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Janusz A. Pomykala

APPROXIMATION, SIMILARITY AND ROUGH CONSTRUCTIONS
PART 1. ELEMENTARY INTRODUCTION

Introduction.
Around 1980 two formal concepts were formulated which may be seen as
a formalization of the data base or attribute-value system. Namely
R.Wille introduced the notion of concept lattices and Z.Pawlak
formulated the idea of information system. In the sequel we
concentrate on the investigations related to this second notion. Here
the approach is based on Aristotle’s idea of an attribute. We do not
enter the area of philosophical considerations, mentioning only that
in view of later developed formalizations, an attrribute was
sometimes understood rather as a value of a function, say, then the
attribute itself. The information system’s methods are applied in
medicine, industry, psychology, computer science etc.,see Pawlak (28]
for a good introductory presentation and Slowinski [48] for a
collection of  papers, cf. also Iwinski (11 1. Theoretical
investigations use Boolean, relational, topological and
lattice-theoretical methods. The connections with cylindric algebras,
hypergraphs, weak orders were examined, we can safely say that the
set of information systems methods has grown wup to the
theory.In this paper, shortly speaking, we introduce and examine
notions related to data analysis. Our considerations are also
strongly related with rough sets and similar constructions. Some

applications are also suggested.

The paper has been partly written during the author’s stay at the
University of Amsterdam in summer 1983 due to a grant from the TEMPUS

project.



CHAPTER 1
APPROXIMATION
1. Introduction.

The notion of information system, which is a starting point of the
present paper, was introduced by Pawlak in 1981, and since then it
has been intensively investigated. In particular related notions of a
non‘deterministic information system and an approximation space were
also examined. These notions are wused to analyse computer and
empirical data, being helpful in understanding indiscernibility and
similarity of objects.

In sections 2, 3, 4 we recall basic notions and we give the short
motivation for considering generalized approximation space. In
section 5 we examine several approximation operations in view of
lattice theory. In section 6 we introduce the notion of approximation
algebra and we use this notion to characterize families of definable
sets.

Throughout the paper we use the standard mathematical notation,in
particular P(X) stands for the family of all subsets of the set X. A
family EcP(X) such that U E = X is called a cover of X. Frequently we
will consider the cover E whose elements are nonempty, pair wise
disjoint subsets of X. In such a case it is called a partition of X.
Any relation T on a set U which is reflexive and symmetric is called
the tolerance relation. A set ESU such that ExXESt and which is

maximal with respect to inclusion is called a tolerance class.

2. Information system and approximation space. (273,

Throughout the paper U will be an arbitrary fixed set,
called universe.

An information system is a quadruple (U,A, (Va)aEA' f) where
U is a set of objects, A stands for a set of attributes, Va is a

set of wvalues of an attribute a,v and f: UxA-> U Va is a function

(called information function) such that f( x,a)tsv.1 for any xeU and
a€A.

For every subset BSA an indiscernibility relation Ind(B)QU2 is
defined in the following way: for any x, y € U
(1) x Ind(B)y iff f(x, a)=f(y, a) for every a € B.



i x Ind(B)y we say that x, y are indiscermble with respec£ to B.

Suppose that R is an equivalence relation in U. The pair (U,R)
is called an approximation space. [x]R will stand for the equivalence
class of the relation R determined by x € U.

Traditionally the equivalence <classes of R are called
R-elementary sets.

For any set X <€ U its lower (resp. upper) approximation L(X)

(resp. U(X)) is defined as follows:

L(X)={ x: [x]Rs X}
(2)

U(X)={x: [:-(]R nX=g)}

For brevity, we often write X instead of L(X) and X instead of

U(X). L(X) is also denoted by R(X), and U(X) by R(X).
Let us recall that any set X S U is called definable Iiff

L(X)=U(X). Equivalently, X is definable iff L(X)=X iff U(X)=X iff
X is a union of some R - elementary sets. Thus, the family
Def(U,R) of all definable sets is a complete atomic Boolean
algebra with the wusual set operations, having as atoms the
elementary sets. The family Def(U,R) is topology for U while the

family of all elementary sets is a base for Def(U,R). L(X) (U(X)) is

an interior (a closure) of X, respectively.

3. Nondeterministic information system.

Suppose we are given the information system (U,A, (Va)aEA,f).
It may happen that the information function f is not determined
precisely i.e. the values of f are not settled uniquely. For
instance, assume that one has to estimate the value of a light
stimulus on a given measurement scale; then, an estimation is given
by the interval in which we expect to find the actual value of the
stimulus. Then it may be reasonable to consider a function F having
as values the subsets of V.

Formally we define: The quadruple (U,A, (Va)aEA,F) where F
is an arbitrary function satisfying
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F:U x A ->P(V) and F(Ux{a}) < P(Vg for any a€A, is called a
nondeterministic information system .

Now let (U, A, (V), F) be the nondeterministic information
system. For any subset BSA we define a similarity of objects with
respect to B in the following way: for any x, y € U

(3) (x, y) € sim(B) iff V beB F(x,b) n F(y,b) = @.

The relation sim(B) is called B-similarity relation and, if
(x,y) € sim(B) then we say that x, y are B-similar.
Some other tolerances in the system (U, A, (Va)aEA.F) are worth

mentioning:

(x, y)ell iff aVclb‘:_B (F(x,a)SF(y,a) or F(y,b)sF(x,b)),
(x, ylell’ iff bVEB F(x,b)nF(y,b)#2 and béB F(x,b)=F(y,b)
Thus it seems to be desirable to examine systems with

tolerance.

4. Approximation space.

As was mentioned above, the notion of approximation space has
been defined by Pawlak as a pair (U,R) where R is an equivalence
relation in U. Now, suppose that R is an arbitrary binary relation
in U. Any set ESU satisfying ExESR and maximal with respect to
inclusion will be called R-elementary.

Applying Kuratowski-Zorn lemma we shall prove the following

Lemma 1. Suppose R is a reflexive relation in U. Then the family E
of all R-elementary sets is a cover of U.

Proof. Suppose X is an arbitrary element of U; we have {x}x{x}SR
by reflexivity of R. Now consider any chain (E_n: n<A} of sets such
that E"DXE") S R. We have

UE x UE_<R
n<a n <A

Indeed, if x¢ U E_ and ye U E_ then xeE_ for some 3<A and yeE_ for
n<A n n<A n S L4

some y<A. Since E«SS 1-27 or E7S l-:(s we infer that (x, y) € E1XE7 or



(x, y)eEaxE hence finally (x,y)eR. In other words U ETI is an upper
' n<A

bound of the chain (En: n<A}. Therefore there exists a maximal set E

satisfying ExESR such that xe€E, in view of Kuratowski-Zorn lemma.

Hence x belongs to some R-elementary set, as required.

As a consequence we obtain the well known
Corollary 1. Suppose T is a tolerance in U. Then the family E(7)

of all tolerance classes of T is a cover of U.

This is our motivation to consider in what follows the space
(U, E), where E is a cover of U. The pair (U, E) will be called

generalized approximation space.

5. Approximation operations.
Suppose (U, [E) is a generalized approximation space. Let us
recall that the indiscernibility neighborhood of an element xeU is

the set
E
o0 =U{ E,: "EEJ'

X
For any element x€U, the set
E
I ={ yeU: VE (xeE & yeE ) }
x t t t

will be called the kernel of x in view of its analogy to the

notion used in the theory of tolerance relations. If no confusion
E E
is possible we shall write 0x and Ix instead of 0x and Ix,

respectively. Let J be the family of all the kernels of (U, E):
J(E) = J = { Ix: xeU }.

It is easy to verify that J is a partition; the equivalence relation
determined by J will be denoted by I. If xIy then we say that x, y
are E-inseparable.

Let -X stand for U-X. We say that two operations G,G’:P(U)->P(U)
are conjugated iff for any X<U, the following condition is satisfied:

G(X) = -G’ (-X).

Now we apply the introduced notions to define some special
pairs of conjugated approximation operations in the space (U,E).
When E 1is a partition of U, all those operations will coincide

with the well known lower and upper approximation operations of
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Pawlak. The motivation to consider pairs of conjugated operations
comes from two sources: first, the operations G and G’ may be used
to define operators of necessity and possibility in a respective
modal logic and second, in cases when G, G’ are topological
operations then in order to define the same topology on U, they
have to be conjugated.

Let X be a subset of U. We will define the operations |§l, as

follows:

E (X) = {x: O <X}
-1 x
E1(X) =U (Et:EtnX * 2}
E (X) =U {0 :0¢X}
-2 X X
E (X) = {z:Vy (2€0 30 nX # @&}
2 y vy
(4)
E.(X) = UA{E:E <X}
Ea(X) = {y:VEt(yeEtsEtn X # o}
E(X) =U({I:Icx}
-4 y y

E(X) =U{I:InX# o
4 y vy

First, let us observe that for i=2, 3, 4 the operations El’ Ei are
idempotent i.e. for any new, XSU and for i=2, 3, 4 the following
conditions are valid:

(a)  (E}(X)) = E (X)

(b) ((El)"(x)) = El(X)

The situation is more complicated when we iterate operation

El or E1. For any X<U we have the inclusions

E, (0S(E)20s(E ). ..
but it may happen that the elements of this sequence are pair wise
distinct. So, we introduce one more approximation operation Eo in
the following manner:

(5) E(X) =U (El)i(X)
i<w

We shall call Eo the transitive closure operation (by analogy

to the terminology used in the theory of tolerance relations). The



set [o( {x} ) denoted by Cx will be called the component o1 x 1n VU,
c, ‘2 E ({x})

It is easy to check that EO(X)=U(cy: CAX #eb and the
conjugated operation go satisfies
Igo(x) = {xeX: stX},
since the family C=(Cx: xeU} of all components in U, is a partition
of U.
Let us also observe that the following inclusions hold:

E, SESESESESIASESESESESE).

Now, to express the algebraic properties of the above
operations, we recall some notions from lattice theory:

Let G be a mapping of P(U) into itself. We shall say that G is
a lower (upper) operation on U iff for any X<U, G(X)sX (G(X)2X),
respectively. (The upper operation is also called extensive)

The mapping G is said to be monotonic iff (if XSY then
G(X)SG(Y) for any X,YSU). Any monotonic and lower or monotonic
and upper operation will be called an approximation operation. The

most important examples of operations satisfying this definition

are the lower L=R and upper U=§ approximation operations of Pawlak
The mapping G is said to be idempotent iff for every

XsU, G(X) = G(G(X)). If G is an upper, monotonic and idempotent
mapping then G is called a closure mapping and the pair (U, G) is
called a closure space.

To summarize this section we recall that a closure operator H
on the set U is an algebraic (resp. topological) closure operator
if for every X<U

H(X) = U { H(X’) : X’SX and X' is finite }
(resp. for every X,YS U H(XuY) = H(X) v H(Y)).

Theorem 1. Assume (U, E) is a generalized approximation space and

Ei,El, i=0,...,4 are the approximation operations defined by (4).
Then it holds:

(a) EO,E‘ are topological algebraic closure operations;
(b) Ez’Es are closure operations;

(c) E1 is monotonic, extensive and it satisfies the condition
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EI(XUY) = E1(X) v E1(Y)’ for any X, YS U ;

(d) E1 is a topological closure operation iff {Ox:er) is a
partition of U.
Proof. It is easy to prove (a), (b) and (c). For a little bit
more difficult (d) see [33].

6. Approximation algebra.

In applications it is often considered a family of all
definable subsets of the universe U. To formulate definitions of
these families in a unified way, we introduce the following

approximation algebra:

An algebra (P(U),(gi,al:iel)) is called an approximation
algebra on U if, for any X, Y & U and iel, it satisfies:
1) G,: P(U)—sP(U)

2) X < Gl
3) X € Y implies EI(X) < Ei(v)

4) QI(X) = -Gi(—X).

A subset X of U is called a definable subset with respect to
{Eizielosl} if for every ieIo it holds 61()() = X. In other words X is

a fixed point of all E;'l, ieIo. Similarly, X is definable with respect

to {Ql:ielo} if ‘Vel (_}i(X)=X. The family of all definable sets with
o

respect to (gl:ielo} will be denoted by Def(U, {Ql:ielo}), or in

short by Def(I ). Eé'f"(lo) = Def(U,(El:ieIo}) denotes the family of

all definable sets with respect to {61: ielo}.

Lemma 2. The family Def (Io) is closed on intersections i.e.

if tZS Xte Def(Io) then n Xte Def (Io).
tes
Proof. Assume ieIo. It holds

G,( nX)s nG(X)=n X
tes tes tes



in view of the monotonicity of Ei and the hypothesis. On the other

hand Gl( n Xt)2 n Xt, since Gi is extensive. Finally,
te s t €s

G nX)=n X.
te s t €s
Corollary 2. E‘.(Io) is a complete lattice with respect to set

inclusion, and

inf {Xt:teS } =tgsxt , Sup {Xt:tes Y= {XeDef(Io): X2Xt VteS}
Proof. It is a consequence of Lemma 9, p.184 in [+], or Theorem 4.2

p.14 in [2).

Lemma 3. The family DLf(IO) is closed on arbitrary unions.
Proof. If XteM(Io) for every teS, then

Uxt= U c_:‘(x) < G(U xt) s U X,, for iel .
t€s t€s tes t€es
Hence

G, ( v X) = V) X,, for iel , i.e. U X,€ Def(I).
t€s tes tes

Corollary 3. DLf(Io) is a complete lattice with respect to set
inclusion and sup {Xt: tes} = U X,
tes
inf {Xt:teS y= U (XeD__ti(Io): Xs tstt}.

Applying these lemmas to the approximation algebra

(P(U),{E ,E ,1€{0...4}}) we obtain:

Corollary 4. Assume that E‘,Ei, i=0,...,4, are approximation
operations in the space (U, E). Then it holds:

(a) Def(U, E ) = Def(U, E ) = Def(U, E ) = Def(U, E ) and

Def (U, E‘) = Def (U, E‘) are fields of sets;
(b) Def(U, Ez) and Def (U, Ea) are complete lattices with respect to

set inclusion and inf Y = Y, sup Y = Ez(U Y) (sup Y= ES(U Y)),
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for Y Def(U,Ez), (Y s Def(U,Ea)), respectively;

(c) Def(U,ga), Def(U,lgs) are complete lattices with respect to
set inclusion and

sup Y = U Y, inf Y = E(n Y), (nf Y = E(n Y)), for

Y< Def(U,E_), (Y< Def(U,E))) respectively.

CHAPTER 2

REDUCTS
In this chapter we formalize the notions of reduct and subreduct of
the set of attributes, in a slightly different way than it is
formulated in [48].

1. Reducts of attributes.

Let rel : P(A) --> P(UxU) be arbitrary function satisfying the
condition: for every subset BSA

(1) rel(B) = n {rel({b}):beB}

rel(@)=UxU.

In view of (1) we have

(2) B < B’ = rel(B) 2 rel(B’)

Instead of rel({a}) we shall write often rel(a).

Example 1:

(a) Assume that (U,A,V,f) is an information system.
For B S A we define rel(B) = Ind(B);

(b) For a nondeterministic system (U,A,V,F) let us define for
B S A : rel(B) = sim(B);

(c) Assume that (U,A,V,f) is the information system and = is a
linear order in the set Va; for b € A we define
rel(b) = {(x,y)e UxU :f(x,b) = f(y,b)} and for B S A let us set
rel(B) = ) {rel(b) : b € B};

(d) Consider the following table

| a b c d

o
w

ul| 1
w| 2 1 1

10



u3| 3 4 2 7

Assume that <= is wusual relation between real numbers, let us
define rel like in the example 1(c) above. Then it holds
rel(a)={(ul,u2), (ul,ud), (u2,ul3)}uld,
rel(b)={(u1,u2), (ul,u3)}uld, rel({a,b})=rel(b),
rel(c)={(u2,ul), (u2,u3d), (u3,ul)}uld,
rel({a,c})={(u2,u3)}uld, rel({a,c,d})=rel({a,c})=rel({a,d}). Then
the reducts of the set {a,c,d} are the sets {a,c} i {a,d} (the

definition of the notion of reduct is given below).

Let X S A. We say that the set X jest rel -independent iff for
every set X’c X it holds rel(X’') # rel(X). Otherwise we say that
X is rel-dependent. We say that X'S X is rel-reduct of X iff
rel(X') = rel(X) and X’ is independent.

Let us notice that the classical reduct (see [I¥]) is
rel-reduct with respect to the function rel(B)=Ind(B). In the
above example the rel-independent sets are the following sets:
{a,b,c}, {a,b,d}, {a,b}, {a,d}, {a,c}, {b,c}, {b,d}, {a}, {b},
{c}, {d}.

Lemma 1. (see 3.1, 3.2, 4.1 in B8]).

(a) For every set X € A there exists the reduct of X. If
rel(X) # rel(@) then the reducts of X are non empty sets.

(b) X s A is independent iff for every p € X rel(X)#rel(X-{p}).

(c) If X € A is independent and X’ € X then X' 1is also
independent.

The set of all reducts of any subset B & A will be denoted by
Redrel(B). The set of all reducts of A will be denoted by
Redrel. The set of independent subsets of B shall be denoted by
Indrel(B). The set of independent subsets of A shall be denoted
by Indrel. Assume X &€ A. An element x € X is called
dispensable in X if rel(X) = rel(X-{x}). Otherwise x is called
indispensable . The core of X is the following set (see 4.1 [4]):

Core(X) = {x € X : x is indispensable in X}.

Theorem 1 (see 4.2 in KN§]):

11
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For every X S A Core(X) = ) {Q:Q is the reduct of X}.

Proof.
Inclusion 2 is obvious.We prove S. Let peX be indispensable in X
i.e. rel(X - {p}) # rel(X). We will show that for every reduct Q
S X, p € Q. Assume on the contrary that Q is the reduct of X
such that p ¢ Q. Then

N {rel(q):qeX} = n {rel(q): q € Q} 2 {rel(q):qeX-{p}}, hence
rel(X) = rel(X - {p}), which is contradictory to the choice of p.

2.Subreducts.

Let X € A. If X* € X is maximal rel-independent subset of X,then
it is called rel-subreduct of X. If moreover rel(X') # rel(X)
then X’ is called the proper subreduct.

We denote the set of all rel-subreducts of X by Subr(X). Let X
S A. The set Xo = {xe X : rel(x) = rel(s)} is called null-part of

X (or zero part of X).

Lemma 3.
For every X & A it holds:

(a) X = X v U {X’s X : X’ e Indrel(X)}
(b) X = X v U {X': X’e Subr(X)}
Proof:

Since every subreduct of X 1is independent the condition (a)
follows from (b). To prove (b) let us notice that if xeX and x ¢
Xo then x belongs to some subreduct of X, because A (and as a
consequence also X) is finite.

Lemma 4.
If X S A and rel(X)#rel(2) then there exists YSX s.t.rel(Y)orel(X)
and X = Y v U Redrel(X).

Proof:
If X = U Redrel(X) then we take Y=e. If X # U Redrel(X) then we
put Y = X - U Redrel(X). If rel(Y) = rel(X) then a reduct of Y
would be the reduct of X which is contradictory to the condition

Y =X -U Redrel(X).

12



Theorem 2.
If X’ € Subr(X) - Redrel(X) then for every zeX-X’there exists
Z < X’v {2z} such that
nirel(x):xe X’u{z}-2}s nirel(x):xeZ}

Proof:
We have in view of the assumptions that rel(X’) =# rel(X), X' is
independent and for every X'’, if X’ < X'° < X then X'’ is
dependent. In particular for every ze X - X' it holds
X’c X’ v {2z} € X , therefore X'u{z} is dependent, hence there
exists a set 2 € X' v {2z} such that

rel(X’v {z}) = rel(X’v {2z} -2),

in other words {rel(x):xeX’u{z}} = plrel(x):xe X u{z}-Z}.
As a consequence
nirel(x):x € X’W{z} - 2} n pirel(x):xez} = pirel(x):x e X’ u{z}-2Z}
which implies that [ {rel(x): x e X'u{z}-Z} c<  {rel(x):x € 2Z}.
(intuitively speaking the set X* v {2z} - Z can better distinct
(discern) the objects of the universe U then the set Z).

Corollary 1:
If X’ € Subr(X) - Redrel(X) and rel(x) = Ind(x) then for every z
€ X - X' there exist 2 ¢ X' v {2z} s.t. for every u € U
[ul S [u]

Ind(X’U{z}-2) Ind(2)
Example 2:
Assume that rel(B)=Ind(B) and consider the following information
system
| al a2 a3 a4
|---- e
u | 1 1 1 1
w | 0 1 1 1
u | 0 0 1 2
u | 0 0 0 3
us | 0 0 0 4

It holds : Redrel(A)={{al,ad4}} and Subr(A)={{al,ad},{{al,a2,a3}}.

Example 3:
Let U={ul,...,un+1}, A={al,...,an} and ie{1,...,n} and let the

13
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system will be given by the following table

| al a2 a3 ... al ... an-1 an
- I
ul I 1 1 1 1 1 1
u2 | 0 1 1 1 1 1
u3 | 0 0 1 1 1 1
I
|
I
ui | o o0 o0 1 1
| 0 1 1
| 2
| 3
un-1 | 0} 0 0] 0 1 n-i-2
un | o o 0 0 n-(i+1)
un+1 | 0 0 0 0 0 n-i
It is weasy to notice that for rel(A)=Ind(A) it holds:
Redrel(A)={{al,...,ai,an}} and
Subr(A)={{al,...,an-1},{al,...,ai,an}}.

As a consequence of this example we see that the problem of
finding the reducts and the subreducts of a given information
system may force us to examine the subsets of A of arbitrary
cardinality (smaller or equal to cardinality of A, of course).
As a conclusion, there is no hope to invent an algorithm, which
can give us all reducts (for every given information system) by
examining only pairs (or pairs and triples etc.) of attributes

In other words sometimes we have to investigate almost all

subsets of the set of attributes.

CHAPTER 3
ROUGH CONSTRUCTIONS
1. Introduction
It is well known that if we apply to a set A two operations -the
closure and the complement-in a fixed topological space (U,”) then
the number of sets that can be obtained from A in this way is less or

equal to 14 (Kuratowski [3]).This means that if we apply the closure

14



ana tne complement operations O tne sels A ana B ana we 10rm an
equality, then the number of relations defined with respect to these
equalities in the family of all subsets of U has to be finite
also. The equivalences of the similar kind are sometimes applied in
computer science and data analysis, for example so called rough,
bottom and top equality (see Nowotny,Pawlak [19]).In this paper we
construct 18 relations (including rough top and bottom equalities)
obtaining as a special case also topological rough sets (see Wiweger
(451).
2.Basic definitions

Assume that (U,”) is a topological space.If w is a finite sequence

of ' and  (where means the complement operation) then we shall
write weWord(’,”). In other words w is a word over the alphabet {’7}
For A € U we define:

A% = A
A Y= A’ for w=’
AY= A for w="
and inductively for arbitrary w € Word(’, ).

If R is an equivalence relation in U we denote by U and L Pawlak’s
closure and interior operations on U, i.e. for A S U

UA=A-=WIx]: xeA}

where [x] is an equivalence class of x w.r.t.R.

L is defined to be conjugated to U, i.e. for each ASU LA=-U-A.

In the sequel the operation ~ will be equal to U for some relation
R. Usually we write A, A instead of U A, L A, respectively. (U,")
= (U,R) is called approximation space.

Now let us define the following relations on P(U), let A, B<U:
A=z B iff A=B
A=z B iff A =-B

A=_B iff A

L}
1o

A= B iff A

]
|
1

A= B iff A=B

15
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1]
|
o

A= B iff A
6

A =_B iff

1>
]
w

A B iff A =-B

A=_B iff A=B

9 -

A= B iff A =-B
10 - -

A= B iff A=B
11 -

A B iff A =-B
12 -

A= B iff A=B
13

A= B iff A =-B
14

Az B iff A=B
15 -

>
R
w

iff A =-B
16 -

A=z B iff A=B
17

A=z B iff A =-B
Let us observe that the first relation is the equivalence
relation, the second is symmetric, the third 1is transitive,the fifth
is transitive and similarly 13-th, finally 7-th,9-th and 17-th are

equivalences, 18-th is symmetric.

3.Main result
Our main theorem is the following
Theorem 1: If (U,”) = (U,U) is the approximation space for some
equivalence relation R and wl,w2e Word(~,’) then the
relation = on P(U) defined by the condition

16



=B if A

is equal to one of the above 18 relations

"
oe}

Proof:
Lemma 1 (Kuratowski 18922)
Suppose that we apply to a set A the operations ~ and ’.The number of

sets that we obtain is less or equal to 14.

Lemma 2. If (U,U) is the approximation space and A’ denotes the

complement of A then there exist no more then 6 sets obtained by

applying to the set A the operations of closure and of the

complement. The following inclusions are generally valid among them:
AT S ASA

AT S A S AT

Lemma 3. The following equalities holds:

Now, in view of Kuratowski lemma we infer that the words wil,w2,in
the equality AWI= szmay be reduced to words over the set

w={’—, ’0 ’ -’ - ’ ’ ? ’-}’

Considering every pair of words wl,w2  belonging

to W and examining the equalities Aw1= B"zit is easy to check that
AWI= sziff A = B for some ie {1...18}.Finally let us observe
that all equivalences =,...% are different.The proof of the theorem

1 18

is completed.

Remark. The general construction of this paper for arbitrary
Kuratowski closure operation will be given in a forthcoming paper.

We leave open the problem of the description of all rough
constructions defined with respect to the operations introduced in
the paper [34].

It seems to be worth studying the structure of the algebras

17
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created from the family of all pairs (intA,clA) where A is included
in a fixed topological space (U,cl), in particular it seems to be
important to connect the properties of topological origin with those
algebraical in spirit.

CHAPTER 4
ROUGH ALGEBRAS
In this chapter we formulate several algebras based on the family of
rough sets.Our fundamental reference is the book of H.Rasiowa "An
algebraic approach to non-classical logics" .

1. Basic definitions and results.

Let us recall that U is a fixed set, called in the sequel the
universe, and R is an arbitrary equivalence relation on U.For every
xeU, by [x]Rwe shall denote the equivalence class of x. For every
subset acU its lower approximation is the following set

(1) a={x: [x] <a},

the upper approximation of a is defined in the following way

(2) a={x: [x]Rr\a:# 2} .

In the family of all subsets of U the following relation is
introduced: for a,b SU,

(3) a=b wt a=b i a=b.

The equivalence classes of = are called rough sets. [29].

R =R(U,R) denotes the family of rough sets. In symbols

(42) R {[a]_=_ : a & U} or equivalently

(5) R ={(a,a) : a s U}.

In the family R we shall distinguish two constants:
0=(2, ) and 1 = (U,U).

Convention:

(8) a = (a,a)

Following Iwinski we introduce union and intersection operations:

(a,a) v (b,b) = (aub, aub)
(7)

18



\a,8) nb,b) =1anb, 3 by
It is easy to check that these operations are well defined, 1i.e.
(aub, aub) eR (anb, anb)egr

Next, we introduce the one-argument operations T

IR
R

interior, exterior and rough complement, respectively:

T(g,g) = (-a,-a)
(8) s (a,a) = (-a,-a)
:(;a_.i) = (-a,-a)

As regards implication we introduce three operations

>, » > in the following way :

b,b)
:(g,a) v (b,b)
b,b)

(a,a) —;—)(Q,B) ’i’(g.;) v (

~(a,a) v (
r

Finally we define several operations

=
o, B
along the lines of the following schema:

(a,a) (b,b) = ((a,a) -?-a(p,,t_))) n (%(b,b) a—>~(g.§))

«8” B2 B

where «,B8 € {i,e,r}.

Convention: if a =B then instead of =» we shall write

af

3 .
o

Remark: In the sequel it would be interesting to examine the two

argument operations introduced in the following way:

«Byd”
for «,B,7,6 € {i,e,r}:

(a,a) (b, b) = ((a,a) T—)(LJ_,E)) n (%(b,b) 7—rg(g.§))

oBy3 B

For each of the above implications we can introduce the following
biconditionals:

,a b,b) = ((a,a b,b b,b
(a,a) aﬁ(— ) ((a )aB=>(.. )) n ((b )043

In the lemmas below we shall use the above mentioned convention:

>(a,a)).

a= (a,a).
Let us observe that in R there is a relative pseudo complement

operation which we shall denote by rpa.
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Lemma 1.
For every a,b € R it holds:
a —b=(-aub, -a v b)
a—e——>b=(—5ug, -a u b)
a—r-—>b=(-au_b_, -a v b)
ai»b=(—g_u§, -a U b)
a  =b = (-avbu(-a) nb, -aub)

a sb=(-aub, -aub v (-a) nb)

el
a =b = (-;aub, -aub)
arp=>b =(-avbu (-a) nb, -aub) V4

Lemma 2.

a sb=a —b=a-—b=a 3b

e e e re
a =3b =a —b

r r
a =sb=a =3b /777

ir ie

Let us recall that the algebra (A,V,s) is called an implicative
algebra if the following axioms are satisfied

(11) asa=V

(12) asb=V i bac=V impliesa=sc=YV
(13) asb=V i basa=V implies a=b
(14) asV=yV

Lemma 3.

In the table below we write 1 if the operation satisfies the

corresponding axiom and O otherwise:

T s v 1T e T T ?
(i) 1 0 0 1 1 0 0 1
(1,) 1 1 1 1 1 1 1 1
(1,) 0 1 1 0 1 1 1 1
(1,) 1 1 1 1 1 1 1 1
17/
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Lemma 4.
If 1 = (U,U), and = 1is one of the implications above then
for alla,be R, asb=1 and a =1 implies b = 1.

Let us recall that an algebra (A,1,u,n,~)is quasi-Boolean
if (A,u,n) is a distributive lattice with 1 and ~
satisfies the conditions:

(q1) ~~a=a

(q@2) ~(a ub)=~a n ~b
An algebra U =(A,1, 3,u,n, — >,~,n)is quasi-pseudo-Boolean
if the following hold

(gpB1) (A,1,u,n,~) is quasi-Boolean

(gqpB2) a relation < given by

a<b iff a->b = 1, is a quasi-order in A

(qpB3) a n x < b iff x < a->b

(qpB4) a=sb = (a->b) n (~b->~a)

(qpB5) asb =1iff anb=a

(gqpB6) a<c i b<c implies a u b < ¢

(gqpB7) a<b i a<c implies a < b nc
(gqpB8) (a n ~b) < ~(a->b)

(qpB9) ~(a->b) < (a n ~b)

(gqpB10) a < ~ 1 a

(gpB11) ~ -~ a < a

(gqpB12) a n~a < b

(gqpB13) = a = a->~1

Theorem 1.

The algebras (7(,1,rp=»), (fR,l,‘:») are implicative. (ﬁ,l,rpa)
is a positive implicative algebra.

1 2 g
(R, v, n,rpa) is a relatively pseudo-complemented lattice.

(7(,1,!=>) satisfies the axioms i

(ﬂ.l.u,n,:) is a quasi - Boolean algebra.
(R, 1,v, n.rps,:) is a contrapositionally complemented lattice.
(R,1,u,n, =,~),(R,1, =,u,n,~),

rp 1 rp e
(R, 1,v, n,rp#,:) are semi complemented lattices.
(fR,l,rp».u,n,: ) is a pseudo - Boolean algebra.
(?,l,ie»,u,n.—-l—),:,';) is a quasi - pseudo - Boolean algebra.

(ﬂ,l,rps,u,n,—i),:,';) satisfies the axioms of the quasi-pseudo-
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Boolean algebra, with the exception of the following condition:
asb = (a—b) n (~b —>~a).
Proof
We will show for example that
X = (R1, ”a,u,n,-;>,:,—;)
is the quasi-pseudo-Boolean algebra.

(gpB1): it is easy to check that (R,u,n) is a distributive lattice
with 1=(U,U) and that > satisfies conditions ¢q1 and q2.

(gpB2) : a<b iff a-7>b=1 iff y a v b=1 iff ';(g.a) v (b,b)=1 iff
(-a,-a) v (b,b)=1 iff -a U b=U iff a S b . Therefore

(#) a<b iff a € b , which implies that the relation < reflexive
and transitive.

(gpB3) : a nx<b iff a nx S b iff x € -a v b iff x<a—;>b
(gpB4) : it follows from the definition of >

(qpB5) : a = b=l iff (-a ubu (-a)n b,-a v b)=1 iff

-avubuv (-a)nb=U and -a v b=U.

We now prove the following

Lemma 1:

-;avubu(-anb)=Uiffacsbandach

Proof:

We shall prove the implication to the right.

Assume that -a v bvu(-an b)=U and that it is not true that

a S b. There exists x e Us.t. xea i x¢ b . Then x ¢ —5,
xe¢blilxe-an b, contrary to the assumption. Now let us assume
that a S b and not a S b. Therefore there exists x € U

such that

xe€aixeb Then x ¢ -a , x¢§andx¢-gn5andagain
this is contrary to -a v bu (-an b)=U, the proof of the lemma is
completed.

In view of the lemma gsp_andast—) iie. anb

"
p

(gpB6): a<c i b<c iff aScibscie. auvubsciffaub<c

10
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Analogousty oy aerimiuion of n ana oy (=) it holds {qpB7).

(qpB8) : a n ~b < ~(a-->b) iff an~b < ~ (a-->b) iff
r r i r r i

gn-Bs :(-gut_:,-g_uf)) iff an-bs -(-auvb) iff
gn-SSgn-B

(gpB9) : :(a—;>b) < (an :b)
~(a-->b) = ~(~aub) =~(-aub, -aub) =(an-b,anb)
r 1 r i r -

hence :(a—;>b) an-b=(an :b). Hence thesis by (*).

(gpB10) : a <
iffa<a

T2 iff a s Ty e iff a s :(-g.-g) iff a < (a,a)

e IR}

(gpB11) : the proof similar to the above.

(qpB12) : a n ~a < b iff (a,a) n (-a,-a) < b iff (2,a-a) <(b,b)
iffe € b
HEE = -—> ~
(gpB13) 7 a=a-; r1
v a=7 (aa) = (-3-a)
~1 =0
r

a-7>0= (-a,-a) v (g,0) = (-2,-a)///
2. Selected algebras of rough sets. Representation theorems.

We recall that the family of rough sets determined by the relation
R in U is denoted by R = {(a,a) : a & U}. According to this
notation the family of one element equivalence classes of R will be
denoted as follows (9] :

(1) Ati = {[x]R: card [:‘(]R = 1}

The family of equivalence classes having cardinality greater then
one is denoted by

(2) Atb = ([x]R: card [x]R > 1}.

The elements of the sets Ati and Atb are called individual and
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boundary atoms respectively. Finally by Atn we denote the set of all
n-element atoms:

(3) Atn = {[x]R: card [x]R = n}

The set of all atoms At is the union of Ati and Atb.

By Def(R) we shall denote the family of all definable rough sets, ie.

(4) Def(R) = {(a,a) € R : a = a}.

The definable sets are also called the exact sets (see Pawlak [30] and
Iwinski [91). The family of all externally non-definable sets shall be
denoted by End(R):

(5) Znd(R) = {(a,a): a = U}.

By 50,60,110 we shall denote the following algebras (Rasiowa [Bg])

(6) 8 = (Bo,l,u,n,~). where B0 = {0,1},

(7) Sz = (Co,i.u,n,~), where C = {0,1,1},

These are subalgebras of the algebra

(8) i = (Ao,l,u,r\,~), vhere A = {0,1,r,1}

and the operations u,n,~ are defined in the following way:

Oux=xuU0=%x, 1ux=xu1l=1 for every xer,
luvul=1l rvr=r, lur=1,

(89) 0nx=xn0=0, 1nx

Xx n1l =x, for each xer.
l1nl=1 rnr=r, 1nr=20
~0=1, ~1=1, ~r=r, ~1=0.

The algebras 110,50. Go are quasi - Boolean.

The Quasi Boolean algebra R = (R,l,u,n,:)
It is well-known that every quasi Boolean algebra is isomorphic with

a subalgebra of the product l—lut, where T is a set of indices and
teT
U = 110, for all t. The following seems to be a natural question:

i:: the algebra llo isomorphic to some algebra of rough sets R ?

The answer is in the negative, since in (?,u,n,l.:) for every aeR
does not hold a = ~a, and in Ilo it holds ~1 = 1.

So the «class of all quasi-Boolean algebras of rough sets Iis
narrower then the class of all quasi Boolean algebras. We now prove

the representation theorem for this class.
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Theorem 2.
Every quasi-Boolean algebra of rough sets (R,1,u,n, ;-) is 1isomorphic

with a product | |ll , T is a set of indices and U = 8 or uU=¢€,
Ler t t (4] t o
for each t € T.

Proof':

Let T be an indexing set of the family of all equivalence classes
of the relation R, for instance T = At. If the atom 1ieT is an
individual atom, then we put 111= SO.On the other hand if beT

is a boundary atom then we take llb= Eo.Let us take |_|Ilt.

teT
We shall prove that the algebra (R,1,v, r\.:) is isomorphic to the
ebra u.
alg Q .
Let us assume that (a,a) € R. We define the isomorphism f:R — l_]ll
ter
as follows

(10) f((a,a)) = (x) e []U_ iff
tET  te€T
the following conditions are satisfied:

1 if t e Ati and t € a then xt=1

2 if t e Ati and ~(t € a) then X, = 0

3" if t e Atb and =(t € a) and =(t € a) then x = 0

4" if t e Atb and ~(t S a) and t € a then x = 1

5 if t e Atb and t S a then xt=1

It is straightforward to check that f is 1-1 and onto. It is also
easy to check that for arbitrary a = (a,a), b = (b,b),

it holds f(a v b) = f(a) v f(b), and f(a n b) = f(a) n f(b).

We shall see that

(11) f(:a) = ~f(a)

We have
f(~(a,a)) = f((-a,-a)) = (x,)
r tEeT

On the other hand, if

f(a) = f(a,a) = (yt) then

teT
~f(a) = (~yt) = (zt)
teT teT

1°1f t e Ati and t € a then -(t S -a), therefore x = 0.

On the other hand Y= 1 so ~Y,= 0 i.e. z= 0. In consequence

X=2zZ.
t t
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2° If t e At and a(t € @) then t € -a hence x,= 1. On the other
. hand Y= 0 so z = 1i.e. X, = 2. _ ~
3" If t € Atb and ~(t € a) and -(t € a) then t € -a, in consequence

X, = 1. On the other hand Y= 0 so z= ~y, = 1. Therefore X= 2.

t
Analogously we can check the equality X,= 2, in case 4° and s°.

Corollary 1.
Every lattice (R,u,n) 1is isomorphic with a product of a two and

three element chains.

Corollary 2.
Every algebra R quasi - Boolean of rough sets is isomorphic to the
product of some algebras 1 = ({0,1},+,-,1,~) W= ({0,1/2,1},+,-,1,~)

where

X+ x =max (x,x),

i j 1O |

X + x =min (x ,x ), for x ,x € {0,1/2,1},
i J i) LS |

~0=1, ~1 =0.

Second representation theorem
It is known that every quasi-Boolean algebra 1is isomorphic to a
quasi field of sets ([36]).In view of this representation and
changing slightly the definition of the family of rough sets we
obtain the second representation theorem.
Let us assume that
(12) X = X!U Xlu Xr, where sets X!,Xl,Xr are disjoint,
X1 - is called a set of individual atoms and Xb= Xlu Xr is called

borderline atoms set.

1-1
0
Let us assume that 0, ~: X —X ,
~ bon b
o 1-1
~: X —X
ron 1
and
) 1-1 0 )
~: X —X ~(x) =x ~(x) =x_.
1 on r (1) r’ (r) xl

A set Y S X will be represented as a triple (Yi,Yl,Yr),where Y1=X1n Y
Y=XnY, Y=XnY.
1 1 r r

We define v and n componentwise. The lower and upper approximations
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of a sec Y may pe defined as {ollows

(13) Yud{y: yeYand Liy) e )

Y
Y Y v {y: yeY or Lly) e

Denoting by Yl' the image of Yl i.e.
. =~ = M4 = ~o
Yl (Yx) (yr. v, (yl) and y, € Yl)

and

Y* = ~(Y),
r r
we have

Y=YuYnY uYnyY®

- i 1 r r 1

Y=YuYuYuY®uy"®
i 1 r 1 r

There are two possibilities to define ~. If ~ corresponds to =

i.e.

~(Y,Y LY ) = (Y, -(Yu Y), (YUY

then the algebra IR3= (7(3, 1,u,n, :) , Wwhere fRs denotes the family of
the triples (Yx’Yl’Yr) for Y € X, and 1 = (Xi,Xl,Xr),
moreover the complement is defined componentwise with respect to
Xl,Xl,Xr, respectively, is isomorphic with a quasi Boolean algebra of
rough sets.

Second possibility is the following:

~ for subsets of X corresponds to 1 given by an inwolution g

of X, Sy = x - g(Y), for Y € X. Then ~ is defined as follows

* *

(15) ~(Y1'Y1'Yr) = (-Y‘,-Yr ,-Y1 ).

We prove now that IR3= (.‘Ra, 1,u,n,~) is a representative example of
quasi - Boolean algebras, which means that every quasi-Boolean

algebra is isomorphic to an algebra R°. Let us denote: 0= (2,2,2).

Lemma 5.
An algebra R’= (ﬂa,u,n,o,l,'v) is isomorphic to a quasi-field
(Q(X),v,n,2,X,~), where ~Y = X - g(Y) for an involution
g X — X
Proof':

Let us define the inwolution g: X — X as follows : g(xl) = X, for
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X, € X‘, g(xl) = ~°(xl) i.e. g(xl) =X, for X € Xl,
g(xr) = ~°(xr) =x, if x e€X.
Then f: X —> Q(X) given by f£(Y,Y,Y) =YuYuY,
is the isomorphism.
/77
Lemma 6.
Every quasi - field (Q(X),u,n,2,X,~) defined by inwolution
g: X — X, is isomorphic to a subalgebra of R’= (ﬁs,u,n.0,1,~).
Proof:
First we define a partition of X by Xiand Xb, namely
Xi= {x € X: g(x) = x}
N {x € X: g(x) # x}
Since g(g(x)) = x, therefore we can divide )(b as an union XU Xr
such that g(Xl) = Xr and g(Xr) = Xl, Xln Xl~ = 2. We put also
Lix) = g(x), for every x € X. The operations in R’are defined as
before. The function f s.t. for Y e Q(X)
f(Y) = (Yn X,YnX,Yn Xr)

is the isomorphism needed.

Theorem 3.

Every quasi - Boolean algebra U = (A,1,u,n,~) is isomorphic to
a subalgebra of R= (.‘Rs,l,u,n,~).

Proof:

By Lemma 1, Lemma 2, and the reprezentation theorem for

quasi - Boolean algebras.

CHAPTER S
INDISCERNIBILITY AND SIMILARITY

The point of departure for this chapter is the standard connection
between relations and operations of taking the relational image of
sets. We shall give abstract c h aracterizations of similarity and

indiscernibility operations, derived from information systems.
1.Basic definitions.

Let us recall definitions of indiscernibility, similarity and
informational inclusion -relations, which will play the main role in
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tne sequel. Let x, yel and P<A, we define:

Ind(P)xy iff VaeP f(x,a) = f(y,a)

ind(P)xy iff 3aeP f(x,a) = f(y,a)

Sim(P)xy iff VaeP f(x,a) n f(y,a)zo

sim(P)xy iff 3JaeP f(x,a) n f(y,a)#o

Con(P)xy iff VaeP f(x,a) c f(y,a)

con(P)xy iff 3JaeP f(x,a) c f(y,a)

Inc(P)xy iff VaeP f(x,a) < f(y,a)

inc(P)xy iff 3aeP f(x,a) < f(y,a)

The relations are called respectively: indiscernibility, weak
indiscernibility, similarity, weak similarity, contains, weak
contains, inclusion and weak inclusion.

For parametrized relations we introduce the following convenient
notation: if PSA and for every aeP R(a)<U" then

R(P;‘/)xl...xn iff V aeP R(a)xl. S X

R(Pm)xl. Sox A 3 aeP R(a)xl. N

R(P )xl. L.x_ iff 3 Py .pmeP R(pl)xl. CX A A R(pm)xl. CeX

n
'm
1
R(P )xl. SX iff 3.p1. . .pmeP Vi<m+1vR(pi)x1. S
Convention: If P=g then R(P“)=U2 and R(P )=o
If in a Boolean algebra B there exist inf {Ray:aeP} and sup{Ray:aeP)

then we write RPy=inf(Ray: aeP} and pr=sup{Ray: aeP}.

Lemma 1:

Assume that B is a complete Boolean algebra and for all x,yeAtB and
every a€P it holds: xR(a)y iff XSRPy. Then :

a) xR(P~)y iff x s Ry

b) xR(P')y iff x = Ry y.

Now, for R(a)=Ind(P), Sim(P), Con(a), Inc(a) we have relational
systems (U,{R(P*):PsA}) and (U,(R(PV):PSA}). respectively. With each
of these systems we relate corresponding algebra in the wusual
way, considering the image operation R’ for every relation R. Our
next aim is to give abstract characterizations of the algebras
described above.

2.Indiscernibility algebra
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The following class of algebras was introduced by S.D.Comer [3].
A Boolean algebra with operators (B, {IP:PQA}) satisfying the
conditions:

1) B is complete atomic Boolean algebra

2) IP0=0

3) I x=x

4) IP(x IPy)=IPx IPy

5) x#0 implies 1%x=1

6) IPUQ X = IPx IQx , for xeAtB

is called indiscernibility algebra of the A-type.

It is reduced if IAx = x for all xeB.

Theorem 1:

If B is a reduced indiscernibility algebra of A-type with A-finite,
then there exists information system which indiscernibility algebra
is isomorphic to B.

Proof: see Comer [3].
3. Weak indiscernibility algebras

We introduce a class of algebras corresponding to weak
indiscernibility relations.

A Boolean algebra with operators (B, (IP: PSA}) satisfying the
conditions:

1) B is complete atomic Boolean algebra

2) 1,0=0

P

3) Iszx

4) IP(x-IPy)=IPx . IPy
5) x#0 implies ng=0
6) IPuQ X = IPx+IQx , for xeAtB

will be called weak indiscernibility algebra of the A-type.

Theorem 2:

If B is a reduced weak indiscernibility algebra of A-type with
A-finite, then there exists information system in which derived
weak indiscernibility algebra is isomorphic to B.

Proof:
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Ve define {'}le informa{ion sysiem as fOﬂONS:
U=AtB, V=P(U), f(a,x)=h(1a(x)), where hx={yeAtB: y=x}.
The details are presented in Pomykala [36].

4. Similarity algebras

We define (abstract) similarity algebra of A-type as a Boolean
algebra with operators (B, {SP: P<SA}) satisfying the conditions:

1) B=(B,+,*,-,0,1) is a complete atomic Boolean algebra,
2) VPSA Vx, yeAtB (ySSPx iff szPy)
PUQ P P

3) VP,QSA VxeAtB S
4) x#0 implies S°x=1.

x=S XS X

Lemma 2:
Condition 2) is equivalent to the following:
VPSA Vx, yeAtB (y'SPx = 0 iff Spy-x = 0.

Theorem 3:

The algebra derived from similarity relational system (U, Sim(P):P<A)
in an information system satisfies conditions 1)-4).

If B is a similarity algebra of A-type with A-finite,

then there exists information system in which similarity algebra
is isomorphic to B.

Proof:

Given B we define: U=AtB, A is a type of B, f(x,a) = {{x,y}:xsS%y}.
The details are presented in [3€].

5.Weak similarity algebras

We define weak similarity algebra of A-type as a Boolean
algebra with operators (B, { SP:PQA)) satisfying the conditions:

1) B=(B,+,,-,0,1) is a complete atomic Boolean algebra,
2) VPSA Vx, yeAtB (ysSPx iff xsspy)
3) VP,QSA VxeAtB S, _x=S_x+S_x

PULQ" TP Q
4) x#0 implies ng=0.

31



J.A.Pomykala

Theorem 4:

The algebra derived from weak similarity system (U, sim(P):P<A)

in an information system satisfies conditions 1)-4).

If B is a similarity algebra of A-type with A-finite,

then there exists information system with weak similarity algebra
isomorphic to B.

Proof:

Given B we define: U=AtB, A is a type of B, f(x,a) = ((x,y}:xssay}.

Final remarks
In the part 2 of the paper we relate our considerations to selected
papers from Amsterdam School of Logic. We shall express our gratitude
for many people from Warsaw and Amsterdam at the end of paper.
The second part will be titled: Logical Systems. It will contain four
chapters:
Ch.1. Modal approximation logic
Ch.2. Many sorted logic of information systems
Ch.3. Logic of rough constructions

Ch.4. Cover space.
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