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Abstract

Intuitively, the minimal information distance between ¢ and y is the
length of the shortest program for a universal computer to transform =
into y and y into z. This measure will be shown to be, up to a logarith-
mic additive term, equal to the mazimum of the conditional Kolmogorov
complexities Ey(z,y) = max{K(y|z), K(z|y)}.

Any reasonable distance to measure similarity of pictures should be an
effectively approximable, symmetric, positive function of z and y satisfy-
ing a reasonable normalization condition and obeying the triangle inequal-
ity. It turns out that E; is minimal up to an additive constant among all
such distances. Hence it is a universal ‘picture distance’, which accounts
for any effective similarity between pictures.

A third information distance, based on the idea that one should aim for
energy dissipationless computations, and hence for reversible ones, is given
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by the length E»(z,y) = KR(y|z) = KR(z|y) of the shortest reversible
program that transforms z into y and y into z on a universal reversible
computer. It is shown that also E; = Ei, up to a logarithmic additive
term. It is remarkable that three so differently motivated definitions turn
out to define one and the same notion.

Another information distance, Es, is obtained by minimizing the total
amount of information flowing in and out during a reversible computation
in which the program is not retained, in other words the number of extra
bits (apart from z) that must be irreversibly supplied at the beginning,
plus the number of garbage bits (apart from y) that must be irreversibly
erased at the end of the computation to obtain a ‘clean’ y. This dis-
tance is within a logarithmic additive term of the sum of the conditional
complexities, E3(z,y) = K(y|z) + K(z|y).

Finally, using the physical theory of reversible computation, the simple
difference K (z)— K (y) is shown to be an appropriate (universal, antisym-
metric, and transitive) measure of the amount of thermodynamic work
required to transform string = into string y by the most efficient process.

1991 Mathematics Subject Classification:
60A99, 68Q30, 80A05, 82B03, 82C03
Keywords and Phrases: entropy, description complexity, Kolmogorov
complexity, algorithmic entropy, randomness test, reversible computation,
information.



1 Introduction

We write string to mean a binary string, unless explicitly stated otherwise. !

Other finite objects can be encoded into binary strings in natural ways. The
set of binary strings is denoted by {0, 1}*.

The Kolmogorov complexity, (or algorithmic entropy), K(z) of a string z is
the length of the shortest binary program to compute z on a universal computer
(such as a universal Turing machine). Intuitively, K(z) represents the minimal
amount of information required to generate z by any effective process. The
conditional Kolmogorov complexity K (y|z), of y relative to =, may be defined
similarly as the size of a minimal-sized program to compute y if z is furnished
as an auxiliary input to the computation. The functions K () and K(|), though
defined in terms of a particular machine model, are machine-independent up
to an additive constant and acquire an asymptotically universal and absolute
character through Church’s thesis, from the ability of universal machines to
simulate one another and execute any effective process.

Our goal is to find the most appropriate informational “distance” between
two strings, i.e. the minimal quantity of information sufficient to translate be-
tween z and y, generating either string effectively from the other. We first look
at the length of the shortest binary program which computes z from y as well
as computing y from z. Being shortest, such a program should take advan-
tage of any redundancy between the information required to obtain from z to
y and the information required to obtain from y to . Therefore, we would like
to know to what extent the information required to compute z from y can be
made to overlap with that required to compute y from z. In some simple cases,
complete overlap can be achieved, so that the same minimal program suffices to
compute z from y as to compute y from z. For example if z and y are inde-
pendent random binary strings of the same length n (up to additive contants
K(z|y) = K(y|z) = n), then their bitwise exclusive-or z @ y serves as a minimal
program for both computations. Similarly, if £ = uv and y = vw where u,
v, and w are independent random strings of the same length, then u @ w is a
minimal program to compute either string from the other. Now suppose that
more information is required for one of these computations than for the other,

say,
K(y|z) > K(z|y).

Then the minimal programs cannot be made identical because they must be
of different sizes. Nevertheless, in simple cases, the overlap can still be made
complete, in the sense that the larger program (for y given z) can be made to
contain all the information in the shorter program, as well as some additional
information. This is so when z and y are independent random strings of unequal
length, for example u and vw above. Then u @ v serves as a minimal program

1Part of the results wer announced in M. Li and P.M.B. Vit4nyi, pp. 42-46 in: IEEE Proc.
Physics and Computation Workshop, 1992.



for u from vw, and (u ® v)w serves as one for vw from u.

Section 3 exhibits a principal result of this paper that, up to logarithmic error
terms, the information required to translate between two strings can always be
represented in this maximally overlapping way. Namely, let

ky = K(:l![y), ky = K(y!a:),
l = kz - kl-

Then there is a string d of length k; + O(log k1) and a string g of length
I+ O(log!) such that d serves as the minimal program both from zg to y and
from y to zq. This means that the information required to pass from z to y is
always maximally correlated with the information required to get from y to z.
It is therefore never the case that a large amount of information is required to
get from z to y and a large but independent amount of information is required
to get from y to z. This demonstrates that By = max{K (y|z), K(z|y)} equals
the length of the shortest program (d, q) to compute z from y and y from z, up
to a logarithmic additive term. 2 (It is very important here that the time of
computation is completely ignored: this is why this result does not contradict
the idea of one-way functions.)

The process of going from z to y may be broken into two stages. First,
add the string g; second, use the difference program d between gz and y. In
the reverse direction, first use d to go from y to gz; second, erase g. Thus the
computation from z to y needs both d and g, while the computation from y to z
needs only d as program. The foregoing is true of ordinary computations, but if
one insists that the computation be performed reversibly, that is by a machine
whose transition function is 1:1 [17, 3], then the full program p = dg is needed
to perform the computation in either direction. This is because reversible com-
puters cannot get rid of unwanted information simply by erasing it as ordinary
irreversible computers do. If they are to get rid of unwanted information at all,
they must cancel it against equivalent information already present elsewhere in
the computer. Reversible computations are discussed further in section 5.

Let us note that the programs for going between independent random z and
y can, if one wishes, also be made completely independent. For example use y
to go from z to y and z to go from y to x. This holds for arbitrary z,y, as
will be shown at the end of the section, but only with respect to an “oracle”: a
certain constant string that must be in all the conditions. This theorem can be
considered a generalization of the Slepian-Wolf Theorem of classical information
theory [8].

Section 4 develops an axiomatic theory of ‘picture distance’ and argues that

2The situation is analogous to the inverse function theorem of multidimensional analysis.
This theorem says that under certain conditions, if we have a vector function f(z,d) then it
has an inverse g(y,d) such that in a certain domain, f(d,2) = y holds if and only if g9(y,d) = =.
In the function going from y to z, the parameter d remains the same as in the function going
from z to y.



the function
Ey(z,y) = max{K (z|y), K (y|z)}

is the most natural way of formalizing the notion of a universal effective ‘pic-
ture distance’ between z and y. This function is symmetric, obeys the triangle
inequality to within an additive constant, and is minimal among a class of func-
tions satisfying a normalization constraint appropriately limiting the number of
distinct strings y within a given distance of any z.

Section 5 defines a reversible distance E, representing the amount of in-
formation required to program a reversible computation from z to y. The Ej
distance is equal within an additive constant to the length of the conversion
program p = dgq considered above, and so is at most logarithmically greater
than the optimal distance E;. The reversible program functions in a catalytic
capacity in the sense that it remains unchanged throughout the computation.

Hence, three very different definitions arising from different concerns turn out
to define the same fundamental notion of optimal effective information distance.

Section 6 instead considers reversible computations in which additional in-
formation r besides z is consumed, and additional information s besides y is
generated in the course of the computation. The sum, E3(z,y), of these amounts
of information represents the minimal number of irreversible bit operations in a
computation from z to y in which the program is not retained. Ej3 is shown to
be equal to within a logarithmic term to Zurek’s sum metric K (y|z) + K (zly),
which is typically larger than our proposed optimal metric because of the re-
dundancy between r and s. However, using the program involved in E; we both
consume it and are left with it at the end of the computation, accounting for
2E; (z,y) irreversible bit operations, which is typically larger than FEj3 (z,y)-

Section 7 compares the dimensional properties of the optimal and sum met-
rics.

Finally Section 8 considers the problem of defining a thermodynamic entropy
cost of transforming  into y, and argues that it ought to be an antisymmetric,
transitive function, in contrast to the informational metrics which are sym-
metric. Landauer’s principle connecting logical and physical irreversibility is
invoked to argue in favor of K(z) — K(y) as the ideal thermodynamic cost of
transforming z into y.

2 Kolmogorov Complexity

Let I(p) denote the length of the binary string p. Let #S denote the number of
elements of set §. We give some definitions and basic properties of Kolmogorov
complexity. (Some of us prefer the name ‘algorithmic entropy’.) For details and
attributions, we refer to [23, 12, 13, 19]. We say that a real-valued function
f(z,y) over strings is upper semicomputable if the set of triples

{(w,y,d) : flz,y) <d, d rational }



is recursively enumerable. A function f is lower semicomputable if —f is
upper semicomputable.

A prefix set is a set of strings such that no member is a prefix of any
other member. A partial recursive function F(p,z) is called a prefix machine
(interpreter) if for each z, { p : 3(y) F(p,z) =y } is a prefix set. The argument p
is called a self-delimiting program for y from z, because, owing to the prefix
property, no punctuation is required to tell the machine how much of p to use.
We define the conditional Kolmogorov complexity, (the ‘self-delimiting’
version) Kp(y|z) of y with condition z, with respect to the machine F as the
minimal I(p) where the minimum is take over all strings p with F(p,z) =y. It
is well-known that there is a prefix machine U with the property that for all
other prefix machines F' and for all p,z there is an additive constant cp such
that Ky(p|z) < Kr(p,z) + cp. Such a prefix machine will be called optimal.
We fix such an U and write

K(z|y) = Ku(z|y).

We will call K(z|y) the Kolmogorov complexity, of z with respect to y.
From now on, we will denote by < an inequality to within an additive constant,

N +
and by £ the situation when both < and > hold.

Let us give a useful characterization of K (z|y). It is easy to see that K (z|y)
is an upper semicomputable function with the property Ey 2-K(=ly) < 1. But

also, if f(z,y) is an upper semicomputable function with Zy 2-f(=¥) < 1 then

+
K(ylz) < f(e,y)-
Kolmogorov complexity has the following addition property.

K(z,y) £ K(z) + K(ylz, K(2)). (2.1)
Let us introduce the notation
z = (z, K(z)).
We call the mutual information between z and y the quantity
I(z,y) = K(z) + K(y) - K(=,y)-
The addition theorem implies that
I(e,y) £ K(z) - K(aly) £ K(y) - K (y[7).

This equation can be interpreted as saying that I(z,y) is the amount by which
the information needed to produce y is decreased if T is given, i.e. , this is
the amount of information in T about y. The presence of K(z) in T is just a
technical matter and can be considered as a “logarithmic correction term”, i.e.



we are esentially talking about the amount of information in z about y. We
can consider z and y “independent” when this quantity is (nearly) 0. Mutual
information should not be confused with “common information”, which (when
appropriately defined) is generally very low even if mutual information is large
[11].

3 Conversion Programs

Maximum overlap We show that Bi(z,y) = max{K(z|y), K(y|z} equals
the length the shortest program for the universal computer to compute z from
y and y from z, up to a logarithmic additive term.

(3.1) Difference Theorem With the notation of the Introduction, suppose
k; < ko. Then there is a string p of length ky + O(log k2) such that

U(p,0z) =y, Ulp,ly) =z.

This is equivalent to asserting that there is a string p of length ko such that
both K (y|z,p) and K (z|y,p) are bounded by O(log k). We call this theorem
the Difference Theorem since it asserts the existence of a difference string p
that converts both ways between z and y and at least one of these conversions
is optimal. If k; = ky then the conversion is optimal in both directions.

Proof Let S be the set of all binary strings. Let X,Y be two disjoint sets
whose elements are in a one-to-one correspondence with the elements of S: we
could e.g.set X = {(5,0):s € S}andV = {(s,1): s € §}. Let G = (XUY, E)
be the following infinite bipartite graph over X UY with set of edges E where

E ={(z,y): K(zly) < k1, K(y|z) < k2 }.

By definition, the maximum degree of the nodes in X is at most 2k3+1 and in
Y is at most 251+!. Two edges are adjacent if they have common endpoints. A
matching is a set of nonadjacent edges. We can partition E into at most Qka+2
matchings My, My, .... If we can do this constructively we have a program p
of length ks + O(log k2) that takes Oz into y and 1y into z. Indeed, for a pair
(z,y) € E, the number i of the matching M; containing (z,y) has length at
most ky + O(1). Knowing i and z gives y while knowing 7 and y gives .

Let us do the partitioning constructively, in the most simple-minded way.
By its definition, the set E can be enumerated into a sequence ej,es,... of
edges. In step ¢, a new edge e, is given. We will put it into one of the nonempty
matchings created so far, (it does not matter into which one) if this is possible;
if it is not we create a new matching. For clarity, here is a formal definition. We
define, recursively, a function n(t) for each t such that M; = {e; : n(t) = i}.
Let

M!={e,:n(u)=1, u<t}



Then n(t) is the first i such that e is not adjacent to any edge of M}. Let us
show that the number of nonempty matchings is indeed at most 2ka+2 Let M;
be a nonempty matching: then there is a t such that i = n(t). The edge e;
is adjacent to some edge in each matching M; for j < i. But the number of
edges that an edge can be adjacent to is at most the sum of the degrees of the
endpoints—actually, 2 less than that. Hence, i —1 < 2ka+2 _ 9,

More explicitly, we describe the program p such that U(p,bz) =y if b =10
and U(p,by) = z if b = 1. It contains the following parts.

e The numbers k; and .

e Procedure generating the sequence ey, ez, .. ..

Procedure generating simultaneously the matchings My, Ms, .. ..

Procedure generating M;.

Procedure to find y using z, M; if b = 0 and to find = using y, M; if b = 1.

(3.2) Remark Suppose k; = k2. The difference program p of the above the-
orem is independent of z as well as y in the sense that their mutual information
is nearly 0. This follows from K (z) + K(p) = K(z,y) + O(log K (z,y)). It is at
the same time completely dependent on the pair (z,y). O

(3.3) Excess Theorem Let us use the above notation, with | = ky — ky.
There is a binary string q of length | + O(log!) such that

K(ylgz) = K(gz|y) = k1 + O(log k1).

Proof Similarly to the above proof, let the graph G = (X UY, E) be now such
that
E={(z,y): K(zly) <k }.

Its edges are enumerated again as e, ea,.... Now the degree of the nodes in ¥’
is still < 2%1+1. Let us define a new graph G' = (X' UY, E’) such that in it,
the degree of the degree of nodes in X' is also bounded by 2%1. To do this, we
will simply split the nodes in X as soon as their degree would rise above 2k,
For each node = € X, let (z,41), (z,¥2),... be the natural enumeration (in the
order of the edges e1, e, ...) of the set of edges { (z,y) : (z,y) € E }. Let

m(n) = [n/2%].



We split each node z into a sequence of nodes z1(z), z2(z), .... We have

X’ = {zm(E)ZEEX,m:I,Z,.”}’
B {(zmpy(@),3:) rz € X, i=1,2,... }.

Thus, at node z, the first group of 2% edges (z,y:) will be attached to the new

node z;(z), the second group to z3(z), etc. Now the binary string g is a self-
delimiting program for the number m such that (zm(z),y) € E'. By definition,
m < 21, therefore I(g) < I + O(log!). The pair z,m determines the node
Zm(z). Since the maximum degree of the graph G' is at most 251 we have the
desired upper bounds on the conditional Kolmogorov complexities. |

Minimum overlap The topic of the rest of this section is independent of the
rest of the paper and can be skipped at first reading.

For a pair «,y of strings, we found that shortest programs converting z into
y and y into z can overlap maximally. Let us see in what sense it is possible to
make such programs overlap minimally. Our initial discussion will be somewhat
informal, serving only to motivate later precise statements. When we say that
two strings are independent, we mean that their mutual information is very
small. When we say that y is a simple function of z we mean that K(y|z) is
small.

Let us have a minimal program g, of length ks, converting = to y and a
minimal program p of length k; converting y to z. It is easy to see, just as in
Remark 3.2 above that y is independent of p. Also, any simple function of y is
independent of p. So, if ¢ is a simple function of y it is independent of p. The
question whether ¢ can be made a simple function of y is interesting in itself
since it would be a generalization of the Slepian-Wolf Theorem (see [8]). And it
sounds just as counterintuitive at first as that theorem. It implies that for each
y there is a ky-bit program g(y) such that for any z such that K(y|z) < ko,
the pair (z,q(y)) has all information about y. This implication turns out to be
true: g can be made a function of y. The answer to the original question is,
however, negative: ¢ cannot be made a simple function of y. Before making
these statements formal we introduce a combinatorial lemma whose proof was
obtained with the help of Zoltan Fiiredi.

(3.4) Coloring Lemma On a setY’, let us be given a set system with M sets
S; of size N. For B > 0, a B-coloring of this system is a partition V = U;V;
such that #(S; N'V;) < B, i.e. there are at most B points of the same color in
a set S;. There is a B-coloring with at most

(N/B) max{2, (16log(M N))/B}
colors.

Notice that N/B colors are trivially needed.



Proof Let us choose the color of each element of V independently, with a
uniform distribution among the given number of colors. For each i,j, we can
upperbound the probability that #(S; NV;) > B, using the Chernoff bound for
the large deviations in the law of large numbers. In application to the present
case, this bound says that if in an experiment of N coin-tosses, the success
probability is p then for some p' > p, the probability that there are more than
Np' successes is at most ¢V with

7' _ 1-p'
e=(2Y) (l=r _
i 1-p

Multiplying the bound obtained from here by M N, we upperbound the proba-
bility that the random coloring is not a B-coloring. If the number of colors is
chosen as in the statement of the lemma then this upper bound can be seen to
be less than 1, so there is a B-coloring. W

(3.5) Theorem There is a program r such that for every m,k > 0 there is
a string w of length < m + k + 4log(m + k) such that the following holds for

g(y) = Urw,y) and b < 2log(m + k):

(a) Ualy)) < ki
(b) If K(z) < m and K(y|z) < k then

K(y|z,q(y),w) < b.

Moreover, if

b<m—3log(m+k) (3.6)
then for large enough m+k, every string w with the above properties has length

> min(m, k — b) — 3log(m + k).

Thus, g can be made a function of y but this function is not “simple” since
it must depend on a long “oracle” string w.

Proof
1. Let us first show the existence of w with the above properties. Let G be

the bipartite graph defined in the proof of Theorem 3.1 and let G(m, k) be its
subgraph consisting of those edges (z,y) with K(z) < m and K (y|z) < k. Let

M = 2™ N =2F
S, = {y:K(ylz) <k},
B = 8(m+k).

10



Then #S,. < N, and the number of z's with nonempty S, is at most M.
According to the Coloring Lemma, there is a B-coloring with at most

(N/B) max{2, (16log(MN))/B} = 2N/B

colors. Let w be a string containing a prefix-free binary code of m,k and the
number of edges in G(m, k). Since the number of edges in G(m, k) is at most
MN, its prefix code needs at most log(MN) + 1.5loglog(MN) = m + k +
2log(m + k) bits. The length needed to code m and k is at most 2.5log(m + k),
s0 the total length of w is still < m + k + 4log(m + k).

Let 7 be the program that causes our universal prefix machine to work as
follows, in order to produce a color ¢(y) = U(rw,y). It first reads the string w
and determines the numbers coded into it. Using these numbers, it reconstructs
the graph G(m, k). Then it finds (if there is no better way, by exhausting search)
a B-coloring. Finally, it outputs the color of y.

Let us estimate K(y|z,q(y),w). Given w,z and ¢(y), we can list the set of
all y’s with color ¢(y). Since its size is at most B, the program to determine y
in it needs only its number in the enumeration, with a prefix-free code of size

z 2log B b 2log(m + k).

2. Suppose now that there is a string w with the desired properties with length
n < min(m, k — b) — 3log(m + k). (3.7)
We will arrive from here at a contradiction. First note that
log #Y Smtk- 2log(m + k).

Indeed, we can take all possible prefix-free programs z of length < m and attach
to them all possible prefix-free programs of length k: the resulting strings will
all belong to Y.

For any possible value z of q(y), let Y, = {y : ¢(y) = 2}. Then the above

inequality implies that there is a z with log #Y, > m — 2log(m + k) which is
> m — 3log(m + k) for large enough m + k. Let = be the first such z found
when enumerating all the sets Y. Since the enumeration can be done with the

help of m, k,w, we have K(z) Snt 2log(m + k) which is Em- log(m + k),
by the indirect assumption (3.7). For large enough m + k, we have therefore

K(z) < m.

Given m, k,w, we can enumerate Y. If y; is the i-th element in this enumeration

then K (y;|z) < n+1.3log(m+k)+logi+1.3loglog: b2 n+logi+2.6log(m+k).
Hence for logi < k — n — 3log(m + k) and large enough m + k we have

K(yilz) < k.

11



Let ¢ = min(m,k — n). Then there are at least exps (t — 3log(m + k)) values
of i with K(yilz) < k. At least one of these has K(yi|z,q(y),m,k,w) > t —
3log(m + k). Hence

min(m, k —n) — 3log(m + k) < b.

If m < k — n then this contradicts (3.6), otherwise it contradicts (3.7). W

4 Distance Axioms

Let us identify digitized black-and-white pictures with binary strings. There are
many distances defined for binary strings. For example, the Hamming distance
and the Buclidean distance. Such distances are sometimes appropriate. For
instance, if we take a binary picture, and change a few bits on that picture,
then the changed and unchanged pictures have small Hamming or Euclidean
distance, and they do look similar. However, this is not always the case. The
positive and negative prints of a photo have the largest possible Hamming and
Euclidean distance, yet they look similar in our eyes. Also, if we shift a picture
one bit to the right, again the Hamming distance may increase by a lot, but
the two pictures remain similar. Many approaches to pattern recognition try to
define picture similarity. Let us show that the distance E; defined above is, in
a sense, minimal among all reasonable similarity measures.

A distance measure must be nonnegative for all z # y, symmetric, and
satisfy the triangle inequality. This is not sufficient since a distance measure
like D(z,y) = 1 for all z # y must be excluded. For each z and d, we want
only finitely many elements y at a distance d from z. Exactly how fast we want
the distances of the strings y from z to go to oo is not important: it is only a
matter of scaling. For convenience, we will require the following normalization

property:
Y 27Plew) <1,
y

We consider only distances that are computable in some broad sense. This
condition will not be seen as unduly restrictive. As a matter of fact, only
upper semicomputability of D(z,y) will be required. This is reasonable: as
we have more and more time to process z and y we may discover new and
new similarities among them, and thus may revise our upper bound on their
distance. The upper semicomputability means exactly that D(z,y) is the limit
of a computable sequence of such upper bounds.

A permissible distance, D(z,y), is a total nonnegative function on the
pairs z,y of binary strings that is 0 only if z = y, is symmetric, satisfies the
triangle inequality, is semicomputable and normalized. The following theorem
shows that Ej is, in some sense, the optimal permissible distance. We find it
remarkable that this distance happens to also have a “physical” interpretation

12



as the approximate length of the conversion program of theorem 3.1, and, as
shown in the next section, of the smallest program that transforms z into y on
a reversible machine.

(4.1) Theorem For an appropriate constant c, let E(z,y) = Ei(z,y) +c if
z # y and 0 otherwise. Then E(z,y) is a permissible distance function that
is minimal in the sense that for every permissible distance function D(z,y) we
have

E(=,y) < D(z,y).

Proof The nonnegativity and symmetry properties are immediate from the
definition. The addition property of complexity implies that there is a nonneg-
ative integer constant ¢ such that

El(waz) < El(miy) + B (yi‘z) +ec

Let this ¢ be the one used in the statement of the theorem, then E(z,y) satisfies
the triangle inequality without an additive constant. The normalization prop-
erty as well as the minimality follow from the characterization of complexity
mentioned in Section 2. M

5 Reversible Computations

Reversible models of computation, in which the transition function is 1:1, have
been explored especially in connection with the question of the thermodynamic
limits of computation. Reversible Turing machines were introduced by Lecerf[17]
and independently but much later by Bennett [3, 4]. Further results concering
them can be found in [4, 5, 18].

Reversibility of a Turing machine’s transition function can be guaranteed
by requiring disjointness of the ranges of the quintuples, just as determinism
is guaranteed by requiring disjointness of their domains. To assure that the
machine’s global input:output relation is also 1:1, it is necessary to impose a
standard format on the initial and final instantaneous descriptions, in particular
requiring that all working storage other than that used for the input and output
strings be blank at the beginning and end of the computation. Let {¢;} be
the partial recursive function computed by the i'th such reversible Turing
machine. As usual, we let {¢;} denote the partial recursive function computed
by the i’th ordinary (in general irreversible) Turing machine. Among the more
important properties of reversible Turing machines are the following:

e There is a universal reversible machine, i.e. an index u such that for all k
and z, ¥, (kfz) = kt¢(z). (Here kt denotes a self-delimiting representa-
tion of the index k).
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e Two irreversible algorithms, one for computing y from z and the other
for computing « from y, can be efficiently combined to obtain a reversible
algorithm for computing y from z. More formally, for any two indices 1
and j one can effectively obtain an index k such that, for any strings z

and y, if ¢:(z) = y and ¢;(y) = z, then ¢i(z) = y.

e From any index 7 one may obtain an index k such that ¢ has the same
domain as ¢; and, for every z, Yx(z) = (z,¢i(z)). In other words, an
arbitrary Turing machine can be simulated by a reversible one which saves
a copy of the irreversible machine’s input in order to assure a global 1:1

mapping.

e The above simulation can be performed rather efficiently. In particular,
for any € > 0 one can find a reversible simulating machine which runs in
time O(T+¢) and space O(Slog T) compared to the time T' and space §
of the irreversible machine being simulated.

e From any index 7 one may effectively obtain an index k such that if &;
is 1:1, then ¥ = ¢;. The reversible Turing machines {¥x}, therefore,
provide a Godel-numbering of all 1:1 partial recursive functions.

The connection with thermodynamics comes from the fact that in principle the
only thermodynamically costly computer operations are those that are logically
irreversible, i.e. operations that map several distinct logical states of the com-
puter onto a common successor, thereby throwing away information about the
computer’s previous state [15, 3, 10, 4]. The thermodynamics of computation
is discussed further in section 8. Here we show that the minimal program size
for a reversible computer to transform input z into output y is equal within an
additive constant to the size of the minimal conversion string p of theorem 3.1.

The theory of reversible minimal program size is conveniently developed
using a reversible analog of the universal prefix machine U defined in Section 2.
A partial recursive function F(p,z) is called a reversible prefix machine if

for each p, F(p,z) is 1:1 as a function of z;
for each z, {p: I(y)F(p,z) =y } is a prefix set;
for each y, {p: I(z)F(p,z) = y } is a prefix set.

Such an F may be thought of as the function computed by a reversible Turing
machine which performs a 1:1 mapping on z <> y under the control of a program
p which remains on the program tape throughout the computation. Any other
work tapes used during the computation are supplied in blank condition at
the beginning of the computation and must be left blank at the end of the
computation. The program tape’s head begins and ends scanning the leftmost
square of the program, which is self-delimiting both for forward computations
from each input z as well as for backward computations from each output y. A
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Stage and Action Program Tape Work Tape
0. Initial configuration prog T
1. Append 0 to beginning of = prog Oz
2. Compute y, saving history prog y (y|z)-history
3. Copy y to blank region prog y  (y|z)-history y
4. Undo comp. of y from = prog Oz y
5. Remove 0, swap = and y prog y T
6. Append ltoy prog ly T
7. Compute z, saving history prog z (z|y)-history =
8. Cancel extra prog z  (z|y)-history
9. Undo comp. of z from y prog 1y
10. Remove 1 from y prog y

Table 1: Combining irreversible computations of y from z and z from y to
achieve a reversible computation of y from z.

universal reversible prefix machine UR, whose program size is minimal to
within an additive constant, can readily be shown to exist, and the reversible
Kolmogorov complexity KR(y|z) defined as min{!(p) : UR(p,z) =y }.

In Section 3, it was shown that for any strings = and y there exists a con-
version program p, of length at most logarithmically greater than

max{K (y|z), K (z|y)}

such that U(p,0z) = y and U(p,ly) = z. Here we show that the length of
this minimal conversion program is equal within a constant to the length of the
minimal reversible program for transforming z into y.

(5.1) Theorem
KR(y|z) £ min{I(p) : U(p,0z) =y, U(p,1y) =z }.

Proof This proof is an example of the general technique for combining two
irreversible programs, for y from z and for z from y, into a single reversible
program for y from z. In this case the two irreversible programs are almost the
same, since by theorem 3.1 the minimal conversion program p is both a program
for y given Oz and a program for z given ly. The computation proceeds by
several stages as shown in Table 1. To illustrate motions of the head on the self-
delimiting program tape, the program p is represented by the string “prog”in
the table, with the head position indicated by a caret. '
Each of the stages can be accomplished without using any many-to-one op-
erations. For example, appending a zero to the beginning of z in stage 1 is can
be undone by changing the zero to a blank. In stage 2, the computation of y
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from z, which might otherwise involve irreversible steps, is rendered reversible
by saving a history, on previously blank tape, of all the information that would
have been thrown away. In stage 3, making an extra copy of the output onto
blank tape is an intrinsically reversible process, and therefore can be done with-
out writing anything further in the history. Stage 4 exactly undoes the work of
stage 2, which is possible because of the history generated in stage 2. Perhaps
the most critical stage is stage 7, in which z is computed from y for the sole
purpose of generating a history of that computation. Then, after the extra copy
of  is reversibly disposed of in step 8 by cancellation (the inverse of copying
onto blank tape), stage 9 undoes stage 7, thereby disposing of the history and
the remaining copy of z, while producing only the desired output y.

Not only are all operations reversible, but the computations from z to y in
stage 2 and from y to z in stage 7 take place in such a manner as to satisfy
the requirements for a reversible prefix machine. Hence the minimal irreversible
conversion program p, with constant modification, can be used as a reversible
program for UR to compute y from z.

Conversely, the minimal reversible program for y from z, with constant
modification, serves as a program for y from z for the ordinary irreversible
prefix machine U, because reversible prefix machines are a subset of ordinary
prefix machines. This establishes the theorem. |

We define the reversible distance between z and y as

Es(z,y) = KR(y|z) = min{I(p) : UR(p,z) =y }.

As just proved, this is within an additive constant of the size of the minimal
conversion program of theorem 3.1. Although it may be logarithmically greater
than the optimal distance Ej, it has the intuitive advantage of being the actual
length of a concrete program for passing in either direction between z and y.
The optimal distance E; on the other hand is defined only as the greater of two
one-way program sizes, and may not correspond to the length of any two-way
translation program.

E» may indeed be legitimately called a distance because it is symmetric
and obeys the triangle inequality to within an additive constant (which can
be removed by the additive renormalization technique described at the end of
Section 4).

(5.2) Theorem
+
E, ("B: Z) < Ep (a:; y) + EZ(y1 7’)

Proof We will show that, given reversible UR programs p and g, for comput-
ing (y|z) and (z|y) respectively, a program of the form spg, where s is a constant
supervisory routine, serves to compute z from z reversibly. Because the pro-
grams are self-delimiting, no punctuation is needed between them. If this were
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Stage and Action Program tape Work Tape

0. Initial configuration pproggprog =
1. Compute (y|z), transcribing pprog. DPprogqprog Yy  PProg
2. Space forward to start of gprog. pprogdprog Yy  Pprog
3. Compute (z|y). pprogiprog z  pprog
4. Cancel extra pprog as head returns. | pprogqprog =z

Table 2: Reversible execution of concatenated programs for (y|z) and (z|y) to
transform z into z.

an ordinary irreversible U computation, the concatenated program spg could
be executed in an entirely straightforward manner, first using p to go from z to
y, then using ¢ to go from y to z. However, with reversible UR programs, after
executing p, the head will be located at the beginning of the program tape, and
so will not be ready to begin reading g. It is therefore necessary to remember
the length of the first program segment p temporarily, to enable the program
head to space forward to the beginning of g, but then cancel this information
reversibly when it is no longer needed. A scheme for doing this is shown in Table
2, where the program tape’s head position is indicated by a caret. To emphasize
that the programs p and g are strings concatenated without any punctuation
between them, they are represented respectively in the table by the expressions

“;iprog” and “qprog”, and their concatenation pg by “pproggprog”.

6 Sum Distance

The reversible distance E defined in the previous section, is equal to the length
of a “catalytic” program, which allows the interconversion of z and y while
remaining unchanged itself. Here we consider noncatalytic reversible computa-
tions which consume some information p besides z, and produce some informa-
tion ¢ besides y. Even though consuming and producing information may seem
to be operations of opposite sign, we can define a distance based on the notion
of information flow, as the minimal sum of amounts of extra information flowing
into and out of the computer in the course of the computation transforming z
into y. For a function ¥ computed on a reversible Turing machine, let

Ey(z,y) = min{1(p) + (g) : ¥((=,p)) = (v, ) }-

It follows from the existence of universal reversible Turing machines mentioned
in Section 5 that there is a universal (non-self-delimiting) reversible Turing ma-
chine %, such that for all functions ¥ computed on a reversible Turing machine,
we have

E‘/’u(m’y) < E1/)(myy) + Cyp
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for all z and y, where cy is a constant which depends on % but not on z or y.
We define the sum distance as

E3(m:y) = E¢u(m1y)

(6.1) Theorem
E3(z,y) = K(zly) + K (y|z) + O(log E3(e,y))-

Proof Let us show first the lower bound E3(z,y) > K(y|z) + K(z|y). To
compute y from z we must be given a program p to do so to start out with.
By definition, K (y|z) < I(p) + O(log(p)). The last term reflects the fact that
p is externally delimited, while the minimal program used to define K is self-
delimiting and may therefore need to be logarithmically longer. Assume the
computation from z,p ends up with y,q. Since the computation is reversible
we can compute z from y,q. Consequently, K(z|y) < I(g) + O(log(l(g))). Let
us turn to the upper bound and assume k; = K(z|y) < k» = K(y|z) with
| = ky — k1. According to Theorem 3.3, there is a string g of length [ + O(log!)
such that K(qz|y) = k1 + O(logk1) and K(y|gz) = k1 + O(logk1). We can
even assume ¢ to be self-delimiting: the price of this can be included into the
O(log!) term. According to Theorem 3.1 and Theorem 5.1 there is a program
p of length k; + O(log k1) going reversibly between gz and y. Therefore with a
constant extra program s, the universal reversible machine will go from (pg, )
to (p,y). And by the above estimates

I(pq) + 1(p) < 2k1 + 1+ O(log k2) = k1 + ko + O(log k2).

Note that all bits supplied in the beginning to the computation, apart from
input z, as well as all bits erased at the end of the computation, are random
bits. This is because we supply and delete only shortest programs, and a shortest
program p satisfies K(p) > [(p), that is, it is maximally random.

The metrics we have considered can be arranged in increasing order. Here,
. log . . iy - log
the relation < means inequality to within an additive O(log), and % means <

and ¥,
By(z,y) = max{K(y|z), K (z|y)}
2 By(z,y) = KR(y|z)
£ min{i(p) : U(p,02) =y, Ulp,1y) =z}
< K(oly) + K(ylo) 2 Es(o,9)
% 2B (2, ).
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The sum distance Ej3, in other words, can be anywhere between the optimum
distance B; and twice the optimal distance. The former occurs if one of the
conditional complexities K (y|z) and K(z|y) is is zero, the latter if the two
conditional complexities are equal.

7 Dimensional Properties

In a discrete space with some distance function, the rate of growth of the number
of elements in balls of size d can be considered as a kind of “dimension” of the
space. The space with distance By (z,y) = max{K (z|y), K (y|z)} behaves rather
simply from a dimensional point of view. For a binary string x, let Bi(d,z) be
the set of strings y with Ey(z,y) < d.

(7.1) Theorem We have

d— K(d) < log #B1(d,z) < d — K(d|z).

The same bounds apply to Bi(d,z) N {y :l(y) =I(z) }.

Proof The upper bound is not difficult, a proof is given in [13]. For the lower
bound, let i < 2¢-K(4) let p; be the i-th binary string of length I(z). Let us
consider all strings y; = z @ p; where @ means bitwise mod 2 addition. The

number of such strings y; is 2¢~%(9), We clearly have E;(z,y:) b3 K(1) fan
It is interesting that a similar dimension relation holds also for the larger
distance E3(z,y) = K(y|z) + K(z|y). The proof is omitted.

(7.2) Theorem Let z be a binary string. There is a positive constant ¢ such
that for all sufficiently large d, the number of binary strings y with E3(z,y) < d
is at most 2%/d and at least 2¢/d?.

Proof The upper bound follows from the previous theorem since E3 > FEj.
For the lower bound, consider strings y of the form pz where p is a self-delimiting

program. For all such programs, K(z|y) 2 0, since = can be recovered from y.
Therefore Es(z,y) £ K(y|z) = K(p|z). Now just as in the argument of the
previous proof, we obtain the lower bound 2¢/d? for the number of such strings
p with K(plz) <d. W

For the distance Ej3, for the number of strings of length n near a random
string z of length n, (i.e. a string with K (z) near n) the picture is a little different
from that of distance E;. In this distance, “tough guys have few neighbors”. In
particular, a random string z of length n has only about 24/2 strings of length
n within distance d. The following theorem describes a more general situation.
Its proof is omitted here.
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(7.3) Theorem Let the binary strings z,y have length n. For each z the
number of y’s such that Ey(z,y) < d is 2% with
n+d— K(z)

a=——a + O(logn),

while n — K(z) < d. For n — K(z) > d we have a = d = O(logn).

Proof Let K(z) =n — 6(n). In the remainder of the proof all (in)equalities
involving Kolmogorov complexities hold up to an O(logn) additional term.
(>) We show that there are at least 2(@+6(n))/2 elements y such that E(z,y) < d
holds. Let y = ¢*z with I(2) = 6(n) and let z* be the first program for z which
we find by dovetailing all computations on programs of length less than n. We
can retrieve z from y using at most O(logn) bits. There are 26(n) different
such y’s. For each such y we have K(z|y) = O(1), since = can be retrieved
from y using z*. Now suppose we further divide y = uw with I(u) = [/2 for
an appropriate ! and choose u arbitrary. Then, the total number of such y's
increases to 26(")+1/2,

These choices of y must satisfy E3(z,y) < d. Clearly, K (y|z) < 6(n) +1/2.
Moreover, K (z|y) < 1/2 since we can retrieve z by providing [/2 bits. Therefore,
K(z|y) + K(y|z) < 1/2+6(n) +1/2. Since the left-hand side has value at most
value d, the largest [ we can choose is, up to the suppressed additional term
O(logn), given by | = d — 6(n).

This puts the number of y’s such that E(z,y) < d at least at
2(6(n)+d)/2:|:0(log n)

(<) Assume, to the contrary, that there are at least 2(d+6(n))/2+¢ glements y
such that E3(z,y) < d holds, with c some large constant. Then, for some y,

d+6(n)
2

By assumption, K(z) =n —§(n), K(y) < n. By the addition theorem (2.1) we
find n + (d — 6(n))/2 + ¢ < n+ K(z|y). But this means that

K(ylz) > +ec.

Kl > 4200
and these two equations contradict K(z|y) + K(y|z) <d. W
It follows from our estimates out that in every set of low Kolmogorov com-
plexity almost all elements are far away from each other in terms of the distance
E;. Here, the Kolmogorov complexity K (S) of a set is the length of the shortest
binary program that enumerates S and then halts.

(7.4) Theorem For a constant c, let S be a set with #5 = 2¢ and K(S) =
clogd. Almost all pairs of elements z,y € S have distance Ey(z,y) > d, up to
an additive logarithmic term.
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The proof of this theorem is easy. A similar statement can be proved for the
distance of a string z (possibly outside S) to the majority of elements y in S.
If K(z) > 7, then for almost all y € S we have Ey(z,y) > n+d — O(logdn).

8 Thermodynamic Cost

Thermodynamics, among other things, deals with the amounts of heat and work
ideally required, by the most efficient process, to convert one form of matter to
another. For example, at 0 C and atmospheric pressure, it takes 80 calories of
heat and no work to convert a gram of ice into water at the same temperature
and pressure. From an atomic point of view, the conversion of ice to water at
0 C is a reversible process, in which each melting water molecule gains about
3.8 bits of entropy (representing the approximately 23-8_fold increased freedom
of motion it has in the liquid sate), while the environment loses 3.8 bits. During
this ideal melting process, the entropy of the universe remains constant, because
the entropy gain by the ice is compensated by an equal entropy loss by the
environment. Perfect compensation takes place only in the limit of slow melting,
with an infinitesimal temperature difference between the ice and the water.
Rapid melting, e.g. when ice is dropped into hot water, is thermodynamically
irreversible and inefficient, with the environment (the hot water) losing less
entropy than the ice gains, resulting in a net and irredeemable entropy increase
for the universe as a whole.

Turning again to ideal reversible processes, the entropy change in going from
state X to state Y is an antisymmetric function of X and Y; thus, when water
freezes at 0 C by the most efficient process, it gives up 3.8 bits of entropy per
molecule to the environment. When more than two states are involved, the
entropy changes are transitive: thus the entropy change per molecule of going
from ice to water vapor at 0 C (+32.6 bits) plus that for going from vapor to
liquid water (—28.8 bits) sum to the entropy change for going from ice to water
directly. Because of this antisymmetry and transitivity, entropy can be regarded
as a thermodynamic potential or state function: each state has an entropy, and
the entropy change in going from state X to state Y by the most efficient process
is simply the entropy difference between states X and Y.

Thermodynamic ideas were first successfully applied to computation by Lan-
dauer. According to Landauer’s principle [15, 4, 21, 22, 6] an operation which
maps n states onto a common successor state must be accompanied by an en-
tropy increase of log, n bits in other, non-information-bearing degrees of freedom
in the computer or its environment. At room temperature, this is equivalent
to the production of kT'In 2 (about 7 -10722) calories of waste heat per bit of
information discarded.

Landauer’s priniciple follows from the fact that such a logically irreversible
operation would otherwise be able to decrease the thermodynamic entropy of
the computer’s data without a compensating entropy increase elsewhere in the
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universe, thereby violating the second law of thermodynamics.

Converse to Landauer’s principle is the fact that when a computer takes a
physical randomizing step, such as tossing a coin, in which a single logical state
passes stochastically into one of n equiprobable successors, that step can, if
properly harnessed, be used to remove log, n bits of entropy from the computer’s
environment. Models have been constructed, obeying the usual conventions of
classical, quantum, and thermodynamic thought-experiments [15, 14, 3, 4] [10,
16, 20, 1, 9] showing both the ability in principle to perform logically reversible
computations in a thermodynamically reversible fashion (i.e. with arbitrarily
little entropy production), and the ability to harness entropy increases due to
data randomization within a computer to reduce correspondingly the entropy
of its environment.

In view of the above considerations, it seems reasonable to assign each string
z an effective thermodynamic entropy equal to its Kolmogorov complexity K (z).
A computation that erases an n-bit random random string would then reduce
its entropy by m bits, requiring an entropy increase in the environment of at
least n bits, in agreement with Landauer’s principle.

Conversely, a randomizing computation that starts with a string of n zeros
and produces n random bits has, as its typical result, an algorithmically random
n-bit string , i.e. one for which K(z) = n. By the converse of Landauer’s
principle, this randomizing computation is capable of removing up to n bits of
entropy from the environment, again in agreement with the identification of the
thermodynamic entropy and Kolmogorov complexity.

What about computations that start with one random string  and end
with another y? By the transitivity of entropy changes one is led to say that
the thermodynamic cost, i.e. the minimal entropy increase in the environment,
of a transformation of = into y, should be

W(yl|z) = K(z) — K(y),

because the transformation of z into y could be thought of as a two-step process
in which one first erases z, then allows y to be produced by randomization. This
cost is obviously antisymmetric and transitive, but is not even semicomputable,
being at best expressible as the non-monotone limit of a computable sequence
of approximations. Invoking the identity[12] K (z,y) £ K(z) + K(y|z*), where
z* denotes the minimal program for z, the above cost measure W (z|y) can also
be interpreted as a difference in conditional complexities,

W(yle) £ K(z|y*) — K(y|z*) .

Such indirect conditional complexities, in which the input string is supplied
as a minimal program rather than directly, have been advocated by Chaitin[7]
on grounds of their similarity to conditional entropy in standard information
theory.
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An analogous antisymmetric cost measure based on the difference of direct
conditional complexities

W'(ylz) = K(z|y) — K(ylz).

was introduced and compared with W(z|y) by Zurek [21], who noted that the
two costs are equal within a logarithmic additive term. Here we note that
W'(y|z) is non-transitive to a similar extent.

These remarks lead one to consider a more general issue of entropy changes
in nonideal computations. Bennett[4] and especially Zurek[22] have considered
the thermodynamics of an intelligent demon or engine which has some capacity
to analyze and transform data z before erasing it. If the demon erases a random-
looking string, such as the digits of 7, without taking the trouble to understand
it, it will commit a thermodynamically irreversible act, in which the entropy of
the data is decreased very little, while the entropy of the environment increases
by a full n bits. On the other hand, if the demon recognizes the redundancy in ,
it can transform 7 to an empty string by a reversible computation, and thereby
accomplish the erasure at very little thermodynamic cost. More generally, given
unlimited time, a demon could approximate the semicomputable function K (z)
and so compress a string z to size K(z) before erasing it. But in limited time,
the demon will not be able to compress = so much, and will have to generate
more entropy to get rid of it. This tradeoff between speed and thermodynamic
efficiency is superficially similar to the tradeoff between speed and efficiency for
physical processes such as melting, but the functional form of the tradeoff is
very different. For typical physical state changes such as melting, the excess
entropy produced per molecule goes to zero inversely in the time ¢ allowed for
melting to occur. But the time-bounded Kolmogorov complexity K*(z), i.e. the
size of the smallest program to compute z in time < ¢, in general approaches
K (z) only with uncomputable slowness as a function of ¢ and z.
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