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A note on the complexity of local search problems

Sophie Fischer

Abstract

In this paper, we study the complexity of finding a local optimum in com-
binatorial optimization problems. For many optimization problems derived from
NP-complete decision problems, e.g. MAXCLIQUE, a locally optimal solution start-
ing from a given solution can be found in (deterministic) polynomial time. It is not
known however, whether this is a property shared by all these problems. In partic-
ular the class of PLS-complete problems seems to form an exception. In this paper
we present several problems for which the question, whether for a given solution a
local optimum ezists within a polynomial number of PLS steps, is NP-complete.

1 Introduction

Combinatorial optimization problems form a central object of study in operations re-
search. Unfortunately, as for most of these problems the underlying decision problems
are NP-complete, there is very little hope of finding feasible algorithms that produce
optimal solutions (unless, of course, P=NP). Proving a problem to be difficult does not
make the problem go away. Research interest has therefore shifted from hunting after
optimal solutions, to directions in which near optimal solutions were expected to be
found. A very recent result by Arora et al. [ALM™92] shows that we cannot expect
too much in this direction also. In particular, they proved for several problems, that a
global optimum cannot be approached within a constant factor, unless P=NP. A third
approach for attacking the combinatorial optimization problems is to use local search
strategies. Instead of searching for (an approximation of) a global optimum, a given so-
lution is improved upon by polynomial time computable changes, until a local optimum
is reached. For several optimization problems with NP-complete decision variants, e.g.
CLIQUE, the question of producing a locally optimal solution from a given solution can
easily be seen to be polynomial time solvable. Johnson, Papadimitriou and Yannakakis
[JPY88] defined a class of optimization problems PLS that are sensitive to such an
attack. This class of problems has its own type of reductions (PLS-reductions), and
this type of reductions gives rise to the identification of complete problems in the class
PLS. We give a definition of a PLS-reduction in the next section, but the idea is that a
PLS reduction allows the transformation of an instance of a problem A into an instance
of a problem B with the property that a locally optimal solution found for problem B
can be translated back to a locally optimal solution for problem A. All transformations
are, of course, polynomial time bounded. In this way, computing a locally optimal



solution for A from a given solution cannot be harder than computing a locally optimal
solution from a given solution for B.

It is not at all clear which problems in PLS permit strategies of finding a local
optimum from a given solution in polynomial time. In particular, for the class of PLS-
complete problems this question is open to date. To obtain insight in the difficulty
of finding locally optimal solutions, Papadimitriou, Schaffer and Yannakakis [PSY90]
considered the following problem. Given a local search problem, a start solution s, and
a locally optimal solution s’, how hard is it to decide whether s’ is reachable from s? In
the same paper they proved that for some PLS problem this question is PSPACE-hard.

Deciding reachability of a given solution does not have to state anything about
feasibility of a local search approach for the problem. An optimum may be reachable,
yet any local search algorithm working up to that solution may have to spend an
exponential number of steps. We feel therefore, that the question whether a feasible
strategy exists is better formulated by the question: Given an instance of a local search
problem, and a start solution s; does there exist a locally optimal solution s’ that can
be reached from s within a polynomial number of PLS steps? This question cannot be
PSPACE-complete unless NP=PSPACE, since it is easily seen to be in NP. However
the question may still be difficult to answer. We prove for several problems in PLS
that this question is NP-complete. On the other hand there are also problems in PLS,
for which this question is easy to answer. We prove for several PLS-complete problems
that this question is in P.

2 Definitions and Notations

In this section we give definitions and notations, used in this paper. We use |a| to
denote the number of bits in string a.

Definition 2.1 Let o and 8 be two binary strings of length n. The hamming distance
between o and 3, denoted by HD(a, ), is the number of bits in which a and 3 differ.

Definition 2.2 An NP-optimization problem A, is a four-tuple, A = (I4,FSa, fa,0pta),
where

o I, is the set of instances of A. It is assumed that I4 is recognizable in polynomial
time.

o FS4 :I4 — 2191} gssigns to every instance I € I4 a set of feasible solutions
of I. There must be a polynomial ¢ and a polynomial time computable predicate
m, such that VI € I4, FSo(I) = {s;|s| < q(|I|) A=(I,s)}. The polynomial q¢ and
the predicate © only depend on A.

o fa:I4x{0,1}* — Ny assigns to every s € FS4(I) an integer value. This integer
value is the cost of feasible solution s. If s ¢ FSa(I), then fa(I,s) is undefined.
The function f4 can be computed in polynomzial time.



e opts € {mazx,min}, is used to indicate whether A is a minimization or a mazi-
mization problem.

A special class of NP-optimization problems is formed by the polynomially bounded
NP-optimization problems.

Definition 2.3 Let A be a NP-optimization problem. Let opt4(I) = opt{fa(I,s)|s €
FS4(I)}. The NP-optimization problem A is polynomially bounded if there is a poly-
nomial p, such that opt4(I) < p(|I|), VI € I4.

In case of computing optimal solutions for a NP-optimization problem is not feasible,
it is sometimes possible to compute near optimal solutions.

Definition 2.4 Let A = (14, FS 4, fa, min) be a NP-minimization problem. Algorithm
A approzimates A in polynomial time within constant k, if VI € I4, A(I) € FSa(I)
and l%%l < k, where s* € FS4(I), such that fs(I,s*) is minimal, and the
running time of A(I) is bounded by p4(|I|), pa a polynomial.

The same kind of definition can be given for a NP-maximization problem.
The complexity class PLS is the class of polynomial local search problems.

Definition 2.5 The class PLS contains the problems A = (I4,FSa,fa,opta,Na),
where

o (I4,FS4,fa,0pts) defines a NP-optimization problem with an extra condition.
It is required that VI € I4 an initial solution sg € FS4(I) can be computed in
polynomial time.

o Ny:Iux{0,1}* — 2{01" assigns to every s € FSA(I) a set of feasible solutions
S C FS4(I). Set S is called the set of neighbors of s, and satisfies

1. Vs € FS4(I) it can be decided in polynomial time whether s is locally opti-
mal, i.e. whether s has a better cost than all s' € Na(1,s).

2. Vs € FS4(I), if s is not locally optimal, a solution s' € N4(I,s) with a
better cost than s can be computed in polynomial time.

If s ¢ FSa(I), then Ng(I,s) ts undefined.

It is not necessarily true that every NP-optimization problem satisfies the requirement
that for every I € I4, an initial solution s € FS4(I) can be computed in polynomial
time. It is also not always true, that all neighbors of s can be enumerated in polynomial
time. It is even possible, that s has more than a polynomial number of neighbors.
The solutions of a feasible solution set, together with a neighborhood structure, can be
interpreted as a directed graph.



Definition 2.6 Let A = (I4,FSa,fa,0pta,Na) € PLS. For I € I4, define the local
search graph G4 = (V4,E4) as follows:

Va={s;s € FSa(I)}

Eyp= {(s’sl);s’ € NA(I> s) and fA(I: sl) > fA(I) s)}
The edge (s,s') is directed from s to s'.
Let s,s' € FSa(I). Feasible solution s' is reachable from feasible solution s, if there
is a directed path from s to s’ in G4(I). Such a directed path is called an augmenting
path.

Let A = (I4,FS4,fa,0pt4,N4) be a problem in PLS. A local search algorithm, given
I € 1,4, will first compute an initial solution s € FS4(I). This can be done in poly-
nomial time. Then the following step is repeated, until a locally optimal solution is
found.
The local search algorithm decides in polynomial time, whether s is locally optimal.
If s is not locally optimal, it computes a solution s' € N4(I,s) with a better cost
than s. The step is repeated with s = s'.
The local search algorithm will only go from one feasible solution to another with a
strictly better cost. Consider the local search graph G4. The local search algorithm
walks along the paths of this graph. One arc in G4 denotes one step of the local search
algorithm.

Johnson, Papadimitriou and Yannakakis were interested in the complexity of the fol-
lowing problem.

Given Instance I of problem A € PLS

Question Compute a locally optimal solution in FS4(I)
To get a better insight in the complexity of this problem, they introduced the PLS-
reduction.

Definition 2.7 Let A,B € PLS. A PLS-reduction from A to B is a tuple {f,g), such
that

o f and g are polynomial computable
o f:I4—1Ip

e g maps locally optimal solutions in FSp(f(I)) to locally optimal solutions in
FSa(l).

If A PLS-reduces to B, we write A <PLS B.

3 Estimating the distance to a locally optimal solution

Let A € PLS, s € FS4(I), I € I4. How difficult is it to decide whether a locally
optimal solution can be reached from s, using only a polynomial number of local search
steps? To investigate the complexity of this problem, we define for every A € PLS the



following problem A*.
Given I € I4, s € FS4(I), 0%, where d € Z+
Question Is there a path p and a locally optimal solution
§', such that p is an augmenting path between s and s’
and p has at most d intermediate vertices
The problem A* is called the starred version of problem A.

We will determine now for three problems A in PLS, the complexity of A*. The first
problem we consider is polynomially bounded. Its starred version is NP-complete. The
second problem we consider is PLS-complete and its starred version is NP-complete.
The third problem we consider is also PLS-complete, but for every solution we can
determine in polynomial time the distance to its nearest locally optimal solution.

Definition 3.1 U = (Iy, FSy, fu, opty, Ny ), where

o Iy = (M,z,p(|z|)), with M a non-deterministic Turing machine with its running
time bounded by p(|x|) on input .

FS(M,2,p(|z]))) = {(c,?); ¢ configuration of M,0 <t < 2p(|z]) }
ful{e,)) =1
e opty = mazx

Ny({(M,z,p(|z])), (c,t)) = {(d,t+1); t+1 < T and either ' can be reached from
¢, using one step of M, or c is a rejecting final configuration and c = '}

It is easy to see that U € PLS. It is also easy to see that U is polynomial bounded.
Theorem 3.1 U* is NP-complete

Proof

Let A € NP, M4 a non-deterministic polynomial bounded Turing machine deciding A.
Assume that M4 has a running time bounded by p4(|z|) on input .

Consider a function f, such that f(z) = ((Ma,z,pa(|z])), {co,1),pa(|z|)), where ¢ is
the initial configuration of M4 on z. This function f is a many-one reduction from A
to U*.

To see this, note that f can be computed in polynomial time. Furthermore, if z € A,
then M4 can reach an accepting configuration ¢, within p4(|z|) steps. So from (co, 1),
a solution (cg4,t) is reachable, where c, is an accepting final configuration of M,4, and
t < pa(|z|). The solution (c,,t) is locally optimal.

If £ ¢ A, then all locally optimal solutions reachable from (cg,1) are of the form
(cf,2pa(|z])), where ¢y is a rejecting final configuration of M4.

Therefore no locally optimal solution can be reached from (cg, 1), with a path of length
less than or equal to p4(|z]). O

The problem CircuitFlip, was the first problem proven to be PLS-complete, [JPY88].
It is defined as follows.



Definition 3.2 CircuitFlip= (Icp, FScrF, fcr,optcr, Nor), where
e Icr = {C; C is a Boolean circuit }

FScr(C) = { I=iyia...i,; I is an input for C}

for(C,I) = Y7 2iy;, where YmYm—1...y1 is the output of C on input I
® oplcr = max

o Nor(Cyir...ij...0n) = {I';3I' = 41...15...1n,1 < j < n}, where t; is the nega-
tion of i;. This neighborhood is called the Flip neighborhood.

In the CircuitFlip problem an input I for circuit C is sought, such that flipping a bit
of I does not improve the output of C. The question, stated at the beginning of this
section, for Circuit Flip is NP-complete.

Theorem 3.2 CircuitFlip* is NP-complete.

In the appendix we give a reduction g from A to CircuitFlip*, VA € NP. Thus we
proof Circuit Flip* NP-complete. Here we only give a sketch of the proof.

Let A € NP, M, a non-deterministic Turing machine recognizing A, and p4(|z|) a
bound on the running time of M4 on z, p a polynomial. Note that p4(|z|) is also a
bound on the length of a configuration of M4 on z. Let T be an integer. Reduction g
computes on input x of A a Boolean circuit C4, an initial solution and a distance. We
assume, that every configuration of My is followed by exactly two, not necessarily dif-
ferent configurations. Every configuration is time stamped, with a time stamp between
1 and T. With every configuration ¢ and time stamp t an input of Cy4 is associated.
Suppose M4 can go in one step from a configuration c to a configuration ¢’. For every
time stamp ¢, 1 <t < T, there is a local search path in FScr(C4) from an input of
C associated with ¢ and time stamp t to an input of C4 associated with ¢ and time
stamp ¢ + 1. Furthermore, for time stamp ¢ < T' and rejecting configuration c,, there
is a local search path from an input of C4 associated with ¢, and time stamp ¢ to an
input of C4 associated with ¢, and time stamp £ + 1.

Let co be the initial configuration of M4 on z, w the input of C4 associated with c
and time stamp 1. Let p; be a local search path from w to an input of C4 associated
with an accepting configuration. Let p, be a local search path from w to an input
associated with a rejecting final configuration and time stamp T'. Integer T is chosen
large enough, that p; is distinctively shorter than po.

Corollary 1 Let C be an instance for CircuitFlip, s € FScr(C) and k a constant.
There is no polynomial time algorithm that approzimates the distance from s to the
nearest locally optimal solution reachable from s within constant k, unless P=NP.

Proof
Let C be a Boolean circuit, s € FS¢r(C). Suppose p* is an augmenting (sub)path in
Gcr(C) from s to s* € FScr(C), with s* locally optimal, such that the length of p* is



minimal. Let A be an algorithm, that on input (C, s) computes a local optimal solution

s' € FScr(C) and an augmenting (sub)path in Gop(C), such that % < k.
Consider the reduction from A € NP to CircuitFlip* as described above. Notice that
k(3a(|z]) + 6)pa(|z|) < T for || large enough. Therefore, A can be used to decide in

polynomial time, whether x € A. O

There are also PLS-complete problems A, for which it can be decided in polynomial
time, whether there is a locally optimal solution s’ near a given solution s.

Definition 3.3 Let A € PLS, A = (I4,FSa,fa,maz,N4). Let VI € I4,Vs €
FSa(I), Smaz € Na(I,5), such that smaz > maz{fa(I,s')|s' € Na(I,s)}. Let VI € Iy,
T > fa(l,s), for all s € FSa(I).

Define A= (I5,FS;, f;,0ptz,Njz), where
[ I/i =IA

o FS;(I)={(s,t); s € FSA(I) and f4(I,s) <t < fa(l,Smaz), if s is not locally
optimal, and fs(I,s) <t < T, if s is locally optimal }

o fil{s,t)) =1
e opt; = max

o N;i(I,(s,t)) = {(s',t + 1); where s is locally optimals = s’ and t < T, or s
is not locally optimal, s = s’ and t < fa(I,smaz) or s is not locaily optimal,
s' € N4(I,s) and fa(I,s') =t+1}

Lemma 3.1 Let A € PLS, A as defined above. Then A <PLS A. For all I € I4 and
for all s € FS4(I), let smaz € Na(I,s) be a neighbor of s, such that fa(I,smaz) >
maz{fa(l,s')|s' € Na(I,s)}. Suppose that the value fa(I,Smaz) can be computed in
polynomial time. Then A € PLS.

Proof
Since it can be determined in polynomial time for I € I4, whether s € FS4(I), and
since fa(I, Smaz) can be computed in polynomial time, it can be determined in poly-
nomial time whether (s,t) € 7S ;(I). From this and the fact that A € PLS, it follows
that 4 € PLS.
The PLS-reduction (f,g) from A to A is defined as

f()=1I1

9(I,(s,T)) =5
Note that f and g can be computed in polynomial time. O

Lemma 3.2 There are A € PLS, such that A is PLS-complete.



Proof

This corollary follows, since there exist PLS-complete problems A, for which VI € I4
and Vs € FS4(I), Na(I,s) can be enumerated in polynomial time. The problem
CircuitFlip is such a problem. Other problems are for instance .Satisfiability with
the Flip neighborhood, and MaxzCut with the Swap neighborhood and T'SP with the
Lin-Kernighan neighborhood, see [Kre90], [SY91] and [Pap92]. O

Theorem 3.3 Let A € PLS. Define A as before. Then A* € P.

Proof

The only locally optimal solutions in FS ;(I) are (s,T'), where s is locally optimal in
FSa(I). Given (s,t), there is a locally optimal solution reachable from (s,t) using a
path with exactly T' — t vertices. Whether d > (T — t) can be decided in polynomial
time. O
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A The completeness of Circuit Flip*

In this section, we give a reduction g from A to CircuitFlip*, VA € NP. This proves
that CircuitFlip* is NP-complete.

Let A € NP, M4 a non-deterministic polynomial time bounded Turing machine rec-
ognizing A. Assume that the running time of M4 on input z is bounded by p4(|z]|)-
Note that p4(|z|) is also a bound on the length of a configuration of M4 on z. Since
the running time of M4 is polynomially bounded, p4(|z|) is a polynomial in |z|. The
reduction g described here, computes from My, p4 and = a Boolean circuit C4, an
initial solution s and a distance d. We start describing the Boolean circuit C4. Let
T = 92pra(lz])

Consider the computation tree of M4 on z. We assume that every configuration ¢ of
M 4 is followed by exactly two configurations c; and c;. We would like to translate com-
putation paths in the computation tree of M4 on = to augmenting paths in Gor(Ca),
where Gor(Cy) is the local search graph of FS(C4). Furthermore, augmenting paths
corresponding to computation paths that end in rejecting final configurations are dis-
tinctively longer than augmenting paths corresponding to computation paths that end
in accepting final configurations.

Let c,c; be configurations of M,4. Either ¢ € {1,2} and My can go from c to ¢; in
one step or ¢ = ¢; is a rejecting final configuration and ¢ < T'. The solutions (c,t) and
(ci,t+1) can differ in more than one bit. So they can not be neighbors in FScr(Cjy).
Instead, an augmenting path in Gop(Cy) exists from a solution associated with (c,t)
to a solution associated with (c;,t + 1). The length of this computation path is poly-
nomially bounded in |z|.

In general, a solution of FS¢p(Cy) is of the form ((c,t),(c,t'), (¢,1),n1,n2,11,12),
where c,c’ and ¢ are sequences of p4(|z|) bits, ¢, and t are sequences of log T' bits
and ny,ng,l; and Iy are bits. A solution associated with (c,t) is of the form s =
((c,1), (e, ), (c,t),0,0,0,0). The three components (c,t), (c',t') and (¢,%) are needed
to ensure that only augmenting paths exist from s to s’, where s is the solution in
FScr(Cy) associated with (c,t) and s’ is the solution in FScp(C4) associated with
(ciyt +1). The outputs of C4 are of the form 77;7273bob1b2b3bs618283, where b;,
0 < i < 4, are bits, 7 is a sequence of log T bits and 7;,6;, 1 < 7,5 < 3, are se-
quences of p4(|z|) + log T bits.

The inputs of C4 can be divided into a constant number of groups. Let a(|z|) =

pa(lz]) +log T = 3pa(|z]).

1. The first group consists of the reasonable inputs s. Input s is of the form s =
{(c, 1), (c, ), (c,),0,0,0,0), where c is a configuration of M4 of length p4(|z|) and
t < T. On input s, the output of Cy4 is 7032(12)+513a(12)+5  where 7 is the binary
representation of ¢.

2. The second group consists of inputs s of the form s = {(c, t), (c, ), (¢, t), n1, n2,0,0),
where n; =1, n; = 0,(i # j and ¢,j € {1,2}), t < T and c not an accepting final
configuration. The output of C4 on input s is ro3allzD+4113(|2)+5  where 7 is



10.

the binary representation of t.

The third group consists of inputs s of the form s = ((c, t), (c, ), (¢, t),n1,n2,0,0),
where n; = 1,n; = 0, (1 # j and 4,5 € {1,2}) and the hamming distance
between (¢,%) and (c;,t + 1) is k, 1 < k < a(|z]). The output of C4 on s is
ro2e(lzl)+ka(lz))—kgooo113(zD+5

The fourth group consists of inputs s of the form s = ((c, ), (c, t), (¢;, t+1),n1,n2,1,0),
where n; = 1,n; = 0, (i # j and 4,5 € {1,2}). The output of C4 on s is
02"‘("””1“‘(|’”|)0001113"‘“””')“"5 where 7 is the binary representation of ¢.

The fifth group consists of inputs s of the form s = {(c, t), (¢, t), (c;,t+1),n1,n2,1,0),
where n; = l; = 1,n; = l = 0 and the hamming distance between (c,t') and
(ciyt4+1)isk, 1 < k < a(|z|). The output of C4 on s is 702D +k12(lzI-k)gpp1113(I2)+5
where 7 is the binary representation of ¢.

. The sixth group consists of inputs s of the form s = {(c,t), (c;,t + 1), (ci,t +

1),n1,mn2,1,1), wheren; = 1,n; = 0. The output of C4 on sis ro(lzD12e(=)go11113(=D)+5
where 7 is the binary representation of t.

. The seventh group consists of inputs s of the form s = ((c,#'), (¢;,t + 1), (ci, t +

1),n1,n2,1,1), where n; = 1,n; = 0. Suppose that the hamming distance be-
tween (c/,t') and (c;, t+1) is k. The output of Cy4 on s is 70¥12e(l2)—kgp11113(I=D)+5
where 7 is the binary representation of ¢.

The eighth group consists of inputs s of the form s = ((¢;,t+1), (¢;,t+1), (ci, t +
1),0,0,1,1).

The output of C4 on s is 7132(1=)+401111132(2)+5 where 7 is the binary repre-
sentation of ¢.

. The ninth group consists of inputs s of the form s = ((¢;,t +1), (¢;,t + 1), (ci, t +

1),0,0,0,1).
The output of C4 on s is 7132(12D)+513a(12)+5 where 7 is the binary representation
of t.

The tenth group consists of all other possible inputs s to C4. To compute the out-
put of s, let k be the hamming distance between s and ((co, 1), (9, 1), (¢o,1),0,0,0,0).
Then the output of C4 on s is 08T p3allz)+513a(lz)—r(x,

The following lemma determines the form of locally optimal solutions in FScr(C4a)-

Lemma A.1 Every locally optimal solution in FScp(Ca) ts of the form

<(c’ t)) (c’ t)’ (C, t)) 0, O’ 0, O)’

where c is either an accepting final configuration, or ¢ is a rejecting final configuration
andt="T.

10



Proof

Let s be an input of Cy4, and therefore a solution in FScp(C4). Suppose that s does
not belong to the first group. Then it is always possible to flip a bit of s to improve
the output of C4. To see this consider every group, except the first group, separately.
So in these cases s can not be locally optimal.

Consider now s = ((c, 1), (c,t), (c,t),0,0,0,0).

If c is not a final configuration, flipping n; or ny improves the output.

If ¢ is a rejecting final configuration and ¢t < T, flipping the bit n; improves the output
of Cqons. O

The next lemma proves that computing steps of M4 appear as polynomially bounded
paths in FScpr(Ca).

Lemma A.2 Letc,c be configurations of M4 of length pa(|z|), and let t be an integer,
1 <t < T. Consider the solutions s = ((c,t),(c,t),(c,t),0,0,0,0) and s’ = ((c,t +
1),(¢,t+1),(¢,t+1),0,0,0,0) of FSor(Ca).

M4 can go in one step from ¢ to ¢ or c is a rejecting final configuration if and only if
there exists an augmenting path p from s to s’ such that intermediate vertices on p,
which are inputs of C4, do not belong to group 1 or group 10.

Proof

Consider a solution s = ((c,t), (¢, 1), (¢, t),0, O‘,O, 0). Suppose that ¢ is not a final con-
figuration. Let z; = ((¢/,t+1),(d,t+1),(c,t+1),0,0,0,0) and z5 = ((¢,t+1), (¢,t +
1), (¢,t+1),0,0,0,0), where ¢’ is the first configuration following ¢ and ¢ is the second
configuration following c. Solution s has exactly two neighbors s;, s} with a better cost
than s. The solutions s;, s} are achieved by flipping respectively the bit n;,ns from 0
tolin s.

We will show that all augmenting paths leaving s; pass 1. In the same manner, it can
be shown that all augmenting paths leaving s} pass z.

Let 5§ = ((c1,t1), (c2,t2), (c3,t3),m1,7n2,11,13) be a solution not in group 10. If ny = 1,
then flipping the ng bit results in a solution belonging to group 10. If ny = 1 and
l; = 0, the first two components (c;,%1), (c2,t2) must have the same value and lp = 0.
So flipping a bit in (c1,%1) or in (c2,%2) results in a solution with a cost worse than
§. Flipping the n; bit results in a solution belonging to either group 1 or group 10.
In both cases, the resulting solution has a cost worse than 5. Flipping bits in (c3,t3)
that increase the hamming distance between (c},t; + 1) and (cs,t3), where ¢} is the
first configuration following c;, result in a solution with a cost worse than s;. Finally,
as long as c3 is not the first configuration following c;, flipping the I; bit results in a
solution belonging to group 10.

Let solution sy = {((c,t), (c,t),(c,t + 1),1,0,0,0), HD(s1,s2) = r. Then every aug-
menting path leaving s; pass a sequence of vertices uj,us,...,u, = s2, in that order,
where vertices u; satisfy the following properties.

1. u; = {(¢t), (¢, t), (ciy t:),1,0,0,0), where 1 <7 < 7.
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2. HD(ui-1,u;) =1,1 < i <r, where ug = s3.

3. HD((ci-1,ti-1), (c',t + 1)) > HD((ci, ), (¢, £+ 1)), 1 Svi < 7, where (cg,t0) =
(c, ).

Vertex so has exactly one neighbor s3 with a better cost. The solution s3 is achieved
by flipping the I bit from 0 to 1.

Let 5 = ((c1,t1), (c2,t2), (c3,%3),n1,n2,11,1l2) be a solution not in group 10. If n; =1,
then flipping the ny bit from 0 to 1 results in a solution belonging to group 10. If
ny = l; = 1 and l; = 0, then c3 must be the first configuration following c¢;, and
t3 = t;1 + 1. Flipping any bit in c3,t3 or t; destroys this relation. The resulting
solutions belong to group 10. Flipping a bit in ¢; does not necessarily destroy this
relation. But in that case, the cost of the resulting solution & is not better than the
cost of 5. So § is not on the same augmenting path as 5. Flipping the n; bit results
in a solution belonging to group 10. Flipping the I; bit results in a solution belonging
to either group 4 or group 10. In both cases, the resulting solution has a cost worse
than 5. Flipping bits in (cg,t2) that increase the hamming distance between (cg,%2)
and (c2,t2) result in solutions with a cost worse than 3. Finally, as long as ¢z has not
the same value as c3 or t # t3, l» has the value 0.

Let solution s4 = ((c,t),(c,t +1),(c,t +1),1,0,0,0). Suppose HD(s3,s4) = r'. Then
s3 is followed on p by a sequence of vertices v1,v2,...,0 = 84, in that order, where
vertices v; satisfy the following properties.

1. v; = {(c, 1), (ci, ti), (', £ +1),1,0,1,0), where 1 <1 < r'.
2. HD(v;—1,v;) = 1,1 <1 <7/, where vy = s3.

3. HD((ci-1,ti—1),(c',t +1)) > HD((ci,t:),(c,t + 1)), 1 < i < 7', where (co,t0) =
(c,t).

Solution s4 has exactly one neighbor s; with a better solution. The solution ss5 is
achieved by flipping the l2 bit from 0 to 1.

Let 5 = ((c1,t1), (c2,t2), (c3,t3),n1,n2,11,l2) be a solution not in group 10. If n; =1,
then flipping the mg bit from 0 to 1 results in a solution belonging to group 10. If
ny = l; = la = 1, then the components (cg,t3) and (c3,?3) must have the same value.
So flipping a bit in (cg,t2) or (cs,t3) results in a solution with a cost worse than
5. Flipping the I; bit results in a solution belonging to group 10. Flipping the I3 bit
results in a solution belonging either to group 6 or group 10. In both cases the resulting
solution has a cost worse than 5. While ¢; # ¢ or 1 # t2, flipping the n; bit results in
a solution belonging to group 10. Flipping bits in (c1,%;1) that increase the hamming
distance between (c1,t1) and (cg,t2) results in a solution with a cost worse than 5.
Consider solution s = {(c/,t+1),(c/,t+1),(c',t+1),1,0,0,0). Suppose HD(s5, s6) = 7.
Then s is followed on p by a sequence of vertices wi,ws,..., w7 = S¢, in that order,
where vertices w; satisfy the following properties.

1. w; = {(ci, t;), (¢, t +1),(c,t+1),1,0,1,1), where 1 <7 < 7.

12



2. HD(w;—1,w;) = 1,1 < ¢ < 7, where wg = ss.

3. HD((ci-1,ti-1),(c'st + 1)) > HD((ci, t:), (st + 1)), 1 <@ < 7, where (co,t0) =
(¢, ).

Solution sg has one neighbor s; with a better cost. The solution s7 is achieved by
flipping the n; bit from 1 to 0.

Solution s7 has one neighbor sg with a better cost. The solution sg is achieved by
flipping the I; bit from 1 to 0.

Solution sg has one neighbor z; with a better cost. The solution z; is achieved by
flipping the Ils bit from 1 to 0.

It is easy to see that no intermediate vertices on any augmenting path from s; to x; is
a locally optimal solution. Since s and s; can not be locally optimal, there is at least
one augmenting path from s to z;.

Before, we assumed that ¢ was not a final configuration. Suppose that c is a rejecting
final configuration. Let z1 = ((¢/,t+1),(c/,t+1),(c/,t+1),0,0,0,0). In the same way
as above it can be shown that there is an augmenting path leaving s and pass z;, and
that all augmenting paths leaving s pass ;. O

Theorem A.1 CircuitFlip* is NP-complete.

Proof

Let A € NP, M4 a non-deterministic polynomial time bounded Turing machine recog-
nizing A. Assume that the running time of M4 on input « is bounded by p4(|z|). Note
that p4(|z|) is also a bound on the maximal length of a configuration of M4 on z. Let
T = 2?74(l2D) and a(|z|) = pa(|2|) +log T = 3pa(|).

Define reduction g from A to CircuitFlip* as f(z) = (Ca, s = {(co, 1), (¢co,1), (co,1),0,
0,0,0),pa(|z|)(3a(|z|) + 6)), where Cjy4 is constructed as described before, cg is the ini-
tial configuration of M4 on z and ¢ is a sequence of log T bits. Note that for every input
of C4, the output of C4 can be computed in deterministic polynomial time. Therefore,
C4 can be computed in polynomial time. For more details see [BDG88].

Suppose ¢ € A. Then there is a computation path cg,cy,. .., c; with ¢; an accepting final
configuration and t < p4(|z|). Using lemma A.2, the solution s’ = {(cz,t'), (¢t,t'), (¢, '), 0,
0,0,0) is reachable from s, and ' < t(3a(|z|) + 6) < pa(|z])(3a(|z|) + 6). It is easy to
see that s’ is local optimal. Therefore, f(z) € Circuit Flip*.

Suppose z ¢ A. Then every computation path in the computation tree of M4 on z
reaches a rejecting final configuration. Using lemma A.2, every augmenting path p in
Gcr(C4) leaving s reaches only locally optimal solutions of the form ((¢/, T, (¢, T, (¢, T),
0,0,0,0), with ¢’ a rejecting final configuration of M,4. The length of p is T' >
pa(lz|)(Ba(]z|) + 6). So f(z) ¢ CircuitFlip*. O
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