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Abstract

A finite set of term equations E is called subject to the occur-check (STO) if a sequence
of actions of the Martelli-Montanari unification algorithm starts with E and ends with a
positive occur-check. We prove here that the problem of deciding whether E is STO is
NP-hard. :

1 Introduction

For efficiency reasons in most Prolog implementations the so-called occur-check is omitted from
the unification algorithm. This naturally calls for a definition of unification without the occur-
check and for a characterization of the sets of term equations for which this omission might be
of importance for unification purposes. The latter has been offered by Deransart, Ferrand and
Téguia [1], who introduced the notion of a set of equations being STO (Subject To Occur-
check). Informally, a set of equations is STO if some sequence of actions of the nondeterministic
Martelli-Montanari unification algorithm leads to a situation in which the failure due to the
occur-check arises. As the known unification algorithms - see, for example, Robinson [7, 8],
Venturini-Zilli [10], Martelli and Montanari [5], Paterson and Wegman [6] - are special cases of
the Martelli-Montanari algorithm, this concept describes when unification without the occur-
check might lead to problems. This is apparently as close as one can get to a characterization
of the sets of equations for which unification might depend on the presence of the occur-check.
Therefore, not surprisingly, the definition of an STO set of equations entered the proposal for
standard Prolog (see Scowen [9]).

The result of this paper indicates an unexpected difference between the two relevant prop-
erties of sets of equations. As was shown by Paterson and Wegman [6] the property of being
unifiable can be tested in linear time. We prove that the property of being STO is NP-hard.
Recall that a problem is NP-hard, if its solvability in polynomial time implies that every problem
in the class NP is solvable in polynomial time. This shows that, for all practical purposes, the
definition of standard Prolog refers to a computationally intractable concept.



2 Preliminaries

Throughout the paper, the symbol = (resp. #) is used to indicate syntactic equality (resp.
inequality), the set of variables occurring in any syntactic object O is denoted by Var(O) and
the arity of a function symbol f is denoted by Arity(f ). A function symbol of of arity 0 is called

a constant.
From now on we fix a finite set of function symbols F and a finite set of variables V. The
class of terms over F and V is defined recursively as follows:

e a variable is a term,
o if t,...,t, are terms, f € F, Arity(f) = n, then f(t1,...,t) is a term.

A substitution is a finite mapping from variables to terms which assigns to each variable z
in its domain a term ¢ different from z. We write it as

{z1/t1,.- -, Tn/tn}

where
e y,...,T, are different variables,
e t1,...,t, are terms,

e fori € [1,n], ; # t;.

The application of a substitution to a (set of) term(s) and the relation ”more general than”
between the substitutions is defined in the usual way. A set of equations E is a finite set of the
form {s; = t1,82 = t2,...,p = t,}, where s; and t; are terms, for 1 < ¢ < n. A substitution o
such that s10 = 10, ..., 5,0 = t,0 is called a unifier of E. A unifier of F is called a most general
unifier (in short: mgu) of E if it is more general than all unifiers of E. Finally, we denote by
|E| the number of equations in E.

The problem of deciding whether a set of equations has a unifier is called the unification
problem. This problem was introduced and solved by Robinson [7] by providing a unification
algorithm. For our purposes we need the following nondeterministic unification algorithm due
to Martelli and Montanari [5] (and informally introduced by Herbrand [4]).

Martelli-Montanari algorithm. Given a set of equations, choose any equation of a form
indicated below and perform the associated action. If no action applies to any equation, stop
with success.

1. EU{f(51,5n) = g(t1, ..y tm)} — fail: clash

f#g
2. EU{f(s1, ey 8n) = f(t1, wotn)} =+ EU {s1 =t1,.s8n = tn}
3. EU{z ==z} — F
zeV
4. EU{t==} - BEU{z =t}
zeV,tgV
5. EU{z =t} — fail: positive occur-check
z€V,tgV,x € Var(t)
6. EU{z =t} — E{z/t} U{z =t}

z €V,z € Var(E),z € Var(t)



The condition « ¢ Var(t) in action 6. is called the occur-check test. The following result is
due to Martelli and Montanari [5].

Theorem 2.1 The Martelli-Montanari algorithm always terminates. If the original set of
equations E has a unifier, then the algorithm terminates with success and produces an mgu of
E written in an equational form, and otherwise it terminates with failure. 0.

Deransart, Ferrand and Téguia [1] introduced the following notion.

Definition 2.2 A set of equations E is subject to the occur-check (STO) iff a sequence of
actions of the Martelli-Montanari algorithm starts with E and ends with action 5. E 1s not
subject to the occur-check (NSTO) iff it is not STO. D.

Intuitively, E is NSTO iff unification and unification without the occur-check coincide for E.
By Theorem 2.1 if an execution of the Martelli-Montanari algorithm terminates with success, the
initial set of equations is NSTO. On the other hand, if an execution of the algorithm terminates
with failure, the initial set of equations may be NSTO or STO. Consider for example the sets
{a = f(a)} and {z = f(z)} with a a constant. Moreover, for some sets of equations different
executions of the algorithm can terminate with failure for different reasons. Consider for example
the set {a = f(a),z = f(z)}.

Scowen [9] lists the requirements for a formal definition of unification within standard Prolog.
One of them (see top of page 934), when properly formalized, states that unification is undefined
if the original set of equations is STO.

We show in this paper that the problem of deciding whether a set of equations is STO (in
short: the STO-problem) is NP-hard.

3 The STO-problem is NP-hard

The following lemma allows us to reduce the STO test to simpler sets of equations.

Lemma 3.1 [STO]
L Iff2g, then BU{f(51,mm5n) = g(t1, ey tm)} is STO iff B is STO.
2. Ifz € V,x € Var(E)UVar(t), then EU{z =t} is STO #ff E is STO.
9. BU{F(51, ey 5n) = F(t1, s tn)} i5 STO iff EU{s1 = t1, .0y 80 = tu} is STO.
4. Ifz €V, then EU{t =g} is STO iff EU {z =t} is STO.

Proof: Properties 1. and 2. are obvious whereas 3. and 4. were proved in Deransart and
Maluszynski [2]. O

Definition 3.2 Given a set of equations E, we denote by Stand(E) the set of equations which
is obtained from E by applying as many times as possible actions 2. and 4. of the Martelli-
Montanari algorithm and by deleting the equations according to the STO Lemma 8.1.1 and 3.1.2.
O

This brings us to the following conclusion.



Theorem 3.3 E is STO iff Stand(E) is STO.
Proof: By the STO Lemma 3.1. O

Definition 3.4 Consider a set of equations E. A subset E' of E is closed within E if for some
variable z & Var(E — E') all equations of E' are of the form z = s, where ¢ ¢ Var(s). O

For example, the set E = {z = f(y),z = y,z2 = f(u),y = a} has two subsets closed
within E: {z = f(y),z = y} and {z = f(u)}. Note that {y = a} is not closed within E since
y € Var(E — {y = a}).

Observe that when E' is closed within E, then only action 6. can be applied to an equation
from E’. This brings us to the following definition.

Definition 3.5 Consider a set of equations E and its subset E' closed within E. Let |E'|=k.
The set Reduce(E') consists of k sets of equations, each of which is obtained from E' by applying
action 6. to a different equation from E'. We denote by Reduce(E')(m), with 1 < m < k, the
mth element of Reduce(E') in some enumeration. O

Lemma 3.6 Consider a set of equations E and its subset E' closed within E. Then E 1s STO
iff for some m,1 < m <|E'|, the set (E — E') U Reduce(E')(m) is STO.

Proof: (=) Suppose E is STO. Consider a sequence of actions which leads to action 5. If this
sequence does not select (an instance of) an equation from E' somewhere, the same sequence
can be applied to E — E’, so a fortiori to (E — E') U Reduce(E')(m), for each m. So suppose
now that this sequence selects (an instance of) an equation z = s from E'. Consider the first
such selection. By the form of E' the performed action is then action 6.

Let E; be the resulting set of equations. Thanks to the fact that = ¢ Var(E — E') the
actions preceding this selection of £ = s do not introduce new occurrences of z in the considered
sets of equations. Consequently, E; can also be obtained from E by a transposed sequence of
actions in which the equation z = s is selected first and then the original sequence of actions up
to the selection of z = s is performed. Consequently for some m,1 < m <|E'|, the set By can
be obtained from (E — E') U Reduce(E')(m), so (E — E') U Reduce(E')(m) is STO.

(«<) By the fact that for all m,1 < m <|E'|, the set E reduces_to (E — E') U Reduce(E')(m)
by action 6. O

Intuitively, this lemma states that to determine whether E is STO it is sufficient to limit
one’s attention to the sequences of actions which start with action 6. applied to an equation in
a subset of B! which is closed within E. We are now in position to prove the desired result.

Theorem 3.7 The STO-problem is NP-hard.

Proof: We provide a reduction from the known NP-Complete Satisfiability Problem (see e.g.
Garey and Johnson [3]) to the STO-problem. Let U = {u1,u2, ..., Un} be a set of variables and
C = {c1,...,cm} be a set of clauses making up an arbitrary instance of the Satisfiability Problem.
A set of equations E is constructed such that E is STO if and only if C is satisfiable. E is a
union of n disjoint subsets E1, E3, ..., Bn. Each Ej; consists of four equations; two of them are
associated with u; and two with ;, the complement of u;.



First, we define a set V of variable symbols and a set F of function symbols over which the
terms occurring in E are build:

V={z;|1<i<n}U{z|1<j<m}, F={f'¢'|1<i<n}U{h}.

The arity of h is independent of the form of the particular instance of Satisfiability and
is equal to one, whereas the arities of fi and ¢* do depend on this form in a way which will
be described below. In the following, “+1” denotes the “increment modulo m” over the set
{1,...,m},som+1=1.

We are now ready to define the sets F;,1 < i < n. Let C; be the set of clauses of C which
contain u;. Two terms, s;1 and s;2, are constructed with the function symbol f? as the outer
constructor, whose arity is now defined to be equal to the cardinality of C;. Suppose the 4th
clause of C; is c;. Then

$i1 = fi(...,zk, ) and $i2 = fi(.,.,h(zk+1), ),
with z;, and h(zgs1) being the jth arguments of, respectively s;1 and s;2. C; contributes to E;
two equations

x; = s;1 and x; = 5,2.

Let C; be the set of clauses of C which contain ;. In the same way as above two terms ¢;;
and t; 2 are constructed using the function symbol g*. C; contributes to F; two equations

T =t1 and z; = t; 2.

As an example of this construction, consider the following instance of the Satisfiability Prob-
lem: U = {uy,uz2},C = {c1,c2}, with ¢ = {u1,@2} and ¢ = {uy, @1, uz}. It yields the following
set of equations:

{21 = fi(21,22), 71 = F1(A(22), h(21)), @1 = g (22), @1 =g (h(21))}
U {o2 = f2(22), z2 = FA(A(21)), 2 = ¢°(=1), 2 = g°(h(22))}-

Given a truth assignment T : U — {T, F} we denote below its restriction to the variable u;

by t[u;]. Each subset E; is closed within E, so applying Lemma 3.6 n times we get

E is STO iff there are I, ...,In, 1 < l; < 4, such that -, Reduce(E;)(l;) is STO.
Fix such a sequence Iy, ...,l,. By Theorem 3.3
U™, Reduce(E;)(l;) is STO iff Stand(Ui=, Reduce(F;)(l;)) is STO.

Now for some truth assignment t : U — {T,F}, (namely the one defined by t(u;) = if I; <
2thenT else F fi, 1 <i < n)

Stand(U Reduce(E;)(l;)) = U{zj = h(zj41) | ¢j is true under ¢[i]}.
=1 i=1

But for every truth assignment t : U — {T, F'}

n

U{Zi = h(zj+1) | ¢j is true under t[i]} = {z; = h(zj+1) | ¢j is true under t},

i=1
and the latter set is STO iff it equals {z; = h(zj4+1) | 1 < j < m}. Now the equality between
these last two sets holds iff all clauses of C are true under t. Thus E is STO iff C is satisfiable.

It is clear that the construction of E from C can be accomplished in polynomial time, as for

each variable u; € U at most m clauses have to be checked for the occurrences of u; and %;. O
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