element of D.) Take the
identity function for the interpretation function. Define atoms to be true in M iff they
belong to TM. M is a model for TM (by induction on the complexity of formulas), and
thus M is a model for T. Moreover, M is a Herbrand model for TM and T*. This

concludes the proof. ®

For infinitely extendible theories a model can be constructed in a slightly more elegant
way: the closed terms of the language that do not occur as terms in the theory can be used
as Henkin constants themselves. The resulting model is a Herbrand model for the theory.
Logic programs, as they are finite, are infinitely extendible. Note that theories that are

axiomatised with axiom schemes are not infinitely extendible.

A language with ambivalent syntax was first defined by Richards in his paper [R], in the
context of intensional predicate logics. Kim and Kowalski [KK] advanced ambivalent
langauge as appropriate for the Vanilla meta-interpreter, especially for extensions of it in
the field of metalogic programming for multi-agent knowledge, and [R] has become a
standard reference in the literature on the Vanilla meta-interpreter. However, the
semantics for ambivalent syntax proposed in [R] is flawed, due to the fact that the
interpretation function is not well-defined!). A broader perspective on ambivalent syntax

1) The following example shows what is wrong in the semantics proposed in [R]:
Take an ambivalent language £ with one binary relation symbol R, one unary relation symbol Q, one

unary function symbol f, and one constant symbol c¢. Then VxR(x,Q(x)) — VxR(f(x),Q(f(x))) should be

and its semantics is given in [G], where several meta-languages are proposed which allow
for great freedom of expression. Among them is HFP, which is essentially first-order
predicate language enriched with meta-level predicate and function symbols. Ambivalent
syntax can be considered as HFP with one function symbol f that transforms formulas
into terms. A semantics for ambivalent syntax which is more general than the Herbrand
semantics proposed in the present paper can be obtained by considering models for HFP
(but we must leave this matter to a future occasion).

4 Preliminaries on Substitution

A crucial step in our main proof relies on a shift from (sub)terms of the language
underlying Mp into terms of the language underlying an object program P. In the present
section we will define and discuss the necessary transformation (Definition 4.3). We will
define this transformation not for just the languages of Mp and P, but somewhat more

generally for two languages of which one comprises the other.
We will identify languages £ with pairs (L,S), where L is the triple indicating the non-

logical constants of £, and S indicates the particular syntax of L. For instance, the
underlying language Lp of an object program P is identified with ((Rp, Fp, Cp),
standard syntax), and the underlying language Lymp of the associated meta interpreter Mp
is identified with ((Rmp,Fmp,Cmp), ambivalent syntax). In order to keep matters simple,
we will only consider languages which, like £p and Lyp, have no logical constants - that
is, languages of which the set of formulas consists of atoms only. The theory developed in
the present section is thus tailored for languages underlying definite logic programs, but
can be generalised to the case of languages with connectives and quantifiers. Lp can be
considered as a part of Lyp: all terms of Lp are also terms of Lmp, and, likewise, the
set of formulas of Lp is included in the set of formulas of Lpyp. We can define this

notion of inclusion as follows:

valid in every model. However, one can construct the following model M according to Richards’
definitions which validates the antecedent and in which the consequent is wrong:

Take, according to the definition in [R], as a domain Dy = {c} U {¢| @ e CLFORM t}. The extension of
Q s arbitrary. V(f) is the identity function on D. The extension of R is taken as follows: V(R) =
{<d,Q(d)>I d € D}. By Richards' definition, the interpretation function * is the identity function on
constants and closed formulas. Thus VxR(x,Q(x)) is truc in M. However, (f(c))* = V(f)(c*) = ¢, while
QUEE))™* = Q(f()). So <(f(c)*(QUf(c))*> = <c,Q(f(c))>, which does not belong to V(R).

Definition 4.1 For two languages £ = (L,S) and £L=(L',S"), we say that Lis a partof L (L
cr) if
1.RLcRy,FLcF,and CL c Cr
2. either S is standard syntax and S' is ambivalent syntax,or S and S' are both
standard syntax, or S and S' are both ambivalent syntax.

By this definition we have £p LMp. The property that the sets of terms and formulas of
LMp contain their respective equivalents for Lp generally holds for two languages of

which one is part of the other:

Lemma 4.2 For two languages £ and £, if L< £ then TERM € TERM/' and FORM ¢
c FORM /.

Proof Immediate, by the definitions. =

In the remainder of this section we will always suppose £ and L' to be two languages such

that LC L.

If one takes a closer look at the (tree-) structure of a term t of L', one sees that certain
subterms of t are terms of £, while others are proper £-terms. By substituting in an L'

term t all of its subterms which are proper L£-terms by variables, one can transform t
into an L-term. The intuition behind the definition of the £'/L-abstraction of a term t in

the language £', is that one can descend in the termtree of t until one encounters a
symbol s thatis in £' but not in £, replace the subtree starting with s with a fresh
variable which does not occur in t; this procedure yields a term of £. The £/L-abstraction

thus transforms terms from £' to terms from L. Moreover, this is done in a systematic
way: equal terms are replaced by equal variables. This makes the abstraction procedure

reversible (Lemma 4.5).

Definition 4.3 Let t be a term of L. The £'/L-abstraction of t, absz/.(t), is inductively

defined as follows:

absp/(X) =X, for all variables x;
absg'/c(C) =¢C, for all constants c € Cy;
absg/(C) = X¢ , for all constants c € C,\Cy,

where X is a variable;

absz) L(£(t1,...tn)) = f(abs gy (t1),.. absc/(tn)),
for all function symbols f € F;

absy((t1,-.,tn)) = Xf(t1,....tn), for all function symbols f € F/\F,

10

where xf(;,...tn) is a variable;

abspf L(R(t1,...,tn)) = Rabsg/(t1)s..,-abs 7 (tn)),
for all relation symbols R € Ry;
absz| L(R(t1,...,tn)) = XR(t1,...,tn), for all relation symbols R € R/\R,

where XR(11,...,1n) i @ variable.

Implicitely we have assumed that we have extended the set of variables of £ with a set of
fresh variables which are indexed by L-terms. This means that, while our purpose was to
get a term of L as the result of the abstraction, we get a term in a language which is in fact
an extension of £. However, by renaming the fresh variables in abs.y/.(t), we can get a
term of L proper.

The following lemma mentions two properties of the £'/L-abstraction of L'-terms which

we will need below.

Lemma 4.4 Lett be a term of £. Then the following holds:
a) absry/(t) is unique.
b) abs;y/£(t) is, modulo renaming of variables, a term of L.

Proof Immediate from the definition. [

Lemma 4.5 For every term v in L there is an L-substitution Ty, such that

V= aﬁSL'/L(V)Tv.
Proof We define 1, by induction on the term structure of v.

1) =9, for all constants ¢ € Cg;

2) 1¢ ={xJc}, for all constants ¢ € C\Cy;

Nix=¢@, for all variables x without an index from
TERM

4) Ti(ty,tn) = T Y U Ty for all function symbols f € F;

5) T(e,...m) = (Xfu,.., tn)/f(t15-5tn) } for all function symbols f € F\F;

6) TR(t1,..tn) =T Y e U Ty for all relation symbols R € Ry;

T) TR(@,tn) = (XR(1,.enstn)/ R0 05t0) } for all relation symbols R € R/ \R ..

We have to check that ty is well defined. This is clear for all cases except 3) and 5).
Suppose, for case 3) that v = f(ty,...,tn), for some f e F, or, for case 5), that
v=R(t1,...,tn), for some R € R . Suppose that for some variable x, xe Dom(ty) N
Dom(ty;) for some i #j. By definition of Ty, x must be xs for some se& TERM,. Then
by definition of Tj; and Ty, XsT; = 8 = XsTy; This shows that T, is well-defined.

11

Again by induction on the term structure of ground terms v we will prove that for Ty
thus defined, v = absgy (V) Ty.

1) For constants ¢ € Cg, absgy(c)Tc = ¢P =c.

2) For constants ¢ € C\Cy, absp/(C)Tc = Xc{xc/c} = c.

3) For variables x without an index from TERM, afsp/(X)Tx = X@P = X

4) Let f € F,and ty,...,ty € TERM . Suppose that for all i, absg/(t)T; = ti. Then

same argument that proved Ty to be well defined, abs.y(t) (T VU ... U Tp) =
abszc(t))Ty. Thus, by the inductive hypothesis, f(abszy/(t1)Teys .. » absg/(tn)Thy) =
f(t1,....tn).

5) Let f be a function symbol in F/\F and tj,...,t £-terms. Then by definition of the
L'-abstraction of f(t,...,tn) and Tf(y,... tq), We have abspy(E(t1,...tn))Th(t ... tn) =
XE(t1 oo otn) UXECEL o tn)/ T (L1 stn) } = £(E1,05tn).

The remaining cases 6) and 7) have proofs similar to those of 4) and 5), respectively. K

In the following definition, we generalise the concept of term abstraction to the concept
of abstraction of a substitution.

Definition 4.6 Let 0 be an £-substitution. The £/£-abstraction of ©, written as abs;(0),
is defined as follows: as;/(0)= {X/absz/.(t) : X/t € O}.

The following lemma characterises the connection between the £/L-abstraction of an L-

ground term t and L-terms s of which t is an instantiation.

Lemma 4.7 Let s beatermof £,t atermof £, 6 an L-substitution such that s =t.
Then sabsgy(0) = absgyc(t).
Proof By induction on the term structure of s.
a) s=x, for some variable x. Then 8{x/t} € 6, so {X/absz(t)} € absry (). SO Sabsy/(0)=
= abspyc(1).
b) s=c, for some ¢ € C.. Then t=c, so0 abs;/.(t)=c, and sabs;y(0) =c.
¢) s=f(s1,...,sn), where the sj are £-terms and f € F,. Then t=f(ty,...,tn) = f(s1,...,50)0
=1(516,...,sn9). S0 si0 = tj, for i € [1,n]. And sabs;.(0) = f(S1,....Sn)abszy () =
= £(s10%,...,570%). By the inductive hypothesis, sjabs;/.(0) = absz/.(ti),
forie [1,n]. Thus sassyy(0) = f(abs(ty), ... , abs(tn)) = abs(f(ty,...,tn)). X

12

Lemma 4.7 says: sabs;.(0)=abs;.(s0), or, writing 0* for abs;;(0) and t* for afs;;(1):
sO*=(s0)*.

We extend the usual definition of ground substitution in the following way:

Definition 4.8 A substitution ¢ is £-ground if o = {xj/ti: i€ [1,n]}, and for all i, t; is
a closed term of L.

The following lemma is an application of a well-known fact about ground substitutions.

Lemma 4.9 Let t be a ground term of £'. Then for every £-ground substitution ¢ for
which dom(c) o Var(ass (1)), the following holds: abs.y(t)0 is a ground term of L.
Proof Let t, £, and L' be as in the suppositions for the lemma. As ¢ is a ground
substitution, with dom(c) D Var(abs..(t)), abs.y.(t)0 is a ground term. As O is an L-
ground substitution, and, by Lemma 4.4.b, afs;/(t) is an L-term, it follows that afs;;()O
is an L-ground term. X

5 Proof of the Main Theorem

We are now ready to apply the machinery set up above to the Vanilla meta-interpreter for
definite logic programs. We will have to use some of the basic concepts and results of the
theory of definite logic programs. We will mainly adhere to the terminology used in [LL],
with the single exception that we denote the least Herbrand model of a program P by Hp,
as we have already reserved Mp to indicate the Vanilla meta-interpreter of P. The basic
theory for definite programs as developed in [LL, Chapter 2] holds without any restriction
for definite programs with ambivalent language, and thus for the Vanilla meta-interpreter,
as long as all the relevant concepts are defined with respect to the underlying ambivalent
language. (Herbrand models for such programs are the Herbrand models defined in
Section 3; the fixpoint operator T is then defined with respect to those models; ground
instantiations are ground with respect to the ambivalent language.) The main theorem is
basically a result about the relation between the least Herbrand model of a program and
the least Herbrand model of its associated Vanilla meta interpreter, and its proof proceeds
by comparing the different stages of the respective T-operators. Hence we will be only
concerned with ground versions of programs. We remarked in Section 1 that variables
which occur in the clause-facts [M4] and [M5] of the Vanilla meta-interpreter (the clauses

13

that describe the object program), can be instantiated with terms from the meta-language.
We need the following extension of the usual concept of the ground version of a program.

Definition 5.1 Let P be a definite program. Let £ be a language containing the
underlying language of P. With £-ground(P) we mean the set of all clauses that are
L-ground instantiations of clauses of P. The natural ground version of a program P,
Lp-ground(P), will be indicated simply as 'ground(P)".

The next lemma is an immediate application of Lemma 4.7 and Corollary 4.10 to clauses

of definite programs. It establishes some simple relations between a definite program P,
its natural ground version, and Lyp-ground(P). We will speak about P-ground and Mp-

ground substitutions to refer to respectively Lp-ground and Lm,-ground substitutions. We
will leave out the indices of the abstraction operator, i.e., we will write abs(-) instead of

abs oy cp()-

Lemma 5.2 Let P be a definite program. Let C = p(sg) < p1(s1),.., Pn(Sn) be a clause
of P,let C' =p(tg) « p1(t1),.... pnltn) be in Mp-ground(P), le t 6 be an Mp-ground
substitution with dom(0) o Var(C), such that C6 = C'. Then
a) Cabs(0) = p(ass(tp)) <~ p1(abs(t1)),..., Pn(ab(t));

b) for all Mp-ground substitutions ¢ with dom(c) 2 ran(ass(6)),
Cabs(0)c is in Mp-ground(P);

¢) for all P-ground substitutions ¢ with dom(c) 2 ran(as{(9)),
Cats(0)c is in ground(P).

Proof Part a) follows immediately from Lemma 4.7.

Part b) follows from the definitions.

Part ¢) follows from a) and Lemma 4.9. X

We will first establish some easy facts about Hwm;, the least Herbrand model of Mp. We

have to assume that the language of the object programs we consider does not contain any

of the predicate and function symbols that are proper to the language of Mp, that is, '&/,
'demo’, and 'clause’ do not belong to P, or Fp,. If that is the case, the least Herbrand

model of Mp does not contain atoms of the form demo(demo(t)) and demo(clause(t,s)):

Lemma 5.3 If demo(p(ty,....,tn)) € HM, and p isnot &, then p € P,
Proof Suppose demo(p(ty,...,tn)) € HM,. Then it must have 'entered’ the Herbrand model
at some stage, that is, thereis a d such that demo(p(ty,...,tn)) € TMPTd\TMPT(d-l). If p

14

is not & , demo(p(ty,...,tn)) must have entered by application of the meta-clause [M2],
so clause(p(ty,...,tn), C) and demo(C) are in TMPT(d-l) for some C. That means that

p(t1,....tn) < C belongs to Mp-ground(P), or, if C is the constant empty, p(ty,...,tn) <=
belongs to Mp-ground(P). But then p must be a predicate from the language of P. X

Lemma 5.4 If demo(A&B) € TMPTn, for some n, then there are m, k < n such that
demo(A) € TmpTm and demo(B) € T, Tk
Proof Let demo(A&B) € TMPTn. There is a d < n such that demo(A&B) €
TMPTd\TMPT(d-l), i.e., d is the stage where demo(A&B) enters the Herbrand model.
Now suppose there are no m, k < n such that demo(A) € TMPTm and demo(B) €
TMPTk. Then demo(A&B) cannot have entered the Herbrand model by application of
[M3], as that would require demo(A) and demo(B) in TMPT(d-l). So demo(A&B)
must have entered by an application of [M2]. That is, clause(A&B,C) and demo(C) are
in TMPT(d-l) for some C.So A&B « C belongs to Mp-ground(P) or, if C is the
constant empty, A&B « belongs to Mp-ground(P). This however contradicts the

assumption that & is not a predicate symbol in the language of P. 2

Corollary 5.5 If demo(A1&...&Ak) € TMPTn, for some n, then demo(Aj) € TMPT(n-i),
for some i€ [1,k], and demo(Aij+1&...&Ak) € TMPT(n-i), for some ie [2,k-1].

Proof By Lemma 5.4 and an easy induction argument. [

The next lemma is crucial for the proof of the soundness part of the main theorem. It
expresses the main idea behind the soundness proof. Consider a derivation from the
Vanilla meta-interpreter starting with an atom demo(p(t)) in which p is a predicate
from Lp. Then all subterms occurring in this derivation which are terms of the
metalanguage but not terms of the object language, can, with certain restrictions, be
interpreted as being universally quantified. L.e., subterms which are not object language
terms can be replaced by arbitrary terms — under the condition that, in the derivation as a
whole, equal metalanguage subterms are replaced by equal terms.

Lemma 5.6 Let P be a definite program, p a predicate from the language underlying
P, t aterm from Ly, Suppose demo(p(t)) € TMPTn, for some n. Then for all Mp-
ground substitutions ¢ with dom(c) 2 Var(as(t)), demo(p(aés(t)5)) € Tmp Tn.

Proof Let P be a definite program, p a predicate from the language underlying P, t a

term from the language of Mp. The proof will be by course of values induction on the
stages of the Tymp-operator.

15

° TMPTI only contains the atom demo(empty) and atoms of the form clause(t,s), so the
first stage of the Typp-operator in which atoms of the form demo(p(t)) occur is TMPTZ.
¢ Suppose demo(p(t)) € TMPTZ. Then there must be an atom clause(p(t), empty) in
TmpT1. So we must have

1) clause(p(t), empty) < € ground(Mp),

2) p(s) « in P, forsome s € TERM,,

3) an Mp-ground substitution 6 such that s = t.
By Lemma 4.7, sabs(0) = abs(t). Let ¢ be an Mp-ground substitution with dom(c) 2
Var(abs(t)). By Lemma 5.2.b we have that clause(p(a6s(t)0), empty) ¢ € ground(Mp).
So by definition of the Typ-operator, clause(pass(t)c), empty) € TMPTI, and thus
demo(pas«(t)o)) € TmpT2.
Suppose that for all m < n, the following holds:

If demo(p(t)) € TMPTm, and o is an Mp-ground substitution with
dom(c) 2 Var(as«(t)), then demo(p(abs(t)o) € TmpTm. [H]

e Suppose demo(p(t)) € TMPTn. Let ¢ be an Mp-ground substitution with dom(c) 2
Var(ass(t)). By definition of the Tymp-operator, there are pi,...,.pk € Py, with Lp-terms
$,S1,---,Sk, and an Mp-ground substitution 6 such that

1) p(s) < p1(s1),....pk(sk) € P;

2) (p(s) <= p1(s1)s----Pk(sk)B = p(t) ¢ p1(t),....Pk(t);

3) clause(p(t), p1(t1)&...&pk(tk)) € TmpT(n-1);

4) demo(p(t1)&...&pk(tk)) € TmpT(n-1).
Now let ¢ be an Mp-ground substitution with dom(c) o Var(atg(6)), that is, dom(c) 2
Var(abs(t)) U Var(abs(t])) U ... U Var(abs(tk)). By 1), 2), and Lemma 5.2.b we have that
p(ass(t)G) < p1(abs(t1)0),..., pk(abs(tk)o) € Mp-ground(P). So
clause(p(as{t)0), p1(asst1)0) & ... & Pnlabi(tn)0)) € TmpT 1, and hence in Tmp T (n-1). By
4) and Corollary 5.5 we know that demo(pi(t;)) € TMPT(n-l-i), for i € [1,k]. From the
inductive hypotheses we know that demo(pi(ass(t;)0)) € TMPT(n-l- i) for i € [1,k]. By
applying the Mp-clause demo(A&B) « demo(A), demo(B) k-1 times we have
demo(p1 (as(t1)0)&...&pn(abs(t))) € Twmp T (n-1).
By definition of the Tpp-operator, we may conclude that p(ai(t)o) € TMPTn.

&

Corollary 5.7 Let P be a definite program, pi,....pk € Prp, tl,....tk terms in Ly,
Suppose demo(p1(t1)&...&pk(tk)) € TMPTn, for some n. Let o be an Mp-ground

substitutions with dom(c) 2 Var(afs(t1)) U ... U Var(ass(tx)). Then
demo(p1(ats(t1)0) & ... & p(asstk)o) € Ty T

16

We are now ready to prove the main theorem. We will split the proof in two parts.
Lemma 5.8 is the soundness part, whose proof heavily depends on Lemma 5.6. and its
corollary. Lemma 5.9 is the completeness part. With Bp we indicate the Herbrand base of
a definite program P.

Lemma 5.8 (Soundness of Mp with respect to a definite program P)

Let P be a definite program and Mp the Vanilla meta interpreter associated with P.

Then for all p(t) € Bp, Vne IN [demo(p(t)) € TMPTn = Jme N. p(t) € TpTml.
Proof By induction on n. Let P be a definite program and Mp the Vanilla meta-
interpreter associated with P. Let p(t) € Bp throughout the proof. Again, the base case
of the induction is n = 2.
e Suppose demo(p(t)) € TMPT2. Then clause(p(t), empty) € TMPT(I). So clause(p(t),
empty) «— is an Mp-ground instance of a clause of Mp. So there must be a P-term s such
that p(s) « € P, and an Mp-ground instantiation 6 such that s@ =t. However, by the
assumption that p(t) € Bp, 8 must be a P-ground substitution. So p(t) « € ground(P).
Thus, by definition of the Tp-operator, we can conclude that p(t) € TpT1.
¢ Suppose that for some n>2, demo(p(t)) € TMPTn, and suppose that, for all p'(t) € Bp,

Vn'<n [demo(p'(t)) € TMPTn' = dme N.p'(t) e TpTm] [IH]

If demo(p(t)) € TMPTn', for some n'<n, we immediately have 3m e IN. p(t) € TpTm. So
suppose that for all n'<n, demo(p(t)) ¢ TMPTn'. That means that clause(p(t), empty) ¢
TMPT(l), i.e. demo(p(t)) must have entered the Herbrand model by an application of
[M3]. So there must be ground atoms Bjy,...,.Bx € Bwyp, such that

1) clause(p(t), B1&...&By) e Tm,T(1),

2) demo(B1&...&By) € Tm,T(n-1).
As the B; are terms in Ly, we cannot expect to apply the inductive hypothesis [IH]
directly to the atoms demo(Bj). But from 1), it follows that there are pj,...,pn € Prp and
P-terms s,S1,...,Sp, and an Mp-ground substitution 0 such that

3) p(s) « p1(s1)».-..pk(sk) € P,

4) (p(s) < p1(51)s-.-,Pk(sk))0 = p(t) < By,....Bk.
Let, for i€ [1,k], tj =s;0, i.e. Bj=pj(t). Now take a P-ground substitution & such that
dom(o) = ran(as(0)). Note that, by the assumption that p(t) € Bp, t = asst) = abs(t)0. By
Lemma 5.2.c we know that

p(t) < p1(s1a65(0)0),....pk(skabs(0)0) € ground(P). [*]

Also, by Corollary 5.7, demo(p1(abs(t1)0)&...&pn(abs(t)0)) € TMPTn. And by Lemma
5.5, demo(pj(abs(ti)o) € TMPTn forie [1,k]. As pi(abs(tj)o) € Bp, we can apply the
inductive hypothesis to the atoms demo(p;j(ass(t;)0):

17

3my,mg € IN. pi(ass(t)o) € TpTmy;]. [#%]
Now by [#] and [**] and the definition of the Tp-operator, we can conclude that there is
an m such that p(t) € TpTm. =

The proof of the following completeness lemma is inspired by De Schreye and Martens,
who proved this result in [SM] for a version of the Vanilla meta-interpreter with a
different underlying language.

Lemma 5.9 (Completeness of Mp with respect to a definite program P)

Let P be a definite program and Mp the Vanilla meta interpreter associated with P.

Then for all p(t) e Bp, Vne IN [p(t) € TpTn = 3Ime N.demo(p(t) € TMPTm].
Proof By course of values induction on n. Let p(t) € Bp.
The case n=0 holds trivially by definition of TpTO as the empty set.
e Suppose p(t) € TpT1. Then p(t) « is a ground instance of a clause of P. So
clause(p(t), empty) « is a ground instance of a clause of Mp, and clause(p(t), empty)
belongs to TMPTI. Also, demo(empty) € TMPTI, and demo(p(t)) « clause(p(t), empty),
demo(empty) is a ground instance of [M3]. Thus, by definition of the Tp-operator,
demo(p(t)) € Tm, 12
e Suppose p(t) € TpTn. And suppose that, for all p'(t) € Bp,

Vn'<n [p(t) € TpTn' = 3me N. demo(p(t)) € T, Tm]. [TH]

If there is an n'<n such that p(t) € TpTn', then by [TH] 3m e IN. demo(p(t)) € TMPTm].
So assume that for all n'<n, p(t) & TMan'. Then there are p1(s1),....pk(sk) € Bp, (k=1)
such that p(t) < p1(s1),....pk(sk) € ground(P) and pj(sj) € TpT(n- 1) forie [1k].
Thus from [IH] we can conclude that there are ml,...,mk, such that demo(pi(si)) €
TMPTmi fori e [1,k]. By monotonicity of the Tp-operator, demo(pi(sj)) € TMPTm' for
alli e [1,k] and for all m' > max(ml,...,mk). So, applying [M3] k-1 times, we find an m'
such that demo(p1(s1)&...&pk(sk)) € TMPTm'. Also, clause(p(t), p1(s1)&...&pk(sk))) <
belongs to ground(Mp). Therefore, clause(p(t), p1(s1)&...&pk(sk)) € TMPTm'. So by an
application of [M2], demo(p(t)) € Tm, T(m'+1). [

Theorem 5.10 (MAIN THEQREM) Let P be a definite program and Mp the Vanilla
meta-interpreter associated with P. Then for all p(t) € Bp,
p(t) € Hp iff demo(p(t)) € Hm,.
Proof Combine Lemmas 5.8 and 5.9. &

18

6 Related Results and Discussion

In this section, we will compare our results with other approaches and results from the
literature. First, in paragraph 6.1, we discuss the approach of De Schreye and Martens
[SM, MS], who have an interesting result for the Vanilla meta interpreter of a subclass of
the class of definite programs and a version of the main theorem in the context of S-
semantics. In paragraph 6.2 we discuss a typed version of the Vanilla meta interpreter, as
proposed by Hill and Lloyd [HL].

6.1 De Schreye and Martens

In their work on the Vanilla meta interpreter [MS] and [SM], Martens and De Schreye
propose two approaches. In [SM] they concentrate on the class of 'language independent’
programs, for which they prove a strengthening of our main result. A definite object
program P is language independent if for all standard extensions L of Lp, the least
Herbrand model for P with respect to £ is equal to the least Herbrand model for P with
respect to £p [SM, Definitions 2.1- 2.3]. For this class the following strengthening of our

main theorem for the Vanilla meta-interpreter holds:

Theorem 6.1 [SM, Theorem 2.11] Let P be a language independent program and Mp the
Vanilla meta-interpreter associated with P. Then for all pe Rp and forall te Uwmp,

demo(p(t)) € HM, iff p(t) € Hp.

By Lemma 5.3 this result can be strengthened in the following way:

Corollary 6.2 Let P be a language independent program and Mp the Vanilla meta-
interpreter associated with P. Then for all p(t) € Bmp,

demo(p(t)) € HM, iff p(t) € Hp.

Theorem 6.1 expresses that for language independent programs, if an atom demo(p(t))
belongs to the least Herbrand model of Mp, then t is necessarily an object level term:
this property does not hold for all definite programs. Thus Theorem 6.1 shows that there
is a one-to-one correspondence between atoms p(t) in the least Herbrand model of a
definite language independent program P and atoms demo(p(t)) in the least Herbrand
model of the associated Vanilla meta-interpreter Mp. This correspondence does not hold
for general definite programs.

The class of language independent programs essentially consists of the range restricted’
programs: consider, for a language independent program P, the program P* which

19

consists of the range restricted clauses of P. P and P* have the same success set and
both programs have the same set of computed answer substitutions. Moreover, while the
class of range restricted programs is syntactically defined, the class of language
independent programs is undecidable.

De Schreye and Martens prove their main result for Vanilla meta-interpreters which do
not use ambivalent syntax, but, instead, a standard syntax in which the relations of the
object level language are represtented as functions. They remark that their results also
hold for Vanilla meta interpreters with ambivalent syntax, but do not pursue the subject in
detail.

After this paper was completed, we learnt about a new paper [MS]. In that paper the
Vanilla meta-interpreter for definite programs is studied in the context of S-semantics,
which was introduced in [FLPM] as a declarative semantics which fully characterises the
procedural behaviour of definite programs. S-semantics for definite programs are
Herbrand models which can contain non-ground atoms. In an S-model, atoms which are
variable renamings of each other are considered equal. Every definite program P has a
unique least S-Herbrand model H®p, which can be obtained as the least fixpoint of a
suitable T-operator. The main properties of H%p are the following:

a) Hp is the set of ground instantiations of atoms in H®p;

b)if © is a computed answer substitution for P U {«A}, then A6 is an instantiation of
anatom A' that belongs to Hp;

c)if A and A' are atoms such that A' belongs to H’p and A6 = A’', with
dom(B)=Var(A"), then 0 isacomputed answer substitution for P U {«<A}.

The main theorem for the Vanilla meta-interpreter for definite programs in the context of

S-semantics reads as follows:

Theorem 6.3 [MS, Theorem 8.15] For all p e Rp and forall t in TERM gy,
demo(p(t)) € HS\p iff p(t) € Hp.

Also in this case our Lemma 5.3 applies. And again, this result establishes a one-to-one
correspondence beween atoms p(t) in the least S-Herbrand models of, respectively, a
definite program P and the asociated interpreter Mp. By this theorem the procedual

aspects of the Vanilla meta interpreter can be characterised more fully, as follows:

Theorem 6.4 Forall pe Rp and forall t in TERM gy,

20

0 is a computed answer substitution for Mp U {< demo(p(t))}
iff @ is a computed answer substitution for P U {« p(t)}.

This follows from Theorem 6.3 and b) and c) above.

Our main theorem 5.10 can be obtained from Theorem 6.4 by only considering
substitutions with an Lp-ground range. (It is impossible however, to compute the set of
pairs of goals and computed answer substitutions from the success set of a program. So
clearly one can not derive Theorems 6.3 and 6.4 from our version of the main theorem.)
Lemma 5.6, which shows that terms from the meta-language that occur as subterms in
atoms in the least Herbrand model of Mp, have universal force, can also be derived from
Theorem 6.4.

The value of our main result 5.10 still lies in the fact that it shows there is a suitable
standard Herbrand semantics for the Vanilla meta interpreter for definite programs,
which is based on ambivalent syntax, and with respect to which correctness can be
proved. Together with Lemma 5.6, our main result exhaustively treats the declarative
aspects of the Vanilla meta interpreter for definite programs. Also, it shows that
ambivalent syntax is useful and appropriate in the context of meta interpreters.

6.2 Hill and Lloyd: A typed Vanilla meta-interpreter

Motivated by the observation that the declarative meaning of the Vanilla meta-interpreter
is unclear because the variables in the definition of demo and those in the definition of
clause intuitively range over different domains, Hill and Lloyd [HL] propose a typed
version of the Vanilla meta interpreter for normal programs. (In the same article Hill and
Lloyd propose a typed meta interpreter which uses non-ground representation of object
level variables in the meta-level.) [HL] has two results on the typed interpreter, which
together establish its correctness.

The first result is that the completion of Vp, the typed Vanilla meta-interpreter, is
consistent iff the completion of P is consistent. This result implies that, for normal goals
G and substitutions t, t is a correct answer for P U {G} iff t' is a correct answer for
Vp U {demo(G")}. (Here t' and G' are the translations of t and G in the typed meta-
language.) The technique used to get this result is a transformation of a model I for the
completion of P into a model I* for the completion of Vp and vice versa. Although
not discussed in [HL], this transformation technique could be used for the typed Vanilla
meta-interpreter for definite programs, to transform Hyp into Hp (one can easily

21

~

establish Hp* = Hyp) and vice versa (for the inverse transformation
holds: Hyp™ = Hp).

The second result is procedural correctness of the typed Vanilla meta-interpreter (a

the following

version of Theorem 6.4). This result is obtained by transformations of finitely failed trees
for the meta-interpreter to finitely failed trees for its object program and vice versa, using
a partial evaluation technique. The same strategy can be used for the untyped Vanilla
meta-interpreter using ambivalent syntax; this gives a slightly weaker result because of
the 'pollution’ of the computed answer substitutions with meta-level terms. Typing
typically prevents such pollution.

In general Prolog practice the untyped Vanilla meta-interpreter is used, rather than the
typed version, and here our main result is of practical importance. Of course, it is the
extensions of the Vanilla meta interpreter, and not so much the Vanilla meta-interpreter
itself, where the real interest lies. The correctness of the Vanilla meta-interpreter,
demonstrated by the different versions of the main theorem, in fact shows that the Vanilla
meta-interpreter proves no more nor less than the object program. In the present paper we
do not have any results on extensions of the Vanilla meta-interpreter, but we feel
confident that the theory developed here can be used to get the desired results for
extensions. An interesting variety of extensions of the Vanilla meta-interpreter is formed
by the 'amalgamated' programs. The language of the typed Vanilla meta-interpreter is less
suitable for amalgamated programs, whereas the ambivalent syntax underlying the
untyped interpreter is especially suitable for amalgamation. Amalgamated programs
contain clauses in which both meta- and object level atoms appear. Typical examples of
amalgamation are reflection clauses, e.g. demo(X) < X and X « demo(X). Kim and
Kowalski [KK] propose a formalisation of multi-agent knowledge and belief in the logic
programming format. An extension of the Vanilla meta interpreter with a binary demo-
predicate formalises knowledge of agents (demo(a,b) for "agent a knows b"), in the
context of the three wise man problem. Employing ambivalent syntax, the reflexive
knowledge axiom can be formalised as a clause X ¢« demo(a,X). The language of the
typed Vanilla meta interpreter is hardly suitable for those applications, as it can not
identify the two variables X.

22

References

[FLPM] M. Falaschi, G. Levi, C. Palamidessi, and M. Martelli, ' Declarative modeling

(G]

(HL]

[KK]

(LL]

[MS]

(R]

[SM]

[SS]

of the operational behaviour of logic languages', Theoretical Computer Science 69
(1989), pp. 289-318.

D.M. Gabbay, 'Metalevel features in the object level: modal and temporal logic
programming III', in: Intensional Logics for Programming, Eds. L. Farifias del
Cerro and M. Penttonen, Clarendon Press, 1992, pp. 85-124.

P.M. Hill and J.W. Lloyd, 'Analysis of Meta-Programs', in: Meta-Programming in
Logic Programming, Eds. Harvey Abramson and M.H. Rogers, MIT Press, 1989,
pp. 23-52.

J.S. Kim and R.A. Kowalski, 'A metalogic programming approach to multi-agent
knowledge and belief', Artificial Intelligence and Mathematical Theory of
Compuzation, Ed. V. Lifschitz, Academic Press, 1991.

J.W. Lloyd, Foundations of Logic Programming, Springer-Verlag, 1987.

B. Martens and D. De Schreye, 'Why untyped non-ground meta-programming is
not (much of) a problem', Report CW 159, Department of Computer Science,
K.U. Leuven, Belgium, 1992.

B. Richards, 'A Point of Reference', Synthese 28 (1974), pp. 431-445.

D. De Schreye and B. Martens, 'A sensible least Herbrand Semantics for untyped
Vanilla meta-programming and its extension to a limited form of amalgamation’,
in: Proceedings of the 3rd International Workshop on Meta-Programming in

Logic, Ed. A. Pettorossi, Springer-Verlag, 1993, pp.127-141.

L. Sterling and E. Shapiro, The Art of Prolog, MIT Press, 1986.

23

The ILLC Prepublication Series

CT-91-09 Ming Li, Paul M.B. Vitdnyi Combinatorial Properties of Finite Sequences with high Kolmogorov Complexity
CT-91-10 John Tromp, Paul Vit:ingh A Randomized Algorithm for Two-Process Wait-Free Test-and-Set

CT-91-11 Lane A. Hemachandra, Edith S]ﬁm Quasi-Injective Reductions

CT-91-12 Krzysztof R. Apt, Dino Pedreschi ~ Reasoning about Termination of Prolog Programs

Computational Linguistics

CL-91-01 J.C. Scholtes Kohonen Feature s in Natural Lia;xtguage Processing

CL-91-02 J.C. Scholtes Neural Nets and their Relevance for Information Retrieval

CL-91-03 Hub Priist, Remko Scha, Martin van den Berg A Formal Discourse Grammar tackling Verb Phrase Anaphora
Other Prepublications

X-91-01 Alexander Chagrov, Michael Zakharyaschev The Disjunction Pr of Intermediate Propositional Logics
X-91-02 Alexander Chagrov, Michael Zakharyaschev On the Undecidability of the Disjunction Property of Intermediate Propositional

Logics

X-91-03 V. Yu. Shavrukov Sl;rﬁazl‘febras of Diagonalizable Alﬁ‘,)bras of Theories containing Arithmetic

X-91-04 K.N. Ignatiev Partial Conservativity and Modal Logics

X-91-05 Johan van Benthem Temporal Logic

X-91-06 Annual Report 1990

X-91-07 A.S. Troelstra Lectures on Linear Logic, Errata and Supplement

X-91-08 Giorgie Dzhaparidze Logic of Tolerance

X-91-09 L.D. Beklemishev TOhn Bimodal Provability Logics for I1;-axiomatized Extensions of Arithmetical

eories

X-91-10 Michiel van Lambalgen Independence, Randomness and the Axiom of Choice

X-91-11 Michael aschev Canonical Formulas for K4. Part I: Basic Results

X-91-12 Herman Hendri Flexibele Categoriale Syntaxis en Semantiek: de proefschriften van Frans Zwarts en
Michael Moortgat

X-91-13 Max I. Kanovich The Multiplicative Fra%xfnent of Linear Logic is NP-Complete

X-91-14 Max 1. Kanovich The Horn Fragment of Linear foic is NP-Complete

X-91-15 V. Yu. Shavrukov. Subalgebras of Diagonalizable Algebras of Theories containing Arithmetic, revised
version

X-91-16 V.G. Kanovei Undecidable Hypotheses in Edward Nelson's Internal Set Theo;

X-91-17 Michiel van Lambalgen Independence, Randomness and the Axiom of Choice, Revised Version :

X-91-18 Giovanna Cepparello New Semantics for Predicate Modal Lo;ic: an Analysis from a standard point of view

X-91-19 Papers presented at the Provability mtemtabﬂlty Arithmetic Conference, 24-31 Aug. 1991, Dept. of Phil., Utrecht University

1992 ual Report 1991

Logic, Semantics and Philosophy of Langauge

LP-92-01 Victor Sdnchez Valencia Lambek Grammar: an Information-based Categorial Grammar

LP-92-02 Patrick Blackburn Modal Logic and Attribute Value Structures

LP-92-03 Szabolcs Mikul4s The Completeness of the Lambek Calculus with respect to Relational Semantics

LP-92-04 Paul Dekker An Update Semantics for Dynamic Predicate Logic

LP-92-05 David I. Beaver The Kinematics of Presupposition

LP-92-06 Patrick Blackburn, Edith Spaan A Modal Perspective on the Computational Complexity of Attribute Value Grammar

LP-92-07 Jeroen Groenendijk, Martin Stokhof A Note on Interrogatives and Adverbs of Quantification

LP-92-08 Maarten de Rijke A System of ic Modal Logic

LP-92-09 Johan van Benthem Quantifiers in the world of Types

LP-92-10 Maarten de Rijke Meeting Some Neighbours (a dynamic modal logic meets theories of change and
knowledge representation)

LP-92-11 Johan van Benthem A note on Dynamic Arrow Logic

LP-92-12 Heinrich Wansing Sequent Caluli for Normal Modal Propositional Logics

LP-92-13 Dag Westerstdhl Iterated Quantifie;

IS
LP-92-14 Jeroen Groenendijk, Martin Stokhof Interrogatives and Adverbs of Quantification
Mathematical Logic and Foundations

ML-92-01 A.S, Troelstra . Compan‘nﬁ the theory of Representations and Constructive Mathematics
ML-92-02 Dmitrij P. Skvortsov, Valentin B. Shell’lrt;ndlz_m Ta imal Kripke-type Semantics for Modal and Superintuitionistic
cate Logics
ML-92-03 Zoran Markovi¢ On the Structglln'e of Kripke Models of Heyting Arithmetic
ML-92-04 Dimiter Vakarelov A Modal Theory of Arrows, Arrow Logics I
ML-92-05 Domenico Zambella Shavrukov’s Theorem on the Subalgebras of Diagonalizable Algebras for Theories

containing IAg + EXP
%\141{931-06 D.M. Gabbay, Valentin B. Shehtman Undecidability of Modal and Intermediate First-Order Logics with Two Individual
ariables

ML-92-07 Harold Schellinx How to Broaden your Horizon
ML-92-08 Raymond Hoofman Information Systems as Coalgebras
ML-92-09 A.S. Troelstra Realizability

ML-92-10 V.Yu. Shavrukov A Smart Child of Peano’s

Compution and Complexity Theory
CT-92-01 Erik de Haas, Peter van Emde Boas Object Oriented tfrplicaﬁon Flow Graphs and their Semantics
CT-92-02 Karen L. Kwast, Sieger van Denneheuvel Weak Equivalence: Theory and Applications

CT-92-03 Krzysztof R. Apt, Kees Doets A new Definition of SLDNF-resolution

Other Prepublications

X-92-01 Heinrich Wansing The Logic of Information Structures

X-92-02 Konstantin N. Ignatiev The Closed Fragment of Dzhaparidze's Polymodal Logic and the Logic of X,
conservativi

X-92-03 Willem Groeneveld Bivnamic Seganﬁcs and Circular Propositions, revised version

X-92-04 Johan van Benthem odeling the Kinematics of Meaning

)1(-92-05 Erik de Haas, Peter van Emde Boas Object Oriented Application Flow Graphs and their Semantics, revised version
M%tghgmatical Logic and Foundations

ML-93-01 Maciej Kandulski Commutative Lambek Categorial Grammars

ML-93-02 Johan van Benthem, Natasha Alechina Modal Quantification over Structured Domains

Compution and Comple:a;?-smeory .
CT-93-01 Marianne Kalsbeek The Vanilla Meta-Interpreter for Definite Logic Programs and Ambivalent Syntax

