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Abstract

In this report we present a new method of diagonalization that is a refinement of the
well-known finite injury priority method discovered independently by Friedberg and
Muchnik in 1957. In the resource bounded injury method, it is necessary in addition
to proving that the number injuries for a given requirement is finite to carefully
count these injuries and prove that this number does not exceed a bound given by
the index of the requirement. The method is used to construct an oracle relative to
which the polynomial time hierarchy collapses to an extent that the second level of
this hierarchy (PN? A) captures nondeterministic exponential time. This oracle is an
answer to an open problem posed by Heller in 1984 that has thus far resisted existing
methods and that has recently regained interest by work of Fu et. al. and by work of
Homer and Mocas. Moreover, our oracle provides a constructive counterexample to
Sewelson’s conjecture that does not make use of information theoretical lowerbounds,
and answers several other questions.






1 Introduction

Since the emergence of easy-to-understand non-relativizing techniques, the most
prominent of which is the one connected to the interactive proof systems [Sha92],
the construction of oracles has dramatically lost popularity in the complexity the-
ory community. Relations between complexity classes relativizing ‘both ways’ were
formerly considered a demonstration of the difficulty of proving a relation between
these complexity classes in the real world. Random relativizations [BG81] rela-
tivize only one way, but unfortunately the random oracle hypothesis, in which Ben-
net and Gill conjecture that a relation that holds between complexity classes in a
random relativized world also holds between these classes in the real world, was
also provided with counterexamples soon after it’s statement. Positive relativiza-
tions [BGS75, Boo81, Boo89] put a restriction on the oracle model that guaran-
tees that the construction of an oracle relative to which a certain relation between
complexity classes holds implies that this relation holds in the real world. A rel-
atively new insight [AIV93], connecting local computation to oracle results, shows
that there may be hope yet for oracles satisfying certain conditions. In this paper
Arora et. al. consider oracles that satisfy the so-called Cook-Levin property. A rela-
tion between complexity classes that holds relative to such oracles also holds in the
real world. Here the access mechanism is however by no means restricted.

As things stand, oracles are allowed in papers only if they solve long standing
open problems [FFK92] or present new techniques. In this paper, we intend to do
both.

The question that is central in this paper was first posed by Heller in 1984 [Hel84].
In that paper, Heller constructed an oracle A relative to which the first level of the
Exponential Time Hierarchy collapses down to the second level of the Polynomial
Time Hierarchy (£ = AJ*¥P4). In [Hel86], he observed that his construction can
be altered to bring the second level of this hierarchy down to RY?. In the final

In a different vain, it is well-known [SFM78, Z4k83] that the time hierarchy for
nondeterministic machines is tight. Therefore the question arizes where we know
that NP # NEXP, whether PN? £ PNEXP Ry et al. [FLZ92] attack this problem
and show that PNP # PNEXP jf the PN? machine is only allowed n°®) queries
or an unbounded number of parallel queries. To demonstrate their inability of
improving upon their construction they restate Hellers problem in the form “By
now we are not able to separate NE from PY? nor can we obtain an oracle A with
NE* C PNP* 7 (In our oracle notation). Soon after that however, Mocas [Moc93]
improved upon this result by showing that in fact PN? # PNEXP if the PNP machine



is only allowed n* queries for some fixed .

In this paper we answer Hellers open problem, by constructing an oracle A such
that PYP* = NEXPA. As a consequence it follows that the result in [Moc93] is
optimal for relativizing proof techniques. The construction of this oracle answers
most of the other open questions from Heller [Hel84]. Among other things, it shows
that there is a relativized world where Sewelsons conjecture fails.

This paper is organized as follows. In the next section we give some definitions
and notations. Then we discuss why the oracle that we wish to construct might es-
cape standard construction methods, and introduce the variation of the finite injury
method in the title of this paper. Section 4, contains the actual oracle construction,
and Section 5 discusses some conclusions and problems that remain open.

2 Definitions and Notations

We assume the reader familiar with standard notions in structural complexity theory,
as are defined e.g. in [BDG88]. Nonetheless, we will in this section, recall some
notions that we feel are not common knowledge, and fix on some notation.

Sets are denoted by capital letters and are subsets of I'*, where I' = {0,1}.
The cardinality of a set A is denoted as |A|. Strings are denoted as small letters
z,Y,U,0,....

The length of a string z is denoted by |z|. For a set A and n € w, we let the
notation A" stand for the set consisting of all the strings in A of length n.

We assume standard enumerations of recursively presentable classes by (oracle)
Turing machines. An oracle machine is a multi-tape Turing machine with an input
tape, an output tape, work tapes, and a query tape. Oracle machines have three
distinguished states QUERY, YEs and NoO, which are explained as follows: at some
stage(s) in the computation the machine may enter the state QUERY, and then
goes to the state YES, or goes to the state NO, depending on the membership of
the string currently written on the query tape in a fixed oracle set. Computations
of a nondeterministic machine can be ordered by ordering the state set of that
machine. An accepting computation that is minimal in this sense can thus be
defined. Such a computation is called the leftmost computation of M on input
z. If no accepting computation exists then the leftmost computation is simply
the minimal (then rejecting) computation. If the machine is deterministic then the
leftmost computation is the unique computation. We let M (z) stand for the leftmost
computation of machine M on input z. If a Turing machine accepts (rejects) a string



z, we will write M (z) = 1 (M (z) = 0). We use the same notation for oracle machines
(M4(z) = 0/1). We let Q(M*“(z)) be the set of queries that is asked in the leftmost
computation with.oracle A. The length of a computation, i.e. the number of steps,
is denoted by |M4(z)|. For a nondeterministic machine-this stands for the length of
its leftmost accepting computation if it exists, and 0 otherwise. The set of strings
recognized by a Turing (oracle) machine M (with oracle A), is called the language
of M (relative to A) and is denoted by L(M) (L(M, A)). A relativized complexity
class is denoted by writing the oracle as a superscript, e.g. P4. A complexity class
may also appear as a superscript to another-complexity class, denoting the class of
languages emerging from the operation of equipping a machine from the class with
an oracle from the superscript class, e.g. PP is the class of languages recognized
by deterministic polynomial time oracle machines with oracle SATISFIABILITY.

The main complexity classes in this paper are P, NP,EX P, and NEX P, where
exponential time is taken to be two to the power polynomial (2"'* for i € w).
These classes are members of the so-called Exponential Time Hierarchy and the
Polynomial Time Hierarchy respectively, which we define below.

The Polynomial Time Hierarchy was introduced by Stockmeyer [Sto76] and con-
sists of the infinite collection of classes ©F, AF and II¥, which are defined inductively
as follows:

L= =A=AF =P
P

Sh = NP

Hﬁ_l::co-—PEf_"_1

AL, = P

The Exponential Time Hierarchy as an analog of the Polynomial Time Hierarchy
is defined as follows:

EgXP — HgJXP — AOEXP — A{EXP = EXP
EXP _ =F

A o
il = co—X; i1

AEXP = EX P>

Relativizations of these hierarchies will be denoted by, e.g. , Where the
interpretation is that the highest level oracle is changed from NP to NP4,

EXP,A
I i



3 The Problem and the Method

In this section we will briefly explain our feeling that the oracle we are after deserves
a new method of construction, and describe this method.

3.1 Natural Boundaries

Our construction of the oracle A for which PVP* = NEX P4 proceeds by encoding
a standard universal set for NEX P4, K4, into the oracle in such a way that mem-
bership of strings in K“ can be decided by a polynomial time oracle machine with
an NP4 oracle. Coding NEX P* into PNP* implies that EXPA = NEXPA. It is
not known whether the Exponential Time Hierarchy has the downward separation
property (or upward collapse property) as does the Polynomial Time Hierarchy, i.e.
if 5 = £f,, for some 7 then ©f = X for all j > i. For the Polynomial Time Hier-
archy this property relativizes, i.e. holds relative to any oracle. If the Exponential
Time Hierarchy should also have this property, then it follows from a relativiza-
tion of the deterministic time hierarchy theorem [HS65] that PN¥ # NEXP, since
PNP £ EXPNP,

Hartmanis et. al. [HIS85] observed that if the Exponential Time Hierarchy should
have this property then this property does not relativize. They constructed an oracle
Asuch that EXP = NEXP, yet the second level of the Exponential Time Hierarchy
is proper, i.e. NEXP # NEXPN?.

A much weaker property for the Exponential Time Hierarchy is the following
statement. EXP = NEXP = NEXP = EXP"? as was conjectured by Sewel-
son [Sew83]. In a relativized world where Sewelsons Conjecture holds, PNP #
NEXP, since PNP # EXPNF again using a relativization of the time hierarchy
theorem for deterministic machines. Fortunately, Sewelson’s Conjecture has also
met with counterexamples [IT89] though these oracles are harder to construct and
the particular one referenced makes use information theoretical lower bound results.

Heller [Hel84] first put forward a technique of oracle construction based on the
preservation of accepting computations. Some authors [TV86], who claim indepen-
dent discovery of this technique, dub this technique the Stable Query Method. The
idea of the method is that whenever an accepting computation of a nondeterministic
oracle machine is possible, then the oracle is adjusted such that this computation is
an actual computation. I.e. queries that need a positive answer in this computation
are put in the oracle, and queries that need a negative answer are reserved for the
complement. This technique is probably not sufficient to achieve our result since a
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well-understood modification can be applied to EX P** computations resulting in
about the same number of additions and reservations. for a machine M operating
with oracle sat4, instead of trying to fix an accepting computation for machine M,
the method tries to fix some computation by subsequently-adapting the oracle such
that a next queried formula g is satisfiable (i.e. the answer to this query is YES).
For each individual query this implies putting in the oracle (or reserving for the
complement) a number of strings proportional to the length of the query. As M
has (linear) exponential time, the length and number of these queries is bounded by
2", Hence the number of strings that need be preserved is also exponential. (This
description of the stable query method is in fact exactly as appeared in [Tor88].) Of
course there can be no oracle relative to which PV? = EXPNP,

The earlier mentioned result in [Moc93], because the proof relativizes, puts an-
other restriction on the simplicity of our construction, though this restriction is not
directly connected to the resource bounded injury method. If it holds in any rel-
ativized world that PNP[n*] # NEXP, and PYP # NEXP then an oracle A for
which K4 can be recognized in polynomial time with the help of an NV P# oracle has
to be encoded such that the oracle machine can neither be replaced by a nonadaptive
machine nor by one that uses less then n queries on inputs of length n. In many
‘oracle papers’ the number of queries needed to retrieve the information is less than
that. (Most of the times even one.)

3.2 Resource Bounded Injury

A first solution to Post’s problem was obtained by Friedberg [Fri57] and indepen-
dently Muchnik [Muc56]. They presented a means of construction that later became
known as the ‘Finite Injury Priority Method’. Usually, an r.e. set that has some
property with respect to all recursive oracle machines is constructed by stages. The
set of all oracle machines form an infinite set of requirements that have to be sat-
isfied by the construction. At each stage one of these requirements is satisfied, and
so the process guarantees that in the limit all the requirements are satisfied. The
difference between earlier constructions and the finite injury priority method is that
requirements that are satisfied at some stage, may become unsatisfied again at some
later stage. Here indexing the requirements becomes of major importance. A re-
quirement may be unsatisfied at some stage only if this action is taken to satisfy
a requirement of higher priority (= with smaller index). For a given requirement
there are only finitely many requirements of higher priority (indexing starts with 0).
If there are infinitely many stages at which a given requirement may be satisfied, it



follows that every requirement eventually will be satisfied permanently (i.e. not be
injured after being satisfied). Soare’s book [Soa87] contains an excellent exposé of
different methods of constructing r.e. sets. In complexity theory, especially in oracle
construction, it is seldomly necessary to resort to more complicated methods of con-
struction then standard, slow, so-called wait-and-see arguments. The method, at
stage s takes into consideration all requirements with index less than s, and satisfies
from the subset of these requirements that can be satisfied the one with the smallest
index.

Satisfying a requirement usually means adding a (set of) string(s) to the oracle
under construction. The requirements in our (coding) construction are indexed with
(the length of) strings. Requirement R, asks that strings = of length |z| be correctly
encoded in the oracle. That is if z € K4 then there has to be some code that says
that it is and if £ ¢ K* than there has to be some code that it isn’t. In recursive
function theory this code can, because recursive machines have unbounded time, be
spread out through the entire oracle. In our case however, we need to be able to
retrieve the encoding, by a resource bounded machine (in particular a polynomial
time oracle machine). Therefore, all of the encoding pertinent to z has to be done
‘close to’ z. That is, the length of the encoding strings may not be greater than
a fixed polynomial in the length of z. On a binary alphabet there are only 2°(])
strings available of length p(|z|). Therefore a method that permits injuries, that is
reencoding of z, should also have an implicit bound on the number of times that an
injury is permitted. Otherwise the space of encoding would simply fill up. Because
our method has such a built in security, we call the method ‘resource bounded injury’

4 The Oracle

4.1 Encoding and Retrieval

Let K4 = {<i,z,n>: M*(z) = 1 A |[MA(z)| < n}, be the standard complete set
for NEXP#. We plan to encode K4 into A such that it can be retrieved by a
polynomial time bounded machine with the help of an NP# oracle. The encoding
of a string x will exist of strings <z,y, 2>, where |y| = |z| = |z|>. On input z, the
polynomial time oracle machine will retrieve the maximal (in the lexicographical
order) string z such that <z,y, 2> € A and accepts iff this z is odd.

We will define a deterministic polynomial time bounded oracle machine M and
a nondeterministic polynomial time bounded oracle machine N such that M can,



with the help of oracle L(N4) retrieve the information encoded as described above.
On input z, our machine M starts first by querying <z>. On this input N guesses
a string <z,y, 2> of the appropriate length and accepts if this string is in A. If N
has no accepting computation (i.e. the answer to the query is NO), then z is not
encoded and M rejects. Otherwise, M sets z =0]1...1 and queries <z, 2>. On this
|z -1
input N guesses strings y and 2’ with |y| = |2/| = |z|° such that 2’ > z, and accepts
if <z,y,z'> is in A. If the answer to M’s query is YES, then M proceeds by setting
z2t010]1...1 and otherwise it sets 2 to 001 ...1. Thus, M can, using binary search,
jaf*~2 Jof*~2

determine the largest z of length |z|® such that there exists a y of the same length
for which <z,y, 2> € A (in O(|z|?) steps). Then it accepts iff this z is odd.

4.2 Construction

We first give an informal description of the construction. The construction of the
oracle proceeds by stages. Let A, be the oracle after stage s. Let M7 be an oracle
machine computing KX, and MZ and N*X be oracle machines computing the PP
algorithm described above. Let CX = L(M¢, L(N, X)) be the set of strings encoded
in the oracle. The goal of stage s 4+ 1 is to achieve that at the end of this stage
CAs+1 NT" = K4+ NT", for some n depending on the stage. To achieve this goal
the construction builds a set B at stage s + 1 which is initially empty. Then it
repeatedly selects a string <z, y, 2> such that

o z € (K4UB o CAUB) A"
o <z,y,2> ¢ Q(Mz"B(u)) for any u with |u| < |z|

oz g (KA,UBU{<m,y,z>} A CA,UBU{<:c,y,z>}) N re.

Then it proceeds by setting B to BU {<z,y,2>}. Stage s + 1 ends when no more
z in (K4YB 5o C4YB)NT" can be found. Le. when all strings of length n are
correctly encoded in the oracle. We will prove that indeed each stage ends after a
limited number of steps.

We call the need for the construction to correctly encode all strings of length
n a requirement. We say that requirement R, is satisfied at stage s if C4 NT™ =
K4 NT" A requirement requires attention at stage s if it is not satisfied. A



requirement that was satisfied at stage s may require attention at some stage t > s,
due to changes in the oracle. We say that this requirement is injured.

After stage s the construction acts upon the highest priority injury by setting n
to the minimal m for which an injury occurs. This can be recognized by the fact
that T™ N (KA« o CA+1) # (). Note that since | A,11] < oo such an m must exist
for any given s. We will prove that each requirement R,, will be satisfied and injured
only a limited number of times (i.e. the encoding fits in the encoding space). As
R, is satisfied only if all strings of length n are correctly encoded, this proves the
correctness of the construction. First we will present the construction slightly more
formal.

Construction

Stage 0: ng =1;mg=4; A=10

Stage s+1: t = 0;B;s11,0 = 0;

while Az € (KA:VBsr1t p CAVBerrt) N T do

Boi1441 = Bsy1U{<z,min{y : |y| = ms/\(<$,y,P*>n(UIuISnQ(MKJUBa+N () =
M)}, min{z : z > max{v : (Ju)<z,u,v> € A; A |u| = |v| = m;,,0} A |z]| =ms; Az =
21 My UPrt (g) = 13> )

If no such string <z, y, 2> exists, then the construction ends.

Otherwise t =t + 1;

endwhile

Agi1 = AU Byy1y; ngyr = min{p : (C4+ a KA+1) N TP #£ 0}; meyq = nd; +3;
s=s5+1

End of construction

4.3 Correctness

The correctness proof consists of a series of lemmas and corollaries. We begin by
showing that a string y that avoids all query sets of strings of length less than or
equal to n, can always be selected.

Lemma 1 (VX C I'™)(forallz € IT™)(forallm > 2n+1)(ezistsy € I'™)[<z,y.I*>N
Upuj<n @ic(u) = 0

Proof. On input u of length < n the number of steps of M% is bounded by 2".
It follows that the number of queries in the leftmost computation on this input is
bounded by 2". As there are at most 2"*! strings u of length < n, and there are
more than 22"*1 strings of length m, y exists. d



It follows from this lemma that the encoding of a level (one stage) does not take
too many encoding strings. For each string = of length n, we may find first that it is
not in K4sYB:+1¢ at some point, and then have to encode this in B, i1,44+1- Next we
may find for some ¢ > t that € K4:“Bs+1.v and have to encode this in Bgi1441

As in subsequent iterations y is picked such that the new string in Bjyi 44 for

t" > t is not queried in the leftmost computation of M, ,;4 *“Pe'41 this is the last time

that we need to encode z. The total number of strings that will enter the oracle to
encode a given string x is thus limited by two times the number of times that the
construction visits the level |z|.

Corollary 2 (Vs € w)(Vz € T*)|<z, T*,I*>| N A, < |[{s:ns = |z|}] x 2

From the fact that there is an upper bound on the number of strings added for
each z at stage s it follows that there is an upper bound for B,

Corollary 3 (Vs,t)|Bsi1,e] <27t

Proof. The cardinality of B, is maximal if the construction succeeds in finding a
string <z,y, 2> to encode each time such a string is necessary. We have observed
(resulting in Corollary 2) that this can happen twice for each individual string and
there are 2" strings of length n,. a

The following lemma is central to the correctness of the construction. It states
that the number of times that the strings of a given length are encoded in the oracle
is limited. And therefore that the room to code is present.

Lemma 4 (Ym)|{s : n, < m}| < 2™+

Proof. We prove this by induction on m. Let T,,, = {¢o,%1,...,t,} be the maximal
set such that n,, = m for t; € T,,,. Thus |{s: ns; < m}| = |Tw|+|{s : ns < m}|. For
m = 1, since there are no stages s such that n, < 1 we have |{s : n, < 1}| = |T1|.
From the construction it follows that (V¢;)C4u NI'' C C44+:1 NT'. Since there are
only 2 strings of length 1, |T1] < 3.

Suppose (Vr < m)|{s : n, < r}| < 27°tL. Observe that (Vi,m)(3s)t; < s <
tiromyo such that n, < m. This is because if (Vt;, s)t; < s < t;11 A ns > m then
CA«NI™ = CANI™ C C4+ NT™. Since there are only 2™ strings of length
m, this observation yields an upper bound on |T,,| as the induction hypotheses
gives us an upper bound on how often n, < m. We find that |T,,]| < |[{s : n, <



m}| *(2™+1)+ (2™ +1). Since |{s : n, < m}| < 20=D**+1 it follows that |{s : n, <
m}| < 20m DT (2m 4 1) 4 (20m DY) (274 1) = (20mD N x (2 4 2) + (27 4 1).
Since (m > 1) this is < (207 V*+1) & (2™ 4 4) = 2m*—m+2 4 gmP—2mid < 9mP+l again
because (m > 1).

O

From this Lemma and Corollary 3 it follows that indeed each stage ends because
the level is correctly encoded in the extension of the oracle. It follows that.

Corollary 5 (Vs)(C4+1 po KA+)NT" =

Proof. For each stage s+1 where n, = m, the set B, has less than 2™+ strings by
Corollary 3. As there are at most 2™**+! such stages by Lemma 4, subsequent z are
selected minimal, and for each & and y there are 2*°**+3 different z available, it follows
that a stage can never end for lack of code strings. Hence (C4++1 o K4++1)NT" = ()
at the end of each stage s + 1. O

Corollary 6 lim,_,,n = oo

Proof. This follows directly from Lemma 4. O

From these lemmas the correctness of the construction follows. The oracle is con-
structed through a recursive procedure, hence it is recursively enumerable. As the
construction can ‘fall back’ to a length n at any point in the construction (through
a chain of changes in the oracle) we can not conclude recursiveness.

Theorem 7 There exists a recursively enumerable oracle A such that PNP* =
NEXP*

5 Some Consequences and Questions

5.1 Consequences

Corollary 8 There ezists an r.e. oracle A such that PNP* = pNEXP4,

Proof. The oracle constructed in Theorem 7 makes PNP* = NEXPA. It now
follows that PNP* = pNEXP# O

10



The previous corollary suggests that there is no tight hierarchy theorem (at least
not one that relativizes) for PNTIME(f(7) time classes, for suitable functions f. This
contrasts the fact that for NTIM E(f(n)) there does exist a tight hierarchy [SFM78,
Z3k83].

Hemachandra [Hem89] proved that the strong exponential hierarchy collapses
(PNEXP — Ny pNEXP)  Because the proof-technique for that theorem relativizes it
follows that (solving another open problem by Heller)

Corollary 9 There ezists an r.e. oracle A such that PNP* = NPNEXP,
An equivalent statement is the following:
Corollary 10 There exists an r.e. oracle A such that EX PNP*[poly] = PNP*

Proof. Again use the techniques in [Hem89] together with oracle A in Theorem 7.
O

Again this is a strange but not quite contradictory consequence. We know from the
deterministic hierarchy theorem that EXP ¢ P and that this theorem relativizes.
The previous corollary shows that if the exponential time oracle machines are re-
stricted to querying only polynomially many queries (as are the polynomial time
oracle machines), then the two classes coincide relative to A.

The following corollaries are also mentioned as open problem in [Hel84].

Corollary 11 There ezists an r.e. oracle A such that EXPA = NEXP4 and
EXPNP* = $EXP byt NEXPA C EXPNP*

Proof. Take again oracle A in the proof of theorem 7. It follows from the fact that
the Polynomial Time Hierarchy collapses to PYP* by padding that the Exponen-
tial Time Hierarchy collapses to EXPNP*. Furthermore a relativized theorem for
deterministic oracle machines implies NEX P4 # EXPNP*, a

This corollary implies:

Corollary 12 [IT89] There exists an r.e. oracle A such that Sewelson’s conjecture
fails relative to A.

Another consequence is:

Corollary 13 [BH91] There exists an r.e. oracle A such that PNP* ¢ PNP*,

11



5.2 Open Questions

In this paper we develop a new technique called resource bounded injury method.
We use this technique to show a collapse between PYP and NEXP. The result
suggests that it is probably hard to separate these two classes. This result fits in
between the previous results: EXPA = NP4 [Dek77] and EXPNP* = £/ [Hel84).
These results together with our result show that all the possible collapses between
the second level of the Exponential Time Hierarchy and the second level of the
Polynomial Time Hierarchy can occur relative to an oracle. We leave open however
this question for higher levels of these two hierarchies. Results along this way imply
that the Polynomial Time Hierarchy extends more than 2 levels and may yield
different proofs of this than appear in [Ko89]. It may also be the case that research
along these lines points the way to new results in lower bounds for circuits.
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