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Abstract

We present new distributed randomized naming protocols improving previous results
in renaming and unique processor identity protocols. They are wait-free (which implies
maximal fault-tolerance) and/or allow stronger adversaries. They also have low com-
plexity. We give the first wait-free protocol achieving optimal key space range. (This is
impossible for deterministic wait-free methods, so we use randomization.) We also intro-
duce a novel wait-free object, a test-and-set object which upon invocation succeeds with
probability less than 1, and we give a low complexity implementation of such objects.

1 Introduction

Consider a set of n processes communicating through shared variables. We want these pro-
cesses to execute a protocol such that when each process terminates it has obtained a key (or
name or identity). We require different processes to obtain different keys, and we would like
the range of the key space to be as small as possible (preferably {1,...,n}). In our setting
the processes are asynchronous with possible halting failures. (For synchronous processes
without failures simple ranking suffices.) We call a protocol that satisfies the above a naming
protocol.

We present new distributed randomized naming protocols improving previous results in
renaming and unique processor identity protocols. They are wait-free (which implies maxi-
mal fault-tolerance) and/or allow stronger adversaries. They also have low complexity. We
give the first wait-free protocol achieving optimal key space range. (This is impossible for
deterministic wait-free methods, so we use randomization.) We achieve optimal key-space
range which is impossible for deterministic wait-free methods. The discussion of the precise
results is deferred to the next section where they are compared with related work.

The interest in constructing such protocols stems from the fact that in a real concurrent
system or computer network the existence of distinct keys is useful or mandatory to resolve
problems with exclusive access, resource allocation, network operation, leader election or
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choice coordination. Since processes may crash and new processes may be created, keys
of processes may be duplicated and the key range may expand. Some network operation
protocols crash on duplicate keys and perform more efficiently for small key ranges [15, 11].
A naming protocol rebalances the key space.

In one instance of the naming protocol the processes initially have distinct keys from an
arbitrary key range. This is known as a renaming protocol. Theoretical interest is partly due
to the fact that asynchronous processes have to agree on irrevocable decisions in the presence
of faults. The existence of an affirmative deterministic solution ([3]) came as some surprise
since under the same circumstances the problem of non-trivial consensus cannot be solved
(8], 191, [14])-

In fault-tolerant allocation of identical resourses one can view a key as a permit for a
resource. Managing their circulation among competing processes can be viewed as a repetetive
variant of the renaming problem ([3]).

1.1 Related Work

We consider naming in the standard model of asynchronous shared memory systems ([13]).
The processes communicate via a set of single-writer, multi-reader atomic registers. Each
process owns a subset of these registers. Only the owner of a register can write it (by
performing a write operation) while all the other processes can read it (by performing a read
operation). Each process in one atomic step either writes or reads one of the registers or flips
a local coin not visible to the other processes. A desirable property for protocols in such a
system is wait-freedom. For our problem this means that each process terminates its protocol
after a finite number of steps regardless of other processes’ halting failures (n — 1 resiliency)
or relative speeds (no fast process will slow down to the speed of a slow one).

We model asynchronicity by a scheduling demon which initially indicates which process
makes the first atomic step, and after the execution of each atomic step indicates what
process does the next atomic step or randomized choice. A resulting sequence of atomic
steps is called a history. A protocol is correct if each history of the protocol is correct. The
scheduling demon is often viewed as an adversary which plays against the processes. The
adversary can be either (i) oblivious if it defines the order in which processes are scheduled
oblivious to the system states in the execution, or (ii) adaptive if at each step it selects a
process to take an action based on the state of the system. An adaptive adversary can be
either weak or strong, depending on whether in a system state it has knowledge only of the
shared memory state or also of the internal states of the processes.

The first solutions to our problem were for deterministic (not randomized) protocols,
starting from a system state in which each processor has already a unique key but from
an arbitrarily large (and unknown) key range. For n processes using asynchronous message
passing (which we have not discussed) Attiya et. al. in [3] obtained a time complexity of
the solution exponential in n and a range of the keys of n + t in the presence of at most
t < n/2 stopping failures. (The time complexity measures the worst case number of steps
that a process needs to take until it reaches a decision.) Later, in [5] Bar-Noy and Dolev
transform the solutions of [3] into two wait-free solutions for the shared memory model, which
achieve execution times (n+ 1)4™ and n? 4+ 1 and key space ranges of 2n — 1 and (n? +n)/2
respectively. In [6] a wait-free solution is presented with O(n?) time complexity and 2n — 1



key range. (These wait-free protocols make use of multi-valued atomic wait-free registers as
primitives of the constructions.)

In [10] it is shown that deterministically one cannot do better than a key range of 2n —1
if up to n— 1 faults have to be tolerated. This raises the question of what randomization can
do.

In what is known as the Processor Identity Problem, a set of initially identical processes
have to find unique names (symmetry breaking). Here deterministic solutions are impossible.
The best known solutions, as well as some impossibility results, can be found in the elegant
[12]. They use a model of computation which is totally symmetric: if shared memory is
used then all the processes should have write access to a common pool of shared registers
instead of some processors owning a strict subset of those registers. In [12] it is shown that
the problem cannot be solved unless n is known to all the processes, and that there is no
finite-state solution if the adversary is adaptive. Moreover, an unbounded memory solution is
presented and analysed considering a weak adaptive adversary, while two bounded solutions
are given for the case when an oblivious adversary is assumed. The expected time complexity
of the solutions is O(logn) and the key range is n. However, the solutions are not wait-free.

1.2 New Results

Our solutions are randomized and implemented in terms of wait-free test-and-set primitives.
(Rather, test-and-set-once primitives since in the execution of the naming protocol we test-
and-set each such object only once, and never reset.) The time complexity figures (number
of accesses to constituent variables) hold with high probability with respect to an adaptive
adversary.

In [4] a randomized wait-free construction for test-and-set is implemented in multireader
(1-writer) shared variables. Each such test-and-set object uses O(n?) multireader (1-writer)
shared variables and an access by a process takes O(n) accesses to the constituent shared
variables.

We introduce and implement a novel primitive: a wait-free weak test-and-set object. In
contrast to the construction in [4] which may be called a strong test-and-set, a weak test-and-
set once invoked yields a winner with success probability o (0 < o < 1) and does not yield
a winner (every contending process obtains value 0: the test-and-set fails) with probability
1 — a. We can set o arbitrarily close to 1. The weak test-and-set object we construct
uses O(nlog?n) multireader (1-writer) single bit variables (or O(n) multireader (1-writer)
2loglogn bit variables or 1 snapshot object [2, 1]). An access of the weak test-and-set by
a process takes O(nlog?n) accesses to the constituent multireader variables or O(log? n)
accesses to the snapshot object. It is convenient to speak about an c-test-and-set object
where we mean a weak test-and-set object for & < 1 and strong one for a = 1.

The SQUEEZE protocol uses O(log2 n) accesses to a-test-and-set objects and r a parame-
ter of the protocol and achieves a key range of n/a (= number of a-test-end-set objects used).
1 For o = 1 the protocol achieves a key range of exactly n at the cost of using O(n log?n)

'Plugging in the above figures means that for a < 1 the protocol uses O(n log* n) accesses to multireader
(1-writer) variables and either O(n”log® n) multireader (1-writer) 1-bit variables or O(n?) multireader (1-
writer) 2loglogn bit variables, or O(log* n) accesses to snapshot objects and O(n) snapshot objects with n
fields each, and n/a key range.



accesses to multireader (1-writer) variables, and it uses O(n3) multireader (1-writer) variables
altogether.

The SEGMENT protocol uses O(logn) accesses to a-test-and-set objects and achieves a
key range of (1 + c)n satisfying o > (1 + 2¢)/(1 + ¢) where € > 0 can be choosen fixed but
arbitrarily small (it reflects the probability of staying within the time bound). (The number
of a-test-end-set objects used is equal to the number of keys.)) 2

Note that these results do not contradict the impossibility result of [12]. In our model
the processes communicate through (probabilistic) test-and-set objects which are common
to all processes. Such objects are stronger primitives than just shared variables. Viewed as
black boxes they are symmetric with respect to all processors. Looking at their randomized
implementation in terms of shared variables, such variables are nonsymmetric in that they are
owned by different processors. It is worth pointing out that our protocols always terminate,
and that the result is always correct (the new identities are distinct).

1.3 Test-and-Set

A test-and-set is a concurrent data object T'S(:) shared between n processes 1,...,n. We
only need a restricted version, where each such object only executes 1 test-and-set in its
life time. The way we use it, T'S(¢) is a function procedure which can be called with input
parameter 7 # 0 and returns a value 0 or 7. If the value is O then the call is said to be a failure,
if the returned value is 1 then the call is said to be successful. Each of the n processes has a
local variable key. For convenience, let us denote the variable key of the jth process by key;.
Initially, all key; ’s equal O (1 < j < n). There are also shared variables X; (1 < ¢ < m).
Initially, the value of X; = . At any time exactly one of X;, keyi,...,key, has value ¢,
all others have value # 1. If a process j with key; = 0 atomically executes a test-and-set
operation then the effect is

TS(z) = read key; := X;; write X; := 0; return key;.

Note that for our purpose we do not need to reset the test-and-set object.

1.4 Randomization, Adversaries and Wait-Freedom

We allow the strongest adaptive adversary to schedule the distributed processes. It can do
everything except predict the outcome of future coin tosses by the processes. Under this
adversarial scheduling, our protocols below have low running time with high probability.
Typically we show that a protocol has running time O(log? n) with probability at least 1 —
e“"ﬁ, § > 0, and at most n + O(log2 n) otherwise. Hence, the expected running time is at

most s ,
e n+(1—e™)log’n <log?n+o(1).

2We interpret the complexity in terms of multireader variables (from which the randomized test-and-set
objects are constructed.) For oo = 1 we do not achieve a key range of exactly n but we do use O(nlogn)
accesses to multireader (1-writer) variables and O(n®) multireader (1-writer) variables. In the case of & < 1
the method achieves a (1+ 6)n key range (§ > 0 but can be made very small by choosing a close to 1) and uses
only O(n® log? n) multireader (1-writer) 1-bit variables or O(n) multireader (1-writer) 2loglogn bit variables
and O(n log® n) accesses to multireader variables, or O(n) snapshot objects with n fields and O(log® n) accesses
to snapshot objects.



We will use an estimate of the size of the tails of the binomial distribution. For s successes
out of n independent trials with probability p of success, the classic Chernoff bounds give the
following estimate (each tail separately can be bounded by half of the right-hand side),

P(|s —np| > en) < 2= /4e(1-p), (1)

2 A Probabilistic Test-and-Set Object

The object is probabilistic in the sense that a test-and-set succeeds with probability at least
a with 0 < o < 1, for o = 2s/(1 + s) where s (0 < s < 1) is a parameter of the protocol
against the strongest adaptive adversary.

We explain the working of the new object with a balls and bins scenario. At the start
there is a row, also called a level, of n balls. Each ball, independently of any other ball,
flips a coin and with probability s steps forward, moving to the next level, or backs-off (it
stops for ever) with probability 1 — s. The value of s is a parameter set by the algorithm.
At the next level the remaining balls, the survivors, flip their coins again, stepping forward
with probability s or backing-off with probability 1 — s, and so on. At each level £ there are
3 possible (mutually exclusive) outcomes: i) exactly one ball b steps forward and all others
back-off, in this case b is declared the winner and the process ends; 1) every ball backs-off,
in this case the process ends with no winner; ii:) more than one ball steps forward, in which
case the process continues (until one of the two aformentioned events occurs). This idea
is implemented in the protocol of Figure 1 and the probabilistic behavior is treated in the
Appendix.

The object is implemented as follows. There are n processes which communicate through
atomic binary variables each of which is denoted as (processor,level). The first coordinate
indicates a process identity (w.l.o.g. a number in {1..n}), and the second coordinate indicates
a confidence level which is an integer in {1..k}. The variables constitute an array (1..n,1..k),
each element of which is a multireader bit. Each process p can write all shared variables
(p,-) and can read all shared variables. Each process is given the number k of levels, and
a randomized subroutine to make a binary choice with success probability s and failure
probability 1 — s (0 < s < 1). The local variables are level, g,l and are integer valued. The
input parameter s is a probability of the form [277 (1 <1 < 27) for some fixed integer j and
is generated by a subroutine flipping a fair coin j times in a row and checking whether the
outcome is j zeros. The input parameter ¢ is an integer key. The value T'S() equals O at the
conclusion of a failed test-and-set, and it equals 7 at the conclusion of a success test-and-set.
The protocol of process p is as described in Figure 1

2.1 Correctness

Safety. For each Probabilistic test-and-set object, at most one process p ever executes T'S() :=
i with i # 0. After a process p has written (p, k) and before p has erased (p,k) no process
g which reads (p, k) in that interval executes T'S() := 1. Once an T'S() := ¢ assignment is
executed at level level = k the bits (p, ) (1 < j < k) keep value 1 forever. By atomicity of
write/read actions, either write (p, k) by p precedes read (p, k) by g or vice versa. Moreover,
read (g, k) by process p with outcome 0 must precede assignment T'S() := 7. Hence, if the



procedure TS(i):
integer constant m,k € {1..2n}; {Declarations}
rational constant s € {I27%:0 <1< 2%}
integer variable i, g, level € {0..m};

invoking processor p € {1..n};

begin
TS() :=0; {Initialize}
for ¢ € {1..n} do read (g,1) od; {Check contention at gate}
if (¢,1) = 0 for all g then level := 0 else goto step L2;
L1 level := level 4+ 1; write (p, level) := 1; {Raise level competition}
for ¢ € {1..n} do read (g,level) od; {Check contention at level}

L3 if (g, level) = 0 for all ¢ # p then
if level = k then T'S() := 1; exit else goto step L1

else
if level = k then goto step L2
else goto step (L1,L2) with probability (s,1 — s)
L2 for [ := level,...,1 do write (p,!) := 0 od; exit {Backoff}

end

Figure 1: Protocol Probabilistic Test-and-Set

latter assignment takes place then write (g, k) by process g follows after read (g, k) by process
p, which in its turn happens after write (p, k). Since read (p, k) by process ¢ happens after
write (g, k), it follows that read (p, k) by process g happens after write (p, k) := 1 by process
p. Therefore, process g in read (p, k) obtains value 1 and exits through step L2.

Liveness. The algorithm is wait-free (contains no loops). Assume that every process
which has no key yet is enabled, and that every process which is enabled eventually makes
a step. Since every process always makes progress, every process starting its protocol either
exits as winner (T'S() := %) or through backing off in step L2.

Success Probability. We put the proof in the Appendix.

3 Randomized Solutions

Our protocols are based on a balls-and-bins scenario, a widely used paradigm in the analyisis
of probabilistic processes [7]. In our scenario the key-space is made of m bins, and each
process is given a ball to be thrown uniformly at random into the bins, independently of the
other processes. In what follows, let m = (1 + ¢)n, with 0 < ¢ < 1. There are several ways
in which this scenario can be used to assign keys.

For motivation, suppose we decide for the following policy: if a ball falls uniquely in



a bin, that key is assigned to the throwing process, otherwise the ball is returned to the
process, which tries again. In the full paper we show that with high probability the number
of repetitions will be exponentially large in n. So the naive strategy doesn’t work, and we
have to do better.

3.1 Squeeze Protocol

Let 0 < o < 1 be the success probability (reliability) of our test-and-set’s. We use a key space
of m = |n/B] keys {1,...,m}, where 8 = (1 — 6)a = a ( is an arbitrarily small constant
which intuitively takes care of fluctuations below the expected values). The protocol is
as follows. Let r (0 < r < 1) be a parameter to be fixed later and assume the integer
rounding. Initially, every ball of by = n balls selects (is thrown into) a random bin of an
initial segment of rm bins. Call this the first r-segment. By choosing r appropriately we can
ensure that, with high probability, every bin in the first r-segment is accessed (every test-
and-set in the r-segment is invoked). Therefore, after the first throw, with high probability,
approximately arm =~ rn processes have a key. Repeat the procedure with the remaining
by &~ (1 — r)n balls on the second r-segment which is determined as follows. Apart from
the first r-segment there are m; = (1 — r)m remaining bins. The first 7m; of them form
the second r-segment. Again, with high probability arm; = r(1 — r)n bins will be taken,
meaning that many additional processes obtain a key. Continuing this way, in the kth round
each of the remaining by = (1 — r)*n processes selects a bin uniformly at random from the
k-th r-segment consisting of the first rmy, bins of the remaining mj = (1- r)¥m bins. This
process continues as long as rmj > 1. At that point each process without key tries the
remaining 1/r bins sequentially.

The idea behind the protocol is that every bin will be hit (every test-and-set will be
invoked), and hence an expected number of am > n will be succesful (capture a ball). The
choice of B = a1 — &) makes sure that in spite of fluctuations below the expected value all
n balls are captured.

In Figure 2 the protocol for n processes is given in pseudocode (use the |-] function to
round off fractional quantities). The variables a and b denote the keys of the first and last
bins of the current r-segment. In the (very) unlikely event that the probabilistic strategy
fails (Phase 1), the protocol has a back-up routine consisting of scanning the whole key-space
starting with the last unused part (Phase 2).

THEOREM 1 Let 1/2 < a < 1, and B = (1 — 6)c, with § an arbitrary constant greater than
0. Then, SQUEEZE is a naming protocol for n processes to n/f keys, using n/B test-and-
set objects with success probability c.. With high probability, for each of the n processes,
SQUEEZE requires at most ©(log®n) steps.

PROOF. (SKETCH) We assume the notation and explanation above. Let 7 € (0,1) be a
constant to be determined later. If n balls are thrown uniformly at random at rm = rn/B
bins, then the probability that a particular bin is not hit is < (1 — 1/(rn/B8))™ which can be
estimated by e~PI”. We consider a (p,1 — p) Bernoulli process with rm = rn/g trials with

success probability
p>al — e~Almy, (2)



procedure SQUEEZE(S, )
real constant r,3 € (0,1]; {Declarations}

integer variable a,b,m,1,key € {0..m};

begin
a:=1;m=|n/B]; b:=|rm]; key :=0; {Initialize}
while key =0&b < m {Phase 1: squeeze}
i := random € {a..b}; {Choose random key in {a..b}}
key :=TS(1); {Execute test-and-set for key}
a:=b+1;b:=b+|r(m-0b)]; {Select next r-segment}
while key =0 {Phase 2: linear search}

key :==TS(a); a:=(a+1) (mod m)

return key

end

Figure 2: SQUEEZE Protocol

where a is the probability of a bin capturing a ball when it is actually hit. We want to
show that at this stage at least rn bins are succesful (capture a ball). Let ¢ = aé. By
recalling Equation 1 and plugging in actual numbers we obtain (s denotes the actual number
of succesful bins)

P(s < rn) < P(|s —rmp| > erm) < 9e—<’rm/(4p(1~p))

which is exponentially small in n, even if we set 7 as small as 1/logn. In the next round the
ratio of free balls per number of bins in the next r-segment is with high probability the same
as in the first round yielding mutatis mutandis the same result, and so on for all the rounds.

Our choice of r ensures that the number of iterations of the protocol is at most O(log?n).
To see this, set k = 1/r2, then

rmg =rm(l — 7‘)1/72 =rm(l—1/log n)logzn ~ rme” 8™ < 1, 3)

for sufficiently large n. (Recall ‘log’ denotes the binary logarithm.) a

COROLLARY 1 Using n strong test-and-set objects (o = 1), by approzimately the same proof
with B = o, with high probability, for all n processes SQUEEZE using only m =n keys still
finishes in ©(log®n) steps.

3.2 Segment Protocol

THEOREM 2 SEGMENT is a naming protocol which for n processes to (1+c)n keys (¢ > 0)
using (1 + c)n test-and-set objects with success probability o (1/2 < a < 1) requires at most
O(logn) steps with high probability.



procedure SEGMENT (m,key):
integer constant m € {n..2n}; {Declarations}

integer variable ¢, key € {0..m};

begin
key :=0; 1 := random € {1..m}; {Choose random key in {1..m}}
while key =0

key :=TS(i);i:= (1 +1) (modm) {Linear search}
return key

end

Figure 3: SEGMENT Protocol

PROOF. The SEGMENT protocol is as follows. Set 7 = alogn/m, where a > 1. To do
the estimate below, conceptually divide the key-space of m = (1 + c)n bins, with ¢ > 0, into
overlapping segments of size rm bins each. A segment is simply a collection of contiguous
bins. Each ball picks a segment uniformly at random independently of other processes. The
expected number of balls falling into any particular segment is hence rn. A straightforward
application of the Chernoff-bounds of Equation 1 shows that large deviations from this value
are extermely unlikely. More precisely, for each fixed € > O the probability of having more
than (1 + €)rn balls in any segment is exponentially small.

Namely, fix a segment S and consider a (7, 1—r) Bernoulli process with success probability
r for a ball selecting S. Then, the number of successes s in n trials satisfies by Chernoff’s

bounds
P(|]s —rn| > en) < 9e—€2n/(4r(1-r))

The probability that any segment has more than (1 + €)rn balls is at most half the upper
bound times the number of segments, namely

e—ezn/(4r(1—r))1/,’, < e—ezn/4.

Once the segment is chosen, the process scans the bins in the segment sequentially, until a
key is obtained. (Bins are scanned from lower to higher index.) After the rm = (1 +¢c)n
bins of a segment are invoked, we expect an o fraction of them to be succesful (they will
assign their key). Again, by a straighforward application of the Chernoff bounds we see that
the probability that in any segment there are less than (1 — €)rm succesful invocations is
exponentially small. What we need is for the number of succesful invocation in a segment to
take care of all balls which fell in a segment. That is,

(1-earm=(1—-¢€ar(l+c)n>(1+¢€)rn

which is satisfied if and only if

1+e 1+ 2¢
o > ~ .
T(1-¢)(l+c) 14+¢




|

The last equation shows a trade-off between «, the success probability of the Test-and-Set
once it is invoked, and ¢, the fractional amount of extra key-space. Conforming to intuition,
by increasing the reliability we can decrease the key-space size. In particular, we can push
it arbitrariliy close to optimal. Notice that with high probability no ball needs more than
rm = alogn Test-and-Set invocations. The pseudocode for the protocol is given in Figure 3.
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A Appendix: Success Probability of Weak Test-And-Set

We estimate a lower bound on the probability that a round ends successfully, that is by a
process g executing T'S() := i. We first analyze a simplified situation, and then use this to
analyze the full protocol under the strongest possible adaptive adversary. Such an adversary
knows everything of the current and past state of the system, but not the outcome of future
random choices in the protocols.

Analysis of Simplified Situation Recall the discussion of the balls and bins scenario in-
terpretation with an indeterminate number of levels in Section 2. We want to estimate the
probability that the game ends with a winner. Clearly, if there is a way for a ball to determine
if it is a winner, this process can be used to assign a token to a unique ball among a set of
competitors. Since there is a non-zero probability that the process ends with no winner, we
can think of it as a probabilistic test-and-set. Below, we show that the probability of failure
can be pushed arbitrarily close to 0, its precise value depending on the choice of s and on
how long we are willing to simulate the process without aborting it.

Given an initial row of n balls we denote the probability of the game ending with a winner

by f(n). We define f(1) =1 and f(0) = 0.
CrAIM 1 Let s # 1. Then f(2) =2s/(1+s).

PROOF. The equation f(2) = s2f(2) + 2s(1 — s) implies the claim. a

CraiM 2 For all n > 2, f(n) > f(2)

PRrOOF. We prove the claim by induction. The base case, f(2) > f(2), is trivial. For
the inductive step, assume that f(k) > f(2) for all 2 < k < n. Let X be a random variable
denoting the number of surviving balls after the first step. Then,

fm) = S FRP(X=F)
k=0
n—1
= P(X=1)+f(n)P(X=n)+ Y f(k)P(X =k)
k=2

Recalling that P(X = k) = (})s*(1 — s)"~*, it follows from the induction hypothesis that

n—1
fln) 2 (P(X =1)+ 3 f(k)P(X = k)) / 1- P(X =n)

k=2

> (P(X = 1)+f(2)§P(X = k))/l — P(X =n)
k=2
= (P(X=1)+f2)(1-P(X=0)-P(X=1)-P(X =n)))/(1 - P(X =n))
> f(2)
a
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THEOREM 3 Let n > 2 be the number of balls in the game. The probability that there is a

winner within k levels is at least f(2) — ns*.

PROOF. Let Wj be the event that there is a winner within k levels. Then

P(W},) = P(there is a winner) — P(there is a winner after k levels)
> f(n) — P(some ball makes at least k levels)
> f(2) - ns*.

O

An important corollary of this theorem is that the probability of having a winner can be
made arbitrarily close to 1 in finite time by appropriate choices of the parameters s and k.
In particular, for each fixed but arbitrarily small s the value of k can be as small as logn.

Analysis of the Protocol with Adaptive Adversary We now prove that even assuming an
adaptive adversary, with high probability the game quickly ends with a winner. Considering
the protocol of Figure 1, note that at each level at most one ball may advance to the next
level with probability 1. The adversary can exploit this feature, but not too much.

THEOREM 4 A probabilistic test & set with parameter s and n competitors succeeds in time
O(log? n) with probability at least

2s
1+s

a=(1-o0(1))

It is implemented in O(nlog? n) multireader (1-writer) atomic 1-bit variables or O(n) multi-
reader (1-writer) atomic 2loglogn-bit variables and O(nlog?n) accesses to the multireader
(1-writer) variables. Alternatively, it can be implemented using 1 snapshot object with n fields
and O(log? n) accesses per test-and-set operation.

PROOF. (Sketch.) The crucial observation is that, for each level £, at most one ball
steps ahead with probability 1; all other balls flip coins. Suppose we just observe the process
evolving for a total of k levels. Call a level red if at that level there is one (unique) ball
stepping forward with probability 1. Now, either there are vk red levels or there is a stretch
of vk levels without red levels. In the latter case, the probability of having a winner is at
least f(2) —nsVF, In the former, notice that one ball stepped to level Vk+1 with probability
1. So, we have at least one ball at that level. What is the probability that there is another
ball? This probability is at most nsV® because for another ball to be there there must be
a sequence of at least vk succesful coin flips (succesful meaning a ball steps forward). So,

vk, By choosing k

the probability of having a winner in the former case is at least 1 — ns
appropriately, say k = clog?n, for some constant ¢ > 0 only depending on s, the claim
follows.

Finally, we can replace each row of 1-bit multireader (1-writer) variables in protocol of
Figure 3 by a single 2loglogn-bit multireader (1-writer) variable which is used as a counter
which counts up to k = clog?n, and modify the protocol in the obvious way. We can further
simplify the construction by putting each such counter in a field of a single snapshot object

as defined in [2, 1]. a
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