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Abstract

In the Lambek calculus of order 2 we allow only sequents in which the
depth of nesting of implications is limited to 2. We prove that the decision
problem of provability in the calculus can be solved in time polynomial
in the length of the sequent. A normal form for proofs of second order
sequents is defined. It is shown that for every proof there is a normal
form proof with the same reading. With this normal form we can give two
algorithms that decide about provability of sequents in polynomial time.

1 Introduction

The Lambek calculus was first presented in Lambek [1958]. The Lambek calcu-
lus is a sequent calculus. A sequent expresses a consequence relation between
a list of types (the antecedent) and a succedent type. Types are defined recur-
sively:

o There is a set of basic types (e.g. {s, np}).
e If A and B are types, then A/B and A\B are types.

We consider the (product-free) Lambek calculus, of which we give a Gentzen-
style sequent presentation in figure 1. Greek capitals denote sequences of types.
Empty antecedents are not allowed.

In the left rules, we call T' - A the minor premise and A,B, A’ F C the major

premise.

*The author was sponsored by project NF 102/62-356 (’Structural and Semantic Parallels
in Natural Languages and Programming Languages’), funded by the Netherlands Organization
for the Advancement of Research (NWO).



A A (A basic)

rrA ABAFC . LAFB
"A,B/A,T,A'FC TFB/A
THA A,B,A'FC ATFB

L ——— [\R
A,T,A\B,A’+C M e M

Figure 1: The Lambek calculus

Moortgat [1988] already showed that Lambek proofs are small, their size is
linear in the number of connectives in a sequent. We can conclude from this
that provability in the Lambek calculus is in the complexity class NP. All
algorithms for theorem proving that have been developed ([Moortgat, 1988],
[Hendriks, 1992]) run in time exponential in the size of the sequent that must
be proved. There are no polynomial algorithms known. In this paper a fragment
of the Lambek calculus is considered for which polynomial algorithms do exist,
and the algorithms are presented here. The fragment is called the second order
fragment.

Buszkowski [1990] proved contextfreeness of the second order fragment. There
is no obvious way to use the contextfreeness in finding polynomial algorithms
for the fragment. Buszkowski says in his proof [Buszkowski, 1990, p. 149]:
“Details of the construction, however, are pretty sophisticated (it would be
interesting to estimate the required time which seems to be super-exponential)”.
The grammar he gives is contextfree but exponential in size. Via Buszkowski’s
construction it is not possible to obtain a polynomial algorithm for theorem
proving in the second order fragment.

After description of two polynomial algorithms it is shown that, unfortunately,
the method used in this paper can not be extended to larger fragments.

The fragment can be defined as follows. We define the order of a type:

order(A) = 0if A is a basic type
order(A/B) = maz(order(A),order(B)+1)
order(B\A) = maz(order(A),order(B)+1)

Maybe it would be better to call this property of a type its depth but we call
it order because others did so before. The order of a sequent is defined as the
order of the highest order type occurring in it.

The fragment we restrict ourselves to in this paper is the fragment of sequents of
order 0, 1 or 2. To give an example: the sequent s/(np\s),np\(s/np), (s/np)\s +
has order 2. The sequent s/(s/(np\s)),np F s has order 3 and is not in the
fragment. For convenience we only look at sequents whose succedent is a basic

typel.

1We can easily transform sequents with a complex succedent to sequents with a basic
succedent by application of right rules.

V)



2 A normal form for proofs

Before we give the normal form we change the notation of types. Because the
system is associative the bracketing of a type is irrelevant to some extent. We
remove this unnecessary bracketing by giving a type two subcategorization lists:
one for the arguments that are expected at the left and one for the arguments
that are expected at the right of some type. A type ((a\(b\c))/d)/eis converted
into the type in subcategorization list notation (c,[a,b],[e,d]). Note that
the subcategorization lists can be nested. We can define the Lambek calculus
in this new notation as follows (we use the notation [H|T] for the list with head
H and tail T and (a, [1,[]) equals a):

A+ A (A basic)

PEA ABLT)AFC - DAFBLT) o
A, (B,L, [AT]), T, A'F C T+ @, LA /™
THFA A,(B,T,L),A'FC ATF(BLT

( ) L] ( ) \R]

A,T, (B,[AT],L),A'FC I'F (B, [A|T], L)

Figure 2: The Lambek calculus in subcategorization list notation

The system is equivalent with the Lambek calculus because the Lambek calculus
is associative. The definition of order in this system is analog with the definition
we just gave.

In this new notation we can define a normal form as follows:

e the sub-sequents in the proof must lie on three intervals on the unfolded
proof frame as defined in [Roorda, 1991].

Roorda defines a mapping from types to trees. This mapping is called unfolding.
In order to unfold types we first assign the labels “4” and “-” to them. Types
in the antecedent are labeled negative, in the succedent positive.

We first define an initial tree for a type. This tree has only one node. It is the
type with its label. There are four rules to unfold nodes:

A B A B B A B A

- 4+ + - -+ + -

A/B A\B A/B A\B
- — + +

Figure 3: Unfolding rules



If all leaves of the tree are unfolded the unfolding is finished. If we unfold all
types of a sequent, we get the proof frame of a sequent.
E.g. the proof frame of the sequent: np,np\(s/np) F s/np is:

S np
- +
np s/np np s
+ - - o+
np np\ (s/np) s/np

- - +
Figure 4: A proof frame

A proof frame is a list of trees. We define an interval as a list of leaves that
are adjacent in the proof frame. We define the last leaf of the last tree to be
adjacent with the first leaf of the first tree. This means that a proof frame is
circular instead of linear. We will draw the proof frames circular in the rest of
the paper.

We call the final conclusion in a proof the goal sequent. We can give proof
frames for all sub-sequents in a cut free (Gentzen) proof in the same way as for
the goal sequent. Because the subformula property holds in the cut free system,
the leaves in a sub proof frame form a subset of the leaves in the proof frame
of the goal sequent.

We can count the number of intervals the leaves of a sub-sequent are on with re-
spect to the leaves of the proof frame of the goal sequent. Consider e.g. the goal
sequent a/b,c/d,e/f,g,h\i,j\k,I\m F n. The sub-sequent c/d, g, h\i F n is on
three intervals with respect to the goal sequent. The sub-sequent c¢/d, g,j\k - n
is on four intervals. Figure 5 will make this clear.

The normal form for proofs is now defined as follows: all sub-sequents in the
proof must lie on at most three intervals. Therefore, a proof of the sequent
a/b,c/d,e/f,g,h\i,j\k,I\m b n containing the premise c¢/d,g,7\k I n is not in
normal form.

Definition of this normal form reduces the number of possible sub-sequents
occurring in a proof enormously. There are exponentially many possible sub-
sequents of a sequent (the set of leaves has exponentially many subsets). We
restrict the number of possible sub-sequents (subsets) by admitting only sub
sequents whose leaves form at most three intervals.



c/d g h\i => n c/d g F\k => n

3 intervals 4 intervals

Figure 5: Three vs. four intervals

" ossi
6 p
bilities to choose three intervals (draw 6 borders out of n possible ones). The

When there are n leaves in the proof frame, there are fewer than

number 6 |1 smaller than n8. If we have chosen three intervals, there is a

(possibly empty) set of sequents whose leaves are on these three intervals. Only
one of them (if there are any) has a basic succedent. All others can be derived
from this one by application of right rules only.

Under the 3-intervals restriction the number of possible sub-sequents (subsets)
is polynomial (O(n®) if we consider sequents with a basic succedent).

Suppose we have a proof that is not in normal form. Then we have to show
that there is an equivalent proof (a proof with the same axioms) which is in
normal form.

The basic idea is as follows. We take as an induction hypothesis that we try
to prove sequents whose antecedent types are on one interval. The succedent
type is always on one interval so the sequent is on (at most) two intervals. The
induction hypothesis is clearly true for the goal sequent.

A standard normal form for proofs is downward permutation of right rules.
We bring the proof in this normal form first. Reasoning from the bottom to
the top of a proof, right rules are applied first. If no further right rules are
applicable, the antecedent has the following form: first we have a number of
“fresh” adjacent types that have just been moved from the succedent to the
antecedent via the [\R] right rule. They are followed by the old antecedent
which is followed by the “fresh” types that are a result of the [/R] rule. The



antecedent type involved in a [\R] or [/R] rule is called hypothetic because the
type would be a hypothesis in a natural deduction proof of the sequent. The
hypothetic “fresh” types are always basic because we are in the second order
fragment.

If no right rules are applicable from the start (case 1) we can bring the proof
in head normal form [Hendriks, 1992]. The basic idea is that if we apply a left
rule on a type in the conclusion the type becomes “active”. In the next step a
left rule must be applied on the functor of the active type in the major premise.
If we enrich the language with the symbol * we can define a new calculus in
which all proofs are in head normal form as follows:

atx F at (at is basic)

T'HAx A,Bx,A'Fat [,AF Bx
; /L =T=72- /R
A,B/A%,T, A - at T - B/Ax
TFAx A,Bx Al at AT Bx
L —— [\R
AT ABA Fat " Traes '
AAnA Fat
ALA A ¢ atx

Figure 6: The Lambek * calculus

We can apply this idea on the proofs we have in our system. After this nor-
malization step we normalize further: we separate the [\L] and [/L] rules by
applying all [\L] first and all [/L] rules afterwards. This is possible because we
use the subcategorization list calculus. The antecedents of the minor premises
are on one interval. This is the case because the antecedent of a minor premise
is a sublist of the antecedent of the conclusion. In head normal form every an-
tecedent of a minor premise is a sublist of the final conclusion. The antecedent
of the final conclusion was on one interval (induction hypothesis) and so are the
antecedents of the minor premises. The antecedents of the major premises are
on two intervals. Because of the head normal form and separation of [\L] and
[/L] rules the antecedent of the final conclusion is split up in at most two parts.
The last major premise is an axiom. Axioms are on two intervals. This means
that the induction hypothesis is valid for all sub-sequents we have not proved
yet.

minor — 2 axiom — 2

(3
minor — 2 major — 3
minor — 2 ‘ major — 3 /L]
. ()
minor — 2 major — 3 0L

conclusion — 2



Suppose right rules were applicable (case 2) and that there is at least one [\R]
rule. Then the proof is of the form:

BFB T, (A A, Ay),Tek D

T5.B, (A B, A, Ag), Ts £ D
¢ TIo(1\L), (/1))

I'1,B,Ts, (A, [A1,B, Ay, A3), '3, Ty F C
: I ([\R], [/R))

P2> (A, [Ala B> AZ]) A3)7 113 F (C7 [B7 F?]) F4)

The induction hypothesis says that I's, (A, [A1, B, Az], As), '3 is on one interval.
The type that has the B as an argument can not be a member of I'y because I'y
is a list of basic types. If we have such a proof, we can bring it in the following
form:

FS) (A) AZ) A4)7 FG F D

BB Ty, (A Ay, As), T3, Tyt C

F17 B’ (Aa [B7 AZ]: A.3)7 FS) F4 HC (o
: Hs(n\u)
Fla B7 F27 (A> [Ah Ba AZ]) A3)) FB) P4 FC
: I1(\R), [/R])

Ty, (A, [A1, B, Ag], A3),Ts F (C,[B,T'f],T4)

The idea is that when there are hypothetic types in the antecedent we try to
remove them as soon as possible so that the sequent that still has to proved
is an instance of case 1 we just treated. In terms of permutation of rules we
try to bring the axiom B F B as far down as possible. We adopt some kind
of restricted head normal form: in the partial proof II3 (and only in II3) the
type (A,[...,B,As], A3) is active (has a *) temporarily. When the B has been
consumed the type “looses its activity”.

The proof can be brought in this form because the rules on the partial an-
tecedent B, T2, (A, [A1, B, Az], As) are independent from all other rules.

Note that although the antecedent I'y,B,I's,(A,[A1,B,Az],A3),T'3,I'y is on
three intervals, the whole sequent I'1,B, T2, (A,[A1,B,A2],A3),I'3,Ty F Cis
on two intervals because 'y, C and I'; are adjacent. In the partial proof II3
only [\L] rules are applied on (A,[...,B,As],As). I'z is on one interval by the
induction hypothesis. The antecedents of the minor premises in II3 are sublists
of 'y and therefore are on one interval too.

In the major premises in II3 the antecedent is broken up in two parts com-
pared to the antecedent I'1, B, I's, (A, [A1, B, Ag], A3), '3, T'y. Therefore the ma-



jor premises lie on three intervals. In the sequent I'1, (A, A2, A3),I'3,T'y - C the
part 'y, C,T'; is on one interval and (A, Az, A3),T's is on one interval.

We can repeat this story for all basic hypothetic types in I';. We remove the
hypotheses one by one. Then we eliminate the hypotheses that are moved from
the succedent to the antecedent via the [/R] rule (I'y) in the same way. Finally
we get a premise without hypothetic types in the antecedent with a 1-interval
antecedent for which the induction hypothesis holds. This case was treated in
the previous part as case 1.

If we restrict ourselves to premises that are on three intervals we will still find
all proofs. The normal form is complete.

3 Two algorithms

3.1 Backward chaining

A simple algorithm to find out whether or not there is a proof for some theorem
is the following.

o If the theorem is an axiom we have a proof.

e If the theorem is not an axiom we try to match it against the conclusion
of a right rule. We have one premise now that has to be proved.

e If the theorem is not an axiom and we can not match it against the
conclusion of a right rule, we try to match it against the conclusion of a
left rule. We have two premises now that have to be proved.

We call this method backward chaining of the logical rules. The rules show
that the number of connectives will decrease with every backward application
of a logical rule. The connectives are removed one by one. This garantuees
that the algorithm will stop. The search space is finite because the number of
connectives decreases with every application of a rule.

This is the standard algorithm for Lambek theorem proving. It shows that the-
orem proving in Lambek calculus is decidable. If we use the subcategorization
list notation and allow only premises which are on three intervals we almost
have a polynomial algorithm. The only thing we have to add is memoization
[Cormen, Leiserson and Rivest, 1990, pp. 312-314]. Memoization means that
we put in a table the result of our first attempt to compute the solution of a
problem. If we later want to solve this problem again we can see the answer
immediately in the table.

In this algorithm we store the results of the third step in the algorithm. If we
know whether some sequent on which no right rules are applicable is provable
or not we store that in the table. When we try to prove the same sequent again
we know the answer immediately because it is in the table.

Take for n the number of connectives in a sequent. We have to compute O(n®)
times whether a sequent with a basic succedent is provable or not. This bound
has been shown earlier. In a computation of validity of a (sub) sequent with
basic succedent we have to prove at most O(n?) pairs of premises. In the worst



case O(n) right rules have to be applied before the succedent of a premise is
basic and the premise can be looked up in the table (or computed). Table
look-up can be done in constant time. In time O(n3) we can compute (or look
up) all subgoals of a goal. The total complexity of the algorithm is O(n% x n3)
is O(n®).

3.2 Forward chaining

In the previous section we saw an algorithm that works from the goal sequent
towards the axioms. In this section we are going to do the reverse: we start
with axioms and try to derive sequents from them. While we are trying this we
continuously keep in mind the goal sequent we are trying to prove. This helps
us to reduce the search space. In the previous part of this paper we saw how a
unique set of leaves can be assigned to all sub-sequents (premises) in a proof.
With the goal sequent in mind it is also possible, however, to find the unique
sub-sequent if we know the set of leaves. This is a result of the subformula
property. Note that the cardinality of the set of leaves is twice the number of
axioms we need to derive the corresponding sub-sequent.

The algorithm is defined as follows. We start with all axioms. There is only a
quadratic number of possible axioms. Axioms have a set of leaves of size two.
We build sets containing more than two leaves as follows:

o Take two disjunct sets of leaves that have been found already.

e Test planarity in the unfolded proof frame (cf. [Roorda, 1991] of the goal
sequent for the union of the sets.

e Apply a left rule with premises the sequents associated with the two sets
of leaves. The type you introduce in the conclusion must be a subtype?
of the types in the goal sequent.

e Apply right rules on the new sequent of the previous step as often as
possible. Again only introduction of subtypes is allowed.

The algorithm builds sets of 4 leaves in the first step, sets of 6 leaves in the next
step and so on. We build provable theorems with induction to the number of
axioms we need to derive them. Because premises are derived from less axioms
than the conclusion we find all theorems.

When we are finished we check whether the goal sequent has been found in the
last step.

The number of sequents with a set of 2m leaves is polynomial in m as a conse-
quence of the 3-intervals property. If we want to build a sequent of 2n leaves, we
try to combine sequents of 2 leaves with sequents of 2(n — 1) leaves, sequents of
4 leaves with sequents of 2(n — 2) leaves and so on. We try n times to combine
a polynomial amount of possible sequents with another polynomial amount of
possible sequents. Therefore this algorithm is a polynomial algorithm and it

2The notion of subtype must be slightly changed if we use the subcategorization list
notation.



finds a proof in three-intervals normal form if there is one.

Suppose e.g. we want to prove: np, (np\s)/np,npt s

We unfold the sequent according to the unfolding rules. The leaves of the
trees in the proof frame are numbered from left to right in order to make them
different®:

P2 53
nP, \% 15
n S S
np) (np)\s;) /np, "Ps i:

We start with sets of two leaves.
In the sequel we will show sets of leaves with their unique theorem.

({np1, np2}, np1 - np2)
({np1, npa}, np; - npy)
({np2, nps}, nps - np2)
({np4, nps}, nps - npy)
({s3, s}, s3 I s6)

sets containing four leaves:

({nph np2, $3, SG}) npi (Sg,[Ilpz],[ ]) F SG)
({s3, nps, nps, se}, (s3,[ ],[np4]) nps - se)

sets containing six leaves:
({np1, np2, s3, 0P4, NP5, 6}, nP1 (s3,[np2],[np4]) nps F s6)

In the last step we find the theorem we had to prove so the sequent was valid.
We can not derive this sequent:

({npg, $3, IPs, Se}, nps (53,[np2],[ ]) F Sﬁ)

®In order to save space we do not draw the proof frame circular here.
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because combination of ({np2, nps}, nps F np2) and ({ss3, s¢}, s3 F sg) would
violate the planarity condition.

This algorithm is polynomial but an upper bound is harder to estimate than in
the backward chaining algorithm.

4 Discussion

We have given polynomial algorithms for deciding provability in the second
order fragment of Lambek calculus. The most important idea is the normal
form which restricts possible sub-sequents to those that are on three intervals
(or less). Once we have the normal form, the polynomial algorithms are easy
to find. The algorithms we gave are both instances of dynamic programming
[Cormen, Leiserson and Rivest, 1990, Chapter 16].

We can show that the condition of three intervals does not work in higher order
fragments (> 2). The type ((c\c)\b)\b has order 3. Consider the sequent:

c\b, (c\b)\b, ((c\c)\b)\b, ((c\c)\b)\b, ((c\c)\b)\b F b
A necessary subproof is:
¢, c\c,c\¢c,c\c,c\b b

This sub-sequent is on 4 intervals. By repeating the type ((c\c)\b)\b we can
construct a counterexample to any fixed bound on the number of intervals one
needs in a proof.

In order to find a polynomial algorithm for the whole calculus (so not for the
second order fragment only) we have to do something different. It is worth not-
ing that the cut rule is an admissable rule in the Lambek calculus. Algorithms
which make use of the cut rule have gained interest since Pentus has proved
that the Lambek calculus is context free [Pentus, 1993].

We have given an O(n®) algorithm. Maybe it is possible to improve the algo-
rithm such that the bound is decreased. The main goal in this paper however
was to show a polynomial time algorithm.
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