institute for logic, language and computation

MARIANNE KALSBEEK
A Vademecum of Ambivalent Logic

CT-95-01, received: Januari 1995

ILLC Research Report and Technical Notes Series
Series editor: Dick de Jongh

Computation and Complexity Theory (CT) Series, ISSN: 0928-3323

Institute for Logic, Language and Computation (ILLC)
University of Amsterdam

Plantage Muidergracht 24

NL-1018 TV Amsterdam

The Netherlands

e-mail: illc@fwi.uva.nl

A Vademecum of Ambivalent Logic

Marianne Kalsbeek*
ILLC
Plantage Muidergracht 24
1018 TV Amsterdam
email: marianne@fwi.uva.nl

Yuejun Jiang!
Department of Computing
Imperial College, London SW7 2AZ
email: yj@doc.ic.ac.uk

Abstract

Ambivalent Logic AL, first introduced in its full sense in Jiang [Jia94a]
is obtained from first order predicate logic FOL by relaxing several restric-
tions on its usual syntax. In particular, the usual distinctions between
predicates, functions, formulas and terms are not made in AL. We show
that Ambivalent Logic provides a general and flexible framework for var-
ious ambivalent syntactic phenomena that occur in Prolog, in meta-logic
programming and in formalisations of knowledge and belief. A series of
formal results justifies the use of syntaxes with ambivalent phenomena in
these areas. We discuss a closed term semantics for AL, and show that
the standard derivational calculus for first order predicate logic is sound
and complete w.r.t. this semantics. A conservativity result shows that
AL should be considered as a conservative extension of FOL. We define a
version of the Martelli Montanari unification algorithm for AL, and show
it has the usual properties. In combination with various other basic proof
theoretic results, this shows that resolution is a complete and sound in-
ference method for AL. We also discuss the relation with Hilog.
Keywords Prolog, meta-logic programming, first order predicate logic,
unification, Ambivalent Logic
Note This research was partly supported by the ESPRIT Basic Research
Action 6810 (Compulog 2). This paper will appear in: Meta-Programming
in Logic Programming, Eds. K.R. Apt and F. Turini, The MIT Press,
1995.

*Supported by the Netherlands organisation for Scientific Research N.W.O.
t Advanced Fellow of the British Science and Engineering Research Council

1 Introduction

A (mostly tacit) assumption in the syntax for first order predicate logic (FOL)
is that the sets of predicates, functions, and constants have mutually empty
intersections. As a consequence, the syntactic categories of formulas and terms
are mutually exclusive, as the Unique Reading Lemma for FOL witnesses. While
Logic Programming is in principle based on FOL, in various of its application
areas, syntaxes are used which do not satisfy this property of the usual syntax
for FOL.

A principal example, analysed in Apt and Teusink [AT], is the syntax under-
lying Prolog. Prolog’s meta-variable facility allows for variables to occur both
in terms and in atoms positions. Two well-known examples are the cut-fail defi-
nition of negation: neg(X):— X,!, fail, and the definition of the solve-predicate
as solve(X) :— X. Clearly, this use of variables is not allowed in the standard
syntax of FOL. Additionally, queries which involve instantiations of the heads of
the above clauses with terms p(t), presuppose a syntax which allows for function
symbols to be accepted as predicate symbols. Conversely, an inductive definition
of a predicate involving its negation presupposes that Prolog’s syntax allows for
predicate symbols to be accepted as function symbols. Also, in Prolog’s syntax,
predicates and functions do not have fixed arities.

Another example of the use of a deviant syntax in (meta-)Logic Program-
ming practice is the untyped, non-ground Vanilla meta-interpreter which uses
identity naming for atoms and terms of the object level language (cf. Kals-
beek [Kal]). While in this simple, unamalgamated case the (partial) correct-
ness of Vanilla could still be guaranteed by the possibility of renaming the
object level predicates to meta-level function symbols, this solution does not
generalise to various interesting extensions of Vanilla. For example, extend-
ing Vanilla with reflective clauses like demo(X) :(— X or instances of these
clauses, eliminates the possibility of renaming and introduces ambivalence be-
tween function and predicate symbols and variables and terms, similar to the
ambivalences observed above in the case of Prolog’s syntax. A related example
is the formalisation of the Three Wise Man problem as an extension of Vanilla
in Kowalski and Kim [KK91]. This formalisation involves clauses of the form
demo(wise0,not demo(wisel, whitel)) :— , in which the predicates demo and
not occur in function positions.

The above examples require only limited forms of ambivalence: atoms-as-
terms ambivalence (atoms occurring in term positions) and terms-as-atoms
ambivalence (terms occurring in atom positions). As observed in Chen et
al. [CKW93] and Jiang [Jia94a], more advanced ambivalent features are re-
quired to obtain a syntax which allows for efficient formalisations of generic
predicates. An example is the generic closure predicate (cl(Z))(X,Y’), which,
given any binary predicate R, returns its transitive closure cl(R). Its definition,
((2)(X,Y) & Z(X,Y)V(Z(X,V) A (cl(Z))(V,Y)), presupposes a syntax
which allows for predicates to occur in term positions, and for variables and

atoms to occur in predicate positions. Similar ambivalent phenomena occur in
languages which allow for data retrieval and schema browsing. In databases,
such forms of syntactic ambivalence are a desirable option, allowing caching of
data.

Other areas where ambivalent phenomena occur, are formalisations of knowl-
edge and belief. While the use of a real naming function, avoiding syntactic
ambivalence between terms and formulas, is often possible, it is not always de-
sirable. Also, the above atoms-terms ambivalence is not always sufficient. In
the predicate case, it is desirable that a reflective axiom like z — K(x) can be
instantiated with all formulas, not just atomic formulas. This then supposes a
syntax in which all formulas, and not just atomic formulas, are allowed to occur
as terms. While the quantifiers could, in principle, be represented by functions,
the effect of a functional representation does not in all cases give the desired
effect. The obvious reason is that quantifiers, in contrast to functions, bind
variables. For example, consider the formula Vz.bel(John, (friend(John,z) —
exists(y,loves(z,y))), which expresses the proposition ‘John believes about all
his friends that they are loved by somebody’. Instantiation of both z and y with
the same constant is possible, yielding unintended statements like

bel(John, (friend(John, Mary) — ezists(Mary, loves(Mary, Mary))).

In contrast, the use of a quantifier representation for the same proposition yields
the formula Vz.bel(John, (friend(John,z) — Jy.loves(x,y))). Here y is bound
by the existential quantifier, and cannot be instantiated. Thus, unintended
instantiations like the above are not possible.

In the present paper, we discuss Ambivalent Logic AL as a general frame-
work for first order logic with a syntax in which all of the above mentioned
ambivalent phenomena occur. AL has a fully ambivalent syntax, in which the
usual distinctions between the syntactic categories of terms, functions, predi-
cates, and formulas, cannot be made. While the part of Unique Reading that
says that a well-formed string in the language is either a formula or a term, but
not both, does not hold for AL, these syntactic distinctions do retain their usual
contextual meaning.

AL has a standard (first order predicate logic) derivational calculus, and a
(first order) closed term semantics. We develop some basic proof theory for AL,
including soundness and completeness of the derivational calculus w.r.t. the
semantics, an s-equivalence theorem, and Herbrand’s theorem. We discuss uni-
fication for AL. In particular, we show how the Martelli-Montanari unification
algorithm can be adapted for AL. We prove that the appropriate AL version
has the usual properties. In combination with various other results discussed in
this paper, this shows that resolution is a complete and sound inference method
for AL. In addition, we show that AL is a conservative extension of FOL. We
also show how various known ambivalent syntaxes (such as Prolog’s syntax and
the syntax discussed in Kalsbeek [Kal]) can be obtained as special instances of

the full ambivalent syntax of AL. The proof theoretic results we obtain for AL
also hold for the various specialisations of AL. These results justify the use of
AL and various of its subsystems as a basis for (meta-) logic programming. In
addition, we argue that AL provides an interesting framework for formalisations
of knowledge and belief.

AL was first introduced in Jiang [Jia94a] and [Jia94b]. Some of the results
we present are improvements of results announced in Jiang [Jia94a]. A proper
subsystem of AL, appropriate for amalgamated extensions of the Vanilaa meta-
interpreter, was introduced in Kalsbeek [Kal].

There are various examples of logics which, like AL, have a syntax incor-
porating ambivalent phenomena. Recently, Hilog was proposed by Chen et al.
[CKW93] as a basis for higher order logic programming. Both AL and Hilog
combine a second order syntax with a first order semantics. While the syntax of
AL extends Hilog syntax, Hilog is, in contrast to AL, not an extension of FOL.
Another example is the logic proposed by Richards [Ric74], which is intended for
formalisations of intensional logics. For a comparison between AL and Richards
logic, we refer to Jiang [Jia94a]. The reader is also referred to Gabbay [Gab92],
where other flexible meta-languages are proposed.

The outline of this paper is as follows. In Section 2, we introduce the fully
ambivalent syntax of AL and we show how specialisations of it may be obtained.
In Section 3 we develop a closed term semantics for AL. In Section 4 we discuss
how equality can be incorporated in AL. Section 5 is devoted to various basic
proof theoretic results for AL. In Section 6 we discuss the appropriate version
of the Martelli-Montanari unification algorithm for AL. In Section 7 we discuss
the relations between Ambivalent Logic and Hilog.

2 Syntax for Ambivalent Logic

We define in Section 2.1, a syntax which is fully ambivalent, that is, in which
every well formed expression can act as a formula, as a term, as a function,
and as a predicate. Whether an expression is evaluated as a term, a formula,
a function, or a predicate will be determined by the context. We allow for
free arity of predicates and functions. This syntax generates a multi-purpose
language.

The full ambivalent syntax extends the syntax for the Vanilla meta-interpreter
(cf. Kalsbeek [Kal]), in which can occur in term positions but not vice versa, and
in which predicates and functions are always symbols with a fixed arity. It also
extends Prolog’s syntax (cf. Apt and Teusink [AT]), which shares with full am-
bivalent syntax the full atoms-terms ambivalence, and the free arity of functions
and predicates, but in which predicates and functions are always parameters.

To obtain versions of ambivalent syntax which generate languages that are
adapted to a particular purposes such as the above, the definitions for full

ambivalent syntax can be adapted and specialised. In Section 2.2 we discuss
several of these refinements.

2.1 Full ambivalent syntax

A fully ambivalent language Lg is generated by a set of non-logical constants
(parameters) G, an infinite set of variables z,y,z,..., and the usual logical
connectives and quantifiers of first-order logic.

Definition 2.1 (Expressions)

1. The variables z,y, z, . .. and individual constants a, b, c, ... € G are expres-
sions.

2. If t, t1,...,t, are expressions, then (¢)(¢1,...,t,) is an expression.

3. If A and B are expressions, then so are A, ANAB, AVB, A+~ B,A— B
and A « B.

4. If A is an expression and x is a variable, then Vz(A) and 3z(A) are ex-
pressions. a

The above ambivalent syntax thus extends standard syntax for first order
predicate logic in several ways. The usual requirement is dropped which states
that the sets of predicate symbols and function symbols are disjoint. In ad-
dition, the usual requirement is dropped that predicates and functions have a
fixed arity. As an example, p(p(p,p)) is a well-formed ambivalent expression. In
addition, variables may occur in formula positions. As an example, the Prolog
clause solve(z) «— z is a well-formed expression in full ambivalent syntax. Also,
‘second order’ quantification is allowed. That is, expressions like Jz.z(c) are
well-formed in full ambivalent syntax. (We will see in Section 3 that, seman-
tically, quantification over predicates will not be interpreted as second order
quantification.) Moreover, not only parameters, but also more complex ex-
pressions are allowed as predicates and functions. An example is the generic
closure predicate discussed in the introduction. This feature allows for the for-
mation of new predicates, which can be useful in databases. Other examples
are: p(z) A g(z) — (p A ¢)(z) and VaVz(p(z,z) — (Jy.p(y))(x)). The latter
example shows that quantified expressions are allowed in predicate places.

In many cases, we will omit brackets if this does not lead to confusion.
For example, we will write c(z) instead of (¢)(z), and Vzp(z) (or also Vz.p(x))
instead of Vz(p(z)). In various cases, however, brackets cannot be omitted
without altering an expression. For instance, (pVg)(t, s) is an atomic expression,
while pV g(t, s) is a disjuctive expression. Similarly, we distinguish between the
expressions p((z)(a)) and (p(z))(a). In the former, the symbol p predicates over
the expression (x)(a), while in the latter, p(z) predicates over a.

Definition 2.2 (Atomic expressions)

An atomic expression is either a constant, or a variable, or an expression of the
form (t)(t1,...,tn).

Atomic expressions of the form (t)(t1,...,t,) are functional atoms. O

The set FV(t) of free variables of an expression t is defined analogous to
the definition for standard syntax, except that it is additionally defined for
expressions in predicate and function places.

Definition 2.3 (Free Variables) Let z be a variable, ¢ € G, and let A, B, and
(t)(t1,-..,tn) be expressions. The set of free variables occurring in an expression
is defined as follows:

FV(z) =

FV(c) =

FV((t)(t1,...,tn)) = FV(t) UFV(t1)U..UFV(t,)
FV(AAB) = V(A) FV(B)

FV(-A) = FV(A)

FV(3zA4) = FV(A)\ {z}

Similarly for the other binary connectives and the universal quantifier.

A variable z occurring in an expression t is bound in t if ¢ ¢ FV(t); otherwise
we say x occurs free in t. We write A{z/t} to denote the result of replacing
every free occurrence of z in A by ¢. O

Definition 2.4 An expression t is closed (or a sentence) if FV(t) =0

By Definition 2.3, z occurs free in (p(z))(a). Also, z is not free in p(Izp(z))
because z is not free in the argument 3zp(z). In this sense, quantifiers in term-
positions behave like ordinary quantifiers.

The above definition can be refined in a standard way to distinguish be-
tween various occurrences. For example, in p(z) V 3z f(z), the first occurrence
of z is free, while the second occurrence is bound by the existential quanti-
fier. The scope of quantifiers can be defined in the usual way. For example,
in Jzq(p(z) A zf(z)), the first occurrence of z is bound by the outermost
existential quantifier, while the second occurrence is bound by the rightmost
quantifier.

In Section 3 we will need the following standard notion.

Definition 2.5 An expression t is free for a variable in an ezpression A iff
t does not contain any free variable that is bound by some quantifier in A when
every free occurrence of x in A is replaced by t. 0O

Due to the nature of full ambivalent syntax, the role of an expression can
be determined only by the context of the expression. For example, consider

the expression (g(d))(a,¢(a)) A ¢(c). It can be evaluated both as a term and as
formula, depending on the context. In the latter case, q(d) serves as a predicate,
q(a) as a term, and q(c) as a formula.

Clearly, the Unique Reading Lemma does not hold for ambivalent syntax, as
every AL expression can be both a formula and a term. We can, however, define
in some cases which role a subexpression assumes in the context of an expression
in which it appears. In some cases, it is trivial to determine the contextual role
of subexpressions. For example, a V b occurs as a term in a(a V b), independent
of whether the latter is evaluated as a term or as a formula. But we have the
choice whether or not to consider a as a term in ¢(a V b). The choice we make
is inspired by the semantics we define in the next section. In this semantics,
there will be no connection between the interpretation of the ‘term’ a and the
interpretation of the ‘term’ aVb. Therefore, we will not consider a as a subterm
in c(aVb). Similar considerations lead to the following definitions of the notions
of subformula, term, function, and predicate. The definition of the notion of
subformula is standard.

Definition 2.6 (Subformula)
1. Every expression is a subformula of itself.

2. Let A be an expression. Then every subformula of A is a subformula of
—A, 3z A, and Vz A.

3. Let A and B be expressions. If FE is a subformula of A or B, then F is a
subformula of AVB, ANB,A— B, A— B,and A < B. m|

By this definition, a does not occur as a subformula in ¢(a V b).
Definition 2.7 (Occurrence as a term)
1. In an expression of the form (¢)(¢1,...,tn), t1,...,tn Occur as terms.

2. If t occurs as a term in A and A is a subformula of F', then ¢ occurs as a
term in F'.

3. If t occurs as a term in s and s occurs as a term in F', then ¢t occurs as a
term in F'. O

By the above definition, a does not occur as a term in ¢(a V b), while a V b does.
Also, ¢ does not occur as a term in c¢(a V b).

Definition 2.8 (Occurrence as a function)
1. t occurs as a function in an expression (t)(¢1,...,tn).

2. If t occurs as a function in s and s occurs as a term in F', then ¢ occurs
as a function in F'. a

Definition 2.9 (Occurrence as a predicate)
1. t occurs as a predicate in an expression (¢)(t1,...,tn).

2. If t occurs as a predicate in A and A is a subformula of F', then t occurs
as a predicate in F'. a

By the above definitions, ¢ occurs both as a predicate and as a function in
#)(t1,...,tn). In Vaz(t(z)), t occurs as a predicate, but not as a function. In
p(Vz(t(z))), t occurs neither as a predicate nor as a function.

All of the above definitions can be refined to distinguish between the various
occurrences. For example, in a(a) V a, the first occurrence of a is as a predicate
(but not as a function), the second occurrence is as a term, while the third
occurrence is as a subformula.

It is useful to make the following distinction between two kinds of occurrences
of quantifiers. The first kind of quantifier, which we will call ‘outside quantifier’,
occurs in places where they are also allowed in FOL formulas. The second kind
occurs only in ‘ambivalent’ places.

Definition 2.10 Let Qz.s, where) is a quantifier V or 3, be an occurrence
of a subexpression of an AL expression ¢t.) is an outside gquantifier if it is an
occurrence as a subformula of t. Otherwise, @ is an inside quantifier.

Inside and outside connectives are defined similarly. 0O

For example, in Vz.(z V 3y.f(y)), the first quantifier is an outside quantifier,
while the second is an inside quantifier. Observe that both inside and outside
quantifiers do bind variables in their scope. In Section 3, where we discuss
semantics for AL, we will see that the outside quantifiers will be interpreted as
real quantifiers, ranging over elements of the domain; this in contrast to inside
quantifiers.

2.2 Refinements

For many purposes, the full ambivalent syntax defined in the previous subsection
admits too many expressions. Refined versions of ambivalent syntax, well-tuned
to particular domains of application, can be obtained by specialising one or more
of the clauses in Definition 2.1, and by the use of sets of special constants in
addition to the set of generating constants. In defining special versions of full
ambivalent syntax, it is sometimes useful to introduce new syntactic categories.

We will give some examples of specialisation and the use of special constant
sets.

o A version of ambivalent syntax which does not admit all its expressions to
occur as predicates and functions, but only its constants, can be obtained
by modifying clause (2) of Definition 2.1 as follows: If t1,...,t, are ex-
pressions and c € G, then c¢(t1,...,t,) is an expression. In this particular

version, variables and more complex expressions do not occur as predicates
and functions, and as a result there is no ‘second order’ quantification.

It may be useful to select special roles for some of the parameters. As
an example, in some domains, it may be useful to have one or more sym-
bols that occur only as predicates. The negation predicate in Prolog is
an example of such a special predicate (see below). In that case, a set
of special symbols S is added to the signature of the language, and an
extra syntactic category is introduced: special expressions. The following
modification of Definition 2.1 is used:

1 Variables z and parameters ¢ € G are expressions.
2 Ift, t1,...,t, are expressions, then (¢)(t1,...,t,) is an expression.

2’ If pe S, and ty,...,t, are expressions, then p(1,...,t,) is a special
expression.

3’ If A is an expression, then —A is an expression; If A is a special ex-
pression, then —A is a special expression.
AV B is a special expression if both A and B are special expressions
or if one among them is a special expression and the other is an ex-
pression. A V B is an expression if both A and B are expressions.
Similarly for the other binary connectives.

4’ Vz(A) is an expression if A is an expression; it is a special expression
if A is a special expression.

In particular, special expressions do not occur as terms, predicates, or
functions, in expressions and special expressions. Special parameters only
occur as predicates in special expressions.

Special definitional clauses can also introduce parameter symbols which
only occur with fixed arities.

The syntax of Prolog is a specialisation of full ambivalent syntax, and
shares some of the properties of the above specialisations. In Prolog’s
syntax, only parameters are allowed in predicate and function positions.
In addition, Prolog has a special predicate not, which is only allowed to
occur in predicate positions. A representative part of Prolog’s syntax can
be described as follows:

1 variables z and parameters ¢ € G are expressions.

2 c(ty,...,tn) is an expression if ¢ € G and t,...,t, are expressions.

3 not(t) is a special expression if ¢ is an expression.

4 fail and ! are special expressions.

5 every expression is a special expression.

6 t «— t1,...,t, is a Prolog clause if ¢ is an expression and ty,...,t, are
expressions.

7 every expression that is not a variable is a Prolog clause.

Other features of Prolog’s syntax can be incorporated in this framework,
such as the Prolog built in predicates assert and retract, which take
Prolog clauses as arguments.

e The ambivalent syntax described in Kalsbeek [Kal] is a specialised version
of full ambivalent syntax. It differs from full ambivalent syntax in the
following ways:

1. Only atomic expressions are allowed to occur in term positions.

2. Only parameters are allowed to occur as functions and predicates.

In particular, variables are not allowed to occur in formula positions. A
full description can be found in Kalsbeek [Kal].

3 Semantics

We have chosen to develop a closed term semantics for AL for the purpose of
this paper. All of the definitions we give can be adapted to special versions of
AL such as Prolog’s syntax.

Formally, a structure M for an ambivalent language Lg (the underlying
language of M) is a tuple (D, T'), where

1. D, the domain of M, is the set of closed expressions of Lg;

2. T, the truth set of M, is a subset of the set of closed atomic expressions
of Lg .

The satisfiability relation for closed expressions in a structure M = (D, T)
is inductively defined as follows:

Definition 3.1
MEap Aiff A €T where A is a closed atomic expression
Miap ANBiff Mi=az A and Mizaz B
Mizap ~Aff Mpeaz A
M4z VoA iff for all d € D, M Ay, A{x/d}

Disjunction, implications, equivalence and existential quantification are defined
in the standard way. a

Several things are worth noting at this stage.

10

e Closed expressions can be evaluated as sentences in a model. At the same
time, they constitute elements of the domain.

o A closed expression, evaluated as a sentence, in a model, has a unique truth
value. Thus, while there is syntactic ambivalence, there is no semantic
ambiguity.

e The truth values of atoms are, in principle, not related to the structure
of expressions which occur in them as subterms. That is, for example,
the truth value of an atom p(s A v) is in principle not related to the
respective truth values of p(s) and p(¢). A similar distinction holds for
the relation between outside and inside quantifiers: The truth value of
Vz.p(f(z)) is independent of the truth value of p(Vz.f(x)). The latter is
decided by a checking whether the atom p(Vz.f(z)) belongs to the truth
set, while the former is decided by checking whether p(f(d)) belongs to
the truth set, for each element d in the domain. In certain applications,
such as formalisations of knowledge and belief, it might be desirable to
have explicit relations between inside and outside quantifiers, or between
outside and inside connectives such as the above. The soundness and
strong completeness theorem 5.1 that we will prove in Section 5 shows
that such relations may be implemented by axioms.

o It should be noted that ‘similar’ expressions like, for example, Vz.f(z)
and Vy.f(y) constitute different, and unrelated, objects in the domains
of models. That is, the truth values of the closed expressions t(Vz.f(z))
and t(Vy.f(y)) need not be the same. This may be counterintuitive, and
even undesirable in some applications. Extra assumptions on the truth
sets T' may impose that expressions which are similar under appropriate
renaming of the bound variables, behave similarly as elements of the do-
main. This in its turn should then be matched with an appropriate rule in
the derivational calculus. In contrast, for outside quantifiers the following
relation, familiar from FOL, holds: M | VzA iff M |=VyA{z/y} ,ifyis
free for z in A.

e It should be observed that in the above interpretation of the quantifiers
(the substitution interpretation), there is no real semantic second order
quantification: the quantifiers range over object in domains, and not over
subsets of domains. Thus, while syntactically AL allows for second order
features such as quantification over functions and predicates, its closed
term semantics is first order.

We will use the following standard notions.

Definition 3.2 Let A be a closed expression and let S be a set of AL sentences.
S is satisfiable in AL iff there exists an interpretation M such that ML ¢
for all ¢ € S. M is called a model of S in this case.

11

A is valid in AL, denoted by =4 A, iff - A is not satisfiable in AL.
We say that A is a logical consequence of S, denoted by S =4 A, iff A is true
in every model of S. m]

Definition 3.3 A structure M is a Herbrand model for a theory S (M %, S)
if M is a structure for S and the underlying language of M is the underlying
language of S (that is, if D coincides with the set of closed expressions of the
full ambivalent syntax generated by S).]

In addition, we can define semantics for all expressions, using assignments (Def-
inition 3.5). We need the following standard definitions.

Definition 3.4 Let o be a substitution {z;/t1,...,2,/tn}. Then its domain
dom(o) and range ran(o) are defined as follows:

dom(c) = {z1,...,Tn},

ran(o) = {t1,...,tn}

The o-image of a variable z, denoted as zo, is given as follows:

z;0 =t;, for ¢ € [1,n], and

zo = z, for z ¢ dom(o).

For expressions t and substitutions o, to is the result of replacing each free
occurrence of z in ¢ by the o-image of z. a

Definition 3.5 A substitution o is an assignment for an expression s and an
interpretation M = (D, T), if dom(g) 2 FV(s) and ran(s) C D. O

Definition 3.6 Let o be an assignment for t and M. We say that M satisfies
t witho (M, Et)if M Eto. o

As a derivational calculus for Ambivalent Logic we take some standard sys-
tem of natural deduction. The resulting derivability relation will, as usual, be
indicated by . The deduction rules are defined in a standard way. Consider
the usual elimination rule for the universal quantifier, Vz.t/t{z/s}. It has a side
condition, which prevents unintended bindings resulting from the substitution
of s for z. In the case of AL, unintended bindings can result, not only from
quantifiers in standard places, but also from inside quantifiers. As an example,
Vzp(Iyf(z,v))/p(Jyf(y,y)) is not a correct instance of the rule for elimination
of the universal quantifier: y is not free for z in p(Jyf(z,y)).

Example 3.7 The ambivalent expression p(a) can, among others, be consid-
ered as either p(z){z/a} or z(a){z/p}. The former corresponds to the follow-
ing (standard) instance of the introduction rule for the existential quantifier:
p(a)/3z(p(z)). The latter in its turn corresponds to p(a)/3z(z(a)).

We remind the reader of the following two notions of completeness.

12

Definition 3.8 Let L be a logic with semantic consequence relation = and
derivational consequence relation k.

L is weakly complete if, for any sentence B, |=1 B implies \-;, B.

L strongly complete if, for any sentence B and any set of sentences S, S =1 B
implies S +p B. 0O

In the case of first order logic with standard syntax, a restriction to Her-
brand semantics results in the weakening of some of the standard results. A
well-known example is the loss of strong completeness in its full sense. While
strong completeness w.r.t. Herbrand models holds for finite and infinitely ex-
tendible theories, it does not hold for theories in which every closed term of the
underlying language occurs in the theory. The same phenomenon occurs in the
context of Ambivalent Logic, as witnessed by the following proposition.

Proposition 3.9 AL is not strongly complete for infinite theories with respect
to the Herbrand semantics.

Proof: Let t1,ts,t3,... be an enumeration of all the closed expressions of an
ambivalent language L. Then, by the definition of validity in Herbrand models,
tl,tz,tg, N IZ’}QL Vz.x. HOWGVGI‘, tl,tg,t3, PN VV.’I):L‘ O

While a restriction to Herbrand semantics is sensible in the case of logic
programming (logic programs being finite theories), in a broader context it is,
in view of the above proposition, sensible to consider the more general closed
term semantics as the appropriate semantics for Ambivalent Logic.

A more general semantics for AL, with arbitrary domains and, consequently,
non-identity interpretation functions, will not be considered in the context of
the present paper. The reason is that, (as remarked in Chen et al. [CKW93])
interpretation of quantified terms using a non-identity interpretation function
requires something like lambda-abstraction, which considerably complicates the
construction of models. In the next section we argue that the restriction to
closed term semantics is not a severe limitation.

4 Equality and Identity

The usual semantics for FOL with standard syntax is different from the closed
term semantics we described above. In particular, in the semantics for FOL, any
set can in principle serve as the domain of a model, and the interpretation func-
tions, mapping closed terms of the language on elements of the domain, are not
necessarily identity functions. In this semantics, equality is usually interpreted
as identity on the domains, although the equality axioms in themselves do not
force this interpretation. In contrast, closed term models are not appropriate
for the identity interpretation of equality.

Closed term models, however, can be used to represent other models. Hence
they play an important, albeit hidden, role in FOL. Consider the usual proof of

13

the completeness theorem for FOL, using the Henkin method. The proof in fact
consists of two separate stages, each the proof of an independent lemma. In the
first stage, a consistent theory T is extended to a maximally consistent Henkin
theory T*, for which a Herbrand model H is constructed. H is a closed term
model for the theory T, and, in presence of equality in the language, equality
is interpreted in H as an equivalence relation which is also a congruence with
respect to the predicates and functions. The second stage of the proof is merely
motivated by the convention to interpret equality as identity. From H, a model
M for T* is constructed, the domain of which consists of the equivalence classes
in H under equality. The valuation function of M is ‘inherited’ from H. This
second stage can be interpreted as the proof of a representation lemma, which
expresses that for every closed term model H there exists an elementary equiv-
alent model M in which equality is interpreted as identity. This representation
lemma can be reversed. Let M = (Djs, Var) be a model. A closed term model H
is now constructed as follows. Define a function f from the closed terms of the
language to be interpreted to the domain of M, which is defined by f(t) := tM.
Now define the valuation function Vy as follows: Vg (P(t)) := Vi (P(f(t)). Now
H and M are elementary equivalent, and equality is interpreted as just another
binary predicate in H, satisfying properties dictated by the equality axioms.

The two sides of this representation result together in fact show that there
is a bijection between the class of closed term models and the class of general
models (modulo isomorphism). It also shows that there is no inherent need to
interpret identity as equality. The interpretation of equality as identity forces
the choice of the usual semantics of FOL — if this restriction is abandoned,
closed term models are a sound and complete semantics for first order logic with
equality, provided the truth sets satisfy the properties dictated by the equality
axioms. What we have argued here are several things. First, the usual axioms
for equality do in themselves not force the identity interpretation. Second, if the
usual identity interpretation of equality is abandoned, we can restrict ourselves
to consideration of closed term models without loss of generality.

In particular, we can incorporate equality in Ambivalent Logic without
changing the style of the semantics for Ambivalent Logic. In the closed term
semantics, equality will not correspond to real identity on the domains.

Let us consider, in some more detail, the usual equality theory ET for FOL.
It can be axiomatised (abstracting from arities) as follows:

I Vezr==z

VaVy(z =y — y = z)

VeVyVz(z =y — (y =2z - = = 2))
(I1) VzVyVi(z =y — t =t{z/y})
(IIT) VaVyVt(z =y — (t — t{z/y}))

We obtain an appropriate closed term semantics for AL extended with these
equality axioms, by additionally restricting the truth sets to satisfy the cor-

14

responding properties. In particular, ET(I) requires truth sets on which = is
an equivalence relation. ET(I,II) requires truth sets T' (say, with underlying
language Lg) which additionally satisfy the following: if d = ¢ € T, and t is
an Lg-expression with only z free, then t{z/d} = t{z/c} € T. ET as a whole
requires truth sets 7" which in addition also satisfies the following property: for
all closed Lg-expressions d and ¢, and for all Lg-expressions t with only z free,
ifd=ceT,then t{z/d} € T iff t{z/c} € T.

Observe that, in the context of the closed term semantics style, we are not
committed to ET as a whole. In particular, there are interesting differences
between AL + ET(I,II) and AL + ET, which we will more closely consider in
the next section.

In the sequel, when we consider AL, we explicitly mean AL without equal-
ity. If we consider either of AL + ET(I), AL + ET(II), and AL + ET, we
will implicitly assume that the semantics satisfies the corresponding conditions
mentioned above.

5 Formal results

In the present section, we set out to develop some basic theory for Ambivalent
Logic. First, we prove soundness and completeness of AL w.r.t. the closed term
semantics.

Theorem 5.1

AL is sound and strongly complete with respect to the closed term semantics;
AL is strongly complete for infinitely extendible theories with respect to Herbrand
semantics.

Proof: Soundness is left to the reader. The completeness proof follows the
standard completeness proof for FOL.

Let S be a consistent AL theory with underlying language L = Lg. First
extend S to a Henkin theory S*, as follows.
Extend the set of generating constants G with a new constant d, and let L' =

Lg 4y
Let #1,¢2, d3,... be an enumeration of all the expressions of L' with only
z free. Let di,ds,ds,... be an enumeration of all the closed expressions of L'

that are not expressions of L. A carefully chosen subset of these expressions
will serve as Henkin constants. Define C,, as the set of closed expressions that
occur as terms in ¢; A ... A ¢,.

Define
SO =)
my = min{k|di & C1},
S1 = So U {3z.¢1(x) = é1(dm,),
Mpt1 = min{k > mu|dp & Cni1},
Sp+1 = SpU {3$-¢n+1($) - ¢n+1(dmn+1)7
S* = US,.

15

S* is a Henkin theory. Conservativity of S,4; over S, can be proven in the
usual way. Therefore, S* is conservative over S and thus consistent.

Next, extend S* to a maximally consistent theory S™, by the Lindenbaum
lemma. The language of S™ is L', and S™ is a Henkin theory. A model
M = (D,T) for S™ is obtained as follows. Let D consist of all the closed
expressions of L'. Let T consist of the closed atomic expressions that belong to
S™. By induction on the complexity of sentences, M is a Herbrand model for
S™. By conservativity of S™ over S, M is a closed term model for S.

For infinitely extendible theories a model can be constructed in a slightly
more elegant way. The closed expressions of L that do not occur as terms in the
theory can be used as the Henkin constants. The resulting model is a Herbrand
model for the theory. O

We leave it to the reader to check that the above result also goes through
for AL + ET(I), AL + ET(LIT), and AL + ET.

Proposition 5.2 Let S be a finite set of AL expressions, in which at least one
parameter occurs. Then S is infinitely extendible.

Proof: Let g be a parameter occurring in S. Then g, g(g),9(g(g)),... is an
infinite set of closed expressions in the language underlying S. In contrast, the
number of closed expressions of this language that occur as terms in expressions
of S, is finite, as S is a finite set. O

An immediate consequence of the above theorem and proposition is the
following.

Corollary 5.3 Every satisfiable AL sentence has a Herbrand model.
The following notion of normal form is the appropriate version for AL.

Definition 5.4 An expression F is in normal form if F = Q1z1,...,Q@QnZnt,
where

1. The Q; are quantifiers V or 3.

2. t is built up from atomic expressions and the connectives -, V, and A;
in particular, in any subexpression of ¢ of the form Qy.s, where @ is a
quantifier, Q is an inside quantifier.

3. The variables z; are mutually distinct.

4. If Qy.s is a subexpression of ¢, where @ is an (inside) quantifier, then y is
distinct from any of the z;. O

Lemma 5.5 For every formula F there is an equivalent formula F', such that
F' is in normal form.

16

Proof: By the usual methods. |

The Skolem form F* of a normal form expression F' can be obtained by the
usual methods (cf., for instance, Schoning [Sch89] for an algorithm to obtain
Skolem forms). Observe that Skolemisation does leave the inside quantifiers
and connectives intact.

Next we prove an AL version of the usual s-equivalence theorem. The proof
differs from the usual proof in a crucial aspect. In the usual proof, essential use
is made of the option to use non-trivial interpretation functions on domains.
In particular, a model M for a normal form formula F' is extended to a model
for its Skolem form by extending the signature of M with functions on its
domain that interpret witnesses of the existential quantifiers. In the case of
Ambivalent Logic, this construction cannot be used, as we do not allow for non-
trivial interpretation functions. For clarity of this exposition, assume that M is
a Herbrand model for F. The introduction of the Skolem functions then results
in a proper extension of the domain of M. As a result, instead of obtaining a
model M’ for the Skolem form by a proper extension the interpretation valuation
functions of M, a new model has to be constructed. The upshot is that this new
model M’ is a Herbrand model for the Skolem form F*, in this sense the result
below is stronger than the corresponding usual result for FOL. However, the
construction of M’ is a bit more involved in the ambivalent case. The truth set
T' of M' is obtained by projecting the expressions of the extended language on
the expressions of the original language, and by the taking 7" as the pre-image
of T' under this projection. The projection (translation) is the identity function
on the original language.

The proof we give here is given for the case of AL, but can be generalised to
FOL and intermediate cases.

Theorem 5.6 (s-equivalence) For every closed expression F' in normal form,
F is satisfiable iff its Skolem form is satisfiable.

Proof: Let F = Vz;,3y;...Vz,3y,.¢, where all outside quantifiers are indi-

cated. Let Lg be the underlying language of F'.

Let fi,..., fn be new parameters not occurring in ¢.

Let L' = LgU{f1,~~~,fn}‘

Let F* =Vz; .. -V-'En~¢{yl/fl(xl)a cee ,yn/fn(wla s awn)}

Let ¢' = ¢{y1/f1(21),-- -, Yn/fn(@1,...,20)}, that is, F* =Vz, ... Vz,.¢"
The proof of the left-to-right direction is as usual. For the converse direction,

let, (by Corollary 5.3), M = (D, T) be a Herbrand model for F’; here, D consists

of the closed expressions of Lg. We can now, as usual, by the axiom of choice,

define (external) functions vy,...,v, on D, such that for all dy,...,d, € D

Ma {ml/dlayl/vl(dl)a LR 7$n/dn7yn/vn(d1) .. 'adn)} |= ¢ (I)

We construct, using M and the functions vy, ...,v,, a Herbrand model M’ =
(D', T"), where D' consists of all the closed expressions in L', such that M' =

17

F*. Observe that D is a strict subset of D'.
We will define the truth-set 7" using the following translation (or projection)
(-)* of expressions of L' into expressions of Lg.

Forallce G,c*=c

e For all variables z, let z* =z

For f;, choose a c; € G, and let f* =¢;

If t = f; and n =4, let (¢)(t1,...,tn)" = vi(t],...,t});

Otherwise, (t)(t1,...,tn)" = (#*)(t],- -, t}).

e (AV B)* = A*V B* and similarly for other binary connectives
o (RA)* =-A4*

o (Vz(A))* =Vz(A4A*)

o (Fz(A))* = Jx(A*).

Now for all expressions ¢ in Lg, t* = t. In particular, (¢)* = ¢. Also, let
t be an expression in Lg, and let 0 = {z1/s1,...,2k/sk} be a substitution
such that the s; are L’-expressions. We leave it to the reader to check that
(to)* = t*{z1/s%,...,zk/s}} = t{z1/s},...,2x/s;}. Therefore, the following
equation (II) holds:

(¢'{$1/d1),...,$n/dn})* =

(¢{z1/di,y1/ fi(dr),-- s Tn/dn,Yn/ falds, ... dn)})”

¢*{.’L‘1/d¥, yl/(fl(dl))*s .. 'awn/d;’ yn/(fn(dh v 7dn))*} (II)
¢lzr/df, y1/vi(dY), .-, Tn/dy, yn/vn(d], - .., d7)}-

Now define the truth set 7" as follows:

T'={tel :teT}
By induction it follows that for all sentences A in Lg,
MEA f MEA"
In particular, by (I) and (II), M’ = F*. m]
Another folklore result is Herbrand’s theorem:

Theorem 5.7 A closed formula in Sklolem form with matriz F is unsatisfiable
iff there is a finite subset of the Skolem expansion of F' which is unsatisfiable.

18

The usual proof of the above theorem goes through, without modification, for
Ambivalent Logic.

All of the above results (5.2 to 5.7) also hold for extensions of AL with any
of the above-mentioned equality theories.

We have proven some of the essential ingredients to prove soundness and
completeness of resolution for Ambivalent Logic: the construction of Skolem
forms, the s-equivalence theorem and the Herbrand theorem. The missing in-
gredients for the completeness of resolution are the lifting lemma (which allows a
transformation of resolution refutation on clauses in propositional logic to a res-
olution refutation on clauses in predicate logic), and decidability of unification
for Ambivalent Logic. The traditional proof of the lifting lemma goes through,
without modification, for Ambivalent Logic. Unification theory for Ambiva-
lent Logic will be discussed in Section 6. The traditional proof of soundness of
resolution for FOL (see for instance Schoning [Sch89]) goes through, without
modification, for Ambivalent Logic. We conclude that, modulo the results on
unification in the next section, we have the following result:

Theorem 5.8 Resolution is a sound and complete inference method for AL.

We conclude this section by proving one more result. Given the fact that AL
is a syntactic extension of FOL, and has the same derivational calculus, the
question of conservativity of AL over FOL arises, that is: if a formula ¢ in
standard syntax is derivable in AL, is it then also derivable in FOL — and vice
versa? The answer, as the following theorem shows, is affirmative. This result
shows that AL is an extension of FOL. The proof uses both directions of the
above s-equivalence theorem 5.6. The technique used in the proof is similar to
that used in the proof of Theorem 5.6: from a model, a new, ambivalent model
is defined, the truth-set of which is a pre-image of a syntactic projection to the
truth-set of the original model. In this case, a Herbrand model for a language
with standard syntax, is extended to an elementary equivalent Herbrand model
for the associated ambivalent language.

Theorem 5.9 Let ¢ be a formula in standard syntaz. Then Eror ¢ iff EarL ¢.

Proof: The left-to-right direction follows from the fact that every derivation
in FOL is also a derivation in AL, combined with completeness of FOL, and
soundness of AL. For the converse direction (conservativity of AL over FOL),
it suffices, by contraposition, to show that if ¢ is satisfiable in FOL, then it is
also satisfiable as an AL formula.

So let ¢ be satisfiable in FOL. Without loss of generality we can assume
that ¢ is in normal form. By the s-equivalence theorem for FOL, the Skolem
form ¢° is also satisfiable. In particular, there is a Herbrand model M = (D, T)
satisfying ¢°. Using M, we will construct an ambivalent Herbrand model M’ =
(D', T} satisfying ¢°.

19

Let C, F, and P be the set of constants, respectively functions, respectively
relation symbols occurring in ¢°. Then the universe D of M is generated by
(C,F). Let D' be the ambivalent universe generated by the parameter set
CUF UP. In order to define the truth set 7", we will make use of a (total and
surjective) function (-)* from D' to D. (The definition of * is inspired by the
abstraction function defined in [Kal]; here, we use, instead of fresh constants,
some element of D.)

Choose an arbitrary d € D. Define * : D' — D as follows:

1. Force CUFUP,
ct:=c ifceC
c*:=d otherwise.

2. for closed terms (t)(t1,...,tn),
(@) (t1y- .- tn))* :=t(t1%,...,t*) if t is an n-ary predicate in P
®)(t1,. . tn)* :=d otherwise.

3. For all other t € D', t* :=d.

Observe that, for every t € D, t* =t.
Using the function *, the truth set 7' of M’ can now be defined as follows:

T'={teD :¢t €T}
Now let ¢* =Vz;...Vz,.A, where A is a conjunctive normal form.

M Eror Vo1 ...V, A

= {by definition of the satisfaction relation}

for all di,...,d, € D M Erpor A{z1/d1,...,2zn/dn}
= {by definition of * and by the form of A}

forall di,...,d, € D', M Eror A{z1/d1*,...,zn/dn*}
= {by definition of 7"}

for alldy,...,d, € D', M' Ear A{z1/dy,...,zn/dn}
= {by definition of the satisfaction relation}

M' EarL Vz1 ... Vz,. A

From the above implication and the easy side of the s-equivalence theorem 5.6,
it immediately follows that M’ is a closed term model satisfying ¢. O

The soundness direction of the above theorem generalises to AL + ET(I),
AL + ET(LII), and AL + ET. The completeness side however, trivially does
not hold for either of AL + ET(I) and AL + ET(LII), as FOL incorporates all
of ET.

Although AL + EQ(LII) is not conservative over FOL for formulas with
equality, this logic is of some interest in the context of intensional logic. By
the soundness and completeness w.r.t. the appropriate semantics, it does not

20

satisfy ET(III) — therefore, it is opaque w.r.t. substitutions of equal terms. In
addition, by the ambivalent syntax of AL, which allows for all expressions to
occur in term positions, AL + EQ(LII) has identity naming, that is, expressions
can be represented by themselves. In the domain of knowledge and belief this is
a useful property. In contrast, AL + ET is, by the above theorem, a conservative
extension of FOL.

6 TUnification

In the present section we show how the Martelli-Montanari unification algorithm
can be adapted to the case of ambivalent syntax. We show that the adapted
algorithm (which is defined on page 23) has all the desired properties, in partic-
ular, termination and, in case of successful termination, generation of unifiers
which are most general within an appropriate class of unifiers. We follow the
outlines of the theory for unification as given in Doets [Doe94], to which we also
refer the reader for the usual definitions of unifier and most general unifier.

There are several differences between unification for standard syntax and
unification for full ambivalent syntax.

1. In ambivalent syntax, functions and predicates are arityless. Unification of
two atoms with different arities has to be excluded. An extra action (9) is
sufficient: halt with failure on an equation (¢)(¢1,...,tn) = s(s1,...,5m),

if n #m.

2. In the Martelli-Montanari algorithm for standard syntax, there are two
actions for functional atoms:
halting with failure on f(t1,...,tn) = g(s1,--.,8n), if f is unequal to g;
replacement with ¢; = s1,...,t, = $p, otherwise.
In ambivalent syntax, all expressions can occur in function positions. The
above two actions are replaced by one single action (8), accounting for the
unification of the expressions in the function positions as well as the argu-
ments. An extra action (10) is needed to prevent unification of functional
atoms with expressions that are not functional atoms or variables. In ad-
dition, two extra actions (6) and (7) deal with unification of parameters.

3. In ambivalent syntax, conjunctive, disjunctive, implicational, and negated
expressions occur as terms and as subexpressions, thus they are candidates
for unification. For example, zVy and aVc(z) are unified by {z/a,y/c(z)}.
This is accounted for in the unification algorithm by the actions (11) and
(13). Appropriate failure conditions are reflected by the actions (12) and
(14).

4. Likewise, quantified expressions have to be dealt with. For closed quan-
tified expressions, semantical identity coincides with syntactical identity.
However, quantified expressions in general are still liable for unification.

21

First, they can unify with variables. For example, 3z(z) and y are uni-
fied by {y/3z(z)}. Further, quantified expressions can contain free vari-
ables, which are candidates for unification. As an example, 3z(z(y)) and
Jz(z(c)) are unified by {y/c}. In contrast, 3z(z) and Jy(y) cannot be
unified, as both are closed expressions.

Unification of quantified expressions is partly engineered by action (15),
which eliminates identical quantifiers: Jz.t = 3z.s is repaced by t = s, and
similarly for the universal quantifier. In contrast, the semantic distinction
between Jz.t and Jy.t{z/y} is reflected in action (16), which halts with
failure on equations 3z.t = Jy.s, if = and y are different (and likewise for
the universal quantifier).

However, the (necessary) action (15) might lead to incorrect results, as it
releases bound variables, which subsequently become, incorrectly, candi-
dates for non-trivial unification. As an example, action (15) replaces the
unsolvable equation Jz.xz = 3z.c with the solved equation z = c. (Below
we will formally define the notion of solved equation.) This problem is
solved in two ways.

First, before the algorithm is run on a set of equations, all the bound
variables should be renamed to marked variants. An appropriate renaming
function will be given in Definition 6.1 below. This enables us to keep track
of the origin of variables during execution of the algorithm.

Second, the algorithm should treat marked and unmarked variables dif-
ferently. In particular, marked variables, which should be thought of as
bound variables, only unify with themselves and with unmarked variables.
Trivial unification of marked and unmarked variables is dealt with in ac-
tion (1). Non-trivial unification of marked variables with anything but
unmarked variables is excluded by action (2). However, unification of un-
marked variables with expressions in which marked variables occur free,
should be possible. For example, consider the expressions 3z(p(z) V g(z))
and Jz(y V ¢(z)), where y is an unmarked variable. These expressions are
unified by {y/p(z)}. That is, unification of unmarked variables with ex-
pressions in which unmarked variables occur free, should be allowed. This
is taken care of by action (4). The usual actions (3) and (4) only apply if
the left-hand variables are unmarked.

The appropriate marking of bound variables is obtained by applying a mark-

ing function (-)™, which replaces all occurrences of bound variables with marked
copies of these variables. The effect of the marking function is a renaming of the
bound variables in an expression, with the effect that no variable occurs both
bound and free after marking.

Before we define the marking function, we introduce some notation. Recall
that (t)(t1,...,tn) is a functional atom with n-ary predicate (or function) ¢, and

22

Martelli-Montanari unification algorithm for ambivalent syntax

1

10

11

12

13

14

15

16

=z
remove
' =t

halt with failure
=1

halt with failure
=1t

where z is a (marked or unmarked) variable

where z' is a marked variable, ¢ is not an unmarked variable,
and ¢ is different from z'

where z is unmarked, t is different from z, and = occurs in ¢

where z is unmarked, t is different from =,
and z does not occur in ¢

replace z by t in all other equations

t==x

replace by z =t
c=c

remove
c=t

halt with failure

where t is not an unmarked variable
where c is a parameter

where ¢ is a parameter, ¢ is not a variable
and c¢ and t are different

&) (E1s-- - tn) = (8)(S15---,8n)
replace by t = s,t; = $1,...,tn = Sn
®) (1, ta) =(s)(s1,...,5m) wheren #m

halt with failure
) (t1,.. . ta) =s

halt with failure
-t = s

replace by t = s
-t=s

halt with failure
t1 0ty = 81 0 89

where s is not a variable or a functional atom

where s is not a variable or a negated expression

where ¢ is one of the binary connectives

replace by t; = s1,t2 = s2

t1 0t =8
halt with failure
Qz'(t) = Qz'(s)
replace by t = s
Qz'(t) =s

halt with failure

where s is not a variable or of the form s; ¢ so
where @ is one of the quantifiers 3 and V

where @) is one of the quantifiers 3 and V,
s is not a variable and s is not of the form Qz'(v)

23

arguments t;. We will use the notation ¢(zy,...,2,) to indicate an expression t
for which FV(t) C {z1,...,zn}.

Definition 6.1 (Marking bound variables)

m

cm=c for parameters c,
" =z for unmarked variables x,
'™ =1 for marked variables ',

(@) (.. t))™ = E™)E -5 80)

(z(t))™ = =" (t{z/z'})™ where x is an unmarked variable,

(3'(t))™ = Fz' (t™) where ' is a marked variable,

and similarly for universally quantified expressions.

In addition, (-)™ commutes with the logical connectives. O

The unification algorithm for AL will only yield the desired results if applied to
terms in which all the bound variables are marked.
We will use the following terminology:

Definition 6.2 An expression ¢ is clean if t™ = t. A set of equations {t; =

$1,-+-stn = Sn} is clean if all of the t; and s; are clean. A pair of sequents
(t1,--stn), {S1,...,8n) is clean if the associated set of equations {t; = s1,...,t, =
Sn} is clean. O

In particular, marked variables can occur free in clean expressions, but in con-
trast, the latter do not contain bound occurrences of unmarked variables.

In the correctness proof of the algorithm we need the following notions of
ambivalent substitution and ambivalent unifier:

Definition 6.3 o is an ambivalent substitution if no marked variables occur in
the domain of o. O

Definition 6.4 Let t and s be expressions. ¢ is an ambivalent unifier for t and
s, if o is an ambivalent substitution and to = so. a

Observe that not every unifier is also an ambivalent unifier. For example,
{z'/f(y)} unifies g(z') with g(f(y)), while no ambivalent unifiers exist for this
tuple. In contrast, every ambivalent unifier is a unifier.

Proposition 6.5 Let L = (t1,...,t,) and R = (s1,...,8n) be two sequents of
clean expressions such that no marked variables occur free in any of the t; and
s;. Then L and R are unifiable iff there is an ambivalent unifier for L and R.

Proof: Suppose o unifies L and R. Now let 7 be the restriction of o to
FV(L)U FV(R). Then, by assumption, 7 is an ambivalent unifier of L and
R. For the other direction, notice that every ambivalent unifier is a unifier. O

We relativise the notion of most general unifier to the class of ambivalent
unifiers.

24

Definition 6.6 An ambivalent unifier 8 for a set of (clean) expressions E is a
most general ambivalent unifier for E (or, in short, an m.g.a.u.) if for every
ambivalent unifier o for E there is an ambivalent substitution 7 such that o =
f7. An m.g.a.u. 6 for E is strong if for every ambivalent unifier o of E, o = 0.
O

An m.g.a.u. is not necessarily an m.g.u., as the following counterexample wit-
nesses.

Counterexample 6.7 Let 8 = {y/f(z')}. It is easy to check that 8 is an

m.ga.u. for E = {p(z'.f(z')) = p(3z'.y)}. Also, 0 = {y/f(z'),z'/y} is a
unifier of E. However, suppose there is a substitution 7 such that ¢ = 67.
Then f(z')T = f(z'), and thus ' € dom(7). But this contradicts {z'/y} €

{y/f (")},

In addition, we need to adapt the notions of solved equation and equivalence
between sets of equations.

Definition 6.8 A set of equations {¢t; = s1,...,t, = sp} is solved if
1. the t; are pairwise different, unmarked variables, and

2. no t; occurs in any of the s;. 0O
A solved set of equations £ = {z; = s1,...,Z, = Sp} determines a most
general ambivalent unifier {z1/s1,...,%n/sn} for E (or, more precisely, for the
associated pair of sequences (z1,...,%) and (s1,...,5,)). We need one more
definition.

Definition 6.9 Two sets of equations of ambivalent terms are equivalent if they
have the same ambivalent unifiers. O

Now we are in position to prove correctness of the unification algorithm.

Theorem 6.10 The Martelli-Montanari unification algorithm for ambivalent
syntaz, when applied to a finite set of clean equations, results in a solved set of
equations, determining a strong most general ambivalent unifier for the associ-
ated sequences in case an ambivalent unifier exists, and terminates with failure
otherwise.

Proof: The theorem follows from the following claims.

Claim 1 Every non-halting action applied to a set of clean equations produces
an equivalent set of clean equations.

Proof: None of the actions 1, 4, 5, 6, 8, 11, 13, and 15 introduces a bound,
unmarked variable. Therefore any of these actions transforms a set of clean
equations into a new set of clean equations.

Preservation of equivalence is trivial for the actions 1, 5, 6, 8, 11, and 13.
For action 4, preservation of equivalence is proven as usual.
For action 15, let o be an ambivalent substitution. Then the following holds:

25

3z'(t))o = (F2'(s))o <= {z' & dom(o)}
3z'(to) = 3z'(s0) <= to = so. O

Claim 2 The algorithm terminates.

Proof: Consider the lexicographic order <3 on N?. That is,
(n1,n2,n3) <3 (M1, Mg, m3)

iff
ny < mg

or n; =m; & ny < mg
or my =my & ny =mgy & ng < mg.

Given a set of equations F, we call an unmarked variable z solved in E if, for
some expression t, z =t € E, and this is the only free occurrence of z in E. We
call a variable z unsolved in E if x is unmarked and z is not solved in E.

With each set of clean equations E we now associate the following three
functions:

uns(E) := the number of unsolved variables in E,

lfun(E) := the total number of occurrences of parameter symbols on the left
hand side of the equations in E,

Isym(E) := the total number of symbols (including brackets) occurring on the
left hand side of equations of E.

We claim that each of the non-halting actions of the algorithm strictly reduces
the triple (uns(E), lfun(E),lsym(E)).

Indeed, action 4 decreases uns(E) by 1, while none of the successful actions
increase uns(E). Also, none of the other successful actions increase I fun(E).
Action 5 decreases I fun(E) by 1if t is a parameter, and decreases lsym(E) by
at least 1 otherwise. The actions 1, 6, 8, 11, 13, and 15 all decrease lsym(E).
Termination of the algorithm now follows from the well-foundedness of <s.

O

Claim 3 If the algorithm terminates successfully on a set of clean equations,
then the final set of equations is solved.

Proof: Suppose the algorithm terminates successfully, resulting in a set of clean
equations E. Then none of the actions 5 — 16 applies to E, so the left hand
expressions are all variables. Action 2 does not apply to E, so these are all
unmarked variables. Finally, actions 1, 3, and 4 do not apply to E, so none of
these variables occurs on the right hand side of any of the final equations. O

Claim 4 If the algorithm halts with failure on a clean set of equations, then
this set does not have an ambivalent unifier.

26

Proof: Suppose the algorithm halts on the clean set E. If failure is the result
of action 2, then the equation =’ = t, where t is different from z' and ¢ is not a
variable, is a member of E. Clearly there are no ambivalent unifiers for z’ = t¢.
If failure is the result of action 3, then z = t is an element of E, and there is
no unifier o for £ and ¢, as xo is a proper subterm of to. If failure is the result
of action 7, then ¢ =t is an element of E, and there is no unifier o for ¢ and ¢,
because co = c, and to is either a parameter different from c or an expression
that is neither a variable nor a parameter. In the other cases, similar arguments
apply. O
This completes the proof of Theorem 6.10. m|

Clearly, this result is less general than the corresponding result for the orig-
inal version of the unification algorithm. First of all, it applies only to those
equations in which the sets of free and bound variables are distinct. It is an
open question whether this restriction can be dropped. Second, the unifiers
generated are most general only within the class of ambivalent unifiers, that is,
those unifiers for which the domain does not contain any variable that occurs
bound in the original set of equations. Counterexample 6.7 above suggests that
this restriction can not be dropped.

As a corollary of the above theorem we now have a decidable unification al-
gorithm for Prolog syntax. Clearly, in the Prolog case, where quantified expres-
sions do not occur in term positions, we do not have to deal with the renaming
of bound variables. The relevant actions in the Prolog version of the unification
algorithm are the Prolog actions 1, 3,4, 5,6, 7, 8,9, and 10. We leave it to the
reader to check that the following holds.

Theorem 6.11 The Martelli Montanari unification algorithm for Prolog’s syn-
tazx, consisting of the Prolog actions 1, 3, 4, 5, 6, 7, 8, 9, and 10 results in a
solved set of equations, determining a strong most general unifier in case a uni-
fier exists, and terminates with failure otherwise.

7 Comparison with Hilog

Hilog (Chen et al. [CKW93]) was developed as a language for higher order Logic
Programming. In the discussion below, we assume that the reader is familiar
with Hilog. We will here mainly point out some of the differences and similarities
between Hilog and AL.

AL syntax is an extension of the syntax of Hilog. While the syntax of AL
is fully ambivalent, Hilog syntax is characterised by the occurrence of terms in
formula-, function- and predicate positions. (For example, (c(a))(c), ¢ — p(z),
and Vz3y.(z(p))(y) are Hilog formulas.) Other than AL, Hilog does not admit
quantified expressions in any unusual positions. As an example, p(Vrp(z)) is
an AL expression, but not a well-formed Hilog expression. In either syntax, the
parameters are arityless.

27

While syntactically AL can be considered an extension of Hilog, the two
logics differ considerably in semantics. The distinguishing feature of the (first-
order) Hilog semantics is that each parameter of the language has a unique
intension—that is, the interpretation function associates with each individual
parameter (regardless of its contextual role), exactly one object in the domain
of a model. With each intension then, several extensions are associated that
capture the different contextual roles of the parameter. This extends to general
terms. As a consequence, the schema VzVy.(x = y — &(z) « ¢(y)), and also
VzVyVz.(z = y — z(z) < y(z)). In contrast, in the context of AL we have
a choice between validating the above schema or not, by either taking all of
ET as the equality theory, or restricting the equality to ET(LII). Thus, unlike
AL, Hilog is not appropriate for intensional logics, where opaqueness is usually
desirable. (In contrast, observe that equivalence of terms does not imply their
equality in neither Hilog nor ALL.)

Another difference between AL and Hilog is found in comparing their respec-
tive relations to FOL. As we have seen, AL is a conservative extension of FOL
without equality, and AL with the usual equality theory ET is a conservative
extension of FOL with equality (Theorem 5.9). In Hilog, conservativity over
FOL is restricted to the classes of equality free formulas and definite clauses in
which equality only occurs in body-atoms. A standard derivational calculus for
FOL is sound and complete w.r.t. AL semantics (Theorem 5.1). In contrast,
in accordance to the intension of developing Hilog as basis for Logic Program-
ming, paramodulation is introduced in [CKW93] as a derivational calculus for
Hilog, and its soundness and completeness with respect to the Hilog semantics
is proven. It is also shown that Hilog can be encoded in FOL, and a standard
derivational calculus for FOL can be soundly used for the derivation of encoded
Hilog formulas.

It should be noted that, despite the second order aspects of Hilog and AL
syntax, both are essentially first order theories. In higher order predicate logic,
the second order variables range over all relations over the intended domain.
That is, in higher order semantics, functions and predicates are identified with
their domain. In contrast, in Hilog and AL, the ‘second order’ variables range
over elements of the intended domain. As a result, relation comprehension does
not generally hold in AL and Hilog. That is, 3pVz; ...V, (p(z1,...,20) <
¢(z1,...,%,)) is not generally valid in Hilog and AL. For example, relation
comprehension is not true in AL for 3zq(z,y,z). But, unlike in Hilog, both
IpVz(p(z) « —¢(z)) and IpVz(p(z) « Ju(g((u))(x)) are valid in AL.

A consequence of the identification of functions and predicates with their
extensions in higher-order logic, is that the undecidability of this extensional
equality carries over to the unification problem. Both for AL and Hilog however,
unification is decidable.

28

8 Conclusion

The results reported show that, with minor modifications, basic proof theoretic
results for first order predicate logic also go through for Ambivalent Logic. In
particular, unification for AL is decidable, and both a standard derivational
calculus and resolution are sound and complete inference methods for AL. A
conservativity result shows that AL should be considered as a (syntactic) ex-
tension of first order predicate logic. All of the results reported relativise to
subsystems of Ambivalent Logic that are frequently used in practice, in partic-
ular Prolog syntax and the syntax(es) used in Vanilla meta-programming and
data bases. In addition, various properties of AL, such as the optional opaque-
ness with respect to equality and the flexibility of its syntax, suggest that AL
may provide an interesting format for the representation of knowledge and belief.

Acknowledgements

This work reported here was originally inspired by ideas of Bob Kowalski and
has benefited from many fruitful discussions with Barry Richards. Discussions
with Bern Martens, Krzysztof Apt, and John Lloyd have always been very
constructive. Recent comments and suggestions by Pat Hill, Danny De Schreye,
Sten-Ake Tarnlund, and Johan van Benthem, helped improve this paper. We
especially want to thank the editors of this volume for their support.

Marianne Kalsbeek was supported by the Dutch Organisation for Scientific
Research (N.W.0.).

References

[Apt93] K. R. Apt. Declarative programming in Prolog. In D. Miller, editor,
Proc. International Symposium on Logic Programming, pages 11-35.
MIT Press, 1993.

[AT] K.R. Apt and F. Teusink. Comparing negation in logic programming
and in Prolog. This volume.

[CKW93] W. Chen, M. Kifer, and D.S. Warren. Hilog: A foundation for higher-
order logic programming. Journal of Logic Programming, 15(3):187—
230, 1993.

[Doe94] H. C. Doets. From Logic to Logic Programming. MIT Press, 1994.

[Gab92] D. Gabbay. Metalevel features in the object level: modal and tempo-
ral logic programming III. In L.Farinas del Cerro and M. Penttonen,
editors, Intensional logics for programming, pages 85-124. Clarendon
Press, 1992.

29

[Jia94a)

[Jia94b]

[Kal]

[KK91]

[Ric74]
[Sch89]

Y. Jiang. Ambivalent logic as the semantic basis for metalogic pro-
gramming: I. In P. Van Hentenryck, editor, Proceedings of the In-
ternational Conference on Logic Programming, pages 387-401. MIT
Press, June 1994.

Y. Jiang. Ambivalent logic as the semantic basis of metalogic pro-
gramming: Theory and practice. Technical report, Imperial College,
Dept. of Computing, 1994.

M. Kalsbeek. Correctness of the Vanilla meta-interpreter and am-
bivalent syntax. This volume.

R.A. Kowalski and J. Kim. A metalogic programming approach to
multi-agent knowledge and belief. In V. Lifschitz, editor, Artificial
Intelligence and Mathematical Theory of Computation, pages 231-
246. Academic Press, 1991.

B. Richards. A point of reference. Synthese, 28:431-445, 1974.

U. Schoning. Logic for Computer Scientists, volume 8 of Progress in
Computer Science and Applied Logic. Birkhauser, 1989.

30

.

. language and computation

ILLC Research Reports and Technical Notes

Coding for Research Reports: Series-Year-Number, with LP = Logic, Philosophy and Linguistics; ML =
Mathematical Logic and Foundations; CL = Compuational Linguistics; CT = Computation and Complexity
Theory; X = Technical Notes.

All previous ILLC-publications are available from the ILLC bureau. For prepublications before 1994, contact
the bureau.

ML-94-01 Domenico Zambella, Notes on polynomially bounded arithmetic

ML-94-02 Domenico Zambella, End Extensions of Models of Linearly Bounded Arithmetic

ML-94-03 Johan van Benthem, Dick de Jongh, Gerard Renardel de Lavalette, Albert Visser, NNIL, A Study in
Intuitionistic Propositional Logic

ML-94-04 Michiel van Lambalgen, Independence Structures in Set Theory

ML-94-05 V. Kanovei, IST is more than an Algorithm to prove ZFC Theorems

ML-94-06 Lex Hendriks, Dick de Jongh, Finitely Generated Magari Algebras and Arithmetic

ML-94-07 Sergei Artémov, Artém Chuprina, Logic of Proofs with Complexity Operators

ML-94-08 Andreja Prijatelj, Free Algebras Corresponding to Multiplicative Classical Linear Logic and some
Extensions

ML-94-09 Giovanna D’Agostino, Angelo Montanari, Alberto Policriti, A Set-Theoretic Translation Method for
Polymodal Logics

ML-94-10 Elena Nogina, Logic of Proofs with the Strong Provability Operator

ML-94-11 Natasha Alechina, On One Decidable Generalized Quantifier Logic Corresponding to a Decidable
Fragment of First-Order Logic

ML-94-12 Victor Selivanov, Fine Hierarchy and Definability in the Lindenbaum Algebra

ML-94-13 Marco R. Vervoort, An Elementary Construction of an Ultrafilter on X1 Using the Axiom of Deter-
minateness

LP-94-01 Dimitar Gelev, Introducing Some Classical Elements of Modal Logic to the Propositional Logics of
Qualitative Probabilities

LP-94-02 Andrei Arsov, Basic Arrow Logic with Relation Algebraic Operators

LP-94-03 Jerry Seligman, An algebraic appreciation of diagrams

LP-94-04 Kazimierz éwirydowicz, A Remark on the Maximal Extensions of the Relevant Logic R

LP-94-05 Natasha Kurtonina, The Lambek Calculus: Relational Semantics and the Method of Labelling

LP-94-06 Johan van Benthem, Dag Westerstahl, Directions in Generalized Quantifier Theory

LP-94-07 Natasa Rakié, Absolute Time, Special Relativity and MLY

LP-94-08 Daniel Osherson, Scott Weinstein, Dick de Jongh, Eric Martin, Formal Learning Theory

LP-94-09 Harry P. Stein, Linguistic Normativity and Kripke’s Sceptical Paradox

LP-94-10 Harry P. Stein, The Hazards of Harmony

LP-94-11 Paul Dekker, Predicate Logic with Anaphora

LP-94-12 Paul Dekker, Representation and Information in Dynamic Semantics

LP-94-13 Jeroen Groenendijk, Martin Stokhof, Frank Veltman, This Might Be It

LP-94-14 Jeroen Groenendijk, Martin Stokhof, Frank Veltman, Update Semantics for Modal Predicate Logic

LP-94-15 Henk Zeevat, The Mechanics of the Counterpart Relation

LP-94-16 David Beaver, When Variables Don’t Vary Enough

LP-94-17 David Beaver, Accommodating Topics

LP-94-18 Claire Gardent, Discourse Multiple Dependencies

LP-94-19 Renate Bartsch, The Relationship between Connectionist Models and a Dynamic Data-Oriented The-
ory of Concept Formation

LP-94-20 Renate Bartsch, The Myth of Literal Meaning

LP-94-21 Noor van Leusen, The Interpretation of Corrections

LP-94-22 Maarten Marx, Szabolcs Mikulds, Istvan Németi, Taming Arrow Logic

LP-94-23 Jaap van der Does, Cut Might Cautiously

LP-94-24 Michiel Leezenberg, Metaphor and Literacy

CT-94-01 Harry Buhrman and Leen Torenvliet, On the Cutting Edge of Relativization: the Resource Bounded
Injury Method

CT-94-02 Alessandro Panconesi, Marina Papatriantafilou, Philippas Tsigas, Paul Vitinyi, Randomized Wait-
Free Distributed Naming

CT-94-03 Ming Lee, John Tromp,
Paul Vitdnyi, Sharpening Occam’s Razor (extended abstract)

CT-94-04 Ming Lee and Paul Vitinyi, Inductive Reasoning

CT-94-05 Tao Jiang, Joel I. Seiferas, Paul M.B. Vitanyi, Two heads are Better than Two Tapes

CT-94-06 Guido te Brake, Joost N. Kok, Paul Vitanyi, Model Selection for Neural Networks: Comparing MDL
and NIC

CT-94-07 Charles H. Bennett, Péter Gécs, Ming Li, Paul M.B. Vitidnyi, Wojciech H. Zurek, Thermodynamics
of Computation and Information Distance

CT-94-08 Krzysztof R. Apt, Peter van Emde Boas and Angelo Welling, The STO-problem is NP-hard

CT-94-09 Klaus Ambos-Spies, Sebastiaan A. Terwijn, Zheng Xizhong, Resource Bounded Randomness and
Weakly Complete Problems

CT-94-10 Klaus Ambos-Spies, Hans-Christian Neis, Sebastiaan A. Terwijn, Genericity and Measure for Expo-
nential Time

CT-94-11 Natasha Alechina, Logic with Probabilistic Operators

CT-94-12 Marianne Kalsbeek, Gentzen Systems for Logic Programming Styles

CT-94-13 Peter Desain, Henkjan Honing, CLOSe to the edge? Advanced Object-Oriented Techniques in the
Representation of Musical Knowledge

CT-94-14 Henkjan Honing, The Vibrato Problem. Comparing two Ways to Describe the Intraction between the
Continuous Knowledge and Discrete Components in Music Representation Systems

X-94-01 Johan van Benthem, Two Essays on Semantic Modelling

X-94-02 Vladimir Kanovei, Michiel van Lambalgen, Another Construction of Choiceless Ultrapower

X-94-03 Natasha Alechina, Michiel van Lambalgen, Correspondence and Completeness for Generalized Quan-
tifiers

X-94-04 Harry P. Stein, Primitieve Normen
Linguistische normativiteit in het licht van Kripke’s sceptische paradox

X-94-05 Johan van Benthem, Logic and Argumentation
X-94-06 Natasha Alechina, Philippe Smets, A Note on Modal Logics for Partial Belief
X-94-07 Michiel Leezenberg, The Shabak and the Kakais: Dynamics of Ethnicity in Iraqi Kurdistan

LP-95-01 Marten Trautwein, Assessing Complexity Results in Feature Theories

ML-95-01 Michiel van Lambalgen, Randomness and Infinity

CT-95-01 Marianne Kalsbeek, A Vademecum of Ambivalent Logic

Titles in the ILLC Dissertation Series:

1993-1 Transsentential Meditations; Ups and downs in dynamic semantics, Paul Dekker

1993-2 Resource Bounded Reductions, Harry Buhrman

1993-3 Efficient Metamathematics, Rineke Verbrugge

1993-4 Extending Modal Logic, Maarten de Rijke

1993-5 Studied Flexibility, Herman Hendriks

1993-6 Aspects of Algorithms and Complexity, John Tromp

1994-1 The Noble Art of Linear Decorating, Harold Schellinx

1994-2 Generating Uniform User-Interfaces for Interactive Programming Environments, Jan Willem Cornelis
Koorn

1994-3 Process Theory and Equation Solving, Nicoline Johanna Drost

1994-4 Calculi for Constructive Communication, a Study of the Dynamics of Partial States, Jan Jaspars

1994-5 Executable Language Definitions, Case Studies and Origin Tracking Techniques, Arie van Deursen

1994-6 Chapters on Bounded Arithmetic & on Provability Logic, Domenico Zambella

1994-7 Adventures in Diagonalizable Algebras, V. Yu. Shavrukov

1994-8 Learnable Classes of Categorial Grammars, Makoto Kanazawa

1994-9 Clocks, Trees and Stars in Process Theory, Wan Fokkink

1994-10 Logics for Agents with Bounded Rationality, Zhisheng Huang

1995-1 On Modular Algebraic Prototol Specification, Jacob Brunekreef

1995-2 Investigating Bounded Contraction , Andreja Prijatelj

1995-3 Algebraic Relativization and Arrow Logic, Maarten Marx

1995-4 Study on the Formal Semantics of Pictures, Dejuan Wang

1995-5 Generation of Program Analysis Tools, Frank Tip

