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Sharpening Occam’s Razor
(Extended Abstract)

Ming Li* John Tromp! Paul Vitanyit
Waterloo Waterloo CWI/UvA
Abstract

We provide a new representation-independent formulation of Occam’s razor theorem, based

on Kolmogorov complexity. This new formulation allows us to:
e Obtain better sample complexity than both length-based [4] and VC-based [3] versions of
Occam’s razor theorem, in many applications.

e Achieve a sharper reverse of Occam’s razor theorem than that of [5]. Specifically, we
weaken the assumptions made in [5] and extend the reverse to superpolynomial running

times.

1 Introduction

Occam’s razor theorem as formulated by [3, 4] is arguably the substance of efficient pac learning.
Roughly speaking, it says that in order to learn, it suffices to compress. A partial reverse, showing
the necessity of compression, has been proved by Board and Pitt [5]. Since the theorem is about
the relation between effective compression and pac learning, it is natural to assume that a sharper
version ensues by couching it in terms of the ultimate limit to effective compression which is the

Kolmogorov complexity. We present results in that direction.

Despite abundant research generated by its importance, several aspects of Occam’s razor theo-

rem remain unclear. There are basically two versions. The VC dimension-based version (Theorem
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3.1.1 of [3]) gives the following upper bound on sample complexity: For a hypothesis space H with
VCdim(H) = d, 1 < d < oo,
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m(H, 5, 6) < ;(dlog—;— +log E) (1)
The following lower bound was proved by Ehrenfeucht et al [6].
d-11 1

H,é —In-). 2

m(H,6,0) > max(L_%, 2 n ) (2

The upper bound in Equation 1 and the lower bound in Equation 2 differ by a factor O(log %) It

was show in [8] that this factor is, in a sense, unavoidable.

When H is finite, one can directly obtain the following bound on sample complexity for any
consistent algorithm:
1. |H|
m(H,b,¢) < —In - (3)
€
For a graded boolean space H,,, we have the following relationship between the VC dimension d of
H,, and the cardinality of H,,

d < log|Hp| < nd. (4)

When log |Hn| = O(d) holds, then the sample complexity upper bound given by Equation 3 can
be seen to match the lower bound of Equation 2 up to a constant factor, and thus any consistent

algorithm achieves optimal sample complexity for such hypothesis spaces.

The length based version of Occam’s razor gives the sample complexity, for given € and 5:

yiti=e), (5)

€

2. 1 (2ln2)s"
m = max(=1ln %, ((__ﬂs_
e 6
when the deterministic occam algorithm returns a consistent hypothesis of length at most m®sP

with o < 1 and s is the length of the target concept.

In summary, the VC dimension based occam’s razor theorem may be hard to use and it some-
times does not give the best sample complexity. The length-based Occam’s razor is more convenient

to use and often gives better sample complexity in the discrete case.

However, as we will demonstrate in this paper, the fact that the length-based Occam’s razor
theorem sometimes gives inferior sample complexity, can be due to the redundant representation

format of the concept.

We believe Occam’s razor theorem should be “representation-independent”. That is, it should
not be dependent on accidents of “representation format”. (See [13] for other representation-
independence issues.) In fact, the sample complexities given in Equations 1 and 3 are indeed
representation-independent. However they are not easy to use and do not give optimal sample

complexity.



In this paper, we give a Kolmogorov complexity-based Occam’s razor theorem. We will demon-
strate that our KC-based Occam’s razor theorem is convenient to use (as convenient as the length
based version), gives a better sample complexity than the length based version, and is representation-
independent. In fact, the length based version can be considered as a specific computable approxi-

mation to the KC-based Occam’s razor.

As one of the examples, we will demonstrate that the standard trivial learning algorithm for
monomials actually often has a better sample complezity than the more sophisticated Haussler’s
greedy algorithm [7], using our KC-based Occam’s razor theorem. This is contrary to the common

belief that Haussler’s algorithm is better.

Another issue related to Occam’s razor theorem is the status of the reverse assertion. Although
a partial reverse of Occam’s razor theorem has been proved by [5], it applied only to the case of
polynomial running time and sample complexity. They also required a property of closure under
exception list. This latter requirement, although quite general, excludes some reasonable concept
classes. Our new formulation of Occam’s razor theorem allows us to prove a more general reverse
of Occam’s razor theorem, allowing the arbitrary running time and weakening the requirement of

exception list of [5].

2 Occam’s Razor

Let us assume the usual definitions, say Anthony and Biggs [1]. Also assume the notation of Board

and Pitt [5]. For Kolmogorov complexity we assume the basics of [11].

In the following ¥ is a finite alphabet. i.e. we consider only discrete learning problems in this
paper.

First we define a pac-algorithm and a generalized notion of Occam-algorithm.

Definition 1 A pac-algorithm for a class of representations R = (R,T',¢,X) is a randomized
algorithm L such that, for any s,n > 1,0 <¢,6 <1,r € R<%, and any probability distribution D on
Y7 if L is given s,n, €,6 as input and has access to an oracle providing ezamples of c(r) according
to D, then L, with probability at least 1 — &, outputs a representation r' such that D(r' ®7) < e.
The running time and sample complexity of the pac-algorithm are expressed as functions t(n, s, €, §)

and m(n, s, ¢, 6).

Definition 2 An Occam-algorithm for a class of representations R = (R, T, ¢, %) is a randomized
algorithm which on input of a sample of length m of r € R, and any vy > 0, with probability at least
1—v outputs a representation r' consistent with the sample, such that K(r'|r,n,s) = m/f(m,n,s,v),

with f(m,n,s,7), the compression achieved, being an increasing function of m. The running time



of the Occam-algorithm is expressed as a function t(m,n, s,7), where n is the mazimum length of

the input ezamples.

Our first theorem is a Kolmogorov complexity based Occam’s Razor. We denote the minimum

m such that f(m,n,s,v) >z by f~1(z,n,s,7).

Theorem 1 Suppose we have an Occam-algorithm for R = (R, T, ¢, ¥) with compression f(m,n,s,v).
Write f as f(m,v) with the other parameters implicit. Then there is a pac-learning algorithm for
R with sample complexity

2
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m(n,s,€,6) = ma,x(; In

and running time t(n, s, ¢, 8) = t(m(n, s, €,6),n,s,6/2).

Proof. On input of ¢,6,s,n, the learning algorithm will take a sample of length m =
m(n, s,¢,6) from the oracle, then use the Occam algorithm with y = 6/2 to find a hypothesis (with
probability at least 1 — §/2) consistent with the sample and with low Kolmogorov complexity. In
the proof we further abbreviate f to f(m) with the other parameters implicit. Learnability follows
in the standard manner from bounding (by the remaining §/2) the probability that all m examples
of the target concept fall within the, probability € or greater, symmetric difference with a bad
hypothesis. Let m > m(n,s,¢,6). Then m > f‘l(g—lé‘z, %) gives

In2
f(m)

Bounding (1 — €)™ by e™*™ and taking negative logarithms,

€— >
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- f(m)

which follows from the above and the first lower bound on m. O

Corollary 2 When the compression ts of the form
l—a

m

f(m,n,sa’)’) =m,

one can achieve a sample complezity of

2. 2 ((21n2)p(n,s,6/2)\
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In the special case of total compression, where o = 0, this further reduces to
2 (max(in 3, (1 2)p(n, 5,6/2))) (6)
€

For deterministic Occam-algorithms, we can furthermore replace 2/6 and 6/2 in Theorem 1 by 1/6

and § respectively.

Remark. Essentially, our new Kolmogorov complexity condition is a computationally univer-
sal generalization of the length condition in the original Occam’s razor theorem of [4]. Here, in
Theorem 1, we consider the shortest description length over all effective representations. This
is representation-independent in the very strong sense of being an absolute and objective notion,
which is recursively invariant by Church’s thesis and the ability of universal machines to simulate

each another.

Definition 3 An exception handler for a class of representations R = (R,T,c, Y)) is an algorithm
which on input of a representation r € R of length s, and an ¢ € £* of length n, outputs a
representation 7' of the concept c(r) ® {z}, of length at most e(s,n), where e is the exception
ezpansion function. The running time of the exception-handler is ezpressed as a function t(n,s) of
the representation and exception lengths. If t(n,s) is polynomial in n,s and e(s,n) is of the form

s + p(n) for some polynomial p() then we say R is polynomially closed under exceptions.

Theorem 3 Let L be a pac-algorithm and E be an exception handler for R = (R,T,c, Y). Then
there is an Occam algorithm for R with compression 2—:;, where €, depending on m,n,s,7y, is such

that m(n, s,€,y) = em holds.

Proof. The proofis obtained in a fashion similar to Board and Pitt. Suppose we are given a
sample of length m and confidence parameter . Assume without loss of generality that the sample
contains m different examples. Define a uniform distribution on these examples with pu(z) = 1/m
for each z in the sample. Let ¢ be as described. E.g. when m(n,s,¢,v) = (1) for some constant
b, then € = m~1/(+1)  Apply L with § = v and above e. It produces a concept which is correct
with error €, giving up to em exceptions. We can just add these one by one using the exception
handler. This will expand the concept size, but not the Kolmogorov complexity. The resulting
representation can be described by the examples used plus the exceptions found, each taking n

bits. This gives the claimed compression. O

Definition 4 A majority-of-3 algorithm for a class of representations R = (R, T, c, ) is an algo-
rithm which on input of 8 representation r1,79,73 € RS®, outputs a representation r' of the concept
MAJ(r1,79,73) of length at most e(s), where e is the majority expansion function. The running
time of the algorithm is expressed as a function t(s) of the mazimum representation length. Ift(s)

and e(s) are polynomial in s then we say R is polynomially closed under majority-of-3.



Theorem 4 Let L be a pac-algorithm with sample complezity m(n,s,¢,§) subquadratic in %, and
let M be a majority-of-3 algorithm for R = (R,T,c,X). Then there is an Occam algorithm for R

with compression m/3nm(n,s, ﬁ, v/3).

Proof. Let us be given a sample of length m. Take § =+v/3 and € = 1/{/m.

Stage 1: Define a uniform distribution on the m examples with u(z) = 1/m for each z in the
sample. Apply the learning algorithm. It produces (with probability at least 1 — v/3) a hypothesis
1 which has error less than ¢, giving up to em = y/m exceptions. Denote this set of exceptions by

E;.

Stage 2: Define a new distribution on the m examples with u(z) = ez = 1/(2y/m) for each z
in B1, and p(z) = (1 — |E1|/2y/m)/(m — |E4|) for each = not in E1. Apply the learning algorithm
with error bound es. It produces (with probability at least 1 — /3) a hypothesis r2 which is
correct on all of F; and with error less than es on the remaining examples. This gives up to
eo(m — |E1])/(1 — |E1]/2y/m) < \/m exceptions. Denote this set Ep. We have that Fj is disjoint
from Fi.

Stage 3: Define a new distribution on the m examples with u(z) = 1/|E1 U Ej| for each z in
Ei U E,, and p(z) = 0 elsewhere. Apply the learning algorithm with error bound €3 = 1/2y/m.
Note that |Ey| < y/m and E; < y/m gives that for  in E; U Ey, p(z) > e3. Thus the algorithm
produces (with probability at least 1 —/3) a hypothesis r3 which is correct on all of F and E»

and which might be totally wrong elsewhere (we don't care).

In total the number of examples consumed by the pac-algorithm is at most 3m(n, s, 2—\17;, v/3)
each requiring n bits to describe. The three representations are combined into one representing
the majority of the 3 concepts. This is necessarily correct on all of the m examples, since the 3
exception-sets are all disjoint. Furthermore, it can be described in terms of the examples fed to the
pac-algorithm and thus achieves compression f(m,n,s,v) = m/3nm(n,s, -27177,7/3). This is seen

to be an increasing function of m given the assumed subquadratic sample complexity. O

The following corollaries use the fact that if a class is learnable, it must have finite VC-dimension

and hence, according to Equation 1, they are learnable with sample complexity subquadratic in %

Corollary 5 Let a class R = (R,T',c,X) be closed under either exceptions or majority-of-3. Then

R is pac-learnable iff there is an Occam algorithm for R.

Corollary 6 Let a classR = (R,T,c,X) be polynomially closed under either ezceptions or majority-
of-3. Then R is polynomially pac-learnable iff there is a polynomial time Occam algorithm for R.

Ezample. Consider threshold circuits, acyclic circuits whose nodes compute threshold functions

of the form ajz1 + agza + -+ + anzn, > 6, z; € {0,1},0;,6 € N (note that no expressive power



is gained by allowing rational weights and threshold). A simple way of representing circuits over
the binary alphabet is to number each node and use prefiz-free encodings of these numbers. For
instance, encode ¢ as 1|bin(i)10bin(i), the binary representation of ¢ preceded by its length in unary.
A complete node encoding then consists of the encoded index, encoded weights, threshold, encoded
degree, and encoded indices of the nodes corresponding to its inputs. A complete circuit can be
encoded with a node-count followed by a sequence of node-encodings. For this representation, a
majority-of-3 algorithm is easily constructed that renumbers two of its three input representations,
and combines the three by adding a 3-input node computing the majority function z;+z2+z3 2 2.
It is clear that under this representation, the class of threshold circuits are polynomially closed under
majority-of-3. On the other hand they are not closed under exceptions, or under the exception lists

of Board and Pitt [5].

Ezample. Let hi, ho, hs be 3 k-DNF formulas. Then MAJ{hl, ho, h3} = (hl/\hg)V(hQ/\hg)V(h;;/\hl)
which can be expanded into a 2k-DNF formula. This is not good enough for Theorem 4, but it
allows us to conclude that pac-learnability of k-DNF implies compression of k-DNF into 2k-DNF.

3 Applications

We demonstrate how our KC-based Occam’s razor theorem might be conveniently used, providing
better sample complexity than the length-based version. In addition to giving better sample com-
plexity, our new KC-based Occam’s razor theorem, Theorem 1, is easy to use, as easy as the length

based version, as demonstrated by the following two examples.

While it is easy to construct an artificial concept class with extremely bad representations
such that our Theorem 1 gives arbitrarily better sample complexity than the length-based sample

complexity given in Equation 5, we prefer to give real examples.
Application 1: Learning a String.

The DNA sequencing process can be modeled as the problem of learning a super-long string in
the pac model [9, 10]. We are interested in learning a target string t of length say 3 X 10° (length of
a human DNA sequence). At each step, we can obtain as an example a substring of this sequence
of length n, from a random location of ¢ (Sanger’s Procedure). In current practice, n = 500, and
sampling is very expensive. Formally, the concepts we are learning are sets of possible length n
substrings of a superstring, and these are naturally represented by the superstrings. We assume a
minimal target representation (which may not hold in practice). Suppose we obtain a sample of m
substrings (all positive examples). In biological labs, a Greedy algorithm which repeatedly merges a
pair of substrings with maximum overlap is routinely used. It is conjectured that Greedy produces

a common superstring ' of length at most 2s, where s is the optimal length (NP-hard to find). In



[2], we have shown that s < [t/| < 4s. Assume that |t'| & 2s.! Using the length-based Occam’s
razor theorem, this length of 2s would determine the sample complexity, as in Equation 6, with
p(n,s,6/2) = 2 - 2s (the extra factor 2 is the 2-logarithm of the size of the alphabet {A,C,G,T}).
Is this the best we can do? It is well-known that the sampling process in DNA sequencing 1s a very

costly and slow process.

Let’s now improve the sample complexity using our KC-based Occam’s razor theorem.

Lemma 7 Let t be the target string of length s and t' be the superstring returned by Greedy of

length at most 2s. Then
K(t'|t,s,n) < 2s(2log s +logn)/n.

Proof. We will try to give ¢’ a short description using some information from ¢. Let S =
{s1,...,5m} be the set of m examples (substrings of ¢ of length n). Align these substrings with the
common superstring ¢, from left to right. Divide them into groups such that each group’s leftmost
string overlaps with every string in the group but does not overlap with the leftmost string of the

previous group. Thus there are at most 2s/n such groups.

To specify t/, we only need to specify these 2s/n groups. After we obtain the superstring for
each group, we re-construct ¢ by optimally merge the superstrings of the neighboring groups. To
specify each group, we only need to specify the first and the last string of the group and how they
are merged. This is because every other string in the group is a substring of the string obtained by
properly merging the first and last strings. Specifying the first and the last strings requires 2log s
bits of information to indicate their locations in ¢ and we need another logn bits to indicate how
they are merged. Thus K(#'[t,n) < 2s(2log s+ logn)/n. O

This lemma shows that Equation 6 can also be applied with p(n, s, §/2) = 2-2s(2log s+logn)/n,
giving a factor n/(2log s + log n) improvement in sample-complexity. Note that in DNA practice,

we have n = 500 and s = 3 x 10°. The sample complexity is reduced over “length based” Occam’s

razor by a multiplicative factor of n/(2logs +logn) = ﬂ%qlo_l_—g ~T.

Application 2: Learning a Monomial.

Consider boolean space of {0,1}". There are two well-known algorithms for learning monomials.

One is the standard algorithm.

Standard Algorithm.

1. Initial Concept: m = z1Z7 ... T, Ty.

2. For each positive example, delete from m the variables that would make the example false.

! Although only the 4s upper bound was proved in [2], it is widely believed that 2s holds.



3. Return the resulting monomial m.

Haussler [7] proposed a more sophisticated algorithm based on set-cover approximation as fol-

lows.

Haussler’s Algorithm.

1. Use only negative examples. For each literal z, define S; to be the set of negative examples
such that z falsifies these negative examples. The sets associated with the literals in the

target monomial form a minimum set cover of negative examples.

2. Run the approximation algorithm of set cover, this will use at most klogm sets or, equiva-
lently, literals in our approximating monomial. Here k is the number of variables in the target

monomial.

It is commonly believed that Haussler’s algorithm has better sample complexity than the stan-
dard algorithm. We demonstrate that the opposite is sometimes true (in fact for most cases),
using our KC-based Occam’s razor theorem, Theorem 1. Let’s assume that our target monomial
M is of length n — \/n. Then the length-based Occam’s razor theorem gives sample complexity
n/e for both algorithms, by Formula 6. However, K(M'|M) < log3y/n + O(1), where M' is the
monomial returned by the standard algorithm. This is true since the standard algorithm always
produces a monomial M’ that contains all literals of the target monomial M. Also, we only need
log 3v/n+ O(1) bits to specify whether other literals are in or not in M'. Thus our Equation 6 gives
the sample complexity of O(y/n/e). In fact, as long as [M| > n/logn (which is most likely to be

the case if every monomial has equal probability), it makes sense to use the standard algorithm.

4 Conclusions

Several new problems are suggested by this research. If we have an algorithm that, given a length-m
sample of a concept in Euclidean space, produces a consistent hypothesis that can be described
with only m?®, & < 1 symbols (including a symbol for every real number; we're using uncountable
representation alphabet), then it seems intuitively appealing that this implies some form of learning.
However, as Board and Pitt noted in their paper [5], the standard proof of Occam’s Razor does
not apply, since we cannot enumerate these representations. The main open question is under
what conditions (specifically on the real number computation model) such an implication would

nevertheless hold.

Can we replace the exception element or majority of 3 requirement by some weaker requirement?

Or can we even eliminate such closure requirement and obtain a complete reverse of Occam’s



razor theorem? Our current requirements do not even include things like k-DNF and some other

reasonable classes.
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