=

Institute for Logic, Language and Computation

LOGIC OF TRANSITION SYSTEMS

Johan van Benthem
Jan Bergstra

ILLC Prepublication Series
for Computation and Complexity Theory CT-93-03

%
&
%

University of Amsterdam

The ILLC Prepublication Series

1990

Logic, Semantics and Philosophy of Language . .

LP-90-01 Jaap van der Does A Generalized Quantifier Logic for Naked Infinitives

LP-90-02 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar

LP-90-03 Renate Bartsch Concept Formation and Concept Composition

LP-90-04 Aarne Ranta Intuitionistic Categorial Grammar

LP-90-05 Patrick Blackburn Nominal Tense Logic

LP-90-06 Gennaro Chierchia The Variab]igv of Impersonal Subjects

LP-90-07 Gennaro Chierchia Anaphora and Dynamic Logic

LP-90-08 Herman Hendriks Flekible Montague Grammar

LP-90-09 Paul Dekker The Scope of Negation in Discourse, towards a Flexible Dynamic Montague grammar
LP-90-10 Theo M.V. Janssen Models for Discourse Markers

LP-90-11 Johan van Benthem General Dynamics

LP-90-12 Serge Lapierre A Functional Partial Semantics for Intensional Logic

LP-90-13 Zhisheng Huang Logics for Belief Dependence

LP-90-14 Jeroen Groenendijk, Martin Stokhof Two Theories of Dynamic Semantics

LP-90-15 Maarten de Rijke The Modal Logic of Ine%uality

LP-90-16 Zhisheng Huang, Karen Kwast Awareness, Negation and Logical Omniscience

LP-90-17 Paul Dekker Existential Disclosure, Implicit Arguments in Dynamic Semantics

Mathematical Logic and Foundations
ML-90-01 Harold Schellinx Isomorphisms and Non-Isomorphisms of Graph Models

ML-90-02 Jaap van Oosten A Semantical Proof of De Jongh's Theorem

ML-90-03 Yde Venema Relational Games

ML-90-04 Maarten de Rijke Unary Interpretability Logic

ML-90-05 Domenico Zambella Sequences with Simple Initial S:&ments

ML-90-06 Jaap van Oosten Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a Solution to a
Problem of F. Richman

ML.-90-07 Maarten de Rijke A Note on the Interpretability Logic of Finitely Axiomatized Theories

ML-90-08 Harold Schellinx Some Syntactical Observations on Linear Logic

ML-90-09 Dick de Jongh, Duccio Pianigiani ~ Solution of a Problem of David Guaspari

ML-90-10 Michiel van balgen Randomness in Set Theory

ML-90-11 Paul C. Gilmore The Consistency of an Extended NaDSet

Computation and Complexity Theory

CT-90-01 John Tromp, Peter van Emde Boas Associative Storage Modification Machines

CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette A Normal Form for PCSJ Expressions

CT-90-03 Ricard Gavalda, Leen Torenvliet, Osaxsnu Watanabe, José L. Balcdzar Generalized Kolmogorov Complexity in Relativized
eparations

CT-90-04 Harry Buhrman, Edith Spaan, Leen Toreg::'rliet Bounded Reductions

CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint Expressions

CT-90-06 Michiel Smid, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial

CT-90-07 Kees Doets Greatest Fixed Points of Logic Programs

CT-90-08 Fred de Geus, Emest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas Physiological Modelling using RL

CT-90-09 Roel de Vrijer Unique Normal Forms for Combinatory Logic with Parallel

Other Prepublications Conditional, a case study in condition;i rewritin,

X-90-01 A.S. Troelstra_ Remarks on Intuitionism and the Philosophy of ematics, Revised Version

X-90-02 Maarten de Rijke Some Chapters on Interpretability Logic

X-90-03 L.D. Beklemishev On the Complexity of Arithmetical Interpretations of Modal Formulae

X-90-04 Annual Report 1989

X-90-05 Valentin Shehtman Derived Sets in Euclidean Spaces and Modal Logic

X-90-06 Valentin Goranko, Solomon Passy Using the Universal Modality: Gains and Questions

X-90-07 V.Yu. Shavrukov The Lindenbaum Fixed Point Algebra is Undecidable

X-90-08 L.D. Beklemishev Provability Logics for Natural Turing Progressions of Arithmetical Theories

X-90-09 V.Yu. Shavrukov On Rosser's Provability Predicate

X-90-10 Sieger van Denneheuvel, Peter van Emde Boas An Overview of the Rule Language RL/1

X-90-11 Alessandra Carbone Provable Fixed points in IAy+€), revised version

X-90-12 Maarten de Rijke Bi-Unary Intergretability Logic

X-90-13 K.N. Ignatiev]&zahiapall;irdze's olymodal Logic: Arithmetical Completeness, Fixed Point Property,
g's Pro

X-90-14 L.A. Chagrova Undecidable Problems in Correspondence Theory

X-90-15 A.S. Troelstra Lectures on Linear Logic

1991

Logic, Semantics and Philosophy of Langauge

LP-91-01 Wiebe van der Hoek, Maarten de Rijke Generalized P%anlsiﬁers and Modal Logic
te Semantics

LP-91-02 Frank Veltman Defaults in Uj

LP-91-03 Willem Groeneveld _l[)ﬁ'namic Semantics and Circular Propositions

LP-91-04 Makoto Kanazawa e Lambek Calculus enriched with Additional Connectives

LP-91-05 Zhisheng Huang, Peter van Emde Boa% The Schl(:enmakers Paradox: Its Solution in a Belief Dependence
Tamewor

LP-91-06 Zhisheng Huan§, Peter van Emde Boas Belief Dependence, Revision and Persistence

LP-91-07 Henk Verkuyl, vander Does The Semantics of Plural Noun Phrases

LP-91-08 Victor Sénchez Valencia Categorial Grammar and Natural Reasoning

LP-91-09 Arthur Nieuwendijk Semantics and Comparative Logic

LP-91-10 Johan van Benthem Logic and the Flow of Information

Mathematical Logic and Foundations

ML-91-01 Yde Venema Cylindric Modal Logic . .

ML-91-02 Alessandro Berarducci, Rineke Verbrugge On the Metamathematics of Weak Theories) .

ML-91-03 Domenico Zambella On the Proofs of Arithmetical Completeness for Interpretability Logic

ML-91-04 Raymond Hoofman, Harold Schellinx Collapsing Graph Models by Preorders

ML-91-05 A.S. Troelstra History of Constructivism in the Twentieth Century

ML-91-06 Inge Bethke Finig%ge Structures within Combinatory Algebras

ML-91-07 Yde Venema Modal Derivation Rules

ML-91-08 Inge Bethke Going Stable in Graph Models

ML-91-09 V.Yu. Shavrukov A Note on the Diagonalizable Algebras of PA and ZF

ML-91-10 Maarten de Rijke, Yde Venema Sahl%rist's Theorem for Boolean Algebras with Operators

ML-91-11 Rineke Verbrugge Feasible Interpretability

ML-91-12 Johan van Benthem Modal Frame Classes, revisited

Computation and Complexity Theory . . .

CT—gl-Ol Ming Li:’gaul .B. Vitdnyi Kolmogorov Complexity Arguments in Combinatorics

CT-91-02 Ming Li, John Tromp, Paul M.B. Vitdnyi How to Share Concurrent Wait-Free Variables

CT-91-03 Ming Li, Paul M.B. Vitanyi éverafe Case Complexity under the Universal Distribution Equals Worst Case
omplexity

CT-91-04 Sieger van Denneheuvel, Karen Kwast Weak Equivalence .

CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak valence for Constraint Sets

CT-91-06 Edith SFaan Census Techniques on Relativized Space Classes

CT-91-07 Karen L. Kwast The Incomplete Database

CT-91-08 Kees Doets Levationis Laus . o .
CT-91-09 Ming Li, Paul M.B. Vitinyi Combinatorial Properties of Finite Sequences with high Kolmogorov Complexity

E Institute for Logic, Language and Computation

Plantage Muidergracht 24
1018TV Amsterdam
Telephone 020-525.6051, Fax: 020-525.5101

LOGIC OF TRANSITION SYSTEMS

Johan van Benthem
Jan Bergstra

Department of Mathematics and Computer Science
University of Amsterdam

ILLC Prepublications
for Computation and Complexity Theory
ISSN 0928-3323

Coordinating editor: Dick de Jongh received March 1993

LOGIC OF TRANSITION SYSTEMS

Johan van Benthem & Jan Bergstra

Institute for Logic, Language and Computation
University of Amsterdam

March 1993

1 Introduction

Labeled transition systems are key structures for modeling computation. In this paper,
we show how they lend themselves to ordinary logical analysis (without any special
new formalisms), by introducing their standard first-order theory. This perspective
enables us to raise several basic model-theoretic questions of definability,
axiomatization and preservation for various notions of process equivalence found in
the computational literature, and answer them using well-known logical techniques
(including the Compactness theorem, Saturation and Ehrenfeucht games). Moreover,
we consider what happens to this general theory when one restricts attention to
special classes of transition systems (in particular, finite ones), as well as extended
logical languages (in particular, infinitary first-order logic). We hope that this puts
standard logical formalisms on the map as a serious option for a theory of
computational processes. As a side benefit, our approach increases comparability with
several other existing formalisms over labeled transition systems (such as Process
Algebra or Modal Logic). We provide some pointers to this effect, too.

2 Transition Systems

2.1 Basic Structures

Definition A labeled transition system (LTS) is atriple (S, A, —), where S is
a set of 'states’, A of atomic 'actions', and — a ternary relation over SxAxS
providing 'labeled transitions' —2 between states for each atomic action a.

Remark A mathematically equivalent definition would use structures of the
form (S, {Rala€A}), where the R, are binary transition relations between states.

These are, of course, the well-known Kripke models for polymodal logic.

In the literature, one finds several further elements to LTSs. For instance, there may
be special arrows —ay indicating a succesfully completed a-transition, or special
markers for 'termination’ or 'dead-lock’. This structure may be added as follows:

v is a unary predicate holding at 'success' or 'termination' states,

0 is a unary predicate holding at 'failure’ or 'dead-lock’ states.
If desired, these may be provided with suitable meaning postulates, such as

Vx (VX v8x — — JyRaxy) (forall acA) ,

Vx (/\aeA—' Jy Raxy — Vx v 8x) ,

Vx (Vx = —8x)
LTSs decorated with such unary predicates will be called labeled transition systems'
too, whenever appropriate (in practice, this will not cause any confusion).

2.2 Notions of Process Equivalence

Two different LTSs may be instances of the same 'process'. The appropriate notion of
'process equivalence' here may depend on one's computational aims, and therefore,
we consider a hierarchy from coarser to finer grain levels of comparison. There are
two notable choice points in setting up these definitions. We shall mainly compare
different LTSs, but the literature often compares states inside one 'super LTS'. These
are equivalent views, as one can always merge two different LTSs into their disjoint
union (for some purposes below, the latter is even the more convenient perspective).
But a genuine choice is the following. One can view process equivalence relations
either as 'respecting’ certain observational properties in two LTSs under comparison
(this is the "if" direction in the definitions to follow) or as completely 'determined’ by
the latter properties (this is the "iff" version). Both alternatives occur in the literature.

Definition Let M=(S,A, >)and M'=(S', A, »') be two LTSs. A binary
relation = over SxS' is afinite trace equivalence if, whenever s=s', then s, s' start

the same successful finite traces, i.e., finite sequences of labeled transitions ending in
a success state. (Thus, we presuppose the enriched notion of LTS here.) If the relation
= consists of precisely the latter pairs, then it is a complete finite trace equivalence.

This is about the coarsest notion of 'behavioural equivalence' for processes. We now

consider some progressively more demanding comparisons.

Definition A relation = as above is a full trace equivalence if any two states with
s=s' start the same countable traces. The latter include all terminating finite traces
(successful or not) and all countably infinite ones s =s; —2l 55 532 s3 —»a3 |

Complete full trace equivalence is the case where the latter property even defines =.

The next notion is basic in both the computational and the modal literature.
Essentially, it adds respect for the 'choice structure' of processes:

Definition A binary relation = between two LTSs is a bisimulation if the

following back-and-forth conditions hold:

6} if s=s' and s —2t, then there exists t' with s' —»at', s'st

(>ii) and vice versa.

Moreover, = should only connect states agreeing in their atomic markings (usually
just \ and 9). The maximal bisimulation between two LTSs is the union of all

bisimulations between them (which is necessarily a bisimulation itself).
Finally, we consider one even stronger notion of process equivalence.

Definition A relation = is a generated graph isomorphism if, whenever s=s',
then the 'generated subLTSs' Mg, M’y are isomorphic. (The latter are the submodels
containing s, s' and all states that can be reached from these via some finite sequence
of available atomic transitions.) As a defining characteristic again, the latter relation

gives complete generated graph isomorphism.

Here are some simple connections between these various notions, stated with some
obvious abbreviations (the relevant proofs and counter-examples are straightforward):

Proposition (i) GGI implies BISIM implies FullTE implies FinTE,
(i) None of these implications can be reversed.

Evidently, one can vary the above notions of process equivalence in several ways.
One major purpose of our logical analysis below is to provide a general model-
theoretic perspective upon all of them.

3 Logical Description Languages
3.1 Standard Formalisms

Labeled transition systems are standard graph-like mathematical structures, and as
such, they may be described using standard logical formalisms. Here, we shall work

mainly with the following two languages:

First-Order Predicate Logic over LTSs (Low) (cf. Chang&Keisler 1973)
The basic vocabulary consists of binary predicates {Ralac A} and unary predicates
P (including v, 9), while the logical operators are the usual Boolean connectives and

first-order quantifiers with variables ranging over states in LTSs. Henceforth, we shall
use both notations Raxy and x—3y for relational atoms, where the choice depends

on what fits best with the relevant (logical or computational) literature.

Example Some Basic Computational Notions
'Action a is deterministic’ Vxy ((RaXy A Raxz = y=2)

'Action a is confluent' Vxyz (Raxy A Raxz) = Ju (Rayu A Razu))
'Action a enables b’ Vxy (Raxy — 3z Rpyz)
"Tree-like LTS’ Vxyzu ((Raxy A Rpzu) = —y=u) for all distinct actions a, b.

For many computational purposes, however, the natural formalization involves some
form of 'finiteness' beyond the expressive power of the first-order language, and

hence, the following formalism is sometimes relevant too:

Infinitary Predicate Logic over LTSs (Loiw) (cf. Keisler 1971)
Its vocabulary is the same as above, while the logical operations now also include
countably infinite conjunctions and disjunctions of formulas in at most some fixed

finite number of free variables.

Example Expressing Some Higher-Order Computational Notions

(One has to assume here that there are only countably many atomic actions.)

"Acyclic LTS’ A1, a1, .., a0t d = X1 Xn (Alsicn X =% Xis1 A X1=Xp))
'Action a terminates' VX (VX) v Vps1 3x1 ..Xn (A1<icn Xi 22 Xis1 A V(Xn))) .

This formalism has been advocatgd in Salwicki 1970, Goldblatt 1982, Harel 1984.
Some natural computational notions are still beyond it, witness Section 3.3 below.

Remark First-Orderization

In Logic, things are not always what they seem. Higher-order formulations may often
be 'first-orderized' after all by bringing in suitable additional vocabulary. For instance,
we can also design a two-sorted first-order version of Termination by taking 'paths’ or
'branches' to be a new sort of object (in addition to states), with some plausible
predicates about them, and then stating that every state lies on a succesful a-path.
Such a technical move may even have intrinsic interest, leading to an explicit theory
of computation paths. Other cases of this first-order strategy, on LTSs with silent
steps (cf. Section 10 below) occur in Van Benthem, Van Eyck & Stebletsova 1993.

3.2 Other Formalisms over Transition Systems

3.2.1 Modal and Dynamic Logic

At least two other well-developed traditions are around in the study of LTSs. First,
there are Modal and Dynamic Logics over such models (Harel 1984, Stirling 1989),
with the usual box and diamond notations. For our present purposes, these may be
viewed as fragments of the above first-order and higher-order languages via the so-
called 'standard translation' (cf. van Benthem 1985), which works as illustrated here:

Example Sample Modal Translations
(i) [a]<buc>p translatesinto Vy (Raxy — 3z((Rpyz v Reyz) A Pz)),
(ii) <a*>[blq translatesinto Ty (V neN Ra?’xy A ¥z (Rpyz — Qz))).

From now on, we will work with the following notion.

Definition The modal fragment of the above first-order logic consists of all those
formulas that can be formed using unary atoms, Boolean operations, and restricted
existential quantifiers of the form 3z (Rayz A (with y, z distinct variables) .

Usually, we shall be concerned with unary formulas ¢ (x) describing properties of
states — although Dynamic Logic adds binary formulas =n (X, y) for program
expressions denoting binary transition relations between states (cf. Section 7 below).

3.2.2 Process Algebra

Next, there is the tradition of Process Algebra, which considers LTSs consisting of
processes with additional structure (Milner 1980, Bergstra & Klop 1984). For
instance, one typical axiom system to be used in Section 11 below looks as follows
(this is a fragment of the system CCS in Milner 1980). There is one binary operation
of addition or 'choice' (+) plus a family of unary operations a; (‘prefixing action a’),
satisfying the following algebraic identities: '

Example Elementary Process Algebra (EPA)

) X+X =X idempotence
2) X+y =y+Xx commutativity
B x+(y+z) =(x+y)+z associativity
4 O+x=x zero element

There are actually several ways of relating the two approaches. In Section 11 below,
we shall bring in ideas from Process Algebra by endowing LTSs with additional
operations on states. But one can also think of Process Algebra as a calculus for
combining whole LTSs into new ones, via operations of 'choice’, ‘product’ or 'merge’'
mirroring the algebraic operations. On the latter view, Modal Logic is an 'internal’
description language for LTSs, which is in harmony with the latter 'external’ calculus.
(Van Benthem, Van Eyck & Stebletsova 1993 presents a more detailed comparison).

3.2.3 Standard Logic of Both Actions and States

Finally, from the first-order point of view on LTSs, one could describe operational
structure also by enriching the vocabulary type as follows. Introduce a second sort of
objects called actions in addition to states, with corresponding quantifiers and
variables. (Also, specific atomic actions might have constant names in the language.)
Labeled transition systems are still models for this language, with the domains S and
A now treated on a par. The earlier arrow —> then becomes a ternary predicate letter
relating actions and states, and one can directly express various new computational
properties, both first-order and infinitary, such as:

 'Endpoints exist'": dx —da x>y,

* 'Finite branching'": van21 Jdaj...apVay (x—2y — V1_<_i_<_n a=a)
 'Every action has a converse': Va3b Vxy (x—2y < y—bx),

» 'Actions are extensional': Vab (Vxy (x—2y <> x—by) = a=b).

This richer perspective (not pursued here) is a natural next stage of formalization, and
it suggests several logical issues concerning the interplay of state and action domains
for LTSs that seem to have escaped the literature so far. Here are two illustrations.
@)) Each assertion in the earlier state languages refers to at most some countable
set of specific atomic actions, and hence it is invariant for arbitrary changes in the
action domain of LTSs leaving all transitions for these 'relevant actions' undisturbed.
This invariance is easily turned into a semantic characterization of what may be called
the 'pure state fragment' of the full two-sorted state-action formalism, which only
allows quantification over states, not over actions.

2 A natural related question is which statements are preserved when actions are
added to an LTS (while keeping the state domain fixed). The answer is a two-sorted
Los-type Preservation Theorem, as found in van Benthem 1985 (Lemma 17.19).

Modulo logical equivalence, these are all formulas constructed using atoms and their
negations, the connectives A and v , quantifiers V, 3 over states and only

existential quantifiers 3 over actions. Many further logical questions concerning

state languages found in this paper can be extended to this broader formalism too.

3.3 From Languages to Simulations, and Conversely

One striking difference between the more 'logical' and the more 'computational’
literature in this area is one of emphasis. On the former approach, one tends to start
from a given formalism, and then studies its expressive power by inventing some
matching notion of 'semantic equivalence' between models for which the language is
invariant. A typical example of this route are Ehrenfeucht games in first-order logic
(cf. Immerman & Kozen 1987, Doets 1987, 1993). In the computational approach,
however, one rather tends to start from intuitions concerning processes and their
equivalences, and then designs some appropriate language respecting the latter. Sub
specie aeternitatis, however, both approaches are two sides of the same coin, and
often produce the same results. Thus, the computational notion of bisimulation (Park
1981) had-already been proposed as the preferred invariance for modal logic in Van
Benthem 1976 (generalizing the notion of a 'p-morphism' going back to De Jongh &
Troelstra 1966) — and in fact, it may also be seen as a clipped version of Ehrenfeucht
Games, appropriate to the modal fragment of our first-order logic of LTSs.

Here are some specific examples illustrating this general point. As we shall see in
Section 6), the first-order formulas ¢ (x) expressing unary properties of states that
are invariant under bisimulation are essentially those earlier 'modal’ ones having one
free variable x . The latter reflect precisely the back-and-forth steps in the above
definition of bisimulation. From a more general point of view, all these formulas
belong to the 'two-variable fragment' of predicate logic, whose formulas can be
written using only the two variables x,y (free or bound). This fragment also allows
us to express further properties of LTSs, referring also, e.g., to predecessors rather
than successors in the ordering of labeled transitions. Its proper notion of invariance
involves an interesting extension of the notion of bisimulation to matchings between
pairs of states, where the next state can now be chosen freely:

Definition A 2-simulation is arelation C between states in S and S' as well as
between pairs of states in S and pairs of states in S' satisfying:
@) the matches in C are partial isomorphisms
with respect to all predicates of our first-order language,
(iia) if s C s', then for arbitrary states t in S,
there exists some t' in S' with (s,t) C (s, t),
(iib) and vice versa,
(iii) C is closed under taking restrictions, that is,
if (s,t) C(s',t"),then bothsCs' and tCt .

This notion is stronger than bisimulation, in that it allows even arbitrary choices of
states in the back-and-forth clauses (not just successors of the previous one). An easy
induction shows that C-matching states or pairs of states in two LTSs satisfy the
same formulas from the two-variable fragment of first-order logic. This notion may
be generalized to arbitrary n-variable fragments, with an obvious corresponding
notion of n-simulation involving matching sequences of states up to length n. Then
we have the following general result (for a proof, cf. Van Benthem 1991, Chapter 17):

Theorem A predicate-logical formula ¢ (Xi, ..., Xp) is definable inside the
n—variable fragment if and only if it is invariant for n—simulations.

The next level beyond ordinary bisimulation in this hierarchy has n=3 . Here lie the
usual languages of Temporal Logic, which allow one to also express properties of
intermediate stages of labeled transitions, such as the well-known operator

Until, pq dy (Py A Vz ((x—3z A z—2y) = Qz)) .
Such fragments suggests intermediate notions of 3-simulation, working only with
various restricted choices for the next state continuing the current matching.

4 Definability of Process Equivalences

What is the complexity of definition for the various notions of process equivalence
introduced in the above? For the purposes of this section, we think of single models
and let our relations = connect pairs of states inside them. Let K be the class of
models where this relation satisfies one of the above definitions. We call the relevant

notion of process equivalence elementary ('EC' for short) if K is definable by means
of some first-order sentence T(=), and ECp if it is definable by means of some

infinite set of first-order sentences T(=) . An obvious example is 'bisimulation’,
whose very definition has a simple first-order form, whence it is EC — at least for the
case where only finitely many atomic actions are considered. We shall make the latter

assumption henceforth, to exclude trivial sources of complexity.

Remark Explicit Definability

One might also consider a stronger notion of definability for the relevant classes K,
namely in the form Vxy (x=y < ¢ (X, y)), where the first-order formula ¢ does
not contain the predicate = . Obviously, this will imply ECness, but the converse
does not hold. 'Bisimulation' is a counter-example, as may be seen by an application
of Padoa's Method: the same LTS can support different bisimulations. In fact, by
Beth's Theorem, explicit definability of this kind is equivalent to ECa-ness plus
implicit definability of the relation = in terms of the other vocabulary.

Finite Trace Equivalence
From the earlier definition of FinTE, the following is easy to read off:
Proposition Finite Trace Equivalence is ECx.

Proof The above definition had the form Vxy (x=y — (¢(x) <> ¢(y))) , where the
formulas ¢ are arbitrary 'succesful path formulas' of the form
Ixy X—=21x1 A ... A Ixp (Xp-1—2%5 A V(Xp)) ...). [|

Proposition Finite Trace Equivalence is not EC .

Proof We refute this definability, even in the case with just one atomic label a .
Let ¢ (=) be any purported first-order definition, of quantifier depth N . Consider the

following two models. One has two disjoint chains of length 2N ending with success,
starting at states which are =-related (and this match is the only pair in =), the other

has two such chains of lengths 2N, 2N41 :

R L R 2N
Il
L S S 2N
I JE P 2N
]l
L S S P 2N4+1

Using an Ehrenfeucht game just as in the usual completeness proofs for linear order
(cf. Doets 1987), one easily shows that these two models are indistinguishable by
means of first-order sentences up to quantifer depth N . The point is to match the
obvious initial and terminal points in the above two LTSs, while maintaining a
judicious ‘invariant' throughout with i more moves to go: viz. on both sides, keeping
relative distances < 2i-1 equal between all points chosen so far. Our initial situation
will then allow the 'analogy' player N safe moves against any opponent. But this
yields a contradiction, since the relation = is a finite trace equivalence in the first
model, but not in the second, whereas the purported definition ¢ (=) cannot see any

difference between these two LTSs. [|

Proposition ~ Complete Finite Trace Equivalence is not ECa .

Proof Suppose that T(=) defined this notion. Then we have, in particular, that
T, { ¢ (x) & 0 (y) | all succesful path formulas ¢ } F x=y .

By the Compactness Theorem, some finite set of such path equivalences already
implies x=y on the basis of T . But then we have complete finite trace equivalence

whenever we have it up to some fixed finite depth: which is plainly false.]

Full Trace Equivalence
Proposition Full Trace Equivalence is not ECy .

Proof Consider one atomic transition only. Take an LTS N consisting of one root
from which finite branches fan out of arbitrary length, all ending in success. By a
standard Compactness argument, N has an elementary extension N' containing at
least one infinite branch from the root. Our first model M consists of two disjoint
copies of N (denoted in our language by unary predicates A , B) and the second
model M' of the same A-copy but with the elementary extension N' inits B-part.
Moreover, in both cases, the relation = consists of just the pair connecting the roots

in the two components. In a picture, we have:

p
i
=5
- []
\ -
X
e
I
S
‘Y

Claim M' is an elementary extension of M.

Proof In these models, any first-order formula is equivalent to a Boolean compound
of completely A-relativized or B-relativized formulas whose free variables all lie
within the relevant component. In particular, the atom ‘x=y' amounts to stating that
one of these states is in A and the other in B and that both are roots within their
component, while x—3y only holds with x, y lying in the same component. This
decomposition then allows us to use the two separate facts that both components of
M' are elementary extensions of their counterparts in M. |

To complete the main argument, it is clear that = is a full trace equivalence in M,

but not in M' : whence it cannot be first-order definable. |

10

Proposition ~ Complete Full Trace Equivalence is not ECa .

Proof A simple counter-example runs as follows. On the LTS (N, >) with transitions
(i, j) with i>j and success only at the initial state O , identity of full trace sets
coincides with real identity, whence = must be equal to = (i.e., the first-order
formula Vxy (x=y < x=y) holds). Now take any elementary extension of this LTS:

it will contain at least one copy of the integers in its tail, while = still remains real
identity. But all states in the integer tails have the same trace sets, and hence share
complete full trace equivalence. This shows that the class to be defined is not closed
under elementary equivalence, and so it cannot be first-order definable. |

Digression =~ Compatible Process Equivalences
There is a more general reason for the previous outcome. Except for bisimulation, the

earlier notions of process equivalence fell into the following pattern. Some ‘complete’
invariance relation = is defined by a structural condition on labeling patterns, while

there is a weaker 'compatible’ version that makes the relation merely imply the former.
(Alternatively, the former is the 'completion’ of the latter.) Now, we have this

Observation If some complete process equivalence is ECp, then so is its

'compatible version', and in fact, both will be EC.

Proof Suppose that a first-order set T (=) defines our complete process equivalence.
The uniqueness of a completed equivalence implies that = is implicitly defined in all
models of T (in terms of the remaining vocabulary). Hence, by Beth's Definability
Theorem, there must be some explicit first-order definition ¢ (notinvolving =) such
that T F Vxy (x=y < ¢ (X, y)) . By a standard argument then, the theory T (=)

may be equivalently formulated as (1) the set of all its =-free consequences, plus
(2) the preceding definition for = . Moreover, since any LTS can be expanded with
the completed equivalence, the former part must be universally valid (no LTS can be
excluded), so that T is esentially just the latter definition. But then, it is immediate
that the simple version of our process equivalence will be defined by the implication
Vxy (x5y = ¢ (x,¥)). m

'Compatibility' is a general operation generating new process equivalences from old

ones, and one can study various questions of definability and axiomatizability from
this paper systematically under this view-point. We do not pursue this matter here.

11

Bisimulation
As was already observed before, we have (at least in the case with finitely many

atomic actions; otherwise, the definition involves infinitely many back-and-forth
assertions and it becomes ECa):

Proposition Bisimulation is EC.

Proof By a straightforward transcription of the above definition. |

Proposition ~ Maximal Bisimulation is not ECa .

Proof Consider the natural numbers N with predecessor as the single atomic action:
0 & 1 € 2 ¢ o &= N & coeeree

The identity relation is the maximal bisimulation in this case, as is easy to see (any
non-trivial identifications would eventually clash at zero). But now, consider some
elementary extension of this structure. This will contain states with infinitely many
predecessors (and successors) lying in copies of the integers, inside which all
elements can be identified via a bisimulation. Therefore, the maximal bisimulation
will not be real identity in the latter case. But, if the latter notion were definable by
some set of first-order sentences T(=) , then this theory would hold in both LTSs

described: which yields a contradiction as before. |
Generated Graph Isomorphism

Proposition Generated Graph Isomorphism is not ECj .

Proof The argument is similar to that for Full Trace Equivalence. The relation = in
the model M depicted there satisfies the condition of Generated Graph Isomorphism.
But the pair of the two roots no longer qualifies in the elementary extension
constructed, as the two components have now become non-isomorphic. |
Proposition ~ Complete Generated Graph Isomorphism is not ECy .

Proof Again, one can use an earlier counter-example, namely that of the reverse

natural numbers (N, >) with one of their elementary extensions. |

12

The above negative results leave the question unanswered just where the non-ECp
cases are located in higher-order logical formalisms. For instance, ‘complete trace
equivalence' is naturally definable in L , as it involves a conjunction of path
equivalences of each finite length. 'Maximal Bisimulation' is naturally Al , however,
having the form Vxy (x=y <> 3R ("R is a bisimulation" and Rxy)) , which becomes
a conjunction of a £1; and a II!] sentence. We shall not pursue these matters here.

5 Axiomatizability of Process Equivalences

Another approach to the description of process equivalences is via axiomatization of
their first-order consequences. In particular, when does the set K of models for a
process equivalence = as described above have a recursively enumerable set of first-
order consequences? We consider some of the above notions here, demonstrating

different possible reasons for a positive outcome.

Proposition The following process equivalences have a recursive axiomatization:
Finite Trace Equivalence, Bisimulation, Generated Graph Isomorphism.

Proof Finite Trace Equivalence had a first-order definition which is recursively
enumerable, and hence the latter also serves as an RE axiomatization for its first-order
consequences, which has an equivalent recursive axiomatization by a well-known
result of Craig's. The same reasoning applies to Bisimulation, which even had a finite
first-order definition. '

To axiomatize the first-order consequences of Generated Graph Isomorphism,
we need a more elaborate argument, relying on the proof of a preservation result in
Section 6 below. That proof shows that (i) GGI preserves all 'restricted first-order
formules' ¢ (x) constructed from arbitrary atoms by Boolean operations and
restricted existential quantifiers Jy (Raxy A (with x, y distinct) (ii) In any countable
'recursively saturated' model, the relation of agreeing on all restricted formulas is a
generated graph isomorphism between states. Now, the relevant first-order theory is

axiomatized by all formulas of the form
Vxy (x=y — (0(x) < ¢(y)), where ¢ is a restricted first-order formula .

Obviously, thesé formulas all follow from GGI, by observation (i). Conversely,
suppose that some first-order y does not follow from these axioms. Then there must
be some countable model for the latter where Wy fails (by the Completeness and
Loéwenheim-Skolem theorems), which also has a countable recursively saturated
elementary extension (cf. Keisler 1977). But then, = will be a generated graph
isomorphism in the latter model, whence y fails in an LTS of the original class. W

13

Next, we turn to some negative results.

Proposition The first-order consequences of Maximal Bisimulation and Complete
Trace Equivalence are not RE, and not even arithmetically definable.

Proof We treat the case of Maximal Bisimulation only, that of Complete Trace
Equivalence being similar. First, recall the following observations from earlier proofs.
On the natural numbers with predecessor as an atomic action, the maximal
bisimulation coincides with the relation of identity. Now, consider a first-order
language whose vocabulary type includes enough predicates to express the basic
Peano Axioms for zero, successor, predecessor, addition and multiplication (but

without the Induction Schema). Call the latter theory PA* . Now, on LTSs satisfying
PA* where the binary relation = coincides with the maximal bisimulation with

respect to 'predecessor’ actions, the following formula defines the initial segment of
the natural numbers (since all numbers in the non-standard 'integer tails' admit of

non-trivial bisimulations):
¢ (x) = Vy (xsy - x=y).

But this implies the following effective reduction of standard truth for arithmetical
sentences o in terms of their syntactically relativized versions (ct)¢:

IN F o iff
PA* — (o)® holds in all LTSs where = is the maximal bisimulation.

Thus, the first-order consequences of Maximal Bisimulation are at least as complex
as True Arithmetic, which forms a non-arithmetical theory by Tarski's Theorem.
(Using a suitable encoding, this argument can be improved to work for non-
arithmetical vocabularies t00.) []

Remark Concrete Axioms

The preceding result does not mean that nothing concrete can be said about the theory
of completed or maximal process equivalences. In particular, these will contain the
whole theory of their 'compatible notion', while adding certain 'induction principles'.
For instance, both Complete Finite Trace Equivalence and Maximal Bisimulation
satisfy the following principle (with proposition letters, a small addition is needed):

Vxy ((Vz (Raxz = Ju (Rayu A z=u)) A Vz (Rayz = Ju (Raxu A z=u)))
- X=y).

14

Finally, results on axiomatizability may also have consequences for definability:
Corollary Maximal Bisimulation is not X1;-definable.

Proof The reason is that the first-order consequences of any Xlj-sentence are RE,
since, for all first-order ¢,y , 3P1.Px¢ (P1,...Pp F vy iff ¢ (P1,...Po F vy,
where the right-hand notion is RE by the Completeness Theorem. |

6 Simulation Invariance and Logical Definability

Now, we want to study the first-order effects of notions of proces equivalence from

another angle. Given any of the above relations = between models M, M', what can

we say about first-order properties of processes that are preserved by them? More

technically, we shall call a first-order formula ¢ (x) over states invariant for = if,
whenever s =s', ME ¢O[s] ifandonlyif M'E ¢ [s'].

In general, this will take us to fragments of the full first-order language. Here are

some relevant results, stating which fragments match various notions of bisimulation.

Remark Meaning Postulates
Here and elsewhere, we work with arbitrary LTSs. All our results will go through,
however, if one imposes arbitrary first-order conditions on our model class, such as

the earlier meaning postulates on success and dead-lock.

Theorem A first-order formula is invariant for Finite Trace Equivalence iff it is
definable as a Boolean combination of successful path formulas.

Proof From right to left, this was already observed above. Conversely, suppose that
¢(x) is invariant for FinTE. Consider the set BPF(¢) of all Boolean combinations of

succesful path formulas that follow logically from ¢(x) . The desired definability

assertion is an obvious consequence of the following
Claim BPF(9) F ¢(x).

Let M, s E BPF(0) . Then, by a simple argument, the set consisting of ¢(x) together
with all Boolean combinations of succesful path formulas true at M, s is finitely
satisfiable. Therefore, by Compactness, it must be simultaneously satisfiable, say in
some LTS N, s'. This means that the relation of complete finite trace equivalence
between these two models relates s to s'. By the given invariance of ¢(x) , this

implies that M, s F ¢(x) . |

15

Note that the preceding analysis also establishes that the same syntactic class captures
invariance with respect to Complete Finite Trace Equivalence. In general, of course,
invariance for the completed equivalence notion is implied by, but need not imply,
that under the original one. Next, we move from successful path formulas to arbitrary
ones, being existential descriptions of finite chains of transitions with arbitrary
success or dead-lock behaviour in their states.

Theorem A first-order formula is invariant for Full Trace Equivalence iff itis
definable as a Boolean combination of arbitrary path formulas.

Proof The argument is similar to the one above. This time, however, one passes
from M,s and N, s' to two w-saturated elementary extensions, being models in
which each finitely satisfiable set of first-order formulas involving only finitely many
parameters from the domain is simultaneously satisfiable. (Each model has such an
elementary extension: cf. Chang & Keisler 1973. Usually, one considers only sets
with one free variable x , but the result also holds if we allow a countable sequence
of free variables.) Now, in the latter LTSs, coincidence of arbitrary path formulas at
two states gives in fact full trace equivalence. For any countably infinite chain on one
side can be described using some countable set of formulas which will be finitely
satisfiable on the other side, so that saturation gives us the whole chain there, too. W

Next, we come to a basic relevant result from Modal Logic in the seventies. Recall
the 'modal fragment' of our first-order language introduced in Section 3.2.1:

Theorem A first-order formula ¢ (x) is invariant for Bisimulation iff itis

definable as a modal formula with one free variable x.

Proof (Cf. van Benthem 1976, 1991). Modal formulas are invariant for bisimulation,
by an obvious induction. (The back-and-forth clauses are tailored exactly to take care
of the existential quantifier case.) To prove the converse direction, let mod (¢) be
the set of all modal consequences of ¢ . We show that

Claim mod (@) F @,

from which the desired modal definability follows by the Compactness Theorem. For,
then ¢ will be implied by, and hence equivalent to, some finite conjunction of its
modal consequences. So, let M, w F mod (¢) . By a standard model-theoretic
argument, there must be a model N, v satisfying

@ N,vFo,

(ii) (M, w) and (N, v) verify the same modal formulas .

16

Now, take any two -saturated elementary extensions of M, N : say, M* and N*.
In such saturated models, the following stipulation defines a bisimulation:

M*, x satisfies the same modal formulas as N*,y #

For instance, if x' is any Ra-successor of x in M*, then each finite subset A of
its modal theory is satisfiable in some Rja-successor of y in N*: since the modal
formula <>MA holds at x and therefore also at y . But then, its full modal theory
must be satisfiable in some Rj-successor y' of y, by countable saturation: and such
astate y' is the required match for x' in the zigzag clause of bisimulation. Thus, we
can conclude our argument by the following observations, starting from N,v F @:

N*,vE¢@ (byelementary extension),

M*,w E@ (by bisimulation invariance) ,

M,w E@ (byelementary descent) . |

As before, the same argument also characterizes another invariance. For, note that the
bisimulation constructed above is in fact the maximal one between M* and N*.
Therefore, we have also shown that the same syntactic class captures invariance with

respect to Maximal Bisimulation.
A slightly refined version of this argument shows the following result.

Theorem A first-order formula is invariant for Generated Graph Isomorphism
iff itis definable as a restricted formula.

Proof Consider the restricted fragment of first-order logic mentioned in Section 5
above, which is constructed like the modal fragment while also allowing binary atoms
(in addition to unary ones). We show that, in an obvious notation: restr (¢) F ¢, by
making a few changes in the above argument, without loss of generality. First, the
models M, N can be chosen to be countable by the Léwenheim-Skolem Theorem.
Then, we pass on to a countable recursively saturated elementary extension MN* of
the model pair M, N (cf. Keisler 1977 for this technique), which has saturation with
respect only to RE sets of first-order formulas. (The latter restriction allows us to
make do with countable models.) Then, equality of restricted theories as in the above
stipulation # yields the additional information that there is an isomorphism between
the generated submodels of x and y in MN™. This may be obtained as follows. One
starts from complete enumerations x = aj, az, ... and y =by, bp, ... of the generated
submodels. Then one uses a Cantor-style zigzag argument to extend the initial match
to one between progressive sequences, maintaining the following invariant:

17

M, ay, ..., a satisfies the same restricted formulas as N, by, ..., by .
With each extension with a new object in the enumeration, use the RE set of formulas
¢ (a1, ..., an, Xp+1) < O (b1, ..., bn, Xns1) where ¢ is restricted,

to locate a matching object on the other side. Here, one may use restricted quantifiers
only to describe the behaviour of some object xXp4+1 sharing finitely many restricted
properties with, say, ap4+1 . This is possible, as each object in a generated submodel
is reachable from its origins via some finite sequence of labeled transitions. |

Again, by the same argument, the above syntactic class also captures invariance with
respect to Complete Generated Graph Isomorphism.

Remark Complexity of Fragments
Membership in these first-order fragments may be undecidable. Modal formulas are a
case in point, because of the following effective reduction. Let o (x) be any first-

order formula, and P (unary), R (binary) new predicate letters outside of o .

Claim The following two assertions are equivalent:

@) o is universally valid

(ii) JyPy A (—o)P is bisimulation invariant, where (—5a)P is the formula —o
syntactically relativized to the subdomain Aze Rxz v x=z.

Proof If a is universally valid, then JyPy A (—)P is equivalent to a contradiction,
which is trivially invariant. If o is not universally valid, then —a (x) is true in some
LTS Mat x.Now let R be the universal relation in M — and then, add one
unrelated point where P holds to obtain a model M*:

M

\;/R -

In the new model M+, the point x validates 3yPy A (—ca)P . But this formula fails
in the R-closed submodel M generated by x , thereby violating the assumed

invariance for bisimulation. |

18

7 Analyzing Programming Repertoire

Labeled transition systems only deal with atomic actions. One way of introducing
complex program structure is by moving from basic Modal Logic to Propositional
Dynamic Logic (Harel 1984), which has propositional formulas describing states,
while also describing complex transitions over LTSs by means of regular program
expressions T (including tests on propositional formulas) and their corresponding

modalities <> :

i
i

AT-FI=F I (FAF) | <P>F
P := AT-PI(P;P)I (PUP) | P* | (F)?

Here again, there is invariance of dynamic formulas ¢ for bisimulations = between
two models — but there is also a new aspect. Intertwined with the old proof of
invariance, one also has to show that the usual back-and-forth clauses in bisimulation
are inherited by the regular program constructions: and indeed, each binary transition
relation [[r]] shows this behaviour, upward from the atomic ones. More precisely:

Proposition If = is a bisimulation between two models M, M', and s=s', then
i) s, s' verify the same formulas of propositional dynamic logic,
(i) if s[[r]]M t, then there exists t' with s' [[x]]M't' and s'=t".

This observation motivates the following notion of invariance for program operations

(where we indulge in a slight abuse of notation):

Definition An operation O (Py,..., Py) on binary relations is safe for bisimulation
if, whenever = is a relation of bisimulation between two models M, M' with respect

to relations Ry, ..., Ry and R'y, ..., R, then it is also a bisimulation for the complex
relations O (Ry, ...,Rp), OR', ..., R'p) .

It is easy to show that, e.g., the regular operations of relational composition ; and
choice U (i.e., Boolean union) have this property. Another example are the
standard test relations (¢)? for modal formulas ¢ . (These examples reflect the key
observations in the straightforward inductive proof of the previous Proposition.)
For further reference, we also mention the safety of one less familiar relational

operation, being a strong negation (‘counter-domain’):

~(R) = {(x,y) | x=y and forno z:xRz}.

19

Note, e.g., that all complex modal tests (¢)? can be reduced to atomic ones using

only the regular operations ; and ~ , by the following three valid identities:

@ Ay? = ®? 5 (v)?
(—9)? = ~(9)?
(<a>0)? = ~v(@s)?)

Now, the natural question arises whether there exists some equivalent of our earlier
preservation theorems, characterizing those programming operations that guarantee
safety for bisimulation? Again, to make the question precise, we go to the standard
first-order description language over labeled transition systems — this time, addihg
arbitrary binary relation symbols for transition relations. Let us call a programming
operation first-order if it can be defined using a formula 0 (x, y) of this language

with two free variables. All earlier operations are first-order in this sense:

R1;R2) Jz (R1xz A Razy)
(R1 UR») Rixy v Raxy

~ (R) x=y A -~ 3z Rxz
P)? x=y A Px

Then, we have the following main result :

Theorem A first-order relational operation O(Rj, ..., Rp) is safe for
bisimulation if and only if it can be defined using atomic relations Rjxy,
atomic tests (q)? for propositional atoms in our models, using just the three
operations ;, U and ~.

To prove this result, one needs an excursion into the model theory of Modal Logic,
whence we do not give details of the argument here (cf. van Benthem 1993). Safety of
programming operations is a property which makes sense for other notions of process
equivalence, too. We leave the matter of their complete safe repertoires open here.

8 Infinitary First-Order Theory of Transition Systems
In Section 3.1, several computational notions concerning LTSs received a natural
formalization in the infinitary first-order logic L - The purpose of this Section is

to show that the earlier theory extends to this formalism too. For a survey of relevant

model-theoretic techniques replacing Compactness, cf. Keisler 1971.

20

Definability

Here are some observations concerning the earlier definability questions for process
equivalences in this formalism. For a start, Complete Finite Trace Equivalence
becomes definable by an infinite conjunction of succesful path equivalences. Next,

there are several negative results:

Proposition Full Trace Equivalence, Complete Full Trace Equivalence, Maximal
Bisimulation, Generated Graph Isomorphism and Complete Generated Graph
Isomorphism are not Le;q-definable.

Proof The case of Maximal Bisimulation goes as follows. Note that on well-
orderings with labeled transitions corresponding to downward arrows, the maximal
bisimulation must be the identity. Moreover, on non-well-orders, any downward
infinite chain will allow some non-trivial bisimulation. Now, suppose that Maximal
Bisimulation were Lg;q-definable. Then the formula stating that some relation

< is alinear order and = is the maximal bisimulation,

while Vxy (x=y © x=y),
will define the well-orderings with their maximal bisimulation in L . But this
contradicts the non Lg;g-definability of well-order.

The other negative assertions in this sequence all depend on the Léwenheim-
Skolem Theorem for our infinitary language. The example of Full Trace Equivalence
will suffice. Take a model with two uncountable trees of branches showing évery
possible alternation of a- and b-labels, which are =-connected in their roots,

separated by unary predicates A, B as in a previous argument:

N,
'd

~
/

Next, take a countable elementary submodel of one of the components. The result will
be an elementary submodel where = is no longer a full trace equivalence - and thus

we have refuted L) -definability:

21

e N

ab a,b

o> o Gt @

Scott Isomorphism Theorem
A corollary of the earlier proof of the preservation theorem for bisimulation is the fact

that two finite LTSs satisfy the same modal formulas in states X, y if and only if
there exists a bisimulation = between them with x=y . This result may be extended
to Leie via the following modification of 'Scott's Theorem'. Here, the 'modal’
fragment of this formalism is defined as for first-order logic, but this time allowing

infinite conjunctions and disjunctions too.
Theorem For each countable LTS M with state x , there exists a modal

Lpio-formula ¢ (u) such that, for each countable LTS N and state y,
N,y E ¢ iff there exists a bisimulation = between M, N with x=y.

Corollary In countable LTSs M, N , states x, y verify the same modal
Lo1o-theory iff there exists a bisimulation connecting them.

Proof Define the following modal formulas by induction , for each y in M:

¢0 y (W) = a complete description of unary atoms true at y in M
00y = Npa By if a is a limit ordinal
ooty () = 0% @ A AReyz :FuReyu A ¢oz (@) A

Vu (Reyu = V Reyz 9% () .

Since M is countable, we have:
Ja<wy VB2o: Vu: ¢% (u) & 0By ()
(Choose o, with — 9% %y (z) , if existent, forall y: sup zav (0tz) <®1).

And for the same reason,
Ja<w Vyu: ¢% (u) & Vo oy u).

Now, for the o found here, define the above formula ¢ (u) as

22

Doy 0% @) A A ze M YW (R¥uw = (9% (W) ¢+, (w)),
where R* describes the transitive closure of the union of all

atomic transition relations.
Note that ®* x can be taken to be modal by rewriting the part 'Vw (R*uw —'

in the following form:
Vw (Va (UR)Puw —
ie, Np Vw((UdRoMuw >,

which can be unpacked to single-restriction quantifiers.

Now, set (with some harmless abuse of notation):

u=v iff N,vE ®%, .

Claim This relation = is a bisimulation.

Proof (i) 'Atomic equivalence' is obvious.
(ii) Suppose that u=v and uRcu' in M.
Then N,vE ®%;(v) ,
SO N, v E ¢%,(v) (use the first conjunct of ®%,),
and N, v E ¢+l (v) (use the second conjunct of ®%,),
whence N,v E 3w (Reuw A 0% (W)),
i.e., there exists some v' with Rcvv' in N such that
N,V E ®%p (V).

Moreover, N,v'E A o Vw (R*uw — (0% (w) = ¢%+1, (w)),
because every R*-successor of v' is also one of v (since VR¢ v').

Hence, N,v'E ®%; : and u'=v'.
Next, suppose that u=v and vRc v' in N.
Then N,vE ®%,(v) ,
SO N,vE ¢%,(v) and N,v E ¢+l (v) (as before),
whence N,v E Vw(Rcuw = V Reuz 0% 2z (W)),
ie., N, v' E ®%, (u) for some z with Rcuz in M: set u'=z.
* Moreover, the second conjunct of ®%*, holds at v', for the same reason as above,
so that N,v'E @% : and again u'=v'.
This completes the proof of the Claim, and hence of the Theorem. u

Question Would this argument also go through for the infinitary modal fragment
corresponding exactly to the standard translation of propositional dynamic logic?

23

Invariance under Bisimulation

Our earlier preservation results may also be extended to-this setting. Here is a key
example of how we can modify the earlier proof method. (The following proof would
also have worked for the first-order case!)

Theorem An Lge-formula ¢ (x) is invariant for bisimulation iff it is
equivalent to a modal Lej-formula.

Proof The non-trivial direction is from left to right. Consider the family of all finite
sets of the form (assuming a language with one transition relation, for convenience):

"atoms x=y expressing intended bisimulation links" U X(x) U A(y),

which have the property of 'Modal Consistency':
for no modal formula v (xy, ..., X5) there are atoms X1=yq, ..., Xp=Yn
available such that Z(x) F y and A(y) E —vy.

Remark These extended modal formulas may have more than one free variable.
(It is easy to show that these must be equivalent to, possibly infinitary, Boolean
combinations of unary modal formulas.)

Claim This family is a Consistency Property, and moreover, we can construct a
model for each of its members while forcing = to be a bisimulation.

If this is so, then we get the desired result as follows. Suppose that ¢ (x) is invariant
for bisimulation. Then the set {x=y, ¢(x), = ¢(y)} has no model of the above kind,
whence it must be modally inconsistent. That is, there exists some modal formula

suchthat ¢ (X) Fy(x) and =0 (x) F -y (x): ie., FO0(X) Yy (X). |

Let us now check the requirements for a consistency property (cf. Keisler 1971):

(1) If -¢€ X or ~p € A, thenits 'inversion '¢—' can be added:
This is immediate given the defining condition for our family.

(ii) The same holds for the cases 'adding a conjunct' and 'adding a witness for an
existential quantifier' (note that these cases add no bisimulation atoms).

(iii) Disjunction. Suppose that V;¢; € X (the case of A is similar), while no set
of the form "old atoms AT ,Xu {¢; }, A" qualifies. Then, there exist modal
formulas oy with AT,XuU{¢j} Fo; (x) and AT,AF —04 (y).

Butthen AT,ZX E Vjoi (x) (recall that Vj¢; €Z!) , and also

AT, A E Ao (y) & —Vijo; (y) : which is a contradiction.

(iv) No contradiction occurs in £ versus A:as L isamodal formula.

24

Finally, here is how Bisimulation can be achieved during the model construction.
One can intertwine the above extension process with steps of the following form
(using some suitable enumeration of the countably many relevant formulas):

x=y € AT and RxzeS:
add a new constant u with z=u €AT, Ryue€A ; and vice versa.

This move cannot disturb Modal Consistency:
If Y Fa(x,z) and Au {Ryu}F —a (y,u),
then X F JdzRxz A a(x,2z) (RxzeX)
and A F—JuRyuaA a(y,u)
which is a contradiction. u

Safety for Bisimulation

As for safety of programming operations under bisimulation, we merely conjecture
that the only addition to the previous characterization are arbitrary infinite unions.
Note that these include Kleene iterations as well as arbitrary unwindings for fixed-
point recursions ppe ¢(p) with respect to p-positive formulas ¢ .

Remark Full Infinity
Finally, several of the above results could be extended to the infinitary language Loy

with set conjunctions and disjunctions of arbitrary cardinality. For instance, maximal
bisimulation is in fact the same as elementary equivalence in the latter language.

9 Special Classes of Transition Systems

There are various special classes of LTS where it makes sense to study the above
phenomena of definability and invariance separately. We provide a first exploration.

Finite Models
Proposition Every earlier notion of process equivalence is ECx .
Proof All these definitions describe classes of models that are closed under

isomorphic images. And every class of finite models, in a finite vocabulary, that has
the latter closure property is definable in ECA-form, viz. by the set of negations of all

complete first-order descriptions of its finite non-members. |

25

Proposition No notion of process equivalence becomes EC which was not already
so on arbitrary models.

Proof The method of proof here uses Ehrenfeucht Games. E.g., the earlier argument
for Finite Trace Equivalence still applies. Another typical case is Complete Finite
Trace Equivalence: its definability by any first-order sentence of quantifier depth N
may be refuted via an Ehrenfeucht Game comparing the following two models:

1) PP SN N R Y |

a chain of immediate successors, of length 2N,
with = as identity (being the full trace equivalence here),

Q) oo

the same chain together with a
suitably large 'disjoint cycle'
(again, with = interpreted

as the identity relation) :

Upto N steps, the 'analogy player' has a winning strategy here, even though = is

not full trace equivalence in the second model. (Doets 1993 suggests an alternative
style of argument, with a detour via the infinite model N + Z + N*.) n

As for axiomatizability, rather than definability, some things simplify here:
Proposition A notion of process equivalence has a finite axiomatization iff it is EC.

Proof From right to left, this is obvious, as the defining first-order formula provides
the axiomatization. Conversely, suppose that & axiomatizes our notion =. Then, it
holds in any model for this process equivalence (being one of its own consequences).
But also conversely, suppose that & holds in some finite model M , which is fully
described by the first-order sentence o . Then & does not imply — oM on the

finite models, and hence there is a finite model in our intended class verifying o ,

which must therefore be isomorphic to M itself. So, M is in our intended class. W

Finally, a generalization of our earlier preservation results for simulation invariances
to the finite case might be difficult, witness some recent failures of classical model-
theoretic results in current Finite Model Theory (Gurevich 1985).

26

Further Classes of Transition Systems

Besides finite models, other natural restricted classes of LTSs occur in the literature.
Here are some illustrations of what may happen to our previous concerns. On
countable models, no difference in outcomes arise at all, as all first-order arguments
so far used countable LTSs only (mainly thanks to the Léwenheim-Skolem theorem).
(There were differences in outcomes, of course, with the infinitary language Lgie -)
To take another kind of restriction, on finitely branching trees, here is a typical
difference in outcome (taking 'finite trace equivalence' now with respect to arbitrary
finite traces, whatever the status of their end-points):

Proposition Finite Trace Equivalence and Full Trace Equivalence are equivalent.

Proof FullTE always implied FinTE. Conversely, suppose that two nodes X,y are
finite trace equivalent (in our extended sense). Let some infinite trace start at x , and
consider the subgraph at y matching all its initial segments. By Ko6nig's Lemma for
finitely branching trees, there must be some infinite branch at y , which matches the

infinite trace at x . |

Finitely, to demonstrate another kind of change, we consider LTSs whose transition
relations are all well-founded.

Proposition = Maximal Bisimulation is EC on well-founded models.

Proof For convenience, we restrict attention to the case with one atomic action. The
definition that works here consists of the first-order definition of bisimulation plus the
'Induction Principle' stated toward the end of Section 5. Let C be any relation on
some well-founded LTS (S, R,) satisfying these two requirements which does not
equal the maximal bisimulation =. As C is a bisimulation, it is contained in =.
Now, by well-foundedness, take some minimal point x where a situation of type
x=y , — xCy occurs, with some y exemplifying this mismatch. Then, by minimality,
it is easy to see that the condition for the induction principle will be satisfied for all
R,-successors of x and y . (For instance, if x—3z, then z must have a =-matching
—a guccessor u of y, because = is a bisimulation. By the minimality of x with
respect to =/ C mismatches, this implies that zCu . The proof for the converse
direction is analogous.) Thus, the induction principle implies that xCy after all:
which yields a contradiction. |

27

10 Adding Process Structure 1: Silence and Branching

One typical feature in more realistic process theories are so-called 'silent steps' —7
that reflect unobservable transitions. These may arise from hiding certain transitions
in an LTS under this distinguished relation. Structures will then have the form

S, A —,5O7).
An interesting class are the A-saturated LTSs (introduced in Bergstra & Klop 1988)
satisfying the following condition for all atomic actions a, and all states x,y, z:

(((x>3y A y-Tz) = x—%) '

A ((XSTy A y—o3z2) = x—-2)

A((xDTy A yoTz) - x9%2)).
The 'A-saturation’ of an LTS is obtained by adding the smallest set of silent
transitions that makes these Horn clauses true.

We show how various earlier questions extend to this setting. For a start, the most
basic notion of process equivalence for these structures is as follows.

Definition = A binary relation = is a weak bisimulation between two transition
systems with silent steps if the following conditions hold, whenever x=y :

1) atomic markings agree on x and y,
(ii) if x—3x', then there exists some finite sequence of transitions on the other

side which is of the form y=y1 =7 ... 5% yy 52 yn41 9% oo. OV ypek =y’
such that x'=y'; and vice versa,

(i) if x—Tx', then there exists some finite sequence of transitions on the other
side of the form y =y; =%... 2Ty, =y such that x'=y'; and vice versa.

More sophisticated alternatives may be found in De Nicola & Vaandrager 1990,
(cf. van Benthem, Van Eyck & Stebletsova 1993 for logical discussion, including
possible first-orderization via a new sort of 'silent branches").

Proposition = Weak bisimulation is EC on A-saturated LTSs.
Weak bisimulation is not ECp on arbitrary LTSs.

Proof On A-saturated models, weak bisimulation reduces to ordinary bisimulation
(with respect to the modified relation —2 v =), which had a first-order transcription.
In general, however, the above definition is irreducibly infinitary in L1 . Suppose
that the set X (=) of first-order sentences defined weak bisimulation. Then the union

of the following three sets of first-order sentences is finitely satisfiable:

28

o Ze
(i) " there is one atomic transition —® which is a one-to-one function t ",
(iii) x=0,=x=t0), =x=tt0),~x=1t0), ..

To see this, take suitably large finite chains starting at 0 with a disjoint point for x
where the function t loops, putting x=0,x=n:

0« DT ¢ 5T o 5T . ST en
1l
X 7

W

But then, by the Compactness Theorem, there must be one model for the whole set,
whose = cannot be a weak bisimulation, even though the purported definition X (=)
holds. For we have x =0, whereas x lacks any =-connection with points lying at

some finite number of t-steps from O . This is the required contradiction. |

We can also extend earlier invariance results to this setting. On A-saturated models,

everything remains basically as before. But on arbitrary LTSs, results are not quite so
straightforward, because of a certain 'asymmetry’ in the above definition. A restricted
existential quantifier for a —2 successor step on one side need not match with a

similar quantifier step on the other, because of the possible finite t-prefixes and
suffixes. Therefore, the proper format of restricted quantification here is over
successors in compound relations t*; a; t* . But then, we conjecture that we will
have a preservation theorem for invariance under weak bisimulation in Lg;¢ just like
the one in Section 8. Further questions in the logic of silence must be left unsaid here.

11 Adding Process Structure 2: Algebraic Operations

11.1 First-Order Process Theories

Axiomatic process theory is studied mostly in an algebraic setting. We consider some
versions that continue our earlier formalisms, simplifying our task by restricting
attention to a very small process algebra signature (elementary process algebra with
finitely many atomic actions) . This system is a subset of the calculus CCS in Milner

1980, with a slightly modified notation:

0 p Zero process
+ PxP P alternative composition ('choice’)
a; P—-P action prefixing, for each atomica€ A.

29

Our discussion will focus on bisimulation semantics, omitting recursion and infinite
branching. The relevant axioms are those already mentioned in Section 3.2.2:

EPA(A) X+y =y+Xx
x+y)+z=x+(y+z)
X+X =X
x+0=x

The initial algebra for these axioms is called A®g . (This system is just one choice
among various directions, including the system BPA(A) of Bergstra & Klop 1984,
1986, whose relation to transition systems is less immediate. We refer to Baeten &
Bergstra 1993 for a systematic comparison, investigating both EPA-based CCS and
BPA-based ACP .) Indeed, several first-order theories are relevant here. For instance,
it turns out useful to introduce a further axiomatic system EPT , employing a relation

of inclusion defined in the usual way:
XEy & x+y=y.

The theory EPT(A) adds the following principles to EPA(A) (these include
inequalities, so that we move up in first-order complexity) :

0 ©x

x+y) &z = XEzAyEz

ax S (y+2) = aXxXSyvaxcz

ax € ayy = XEy AYEX

- ax € by if a, b are distinct atomic actions
—-ax €0

Proposition EPT(A) is sound and complete for validity of both ground equations
and inequalities in ASg.

Proof Soundness is clear, since EPT(A) holds in A®y . As for completeness, true

equations are derivable in EPA(A), and hence in EPT(A), by the usual completeness
theorem for equational logic. Finally, if some inequality holds in A€, then one of its

inclusions must fail. Now, the EPT axioms will decompose closed terms, so as to get

the following property:
Claim A®, F — tj Sty implies that EPT (A) F — t1 Et2.
The proof is a straightforward induction on length(ty) + length(tz) . Finally, the latter

assertion immediately implies that EPT (A) F — t1=tp. |

30

Remark These results can also be extended to cover process logics with silent steps.

Additional axioms will include such principles as
X CTy P a,xXgy
TXETYy & XEYyAYEX)VT; X €Y.

Finally, there is nothing to prevent us from considering still more complex first-order
systems, such as the full first-order theory of the initial algebra A® . Equivalently,

consider the structure G of finite graphs identified under bisimulation, with the
following operations (well-defined over representatives):

0 single success node
fusion of graphs at the root
a; prefixing a single incoming a-arrow to the root .

Its first-order theory Th(G) may actually be formulated in various ways:

Proposition = The following theories are effectively equivalent:
@ Th((G,0,+,{alaeA}))
(i) Th((G,<.{alacA}))

Proof Theory (ii) can be embedded into (i), as the relation < has already been
defined above in terms of + . Conversely, theory (i) can be embedded into (ii), by the

following valid first-order equivalences in the Finite Graph Model:

x=0 & Vyx+y=y
x=y+z < "x isthesupremumof y and z intheordering S ". W

This theory contains a lot of information concerning these graphs, such as a full

lattice structure for the ordering < . Moreover, it contains some special features not

found in the general case, such as
E Vxy (/\ae A VZ(x—3Z & y—>3z) - x=y) Extensionality
Indeed, Th(G) amounts to that of a well-known mathematical structure:

Theorem The first-order theory of the Finite Graph Model under Bisimulation
is effectively equivalent to True Arithmetic.

31

Proof For simplicity, let us think of G as a labeled transition system consisting of
equivalence classes "G~ of all finite rooted graphs G under bisimulations
connecting their roots. Its relational structure has identity = as well as transition
relations —2 (for all a in some finite set A), defined via 'root prefixing' (which is
well-defined on the equivalence classes, as this relation is invariant for bisimulation).
As will be shown shortly, the first-order theory Th(G) gives us the whole process
algebra structure with S , + and all prefix operations a; . As usual, True Arithmetic
is the complete first-order theory of the model (IN, +, *) . Now, there are two

directions to the above assertion:

From Graphs to Natural Numbers

Using any obvious effective coding scheme, the following arithmetical predicates are
recursive, and hence arithmetically first-order definable:

GRAPH (n) "n codes some finite graph"

BISIM (m, n) "m, n code bisimilar finite graphs"

a-TRANS (m, n) "m encodes a graph having an a-transition from its root
to the root of of a generated subgraph encoded by n "

Now define the following translation * from first-order formulas about the above
graphs to arithmetical ones:

x=y BISIM (%, y)

X—ay Jzu : BISIM (x, z) A BISIM (y, u) A a-TRANS (z, u)

-, A Boolean connectives are translated homomorphically

Ix existential quantifiers become restricted numerical quantifiers

over codes of graphs: 3x (GRAPH (x) A ...).
The relevant reduction can be proved by a straightforward induction on formulas:

Claim For all finite graphs Gi, ..., Gk with numerical codes g1, ..., gk »
and all first-order formulas ¢, the following equivalence holds:

G E¢d [FG17, .., "Gkl iff INE (®*[g1,.. gkl -
From Natural Numbers to Graphs

Going in the opposite direction, one needs some auxiliary first-order predicates on
(equivalence classes of) finite graphs, that will help us to encode the basic numerical
operations. Here is an informal explanation of the main ideas:

32

(1) Each natural number n may be identified with the (equivalence class of the)
a finite linear order —2 over {0, ..., n} . More precisely, one can introduce

'numerical graph objects' by defining a first-order predicate

a-NUM(x) " x is a graph with just a-transitions, on which the relation —3

is transitive, irreflexive and linear".

2 Isomorphism of two disjoint intervals on such linear graphs can be defined
via the existence of some larger graph containing these intervals as subgraphs, with a
second relation —? playing the role of a bisimulation between them. More precisely,

this involves the following first-order predicates:

BISIM(x,y,s) " s hasonly —2-and —Y-successorsand s —=bx,
the —3-successors of s form a transitive, irreflexive linear ordering, and
—b is a bisimulation between —2-successors of s and points in the closed
—a-interval [x, y] with respect to the relation —2 "

EQUI(x,y,z,u) 3s(BISIM(x,y,s) A BISIM (z, u, s)) :

—
-~
a -<_b
. ~ -
-~ o
y* ‘_s
~ —_——
~ -~ -_—
\\><’a
— -~ -
- -~ ~
Z 4 =~ < 3
-
-
—
-—
-b
a i "‘.
-
-
-
u <«

One can verify in the Finite Graph Model that the latter predicate holds of two
intervals on a numerical graph if and only if they have the same cardinality.

Remark Graphs versus Equivalence Classes

Some care is needed here, as the objects in the model G are not graphs, but their
equivalence classes under bisimulation. Nevertheless, there is a useful strong analogy.
For, the map sending finite graphs G to their equivalence classes "G~ is a modal
'p-morphism' with respect to the prefix relations —2 (it is a homomorphism, and it
also satisfies an existential backward clause, for both successors and predecessors).
Therefore, at least for suitable 'restricted’ first-order formulas (cf. Section 6 above, or
van Benthem 1985), there is no difference between the two kinds of object. (The
precise extent of this analogy remains to be determined for this specific graph model.)

33

3) Now, one may describe addition by a first-order predicate SUM (x, y, z)
which first distinguishes some marginal cases (e.g., "x=0" and "y=0" are trivial),
and then states that x, y lie in some sequence on the linear order z, say x2y , where
the top interval [z, X] is equinumerous to the bottom interval on z starting from y .

@ Multiplication TIMES (x, y, z) is encoded via a division of the linear order z
into y intervals, all of equal length (this may be done by introducing a larger graph
with suitable new —¢ transitions marking the boundary points), and stating that each
interval is equinumerous with x while the subgraph of boundary points (these are
identifiable via the new relation —¢) is equinumerous with y . (Again, some trivial

cases are to be treated separately.)

Finally, the relevant first-order translation # can be defined as follows. Without loss
of generality, the arithmetical first-order language may be restricted to the use of only
atoms x =y +z and x =ye-z . These will be translated via the above two predicates
SUM (x, y, z) and TIMES (x, y, z) . Boolean connectives are again treated
homomorphically, while numerical existential quantifiers become restricted to the
above predicate a-NUM defining the numerical graph equivalence classes (cf. (1)).
The relevant reduction is then straightforward from the above motivation for our

translating predicates:

Claim For all natural numbers nj, ..., nx , with corresponding graph (classe)s
Ni, ..., Nk, and for all first-order formulas ¢, the following equivalence holds:

INEo[ng,..n iff G k(@) [Ng, ... Ni.

Question What is the complexity of the first-order theory of the Finite Graph Model
with only one single atomic action? In particular, does it become equivalent to
Additive Presburger Arithmetic?

Another type of logical question concerns, not axiomatizability, but definability of
process operations in these models. In the BPA/ACP tradition (as distinct from
EPA/CCS), one would have an additional product operation on graphs, corresponding
to full product of processes. This operation can be defined inside the above first-order

theory, but there remains this

Question Can full product be explicitly defined in terms of just the above
signature of elementary process algebra?

34

We conjecture that the answer is negative, which would highlight the difference
between the two mentioned traditions. Interestingly, the above theory also contains
other graph operations, not found so far in process algebra. For instance, given the
above lattice structure for S on graphs, there is not just a supremum + , but also a
natural infimum * dual to it, whose algebraic behaviour might be worth investigating.

11.2 Process Algebras and Labeled Transition Systems

Here is how one can return to the original perspective of this paper. Any model M
for the earlier process theories generates a labeled transition system TS (M) by the

following stipulation:
X o2y = Jz x=a;y+z.

At this point, several open questions of definability and axiomatizability arise, similar
to those encountered in earlier Sections. We mention a few:

. Is the class TS (MOD (EPA (A)) EC or ECA?
Is the class TS (MOD (EPT (A)) EC or ECA?

Our conjecture is that all answers are negative. Nevertheless, both these classes are
*1; —definable in second-order logic, as their defining condition states the existence

of some predicates or functions in an LTS satisfying the finite lists of EPA or EPT
axioms. By an earlier logical observation in Section 5, this implies at least recursive
axiomatizability for their first-order theories. Hence, we have this further question:

. To axiomatize the first-order theories of the above classes explicitly.
Are they even finitely axiomatizable?

Here are some partial results. Analyzing the signature (0, +, {a; | ac A}) through

the above stipulation, we get the following first-order principles:
Al Jx /\ae A —dy:x o2y End-points
Ap Vxy 3Jz /\3le A Vu (z>% © (x> v y—au)) Sums

A3 Vx /\ae Ady (Vz(y—3z & z=x) A
/\be A, b distinct froma — 32 y—bZ) Predecessors

Proposition TS (A%) verifies A1, Az, A3, as well as Extensionality (E) .
More generally, we have the following property:

35

Proposition MOD ({A1, Az, A3, E}) € TS (EPA).

Proof By a simple deduction, each of these four principles follows from the axioms
of EPT under the above stipulation. Conversely, given the above principles, one can
introduce obvious operations of 'sum' and 'action prefixing', which turn out to have
the right properties by direct verification. For instance, Associativity follows because
the two ways of computing a 'sum' of three objects lead to points having the same
successors, which must therefore be identical by Extensionality. | |

Remark The theory {Aj, Az, A3, E} encodes much of elementary process algebra.
Without Extensionality, however, we do not have obvious uniqueness for the process
operations induced by our LTS — and only some partial results have been obtained so

far, whose formulation we omit here.

Essentially, the above questions ask to which extent the richer structure of a process
algebra is already available within its derived transition system. From the earlier full
first-order perspective, this will often be the case, witness our final observation:

Proposition The following first-order theories are effectively equivalent
for the model M = (G, 0, +, { a;la€ A}):
@ Th(M) (i) Th(TSM)).

Proof This is implicit in the argument for the previous Proposition.]
12 Further Directions

The purpose of this paper has been tb put standard logics of transition systems on the
map as a computational formalism, to prove a number of technical results showing
their theoretical interest, and finally, to suggest some main directions for their further
investigation. Of the many general questions that arise in this way (in addition to the
many specific pointers in our text), we mention the following:

e)) To develop the practical application of first-order and infinitary formalisms.

2 To explore computational consequences of other aspects of their known
theory, such as cut-free proof methods or interpolation. :

3 To generalize our results in the first-order case systematically to special kinds
of LTSs, and to different formalisms (infinitary, or state-action languages).

@) To carry our analysis to the case of process algebra with further operations
such as various merges, recursion, or encapsulation.

36

13 References

J. Baeten & J. A. Bergstra, 1993, 'On Sequential Composition, Action Prefixes and
Process Prefix', Departments of Computer Science, University of Amsterdam
& University of Eindhoven. »

J. van Benthem, 1976, Modal Correspondence Theory, disseration, Mathematical
Institute, University of Amsterdam.

J. van Benthem, 1985, Modal Logic and Classical Logic, Blbhopohs, Napoli.

J. van Benthem, 1991, Language in Action. Categories, Lambdas and Dynamic Logic,
North-Holland, Amsterdam.

J. van Benthem, 1993, 'Which Program Constructions are Safe for Bisimulation?',
Institute for Logic, Language and Computation, University of Amsterdam.

J. van Benthem, J. van Eyck & V. Stebletsova, 1993, 'Modal Logic, Transition
Systems and Processes', Centre for Mathematics and Computer Science (CWI),
Amsterdam.

J. A. Bergstra & J-W Klop, 1984, 'Process Algebra for Synchronous Communication',
Information and Control 60, 109-137.

J. A. Bergstra & J-W Klop, 1986, 'Process Algebra: Specification and Verification in
Bisimulation Semantics', in M. Hazewinkel, J. Lenstra & L. Meertens, eds.,
Mathematics and Computer Science 11, North-Holland, Amsterdam, 61-94.

J. A. Bergstra & J-W Klop, 1988, 'A Complete Inference System for Regular
Processes with Silent Moves', in F. Drake & J. Truss, eds., Logic Colloquium ‘86,
North-Holland, Amsterdam, 21-81.

C. C. Chang & H. J. Keisler, 1973, Model Theory, North-Holland, Amsterdam.

R. De Nicola & F. Vaandrager, 1990, 'Three Logics of Branching Bisimulation', in
Proceedings 5th LICS Conference, Computer Society Press, 118-129.

K. Doets, 1987, Completeness and Definability. Applications of the Ehrenfeucht
Game in Second-Order and Intensional Logic, disseration, Mathematical
Institute, University of Amsterdam.

K. Doets, 1993, Model Theory, lecture notes for the Fifth European Summer School
in Logic, Language and Information, University of Lisbon.

R. Goldblatt, 1982, Axiomatizing the Logic of Computer Programming, Springer,
Berlin.

Y. Gurevich, 1985, 'Logic and the Challenge of Computer Science', Computing
Research Laboratory, The University of Michigan, Ann Arbor.

D. Harel, 1984, 'Dynamic Logic', in D. Gabbay & F. Guenthner, eds., Handbook of
Philosophical Logic, vol. I1, Reidel, Dordrecht, 497-604.

37

M. Hennessy & R. Milner, 1985, 'Algebraic Laws for Nondeterminism and
Concurrency', Journal of the ACM 32, 137-161.

N. Immerman & D. Kozen, 1987, 'Definability with Bounded Number of Bound
Variables', Proceedings IEEE 1987, 236-244.

D. de Jongh & A. Troelstra, 1966, 'On the Connection of Partlally Ordered sets with
some Pseudo-Boolean Algebras', Indagationes Mathematicae 28, 317-329.

H. J. Keisler, 1971, Model Theory for Infinitary Logic, North-Holland, Amsterdam.

H. J. Keisler, 1977, "Fundamentals of Model Theory', in J. Barwise, ed., Handbook of
Mathematical Logic, North-Holland, Amstterdam, 47-103.

R. Milner, 1980, A Calculus of Communicating Systems, Springer, Berlin.

D. Park, 1981, 'Concurrency and Automata on Infinite Sequences', Proceedings 5th
GI Conference, Springer, Berlin, 167-183.

A. Salwicki, 1970, 'Formalised Algorithmic Languages', Bulletin Polish Academy of
Sciences, Series Sci. Math. Astr. Phy., vol. 18, 227-232.

C. Stirling, 1989, "Modal and Temporal Logics', to appear in S. Abramsky, D. Gabbay
& T. Maibaum, eds., Handboook of Logic in Computer Science, Oxford

University Press.

38

The ILLC Prepublication Series

CT-91-10 John Tromp, Paul Vitinyi A Randomized Algorithm for Two-Process Wait-Free Test-and-Set
CT-91-11 Lane A. Hemachandra, Edith S];:an Quasi-Injective Reductions
CT-91-12 Krzysztof R. Apt, Dino Pedreschi ~ Reasoning about Termination of Prolog Programs

Computational Linguistics

CL-91-01 J.C. Scholtes Kohonen Feature Maps in Natural Language Processing

CL-91-02 J.C. Scholtes Neural Nets and their Relevance for Information Retrieval

CL-91-03 Hub Priist, Remko Scha, Martin van den Berg A Formal Discourse Grammar tackling Verb Phrase Anaphora
QOther Prepublications

X-91-01 Alexander Chagrov, Michael Zakharyaschev The Disjunction Property of Intermediate Propositional Logics
X-91-02 Alexander Chagrov, Michael Zakharyaschev On the Undecidability of the Disjunction Property of Intermediate Propositional

Logics
X-91-03 V. Yu. Shavrukov Sul alfebras of Diagonalizable Algebras of Theories containing Arithmetic
X-91-04 K.N. Ignatiev Partial Conservativity and Modal Logics

X-91-05 Johan van Benthem Temporal Logic

X-91-06 Annual Report 1990

X-91-07 A.S. Troelstra Lectures on Linear Logic, Errata and Supplement

X-91-08 Giorgie Dzhaparidze Logic of Tolerance

X-91-09 L.D. Beklemishev %n Bimodal Provability Logics for I1;-axiomatized Extensions of Arithmetical

eories

X-91-10 Michiel van Lambalgen Independence, Randommess and the Axiom of Choice

X-91-11 Michael Z aschev Canonical Formulas for K4. Part I: Basic Results

X-91-12 Herman Hendri Flexibele Categoriale Syntaxis en Semantiek: de proefschriften van Frans Zwarts en
Michael Moortgat

X-91-13 Max L. Kanovich The Multiplicative Fragment of Linear Logic is NP-Complete

X-91-14 Max L Kanovich The Hom ra%ment of Linear IXFC is NP-Complete

X-91-15 V. Yu. Shavrukov Subalgebras of Diagonalizable Algebras of Theories containing Arithmetic, revised
version

X-91-16 V.G. Kanovei Undecidable Hypotheses in Edward Nelson's Internal Set The

X-91-17 Michiel van Lambalgen Independence, Randomness and the Axiom of Choice, Revised Version

X-91-18 Giovanna Cepparello New Semantics for Predicate Modal LoFc: an Analysis from a standard point of view

X-91-19 Papers presented at the Provability Inteﬂ;tability Arithmetic Conference, 24-31 Aug. 1991, Dept. of Phil., Utrecht University

1992 ual Report 1991

Logic, Semantics and Philosophy of Langauge

LP-92-01 Victor Sdnchez Valencia Lambek Grammar: an Information-based Categorial Grammar

LP-92-02 Patrick Blackburn Modal Logic and Attribute Value Structures

LP-92-03 Szabolcs Mikul4s The Completeness of the Lambek Calculus with respect to Relational Semantics

LP-92-04 Paul Dekker An I{Eiate Semantics for Dynamic Predicate Logic

LP-92-05 David I. Beaver The Kinematics of Presupposition

LP-92-06 Patrick Blackburn, Edith Spaan A Modal Perspective on the Computational Complexity of Attribute Value Grammar
LP-92-07 Jeroen Groenendijk, Martin Stokhof A Note on Interrogatives and Adverbs of Quantification

LP-92-08 Maarten de Rijke A System of Dtina.mic Modal Logic

LP-92-09 Johan van Benthem Quantifiers in the world of Types

LP-92-10 Maarten de Rijke Meeting Some Neighbours (a dynamic modal logic meets theories of change and
knowledge representation)

LP-92-11 Johan van Benthem A note on Dynamic Arrow Logic

LP-92-12 Heinrich Wansing Sequent Catuli for Normal Modal Propositional Logics

LP-92-13 Dag Westerstihl Tterated Quantifiers

LP-92-14 Jeroen Groenendijk, Martin Stokhof Interrogatives and Adverbs of Quantification

Mathematical Logic and Foundations

ML-92-01 A.S. Troelstra Compmilr\lf the theory of Representations and Constructive Mathematics
ML-92-02 Dmitrij P. Skvortsoy, Valentin B. Shehtman Maximal Kripke-type Semantics for Modal and Superintuitionistic

Predicate Logics

MIL-92-03 Zoran Markovi€ On the Structure of Kripke Models of Heyting Arithmetic

ML-92-04 Dimiter Vakarelov A Modal Theory of Arrows, Arrow Logics I

ML-92-05 Domenico Zambella Shavgul_cov’IsA’(I)’heorem on the Subalgebras of Diagonalizable Algebras for Theories
containin +EXP

ML-92-06 D.M. Gabbay, Valentin B. Shehtran ‘}Jn_d%:lidgbility of Modal and Intermediate First-Order Logics with Two Individual

ariables

ML-92-07 Harold Schellinx How to Broaden your Horizon

ML-92-08 Raymond Hoofman Information Systems as Coalgebras

ML-92-09 A.S. Troelstra Realizability

ML-92-10 V.Yu. Shavrukov A Smart Child of Peano’s

Compution and Camﬁ;e:;ty Theory
CT-92-01 Erik de , Peter van Emde Boas Obf‘ect Oriented Application Flow Graphs and their Semantics
CT-92-02 Karen L. Kwast, Sieger van Denneheuvel Weak Equivalence: Theory and Applications

CT-92-03 Krzysztof R. Apt, Kees Doets A new Definition of SLDNF-resolution

Other Prepublications

X-92-01 Heinrich Wansing The Logic of Information Structures

X-92-02 Konstantin N. Ignatiev The Closed Fragment of Dzhaparidze's Polymodal Logic and the Logic of X;
conservativity

X-92-03 Willem Groeneveld Hnamic Semantics and Circular Propositions, revised version

X-92-04 Johan van Benthem odeling the Kinematics of Meaning

X-92-05 Erik de Haas, Peter van Emde Boas Object Oriented Application Flow Graphs and their Semantics, revised version

%095'912 Semantics and Philosophy of Langauge .

LP-93-01 Martijn Spaan Parallel Quantification .

LP-93-02 Makoto Kanazawa Dynamic Generalized Quantifiers and Monotonicity . . .

LP-93-03 Nikolai Pankrat'ev Completeness of the Lambek Calculus with respect to Relativized Relational Semantics

LP-93-04 Jacques van Leeuwen Identity, Quarrelling with an Unproblematic Notion

Mathematical Logic and Foundations .

ML-93-01 Maciej Kandulski Commutative Lambek Categorial Grammars

ML-93-02 Johan van Benthem, Natasha Alechina Modal Quantification over Structured Domains . .

ML-93-03 Mati Pentus The Conjoinablity Relation in Lambek Calculus and Linear Logic

ML-93-04 Andreja Prijatelj Bounded Contraction and Many-Valued Semantics .

ML-93-05 Raymond Hoofman, Harold Schellinx Models of the Untyped A-calculus in Semi Cartesian Closed Categories

ML-93-06 J. Zashev Categorial Generalization of Algebraic Recursion Theory

ML-93-07 A.V. Chagrov, L.A. Chagrova Algorithmic Problems Concerning First-Order Definability of Modal Formulas on the
Class of All Finite Frames

Compution and Complexity Theory . . .

CT-93-01 Marianne Kalsbeek The Vanilla Meta-Interpreter for Definite Logic Programs and Ambivalent Syntax

CT-93-02 Sophie Fischer A Note on the Complexity of Local Search Problems

CT-93-03 Johan van Benthem, Jan Bergstra ~ Logic of Transition Systems

Other Prepublications . . .
X-93-01 Paul Dekker Existential Disclosure, revised version

X-93-02 Maarten de Rijke ‘What is Modal Logic?

