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Inductive Reasoning

MING LI AND PAUL VITANYI

ABSTRACT. Our aim is to explain a general theory of inductive reasoning
which is close enough to the concerns of language studies. In this set-up,
the optimal prediction rate is assigned to the hypothesis considered most
likely by a prior-free form of Bayesian inference. In terms of practical
applications a most attractive form of this approach is embodied by the
so-called minimum description length (MDL) principle. There, the most
likely hypothesis is the one which minimizes the sum of the length of the
description of the hypothesis and the length of the description of the data
relative to the hypothesis. This theory is solidly based on a provably ideal
method of inference using Kolmogorov complexity. We give references to
several applications. Similar approaches should work for computational
learning of features of language.

The genesis of this work is not rooted in traditional approaches to artificial
intelligence (AI), but rather in new exciting general learning theories which have
developed out from the computational complexity theory [21, 20], statistics and
descriptional (Kolmogorov) complexity [15]. These new theories have received
great attention in theoretical computer science and statistics, {21, 20, 15, 17,
16, 18, 1, 9]. One the other hand, the design of real learning systems seemed
to be dominated by ad hoc trial-and-error methods.

It is commonly accepted that all learning involves compression of experimental
data in a compact ‘theory’, ‘hypothesis’, or ‘model’ of the phenomenon under
investigation. In [11, 12] the authors analysed the theory of such approaches
related to shortest effective description length (Kolmogorov complexity). The
question arises whether these theoretical insights can be directly applied to real
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world problems. To show that this can be done, the first author and Qiong Gao,
see [3, 4], carried out an experiment in on-line learning to recognize isolated
characters written in a particular person’s handwriting.

Reasoning from ‘experience’ to ‘truth’ has been the subject of intricate the-
ories scattered throughout vastly different areas such as philosophy of science,
statistics and probability theory, computer science, and psychology. Kolmogorov
complexity allows us to study many seemingly unrelated models or principles
from a unified view point. These include, [12], the maximum likelihood princi-
ple, the maximum entropy principle, the minimum description length principle,
induction by enumeration , and probably approximately correct (pac) learning.
Each of these ideas has had a pronounced influence in its respective field: phi-
losophy of science, statistics, artificial intelligence, and theory of computing.

The Oxford English Dictionary defines induction as the process of inferring
a general law or principle from the observations of particular instances. This
defines precisely what we would like to call inductive inference On the other
hand, we regard inductive reasoning as a more general concept than inductive
inference, namely, as a process of re-assigning a probability (or credibility) to a
law or proposition from the observation of particular instances. In other words,
inductive inference draws conclusions that accept or reject a proposition, possibly
without total justification, while inductive reasoning only changes the degree of
our belief in a proposition. We need also to distinguish inductive reasoning
from deductive reasoning (or inference). In deductive reasoning one derives the
absolute truth or falsehood of a proposition. This may be viewed as a borderline
case of inductive reasoning. A celebrated principle for induction is commonly
attributed to William of Ockham (12907-13497).

Occam’s razor. Entities should not be multiplied beyond ne-

cessity.
According to Bertrand Russell, the actual phrase used by William of Ockham
was: “It is vain to do with more what can be done with fewer.” This is gen-
erally interpreted as: Among the theories that are consistent with the observed
phenomena, one should pick the simplest theory.

But is a simpler theory really better than a more complicated one? What is
the proper measure of simplicity? Is £'°°+1 more complicated than 13z 7 +5z%+
7z + 117 In this context the contemporary philosopher Karl Popper pronounced
that the razor is without sense since there is no objective criterion for simplicity.
It is the aim of this paper to show that the principle can be given objective
contents.

EXAMPLE 0.1. Let us consider a simple example of inferring a finite grammar
with one-letter terminals using Occam’s razor. Let us measure ‘simplicity’ by
number of rules in the grammar. The sample data are:

generated terminal strings: 0, 000, 00000, 000000000;
not generated terminal strings: €, 00, 0000, 000000;
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For these data there exist many consistent finite grammars. Let S denote the
starting nonterminal symbol of a grammar. A trivial consistent finite grammar
is the first one below, while the second grammar is the smallest consistent one.

S — 0]000|00000|000000000,
S — 00S|0

Intuitively, the trivial grammar just plainly encodes the data. We therefore
do not expect that the grammar anticipates future data. On the other hand,
the small grammar makes the plausible inference that the language generated
consists of strings of odd number of 0’s. The latter appeals to our intuition as a
reasonable inference.

In the learning grammar example, it turns out that one can prove the fol-
lowing. The celebrated ‘Occam’s Razor Theorem’ in [1] states that if sufficient
data are drawn randomly from any fixed distribution, then with high proba-
bility the smallest consistent grammar (or a ‘reasonably’ small grammar which
compresses the observations far enough) will with high probability correctly pre-
dict acceptance or rejection of most data which are drawn afterwards from this
distribution. See also [13].

In contrast to Ockham, Thomas Bayes took a probabilistic view of Nature.
Assume we have observational data D.

Bayes’ Rule. The probability of hypothesis H being true is

proportional to the learner’s initial believe in H (the prior prob-

ability) multiplied by the conditional probability of D given H.
Bayesian reasoning is mathematically fine but it has a weakness: it assumes
knowledge of the prior probability. For many practical problems it is unclear
how the prior probability should be defined, how it can be found, or whether it
exists at all. Take for example properties of the English language. It has been
produced by different people from different times and social backgrounds. Can
we claim that there is a definite probability involved among different competing
hypotheses about a certain aspect of the language? The historic dispute between
Bayesians and non-Bayesians is related to such problems.

Essentially combining the ideas of Ockham, Bayes, and modern computability
theory, R.J. Solomonoff has successfully invented a ‘perfect’ induction theory.
First, combine Occam’s razor principle and modern computability theory to
obtain Kolmogorov complexity. With Kolmogorov complexity define a untversal
prior which dominates, up to a multiplicative constant, all computable prior
probability distributions. Use this universal prior in Bayes’ Rule substituting it
for any computable prior probability which may actually hold. This results a
general theory of inductive inference.

The notion of ‘simplicity’ has dominated linguistic argumentation for much
of its illustrious history (before Solomonoff was even conceived). For example,
Grimm’s and Verner’s laws (about diachronic sound change) are based on sim-
plicity arguments. Chomsky’s masters thesis on the morphophonemics of Hebrew
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used simplicity as its central criterion, and Chomsky and Halle's pathbreaking
(1968) ”Sound Pattern of English” also invokes an explicit simplicity metric.
Halle has written two excellent papers on this topic, [6, 7.

1. Bayesian Reasoning

On the one hand, it seems common sense to assume that people learn in the
sense that they generalize from observations by learning a ‘law’ that governs not
only the past observations, but will also apply to the observations in the future.
In this sense induction should ‘add knowledge’.

Yet how is it possible to acquire knowledge which is not yet present? If we
have a system to deduce a general law from observations, then this law is only
part of the knowledge contained in this system and the observations. Then, the
law does not represent knowledge over and above what was already present, but
it represents in fact only a part of that knowledge. This seeming contradiction
is related to the distinction between ‘implicit knowledge’ and ‘explicit (useful)
knowledge’. We need to extract the latter from the former, and it may require
time and or space to do so. If the resources required are forbiddingly large, then
we cannot compute the useful knowledge from the implicit knowledge, even if
we have all the information.

As an example consider a book on number theory. Given the axioms and
inference rules of number theory, and the statements of the theorems in the book,
we can in principle reconstruct all the proofs of the theorems by enumerating all
valid proofs of the theory. However, finding the valid proofs is very hard (it took
mankind 2000 years). Information which can only be reconstructed from a short
description at the expense of great computational effort is called ‘logically deep’.
The theory of logical depth is due of G. Chaitin and C. Bennett, see for example
[13]. It possibly gives some insight in the above paradox about the distinction
between implicit knowledge and useable knowledge—for example, knowledge the
user is aware of. This theory should be developed further, but it is out of the
scope of this article.

The calculus of probabilities has come up with an induction principle which
estimates the relative likelihood of different possible hypotheses.

Consider the situation in which one has a set of observations (say, sentences
in some new language) D, and also a (possibly infinite) set of hypotheses (say,
potential grammars): Hy, H; ... For each hypothesis H; we would like to assess
the probability that H; is the "correct” hypothesis (that is, the generating gram-
mar), given the observation of D. This quantity, P(H;|D), can be described and
manipulated formally in the following way.

DEFINITION 1.1. Consider a discrete sample space Q. Let D, Hy, Hy, . .. be a
countable set of events (subsets) of Q. The list H= {H1,Ha,...} is called the
hypotheses space. The hypotheses H; are ezhaustive (at least one is true). From
the definition of conditional probability, that is, P(A|B) = P(ANB)/P(B), it is
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easy to derive Bayes’ formula (rewrite P(AN B) in two different ways):

P(D|H:)P(H;)

(1.1) P(Hi|D) = ——5rrs

If the hypotheses are mutually exclusive (H; N H; = @ for all 7,7), then

P(D) = Z P(D|H:)P(H).

Despite the fact that Bayes’ rule is just a rewriting of the definition of condi-
tional probability and nothing more, its interpretation and applications are most
profound and caused much controversy during the past two centuries. In Equa-
tion 1.1, the H,'s represent the possible alternative hypotheses concerning the
phenomenon we wish to discover. The term D represents the empirically or oth-
erwise known data concerning this phenomenon. The term P(D), the probability
of data D, may be considered as a normalizing factor so that °, P(H;|D) = 1.
The term P(H;) is called the a priori probability or initial probability of hy-
pothesis H;, that is, it is the probability of H; being true before we see any data.
The term P(H;|D) is called a posteriori or inferred probability

The most interesting term is the prior probability P(H:). In the context of
machine learning, P(H;) is often considered as the learner’s initial degree of belief
in hypothesis H;. In essence Bayes' rule is a mapping from a priors probability
P(H;) to a posteriori probability P(H;|D) determined by data D. In general,
the problem is not so much that in the limit the inferred hypothesis would not
concentrate on the true hypothesis, but that the inferred probability gives as
much information as possible about the possible hypotheses from only a limited
number of data. The continuous debate between the Bayesian and non-Bayesian
opinions centered on the prior probability. The controversy is caused by the fact
that Bayesian theory does not say how to initially derive the prior probabilities
for the hypotheses. Rather, Bayes’ rule only tells how they are to be updated. In
the real world problems, the prior proabilities may be unknown, uncomputable,
or even conceivably non-existent. This problem would be solved if we can find
a single probability distribution to use as the prior distribution in each different
case, with approximately the same result as if we had used the real distribution.
Surprisingly, this turns out to be possible up to some mild restrictions.

1.1. Kolmogorov Complexity. The Kolmogorov complexity, (10, 22, 11],
of z is simply the length of the shortest effective binary description of z. For-
mally, this is defined as follows. Let z,y,z € N, where N denotes the nat-
ural numbers and we identify A and {0,1}* according to the correspondence
(0,€),(1,0),(2,1),(3,00),(4,01),.... Here € denotes the empty word *’ with no
letters. The length I(z) of z is the number of bits in the binary string . For
example, [(010) = 3 and I(e) = 0.

The emphasis is on binary sequences only for convenience; observations in any
alphabet can be so encoded in a way that is ‘theory neutral’.
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A binary string z is a proper prefiz of a binary string y if we can write z = yz
for z # €. A set {z,y,...} C {0,1}" is prefiz-free if for any pair of distinct
elements in the set neither is a proper prefix of the other. A prefix-free set is
also called a prefiz code. Each binary string ¢ = 2122...Zxn has a special type
of prefix code, called a self-delimiting code,

T =T1Z1T2T2...LnTn,

where =z, = 0if z, =1 and -z, =1 otherwise. This code is self-delimiting
because we can determine where the code word Z ends by reading it from left to
right without backing up. Using this code we define the standard self-delimiting
code for z to be ' = I(z)z. It is easy to check that [(Z) = 2n and I(z') =

n + 2logn.
Let Ty, Ts,... be a standard enumeration of all Turing machines, and let
¢1,d2,... be the enumeration of corresponding functions which are computed

by the respective Turing machines. That is, T; computes ¢;. These functions
are the partial recursive functions or computable functions.

Let (-) be a standard invertible effective one-one encoding from N X N to
prefix-free recursive subset of /. For example, we can set (z,y) = z'y’. We
insist on prefix-freeness and recursiveness because we want a universal Turing
machine to be able to read an image under (-) from left to right and determine
where it ends.

DEFINITION 1.2. The prefix Kolmogorov complexity of z given y (for free) s
K (zly) = min{l({p, 1)) : $:((p,y)) =z, p € {0,1}", i €N}
Define K(z) = K(zle).

A Turing machine T computes a function on the natural numbers. However,
we can also consider the computation of real valued functions. For this purpose
we consider both the argument of ¢ and the value of ¢ as a pair of natural
numbers according to the standard pairing function (-). We define a function
from N to the reals R by a Turing machine T computing a function ¢ as follows.
Interprete the computation ¢({z,t)) = (p,q) to mean that the quotient p/q is
the rational valued tth approxmation of f(z).

DEFINITION 1.3. A function f : N = R is enumerable if there is a Turing
machine T computing a total function ¢ such that é(z,t +1) > ¢(z,t) and
limy—oco ¢(z,t) = f(z). This means that f can be computably approzimated from
below. If f can also be computably approzimated from above then we call f
recursive.

A function P : N — [0,1] is a probability distribution if 35 cpr < 1. (The
inequality is a technical convenience. We can consider the surplus probability to
be concentrated on the undefined element u ¢ N).
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Consider the family £P of enumerable probability distributions on the sample
space N (equivalently, {0,1}*). It is known, [13], that £P contains an element
m that multiplicatively dominates all elements of £P. That is, for each P € EP
there is a constant ¢ such that c m(z) > P(z) for all z € V.

The family £P contains all distributions with computable parameters which
have a name, or in which we could conceivably be interested, or which have ever
been considered. The dominating property means that m assigns at least as
much probability to each object as any other distribution in the family EP does.
In this sense it is a universal a priori by accounting for maximal ignorance. It
turns out that if the true a priori distribution in Bayes Rule is recursive, then
using the single distribution m, or its continuous analogue the measure M on
the sample space {0,1}° (defined later), is provably as good as using the true a
priori distribution.

We also know, [13], that

(1.2) —log m(z) = K(z) + O(1).

That means that m assigns high probability to simple objects and low probability
to complex or random objects. For example, for z = 00...0 (n 0's) we have
K(z) = K(n) + O(1) < logn + 2loglogn + O(1) since the program

print n_times a ‘0’

prints z. (The additional 2loglogn term is the penalty term for a self-delimiting
encoding.) Then, 1/(nlog’n) = O(m(z)). But if we flip a coin to obtain a
string y of n bits, then with overwhelming probability K(y) > n—0(1) (because
y does not contain effective regularities which allow compression), and hence
m(y) = O(1/2"). We also know, [13], that

—logM(z) = K(z) = O(log K(z)),

Again this means that M assigns high probability to simple objects and low
probability to complex or random objects. For example, forz =00...0 (n 0’s)
we have M(z) > 1/(nlogo(l)n). But if we flip a coin to obtain a y of n bits,
then with overwhelming probability M(y) = O(1/2").

2. Solomonoff’s Universal Prior

Consider theory formation in science as the process of obtaining a compact de-
scription of the past observations. The investigator observes increasingly larger
initial segments of an infinite binary sequence X as the outcome of an infinite
sequence of experiments on some aspect of nature. To describe the underlying
regularity of X, the investigator tries to formulate a theory that governs X,
consistent with past experiments. Candidate theories (hypotheses) are identi-
fied with computer programs that compute binary sequences starting with the
observed initial segment.
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First assume the existence of a probability distribution p over the continuous
sample space = {0,1}*. Such a distribution is called a measure and is defined
by the probabilities of elements belonging to certain subsets of Q. Denote by
u(z) the probability of a sequence starting with z, that is, the probability that
it is an element of the set of all sequences in § that start with . For p :
{0,1}* — [0,1] to be a measure it must satisfy (i) p(e) £ 1; and (i) p(z) 2
p(z0) + p(zl). (The inequalities are a technical convenience. We can obtain
equalities by concentrating the surplus probabilities on the undefined element
u g {0,1}: u(e) + u(u) = 1 and p(z) = p(z0) + p(z1) + p(zv).)

The inference problem can now be formulated as follows. Given a previously
observed data string S, predict the next symbol in the sequence, that is, ex-
trapolate the sequence S. In terms of the variables in Equation 1.1, H, is the
hypothesis that the sequence under consideration continues with a. Data Dg
consists of the fact that the the sequence starts with initial segment S. Thus, for
P(H;) and P(D) in Formula 1.1 we substitute w(H,) and p(Ds), respectively,
and obtain

pADs [ H.)u(He)

H,|Ds) =

/"’( | S) /-"(DS)

We must have pu(Dg|H,) =1 for any a. Hence,
ﬂ'(Ha)

2.1 H,|Ds) = .

(21) WH.IDs) = 5=

Generally, we denote u(H,|Ds) by p(alS). In terms of inductive inference
or machine learning, the final probability p(a|S) is the probability of the next
symbol being a, given the initial sequence S. Obviously we now only need the
prior probability p to evaluate p(a|S). The idea is to approximate the unknown
proper prior probability p.

Similar to Definition 1.3 one can define enumerable measures, [13]. Just like
in the case of probability distributions over a discrete sample space, all measures
with computable parameters we may be conceivably interested in are enumerable.
The family of enumerable measures is denoted by £M. It can be proved, [13],
that EM contains a universal measure, denoted by M, such that for all p in this
class there exists a constant ¢ such that cM(z) > u(z) for all z. We say that M
dominates u. We also call M the a priori probability, since it assigns maximal
probability to all hypotheses in absence of any knowledge about them.

Now instead of using Formula 2.1, we estimate the conditional probability
p(y|z) that the next segment after z is y by the expression

M(zy)

(2.2) -—M_—(z-j-.

Now let p in Formula 2.1 be an arbitrary computable measure. This case includes
all computable sequences. If the length of y is fixed, and the length of z grows
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to infinity, then it can be shown similar to [19], see [13], that
M(y)/M(=)

w(y)/u(=)
with p-probability one. In other words, the conditional a priori probability
is almost always asymptotically equal to the conditional probability. It has
also been shown by Solomonoff that the convergence is very fast and if we use
Formula 2.2 instead of the real value Formula 2.1, then our inference is almost

as good.

-1,

2.1. Rate of Convergence of Guessing Error. We can quantify how
fast Solomonoff’s predictions converge to the optimal predictions. Obviously, we
cannot do better than predict according to p. Let S, be the expected squared
error in the nth prediction (with I(z) is the binary length of z):

2
(2:3) C Sa= ) p(@)(w(0le) - M(0]z))".

I(z)=n-1
Since we consider only binary sequences, this figure of merit accounts for all
error in the nth prediction. It was shown in [19], see also [13], that the summed
expected error over all predictions is bounded by a constant,

(2.4) i Sn <k,
n=1

where k is a constant depending only on g. (It can be shown, [13], that k =
K(u)/In2, where K(p) is the length of the shortest program computing g in
a prefix-free programming language, see above.) This means that, using M,
the expected prediction error S, in the nth prediction goes to 0 faster than
1/n. Used as the prior in Bayes Rule, this proves mathematically that the
inferred probability using prior M converges very fast to the inferred probability
using the actual prior p. The problem with Bayes’ Rule has always been the
determination of the prior. Using M universally gets rid of that problem, and is
provably perfect.

The point of using Solomonoff’s prior is not that we eventually converge to the
true hypothesis, but that we do it very fast and make small errors in predictions
also in the initial segments. Note that for any prior distribution the inferred
probability will eventially converge. This can be seen as follows. Suppose we
have a bag of coins which are bent in different ways, and hence have different
probabilities of coming up heads. Picking a coin from the bag we want to esti-
mate the probability of flipping a head. Initially, before we have experimented
with the coin, this probability will be totally determined by the relative fre-
quencies of coins with different probabilities of coming up heads. These relative
frequencies consitute the true prior probability distribution over the different
hypotheses of the form “the coin has 0.x probability of coming up heads”. Us-
ing this prior probability in Bayes’ rule gives the best predictions. However,
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whatever prior probability we choose (provided it assigns positive probability to
each hypothesis), in the long run of gathering experimental data by flipping the
coin the inferred probability in Bayes rule will converge to probability 1 for the
correct hypothesis and probability 0 for the incorrect hypotheses, by the law of
large numbers. However, using the universal prior we converge almost as fast as
possible.

We now come to the punch line: Bayes’ rule using the universal prior distribu-
tion yields Occam’s Razor principle. Namely, if several programs could generate
S0 then the shortest one is used (for the prior probability), and further if S0 has
a shorter program than S1 then SO is preferred (that is, predict 0 with higher
probability than predicting 1 after seeing S). Bayes’ rule via the universal prior
distribution also gives the so-called indifference principle in case S0 and S1 have
roughly equal length shortest programs which ‘explain’ S0 and S1, respectively.

3. Recursion Theory Induction

There are many different ways of formulating concrete inductive inference
problems in the real world. We abstract matters as much as possible short of
losing significance, following E.M. Gold, [5].

We are given an effective enumeration of partial recursive functions fi, f2,....
Such an enumeration can be the functions computed by Turing machines, but
also the functions computed by finite automata. We want to infer a partic-
ular function f. To do so, we are presented with a sequence of examples
D =e;,e,...,en, containing elements (possibly with repetitions) of the form

e={ (z,9,0) if f(z) #v,
(z,9,1) if f(2) =v.

For n — oo we assume that D contains all elements of the displayed form.

3.1. Inference of Hypotheses. Let the different hypotheses Hi be ‘f =
fi'. Since P(D|Hy) is 1 or 0 according to whether D is consistent with fi or
not, take any positive prior distribution P(Hx), say P(Hy) = 1/k(k + 1), and
apply Bayes’ Rule 1.1, to obtain

P(D|H,)P(Hy)

(3.1) P(Hi|D) = S {P(H;) : f; is consistent with D}’

With increasing n, the denominator term is monotonically nonincreasing. Since
all examples eventually appear, the denominator converges to a limit.

For each k, the inferred probability of fi is monotonically nondecreasing with
increasing n, until fj is inconsistent with a new example, in which case it falls
to zero and stays there henceforth. Only the fi's that are consistent with the
sequence of presented examples have positive inferred probability. At each step
we infer the fr with the highest posterior probability. At some point the first
copy of f in the sequence will have the highest probability, and will keep it



INDUCTIVE REASONING 11

henceforth. This is called induction by enumeration. The classical form is to
eliminate all functions which are inconsistent with D from left to right in the
enumeration of functions, up to the position of the first consistent function. We
receive a new example e, set D := D, e, and repeat this process. Eventually, the
new first function in the enumeration is a copy of f and it doesn’t change any
more. This deceptively simple idea has generated a large body of sophisticated
literature.

This way one learns more and more about the unknown target

function, and approximates it until the correct identification has

been achieved. “I wish to construct a precise model for the

intuitive notion ‘able to speak a language’ in order to be able

to investigate theoretically how it can be achieved artificially.

Since we cannot write down the rules of English which we require

one to know before we say he can ‘speak English,’ an artificial

intelligence which is designed to speak English will have to learn

its rules from implicit information. That is, its information will

consist of examples of the use of English and/or of an informant

who can state whether a given usage satisfies certain rules of

English, but cannot state these rules explicitly. ... A person

does not know when he is speaking a language correctly; there is

always the possibility that he will find that his grammar contains

an error. But we can guarantee that a child will eventually learn

a natural language, even if it will not know when it is correct.”

[Gold]
How do we use the universal prior probability? Set P(H) = m(k), with m(")
the universal discrete probability. We have seen, Equation 1.2, that

m(z) - 2—K(¢)+O(1)’

with K(-) the prefix complexity. With this prior, at each stage, P(-|D) will
be largest for the simplest consistent hypothesis. In the limit, this will be the
case for Hj such that fi = f and K (k) is minimal. In many enumerations we
will find the proper Hy much faster using m(-) as prior than using 1/k(k + 1).
Sometimes even noncomputably much faster. But since K(z) and hence m(z)
is uncomputable, [13], one cannot find m and hence cannot us it in practice.
Therefore, one can only use a computable approximation to m. The function
1/k(k + 1) is such a computable approximation (a rather trivially simple one).

3.2. Prediction. Suppose, we want to infer the correct value of f (z) after
having seen data D. We can refer to the analysis above and simply predict by
E P(HkIDv e)

> P(HelD) -
But let us use the universal measure M, the continuous version of m on the
sample space {0,1}° of one-way infinite binary sequences, [13]. For this analysis,

P(e|D) =
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replace the examples by binary self-delimiting codes: e = (z,y,1) by € = z¢1
and e = (z,y,0) by € = #j0. This way the machine can see where the encoding
of = ends without having to look at the next symbol. For convenience, we denote
this binary encoding of D also by ‘D’. Let D be the largest set of D’s (possibly
infinite) such that D is consistent with fi. Now set

P(H:) = M (w : w starts with D € D).

If we assume a recursive distribution g on the examples, Solomonoff’s maxim
says we must predict according to

(3.2) M(e|D).

It can be proved, see [13], that the expected squared error S, in the nth predic-
tion, defined as in Equation 2.3 by

S.= Y (M(0|D) - p(0|D)),
I(D)=n-1

satisfies Equation 2.4. Therefore, S, goes to zero faster than 1/n. We hasten to
remark that this does not say much about the amount of mistakes in a particular
single sequence.

3.3. Mistake Bounds. Consider an effective enumeration fi, f2,... of par-
tial recursive functions with values in the set {0,1} only. Each such function f
defines an infinite binary sequence w = wiw; ... by w; = f(3), for all 1. This way,
we have an enumeration of infinite sequences w. These sequences form a binary
tree with the root labeled ¢ and each w is an infinite path starting from the
root. We are trying to learn a particular function f, in the form that we predict
wy from the initial sequence w; ...wn_; for all n > 1. We want to analyze the
number of errors we make in this process. If our prediction is wrong (say, we
predict a 0 and it should have been a 1), then this counts as 1 mistake.

LEMMA 3.1. Assume the discussion above and we try to infer f = fn. There
is an algorithm which makes less than 2logn mistakes in all infinitely many
predictions.

PROOF. Define, for each f; with associated infinite sequence w', a measure
i by pi(w') = 1. This implies that also pi(wi...wi) =1forall n. Let pbea
semimeasure defined by

1
for each z € {0,1}*. (Note that p is a simple computable approximation to M.)
The prediction algorithm is very simple.
If u(0|z) > 1/2, then predict 0, otherwise predict 1.
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Suppose that the target f = fn. If there are k mistakes, then the conditional
in the algorithm shows that 27% > p(w™). (The combined probability of the
mistakes is largest if they are concentrated in the first predictions.) By the
definition of y we have p(w™) > 1/(n(n+1)). Together this shows k < 2logn. O

ExaMPLE 3.1. If, in the proof, we put weight 2-K() on p, (instead of
1/(n(n + 1))), then the number of mistakes is at most k < K(n). Recall that
always K(n) < logn + 2loglogn. But for regular n (say, n = 2%) the value
K (n) drops to less that (1 + ¢)loglogn, for all € > 0. Of course, the prediction
algorithm becomes noneffective because we cannot compute these weights (K(")
is uncomputable).

LEMMA 3.2. If the target function is f and we make k errors in the first m
predictions, then log (') + K(m) +O0(1) > K(f(1)... f(m)).

PROOF. Let A be a prediction algorithm. If k is the number of errors, then
we can represent the mistakes by the index j in the ensemble of k mistakes out

of m, where
m
) < .
7= (k)

If we are given A, m, and j, we can reconstruct f(1)...f(m). Therefore,
K(A,m,j) > K(f(1)...f(m)). Since K(A) = O(1), the lemma is proven. []

EXAMPLE 3.2. Denote z = f(1)... f(m). Write log () + K(m) + O(1) as
m k 1
klog " +n (1 - ;) log =%/ + O(log m).

o If k/m is small, then this expression is about k(log(m/k)+1)+O(logm).
This gives approximately

px —KE)
log(n/K (z))

For instance, with K(z) = /m we find k > 2/m/logm.

e If k/m is large, then this expression approximates mH (k/m) (the en-
tropy of a (k/m,1—k/m) Bernoulli process). For instance, if k/n = 1/3,
then nH(1/3) > K(z).

e Another approximation for k/n small shows k > nH~!(K(z)/n). For
instance, if K(z) = m, then k > n/2.

3.4. Certification. The following theorem sets limits on the number of ex-
amples needed to effectively infer a particular function f. In fact, it does more.
It sets a limit to the number of examples we need to describe or certify a particu-
lar function f in any effective way. Let D = e;e; . ..e, be a sequence of examples
e; = (Ti,yi,b;i) and let £ = 2122 ... Zn, Yy = V1¥2...Yn, and b = b1b2 ...bn. The
statement of the lemma must cope with pathological cases such as that z simply
spells out f in some programming language.
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THEOREM 3.1. Assume the notation above. Let c be an appropriate constant.
If K(f|z,y) > K(b|lz,y) — c, then we cannot effectively find f.

PROOF. Otherwise we would be able to compute f, given z, from a program
of length significantly shorter than K(f|z), which leads to a contradiction as
follows. In [13] it is shown that complexity is subadditive: K(f,b) < K(b) +
K (f|b) + O(1). With extra conditional z,y in all terms,

(3.3) K(f,blz,y) < K(blz,y) + K(f|b,z,y) + O(1).

We have assumed that there is an algorithm A which, given D, returns f. That
is, describing A in K(A4) = O(1) bits, we obtain

K(flz,y,b) = K(f|D) < K(A) + O(1) = O(1).

Substituting this in Equation 3.3, we obtain K(f,b|z,y) < K(b|z,y) + O(1).
Since, trivially, K(f,blz,y) = K(f|z,y) + O(1) the proof is finished. O

4. Minimum Description Length

We can formulate scientific theories in two steps. First, we formulate a set of
possible alternative hypotheses, based on scientific observations or other data.
Second, we select one hypothesis as the most likely one. Statistics is the mathe-
matics of how to do this. A relatively recent method in statistics was developed
by J. Rissanen. The method can be viewed as a computable approximation to
the noncomputable approach involving m or M and was inspired by it.

Minimum description length (MDL) principle. The best
theory to explain a set of data is the one which minimizes the
sum of
e the length, in bits, of the description of the theory; and
e the length, in bits, of data when encoded with the help of
the theory.
To be able to compute this minimum we need to severely restrict the allow-
able descriptions. The minimum description length is also called the stochastic
complezity of the given data.
With a more complex description of the hypothesis H, it may fit
the data better and therefore decreases the misclassified data.
If H describes all the data, then it does not allow for measur-
ing errors. A simpler description of H may be penalized by
increasing the misclassified data. If H is a trivial hypothesis
that contains nothing, then all data are described literally and
there is no generalization. The rationale of the method is that
a balance in between seems required.
Let us see how we can derive the MDL principle. Recall Bayes’ Rule

P(D|H)P(H)

P(H|D) = ==
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Here H is an hypothesis, and D is the set of observed data. We must find the
hypothesis H such that P(H|D) is maximized. Taking the negative logarithm
of both sides of the formula, we obtain

(4.1) —log P(H|D) = —log P(D|H) — log P(H) + log P(D).

We can assume P(D) is fixed, since the data D is fixed. This term can be con-
sidered as a normalizing factor and is ignored in the following discussion. We are
only concerned with maximizing the term P(H|D) or, equivalently, minimizing
the term —log P(H|D). This is equivalent to minimizing

(4.2) —log P(D|H) — log P(H).

Let us assume that H and D are expressed as natural numbers or finite binary
strings. If P is recursive, then ko (H|P) = log(m(H)/P(H)) s a universal sum P-
test as defined in [13]. Since we are dealing with finite objects, we cannot sharply
divide the objects in random ones and nonrandom ones. For finite objects,
randomness is necessarily a matter of degree. Namely, it would be absurd if z is
random and z with the first nonzero bit set to 0 is nonrandom.

However, for each constant ¢, we can define ¢ — P-random H as those H such
that ko(H|P) < c. Fix a small constant c, and call the ¢ — P-random objects
simply P-random. For suitably chosen c, the overwhelming majority of H'’s is
P-random because

S p(H)2~HIP <1
H
The analogous statement holds for P(D|H). Hence, for P-random H and D, we

can set

log P(H) = logm(H)+ O(1),
log P(D|H) logm(D|H) + O(1).

According to Equation 1.2 (proof in [13]),

—K(H)+0(1),
—K(D|H) £ 0(1),

log m(H)
log m(D|H)

where K (-) is the prefix complexity. That is, in order to maximize P(H {D) over
all hypotheses H, with high P-probability we need to minimize the sum of the
minimum lengths of effective self-delimiting programs which compute descrip-
tions of H and D|H. Such self-delimiting programs (prefix codes) are achieved
by constructive versions of the Shannon-Fano code.

The term — log P(D|H) is also known as the self-information in information
theory and the negative log-likelihood in statistics. It can now be regarded as
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the number of bits it takes to redescribe or encode D with an ideal code relative
to H.

If we replace all P-probabilities in Equation 4.1 by the corresponding m-
probabilities, we obtain in the same way

K(H|D)= K(H) + K(D|H) - K(D)+ O(1).
In [2] (see [13]) it is proved that
K(H)+ K(D|H,K(H)) = K(D)+ K(H|D,K(D))+ O(1).

Since the self-delimiting description of K (H) takes at most 2log K(H) bits, we
have K(H|D) = K(H,D) — K(D) up to a O(log K(H)) additive term. The
term K (D) is fixed and doesn’t change for different H's. Minimizing the left-
hand term K(H|D) can then be interpreted as

Alternative formulation MDL principle. ‘Given an hy-

pothesis space H, we want to select the hypothesis H such that

the length of the shortest encoding of D together with hypoth-

esis H is minimal’.

In different applications, the hypothesis H can be about different things. For
example, decision trees, finite automata, grammars, Boolean formulas, or poly-
nomials. Unfortunately, the function K is not computable, [13]. For practical
applications (such as in statistics or natural language phenomena), one must
settle for easily computable approximations. One way to do this is as follows.
First encode both H and D|H by a simply computable bijection as a natural
number in A/. Assume we have some standard procedure to do this.

Now we make use of a basic property of prefix codes known as the Kraft
Inequality (see for example any textbook on information theory or [13]). Let
I ={l,lz,...} be a set of positive integers such that

(4.3) Yot
lel

Then there exists a prefix code {z1,2,...} with I(z;) = i for all 4. Conversely,
if {z1,z2,...} is a prefix code, then its length set satisfies the above inequality.

We consider a simple self-delimiting description of . For example, let =
is encoded by z' as above. This makes I(z') = logz + 2log log z, which is
a simple upper approximation of K(z). Since the length of code word sets of
prefix codes corresponds with a probability distribution by Kraft’s Inequality 4.3,
this encoding corresponds with assigning probability 2-1=") to z. In the MDL
approach, this is the specific usable approximation to the universal prior. In the
literature we find a more precise approximation which, however, has no practical
meaning. For convenience, we smooth our encoding as follows.

DEFINITION 4.1. Let z € N. The universal MDL prior over the natural num-
bers s M(z) =2~ log z—2loglogz .



INDUCTIVE REASONING 17

H. Jeffreys has suggested to assign probability 1/z to each in-
teger z. But this results in an improper distribution since the
harmonic series Y 1/z diverges.

In the Bayesian interpretation the prior distribution expresses
one’s prior knowledge about the ‘true’ value of the parameter.
This interpretation may be questionable, since the used prior is
usually not generated by repeated random experiments. In Ris-
sanen's view, the parameter is generated by the selection of the
class of hypotheses and it has no inherent meaning. It is just
one means to describe the properties of the data. The selection
of H which minimizes K (H)+ K(D|H) (or Rissanen’s approxi-
mation thereof) allows one to make statements about the data.
Since the complexity of the models plays an important part, the
parameters must be encoded. To do so, we truncate them to
a finite precision and encode them with the prefix code above.
Such a code happens to be equivalent to a distribution on the
parameters. This may be called the universal MDL prior, but
its genesis shows that it expresses no prior knowledge about the
true value of the parameter. See [J. Rissanen, Stochastic Com-
plezity and Statistical Inquiry, World Scientific, 1989]. Above
we have given a validation of MDL from Bayes' Rule, which
holds irrespective of the assumed prior, provided it is recursive
and the hypotheses and data are random.

EXAMPLE 4.1. In statistical applications, H is some statistical distribution
(or model) H = P(6) with a list of parameters § = (81,...,6k), where the
number k may vary and influence the (descriptional) complexity of 8. (For
example, H can be a normal distribution N(u,0) described by 6 = (n,0).) Each
parameter 6; is truncated to finite precision and encoded with the prefix code
above. Under certain general conditions, J. Rissanen has shown that with k
parameters and n data (for large n) Equation 4.2 is minimized for hypotheses H
with 8 encoded by (k/2)logn bits. This is called the optimum model cost since
it represents the cost of the hypothesis description at the minimum description
length of the total.

As an example, consider a Bernoulli process (p,1—p) with p close to 1 /2. For
such processes k = 1. Let the outcome be z = 122 ... Zn. Set f. = Z:;l z;.
For outcome z with C(z) > n — &(n), the number of 1’s can be estimated ([13])

fo=n/2+/(6(n) +c)nln2.

With 6(n) = logn, the fraction of such z's in {0,1}" goes to 1 with n rises
unboundedly. Hence, for the overwhelming number of z's the frequency of 1's
will be within

2—(1/2)105'1-0(3)’ with O(R) < logn,



18 MING LI AND PAUL VITANYI

of the value 1/2. That is, to express an estimate to parameter p it suffices to
use this precision. This requires at most (1/2)logn + O(R) bits. It is easy to
generalize this example to arbitrary p.

ExAMPLE 4.2. In biological modeling, we often wish to fit a polynomial f of
unknown degree to a set of data points

D= (zlryl)) v ,(mn)yn);

such that it can predict future data y given z. Even if the data did come from a
polynomial curve of degree, say two, because of measurement errors and noise,
we still cannot find a polynomial of degree two fitting all n points exactly. In
general, the higher the degree of fitting polynomial, the greater the precision of
the fit. For n data points, a polynomial of degree n—1 can be made to fit exactly,
but probably has no predicting value. The possible hypotheses are (f,x), where
f is a polynomial of degree at most n — 1, and x = (21,... ,Zn). The vector x
is a standard fixed part of each hypothesis.

Let us apply the MDL principle where we describe all k— 1-degree polynomials
by a vector of k entries, each entry with a precision of d bits. Then, the entire
polynomial is described by

(4.4) kd + O(log kd) bits.

(Remember that we have to describe k, d, and account for self-delimiting encod-
ing of the separate items.) For example, az? + bz + c is described by (a,b,c) and
can be encoded by about 3d bits.

Consider polynomials f of degree at most n — 1 which minimize the error

n
(4.5) error(f) = Y _(f(=:) = v)-
=1
This way we find an optimal set of polynomials for each k = 1,2,...,n. To
apply the MDL principle we must trade the cost of hypothesis H (Equation 4.4)
against the cost of describing D|H.

To describe measuring errors (noise) in data it is common practice to use the
normal distribution. In our case this means that each y; is the outcome of an
independent random variable distributed according to the normal distribution
with mean f(z) and variance, say, constant. For each of them we have that the
probability of obtaining a measurement y;, given that f(z) is the true value,
that is of the order of exp(—(f(z) — ¥:)?). Considering this as a value of the
universal MDL probability, this is encoded in s(f (z) — y:)? bits, where s is a
(computable) scaling constant. For all experiments together we find that the
total encoding of D|f,x takes s - error(f) bits. The MDL principle thus tells us
to choose a k-degree function fi, k € {0,...,n— 1}, which minimizes (ignoring
the vanishing O(log kd) term)

kd + s - error(fi).
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EXAMPLE 4.3 (MAXIMUM LIKELIHOOD). The mazimum likelihood (ML) prin-
ciple says that for given data D, one should select the hypothesis H that max-
imizes P(D|H) or, equivalently, minimizes —log P(D|H). In case of finitely
many hypotheses, this is a special case of the MDL principle with the hypothe-
ses distributed uniformly (all have equal probability). The principle has many
admirers, is supposedly objective, and is due to R.A. Fisher.

EXAMPLE 4.4 (MAXIMUM ENTROPY). In statistics there are a number of im-
portant applications where the ML principle fails, but where the maximum en-
tropy principle has been successful, and conversely.

In order to apply Bayes’ Rule, we need to decide what the prior probabilities
p; = P(H;) are, subject to the constraint Y ;pi = 1 and certain other constraints
provided by empirical data or considerations of symmetry, probabilistic laws, and
so on. Usually these constraints are not sufficient to determine the p;’s uniquely.
E.T. Jaynes proposed to select the prior by the mazimum entropy (ME) principle.

The ME principle selects the estimated values ; which maximize the entropy
function

k
(46) H(Pl)"' 7Pk)=—zpilnpi1
i=1

subject to

k
(4.7) Z pi=1

and some other constraints. For example, consider a loaded die, k = 6. If we
do not have any information about the die, then using the principle of indiffer-
ence, we may assume that p; = 1/6 for: = 1,...,6. This actually coincides
with the ME principle, since H(p1,...,ps) = _E?=1 p; Inp;, constrained by
Equation 4.7, achieves its maximum In6 = 1.7917595 for p; = 1/6 for all 1.

Now suppose it has been experimentally observed that the die is biased and
the average throw gives 4.5, that is,

(]

(4.8) Y ipi=45.

i=1
Maximizing the expression in Equation 4.6, subject to the constraints in Equa-
tions 4.7 and 4.8 gives the estimates

pi = e_“(z e M7l i=1,...,6,
j
where A = —0.37105. Hence,
(1,... ,Ps) = (0.0543,0.0788,0,1142,0.1654,0.2398, 0.3475).

The maximized entropy H(p1,...,Ps) equals 1.61358. How dependable is the
ME principle? Jaynes has proven an ‘entropy concentration theorem’ which, for
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example, implies the following. In an experiment of n = 1000 trials, 99.99% of
all 61900 pogsible outcomes satisfying the constraints of Equations 4.8 and 4.7
have entropy

1602 < H (2. , ) <1614,
n n
where n; is the number of times the value 1 occurs in the experiment. We show
that the Maximum Entropy principle can be considered as a special case of the
MDL principle, as follows.

Consider the same type of problem. Let 6 = (p1,...,Px) be the prior proba-
bility distribution of a random variable. We perform a sequence of n independent
trials. Shannon has observed that the real substance of Formula 4.6 is that we
need approximately nH(8) bits to record the sequence of n outcomes. Namely,
it suffices to state that each outcome appeared ny,...,7nk times, respectively,
and afterwards give the index of which one of the

n n!
4.9 -—
(4.9) (nl,...,nk) ny!l--ongl

possible sequences D of n outcomes actually took place. For this no more than

" ) + O(loglogn)
Uk

1yeos

(4.10) klogn + log (n

bits are needed. The first term corresponds to —log P(8), the second term
corresponds to —log P(D|#), and the third term represents the cost of encod-
ing separators between the individual items. Using Stirling’s approximation of
n! ~ V2rn(n/e)® for the quantity of Equation 4.9, we find that, for large n,
Equation 4.10 is approximately

u ng ni n N
n (—;;103;) =nH (—n—, ,-;) .
Since k and n are fixed, the least upper bound on the minimum description
length, for an arbitrary sequence of n outcomes under certain given constraints 4.7
and 4.8, is found by maximizing the term in Equation 4.9 subject to said con-
straints. This is equivalent to maximizing the entropy function 4.6 under the
constraints.

Viewed differently, let Sp be the set of outcomes with values (ni,...,7k),
with n; = np;, corresponding to a distribution 8 = (p1,... ,Pk). Then due to
the small number of values (k) in 6 relative to the size of the sets, we have

(4.11) log ) d(Ss) ~ max{log d(Se)}.
]

The left-hand side of Equation 4.11 is is the minimum description; the right-hand
side of Equation 4.11 is the maximum entropy.
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5. Pointers to Applications of MDL

This approach has been applied to real world learning system design. Some
first applications were from learning decision trees [14] and in the design of an on-
line hand-written character learning system, [3]. Relations between pac learning
and MDL are explored in [K. Yamanishi, Machine Learning, 9(1993), 165-203].
The application of the MDL principle to fitting polynomials, as in Example 4.2,
was originally considered by J. Rissanen in [Ann. Stat., 14(1986), 1080-1100]
and [‘Stochastic complexity and the maximum entropy principle’, unpublished].
Decision tree algorithms using MDL principle were also developed by Rissanen
and Wax [personal communication with M. Wax, 1988]. Applications of MDL
principle to learning on-line handwritten characters can be found in [Q. Gao and
M. Li, 11th IJCAI, 1989, pp. 843-848]; to surface reconstruction problems n
computer vision [E.P.D. Pednault 11th IJCAI, 1989, pp. 1603-1609]; and to pro-
tein structure analysis in [H. Mamitsuka and K. Yamanishi, Proc. 26th Hawazi
Int. Conf. Syst. Sciences, 1993, pp. 659-668]. Applications of the MDL principle
range from evolutionary tree reconstruction [P. Cheeseman and R. Kanefsky,
Working Notes, AAAI Spring Symposium Series, Stanford University, 1990]; in-
ference over DNA sequences [L. Allison, C.S. Wallace, and C.N. Yee, Int. Symp.
Artificial Intelligence and Math., January 1990; pattern recognition; smoothing
of planar curves [S. Itoh, IEEE ISIT, January 1990]; to neural network comput-
ing [A.R. Barron, Nonparametric Functional Estimation and Related Topics, G.
Roussas, Ed., Kluwer, 1991, pp. 561-576]. See also [A. R. Barron and T. M.
Cover, IEEE Trans. Inform. Theory, IT-37 (1991), 1034-1054 (Correction Sept.
1991)].
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