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Abstract

In the study of nonmonotonic reasoning the main emphasis has been on static
(declarative) aspects. Only recently there has been interest in the dynamic aspects of
reasoning processes, particularly in artificial intelligence. We study the dynamics of
reasoning processes by viewing them as a special class of processes, and by using
temporal logic to specify reasoning processes and to reason about their properties, just as
is common in theoretical computer science. In earlier work we have introduced a
temporal epistemic logic and used it to specify a number of nonmonotonic reasoning
processes. In the present paper we study this temporal formalism in more detail. It is
composed of a base temporal epistemic logic with a preference relation on models, and
an associated nonmonotonic inference relation in the style of Shoham, to account for the
nonmonotonicity. We present an axiomatic proof system for the base logic and study
decidability and complexity for both the base logic and the nonmonotonic inference
relation based on it. Then we look at an interesting class of formulae, prove a

representation result for it, and provide a link with the rule of Monotonicity.
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1 Introduction

In theoretical computer science temporal logic has been widely recognized as a valuable
tool for specifying processes and reasoning about their properties. In Artificial
Intelligence this view is not very common, partly because (nonmonotonic) logic is
usually thought of as a purely declarative notion. However, in nonmonotonic reasoning
dynamic aspects of reasoning processes can be interesting to study, just as is common in
computer science: there we often have declarative semantics next to procedural
semantics of processes. One of the differences between the notion of process in computer
science and in artificial intelligence lies in the nature of a state: in a computer it is
composed of the values of the variables, in a reasoning process it consists of the facts
which are believed at that time, so a state is an epistemic one.

A number of examples in which a temporal logic is used to specify reasoning
processes can be found in [ET94], where such specifications are introduced for default
logic (see [Re80]), classical inference systems and meta level architectures. Also, in
[ET95] it is shown that there exists a large class of reasoning processes that can be
specified in this temporal logic. Therefore it seems justified to study this temporal logic
formalism in more detail, which will be done in the present paper.

In section 2 we will introduce the temporal logic which is the basis of the

framework and in section 3 an extra restriction is imposed upon this logic. Section 4



describes the notions of minimal models and minimal entailment, which will be studied
in the rest of the paper. In section 5 decidability of this notion will be established and
section 6 gives complexity results for both the base logic and minimal entailment. In
section 7 we will look at a special class of formulae and prove a link with the rule of

monotonicity. Section 8 gives conclusions and suggestions for further research.

2 Temporal Epistemic Logic

When designing a logic capable of describing the behaviour of reasoning processes over
time, two important decisions have to be made: which temporal ontology is suited best
for the purpose, and what is a state of a reasoning process. We view a reasoning process,
performed by an agent for instance, as a stepwise process: the agent starts out with some
initial facts (possibly none) and attempts to derive consequences by applying rules; a
state where the agent has more knowledge results. It will then again try to derive new
facts resulting in a next state, etcetera, possibly ad infinitum. This suggests a temporal
ontology which is discrete and has a starting point. In theoretical computer science there
has been much debate whether time should be linear or branching (towards the future)
(see [BRR89]). The most important differences between these two approaches are that
linear time logic has in general a lower complexity but also less expressivity than
branching time logics . Although some results in [ET94] on specifying proof systems in
temporal logic seem to suggest that sometimes the higher expressivity of branching time
logic is needed, we will confine ourselves here to using linear time.

As suggested above, the important thing about the state of a reasoning agent at a
particular moment, is the knowledge it has derived. Kripke semantics can be used to
formalize such an information state. We will take propositional logic as the basic
language in which the agent can describe its knowledge. A modal operator K will be
used to denote the agent's knowledge. In principle the agent may perform (positive and
negative) introspection which suggests an S5 logic to describe knowledge.

Definition 2.1 (Language of knowledge)
Let P be a (finite or countably infinite) set of propositional atoms. The language
Lgs is the smallest set closed under:
e« if pe P then pe Lgs.
o if g,ye Lgs then Kqoay,—@pe Lgs
Furthermore, we introduce the following abbreviations:

<pv1|;E——.(-1q>A—|\|l),cp—)\vs—.(pvw,MtpE—.K—.cp,T =EpA-p,L=-T



If every atom occurring in a formula ¢ is in the scope of a K operator, we call ¢

subjective.

An example of a subjective formula is —Kp A K(g—p), whereas K(p A q) vs is not
subjective. In the rest of this paper we will be especially interested in subjective formulae
since they describe (only) the knowledge and ignorance of the agent. As we want to talk
about properties of the knowledge of the agent changing over time, this language will be
temporalized below.

In the usual S5 semantics a model is a triple (W, R, ) where W is a set of worlds, R is
an equivalence relation on W and = is a function that assigns a propositional valuation
to each world in W. We may however (see [MH92]), in the case of one agent, restrict
ourselves to normal S5-models, in which the relation is universal (each world is
accessible from every other world), and worlds are identified with propositional

valuations.

Definition 2.2 (S5 semantics)
A propositional valuation of signature P is a function from P into {0,1} where 0
stands for false and 1 for true. The set of such valuations will be denoted Mod(P). A
normal S5-model M is a non-empty set of valuations. The truth of an S5-formula ¢
in such a model, evaluated in a world m e M, denoted (M, m) kg5 @, is defined

inductively:
1. M, m) g5 p = m(p) =1, for pe P
2. (M, m) Fg5 QA Y o M, m) g5 ¢ and (M, m) kg5 ¥
3. (M, m) Eg5 @ = it is not the case that (M, m) kg5 @
4. M, m) g5 Ko =S M, m") Eg5 ¢ forevery m'e M

A pair (M,n) where M is a normal S5-model and ne M is called an information

state and the set of such pairs is denoted by IS.

It is easy to see that the truth of a subjective S5-formula in a model is independent of the
world in which it is evaluated, so if we restrict ourselves to subjective formulae, the

world m in which it is evaluated is often left out.

Remark
Note that an S5-formula is subjective if and only if it is equivalent to a formula of the

form Ko with ¢pe Lgs .



Proof
If @ is subjective, it is equivalent to K¢. Of course a formula of the form Ko is

subjective.

Axiomatizations for S5 are known from the literature (e.g. [HM85]):

Definition 2.3 (Axiom system for S5)
The axiom system of S5 consists of:

1. All instances of propositional tautologies
2. K@ - y) > Ko - Ky) K)
3. Ko—o
4. K¢ - KKo (Positive Introspection)
5. -Kog - K-Ko¢ (Negative Introspection)
and the following two rules:

1. L Sl 4 (Modus Ponens)

v
2. 2 (Necessitation)

Ko

If there is a proof for ¢ using this system, we will denote this by +gs o.

It is well-known that this system is sound and complete with respect to the class of

normal S5 models.

In order to describe past and future we will introduce temporal operators P, H, F, G and
O, standing for "sometimes in the past", "always in the past", "sometimes in the future",
"always in the future" and "always" respectively. Note that we do not want to talk about
the agent's knowledge of the future and past, but about the future and past of the agent's
knowledge. Therefore temporal operators may never be within the scope of the epistemic

K operator.

Definition 2.4 (Temporal epistemic language)
The language Ltgr, is the smallest set closed under
 if e Lgs then 9e LTEL
e if o,Be LrgL then aAB, -, Po,Fae LTEL
Again the abbreviations for v, —, T and L are introduced, as well as:

Go=-F-o), Ho=-P=o0) and Da=HoAo A G



If in the first clause we restrict ourselves to subjective formulae, we get the set of

subjective TEL formulae.

In the rest of this paper we will be interested in subjective TEL formulae since they
describe how the knowledge of the agent is changing over time. Based on the set of
natural numbers as flow of time and the notion of information state as formalization of a

state, the following semantics is introduced for temporal epistemic logic (TEL):

Definition 2.5 (Semantics of TEL)
A TEL-model is a function O: N —IS. The truth of a formula ¢ € LTgr, in I at
time point te N, denoted (9K, t) F o, is defined inductively as follows:

L(M0F o e MbFss o, if ge Lgs
2.(M,DFEQAY =3 (M, HE @ and M,y

3. (M, E 0 =3 it is not the case that (M, t) = @

4. (M, E P =3 Ise N suchthat s<t and (M,s)E @
5. (M, t)F Fo = 3se N suchthat t<s and (M,s)F @

A formula ¢ is true in a model o, denoted Mo, ifforallte N, (M, q.If ¢
is true in all models we write & @ (¢ is valid), and we write ykE @ (9 isa

semantical consequence of ) if for all models O and te N, (I, t) =y implies
(M, ,DFo

For future use we give the following definition (here O' stands for a sequence of O

operators of length i):

Definition 2.6
For ie N define at; := Pi(T) A H+1(1).

It is easy to see that (O, j) F at; if and only if i=j.

We would like to find an axiom system for TEL. The idea is to use the axioms of an
S5-system together with axioms for tense logic over the natural numbers. Instead of
proving soundness and completeness for the resulting system from scratch, we will use
results from [FG92] where a general method for temporalizing a given logic system is
presented. In their notation, TEL would be T(S5). We cannot directly apply their results
since they use the temporal operators Since and Until, but adaptation to our situation is

easy. Our class of flows of time contains only the set of natural numbers. First we will



give an axiomatic system for propositional tense logic over the natural numbers (from
[Go92)):

Definition 2.7 (Tense logic over the natural numbers)
The axiom system for tense logic over N consists of:

1. All instances of propositional tautologies
2. G - v) - (Go > Gy)
3. H(p - vy) - (Ho - Hy)
4. ¢ — HFo (Cp)
5. ¢ — GPo (CF)
6. Ho —» HHo (4p)
7. Go - GGo (4F)
8 F(T) (DF)
9. G(Go > 9) —» (FGp — Go) (ZF)
10. HHo - 9¢) > Ho (Wp)
and the following rules:
1. eV (Modus Ponens)
v
2. 2 2 (Necessitation)
Ge He

Using the axiom systems for S5 and tense logic, definition 2.6 of [FG92] allows us to

give an axiomatization for TEL:

Definition 2.8 (Axiomatization for TEL)
The axiom system of TEL consists of:
1. The axioms 1-10 of definition 2.7
2. The inference rules 1 and 2 of definition 2.7
3. For every formula a e Lgs, if g5 a then FrgL o (Preserve)

Using theorem 2.2 of [FG92], soundness of S5 and tense logic over N, we immediately

have:

Theorem 2.9 (Soundness of TEL)

The axiom system TEL is sound.

Theorem 2.3 of [FG92] states that if the system to be temporalized is complete and the

axiomatization of the logic with Since and Until is complete over a class of linear flows



of time, then the "merged" axiomatization is complete for the temporalized logic. Our
class of flows of time (consisting only of the natural numbers) is a subclass of the linear
flows of time. A slight adaptation of their proof yields the same result for temporalizing

over the temporal operators used in TEL. Therefore we have:

Theorem 2.10 (Completeness of TEL)
The axiom system TEL is complete.

Again borrowing from [FG92], theorem 3.1, and using the fact that both §5 ((MH92])
and tense logic over the natural numbers ([SC85]) are decidable, we have:

Theorem 2.11 (Decidability of TEL)
The logic TEL is decidable.

In the next section we will impose an extra restriction on our models.

3 Conservativity

We want to use subjective temporal formulae for describing the behaviour of a reasoning
agent. The reasoning will be assumed to be conservative, that is the agent's knowledge
will increase as it is reasoning. Although the actual implementation of the reasoning
behaviour may involve backtracking or the addition of extra assumptions which may
later be retracted, we are interested only in the increase of knowledge over time: adding
assumptions and later retracting them is assumed to be done in one step. This also
presupposes a world which does not change. We will restrict ourselves to conservative
behaviour here, though we agree that it may be worthwhile to investigate also non-
conservative behaviour.

In the following we are only. interested in subjective formulae, so we delete the
world from the information state. We will study consequence relations between
formulae, and it will turn out that these notions are independent of the propositional

signature. Therefore the propositional signature will be assumed finite.

Definition 3.1 (Conservative models)
i) We define the degree-of-information ordering < on information states as
follows:
for My, M e IS, M; <M, = M; c My



We write My <My if My <M, and Mj=M;.
ii) A TEL-model 9 is called conservative if for all se N:
Ms < Ms+1
iii) Validity and semantical consequence restricted to the class of conservative

models will be denoted by €.

The definition of the degree-of-information ordering is based on the observation that the
more valuations one considers to be possible, the less knowledge (or information) one
has. Note that for any conservative model ¢, time point s e N and propositional
formula ¢: if (OK,s) F Ko, then for t>s also (O, t) F K. This means that whenever a
formula is known, it will remain known in the future. The notion k¢ is not compact: the
set {Pi(T) |ie N} (where Pi stands for a sequence of i times P) is not satisfiable,

whereas each finite subset is.

Proposition 3.2 (Axiomatization)
Let C={0Ka - G(Kw)|o a propositional formula }, then for each TEL-model K:
O is conservative ¢ ME C & (M, t) = C for some te N.
Furthermore, the axiom system TELC, consisting of TEL plus the axioms of C, is
sound and complete with respect to the class of conservative TEL-models
(TELC-models).

Proof
Let oW be conservative and let te N. Suppose (X, t) = Ko and take s>t arbitrary.
Then for all m e M, mE= a. Take me 9, , then since O is conservative we have
Ms €M, so me ¢ and mE a. Therefore (O, s) = Ka, and since s was arbitrary
we have (M, t) E GKa, S0 (M, t) E Ko — GKo. We have (I, 0) F O(K o — GKay).
Suppose (M, t) C for some te N, but 9 is not conservative. Then there exists
se N and me M1 with me M. Let o be the conjunction of the literals that are
true in m (i.e. @ =A{pe P|mE p}AA{-p|mH p}; this is a formula since P was
assumed finite). Then since m ¢ s and for all m'#m, m' E —@y, we have
M, s) E K—Qpy, but as m € M 41 and m ¥ =@, (M, s+1) ¥ K—@p, SO
(M, s) ¥ GK—op. Thus (K, t) ¥ OKa - GKa), a contradiction.
The above shows that the axioms of C are sound. Now suppose k¢, then we have
for all TEL models M if O is conservative then = ¢. Since there are only a
finite number of non-equivalent propositional formulae for P, C can be taken to be
finite and therefore we can take the conjunction of its elements. So if (M, s) F AC
then O is conservative, so M= ¢ and therefore (I, s) F @. Thus we have ACE o,
and using the deduction lemma for TEL (which can be easily verified), E AC— o,



from which by the completeness of TEL it follows that F1gr, AC —¢. Since TELC
contains TEL and the axioms of C, and has Modus Ponens as inference rule, we
conclude FTgLC 9.

We also have that TELC is decidable:

Proposition 3.3 (Decidability of TELC)
The logic TELC is decidable.

Proof
Checking whether Frgpc ¢ reduces to checking F1gr, AC — ¢ where C is the set
of rules O(Ka — G(Ka) for all non-equivalent propositional formulae o in the
proposition letters of ¢. This is decidable by theorem 2.11.

Using TELC as our base logic we will now consider minimal conservative models and

minimal entailment.

4 Minimal models and minimal entailment

To describe the behaviour of a reasoning agent over time, we assume we have a finite
number of subjective TEL formulae (or just a single one, the finite conjunction of these
formulae). We are interested in the consequences of this description. It is for instance
possible to describe the behaviour of an agent performing default reasoning by translating
a default rule (o B) /7y into the TEL-rule Ka A G(=K—P) - G(Ky), as described in
[ET93]. This description forces conclusions to be added in certain circumstances.
However we want the knowledge of the agent to be minimal: only those facts which are
prescribed by the description to be known, should be known, and no other facts. So we
make the explicit assumption that "all the agent knows" is what is dictated by the
description. Apart from the temporal aspect, this is similar in spirit to the theory of
epistemic states of [HM84], introduced to formalize the notion of "only knowing ¢". For
a broader discussion of minimalization of models, see e.g. [Be90].

We will formalize this minimality by introducing a preference relation over
TELC-models which favors models with as little propositional knowledge as possible.

Formulae are assumed to be subjective.

Definition 4.1 (Minimal models and entailment)
i) We extend the degree of information ordering to TELC-models 9, N:



MSN = forall se N: O SN
We write M < N if SN and M= N,
ii) A TELC-model 9K is a minimal conservative model of @, denoted KFmin @, if
M ¢ and for all conservative models N, if Nk ¢ and N < K then N =K.
iii) For TEL-formulae ¢, y, we say ¢ is a minimal conservative consequence of y

or y minimally entails @, denoted y k¢, @, if for all minimal conservative models
M of y, Mk ¢ holds.

For a subjective formula ¢ (which describes the reasoning of an agent) its minimal
models represent the process of the agent's reasoning in time. We can then use minimal
consequence to infer properties of this reasoning process.

Note that the notion of minimal entailment strengthens the notion of conservative
entailment in the sense that @=¢y implies @ k., . An easy example, even without
temporal operators, shows that it is a proper extension: although Kp ¥¢—Kq we do have
Kp k.., —Kq.

For propositional formulae ¢, y we can define a nonmonotonic entailment relation F
by ¢} v iff Ko k., Ky. For so called "honest" formulae o this is exactly the

entailment relation defined in [HM84] based on the notion of "only knowing ¢".

Since we are working with a fixed propositional signature P, the above definition of
minimal models and minimal entailment seems to depend on P, but this is not actually

the case:

Proposition 4.2

The notion k¢, is independent of the propositional signature.

Proof
For a propositional signature P we write Lp to denote the temporal language based
on P and P-E

consequence. It is sufficient to show that for two signatures P, Q with P ¢ Q we

c
min

to denote the associated notion of minimal conservative

have that for all formulae @,y in Lp: ¢ P-;, v ifandonlyif ¢ Q- . v.

Let P, Q be two propositional signatures with P ¢ Q. For a propositional valuation

m of signature Q, m|p denotes the restriction of m to atoms of P. Consider the

following constructions:

+  For a TEL-model ¢ based on Q, we define its restriction to P, |p by:
(K]p)s={m|p:me MK}

e ForaTEL-model oK based on P, we define its extension to Q, 9(|Q by:
(K|Q)s={m e mod(Q): mlp e N5}

10



By induction on @ € Lp it is easy to see that truth of ¢ at a point in time is
preserved under these constructions.

Now suppose that 9 is a conservative TEL-model based on Q and 9 Fmin @
(with the notion of kpj, based on Q). Then X|p Fmin @ (With the notion of kFmpin
based on P): for suppose O\ is a conservative TEL-model based on P with
N<XK|p and Nk @, then (1) N [Q <9 and N |Qk 0.

Conversely, suppose that O is a conservative TEL-model based on P and
M Emin ¢- Then 96(|Q Emin @ : for suppose N is a conservative TEL-model based on
Q with N<|Q and N= o, then (!) NJp <K and N|p = 9.

It is now easy to see that ¢ P-_. v if and only if ¢ Q-F

min

As an example of the use of these notions it has been shown in [ET93] that it can capture
default logic (see [Re80]). A default theory consists of a set of formulae, called the
axioms, denoted by W, and a set D of defaults of the form (o, B) /v, where o, B and vy
are formulae, with the intended meaning: if you believe a and B is consistent with your
beliefs, then you should also believe y. The theory of Reiter then prescribes how, using
the default rules, you can extend W to a set of formulae, called an extension. In general
for a default theory there may be multiple extensions. If a formula ¢ is in all of these

extensions, we call @ a sceptical consequence of the default theory.

Example 4.3 (Default logic)
Let a finite default theory A=<D, W > be given and let
¥=A{KoaaG-K-B) ->GKY | (B /yeD} A A{Ka|ae W}. Then ¢ isa
sceptical consequence of A if and only if v k. FKe) (see [ET93]).
We are interested in the complexity of minimal entailment; we will first concentrate on
the decidability.

5 Decidability of minimal entailment
The first question to be asked when investigating the complexity of a notion is whether it

is decidable or not. The notion of minimal entailment will turn out to be decidable, but in

order to prove that we will first need some lemmas.

11



Observation 5.1
A conservative TEL-model O consists of a sequence of normal S5-models. These
models consist of a finite number of propositional valuations, since P is assumed to
be finite. Furthermore the sequence is (not necessarily strictly) decreasing. Therefore
there must exist a time point s € N such that for all t>s: M =M. If s, is the
smallest point for which this is true, we say that 9K stabilizes at s.

Since all TELC models stabilize, it is possible to write them down in finite space.

The idea in the proof of decidability is that for each formula y there is a number
ny such that a minimal model of y must stabilize before ny,. Then there are only a finite
number of models to be checked, and since they stabilize, it is always possible to check
whether a temporal formula holds in it. To obtain the ny one reasons that if there exists
a long enough sequence of identical states in a model, then it is possible to insert an extra
(identical) state in it, without disturbing the truth of w. Since this enlarged model is
smaller (with respect to <) than the original, the original model could not have been a
minimal model of w. The length of such a sequence depends on the depth of nesting of

temporal operators in y. We will now formalize these ideas.

Definition 5.2 (Depth)
The depth of nesting of temporal operators in a formula ¢, depth(g), is defined
inductively as follows:
* depth(p) =0, if 9peLgss
* depth(a A B) = max{depth(e), depth(B)}
* depth(—a) = depth(c)
» depth(Po) = depth(Fo)) = depth(a) + 1

The first lemma states that in a sequence of identical states, formulae with small enough
depth cannot discriminate between states in the middle of the sequence. All the present

lemmas are also valid for non-subjective formulae.

Lemma 5.3
If o is a TEL-model such that for some N21,s 2N:
‘ Ms=Ms+i=Ms.; forall 1<i<N,
then for all @ with depth(p) <N and 1<j <N - depth(g):
s-DFO & )FEP & M, s+j)F Q.

12



Proof
By induction on @, where the only interesting cases are the temporal operators (the
abbreviation "i.h." stands for induction hypothesis):
* Fa Let 1<j<N - depth(Fo). The implications from right to left are trivial, so
we will only prove (M, s-j)E Fa = (s +j) F Fo.
- Suppose (K, s - j) F Fa. There exists ne N, n>s-j with (O, n) F a.
If n>s+j then (O, s+j) F Fo, SO Suppose s-j<n<s+j.
* If n=s-k with 1<k<j then 1<k<j<N-depth(Fa) <
N - depth(e) and with i.h. we get (K, s) E o.
*If n=s then ,s)Fa.
* If n=s+k with 1<k<j then 1<k<j<N-depth(Fa) <
N - depth(a), so (M, s) F a.
So we have (M, s)kEa and 1<j+1<N-(depth(Fa)-1) =
N - depth(e), so by i.h. we have (MK, s+ G+ 1) Fa S0 @K,s+j) F Fo
* Po Analogous to Fo.

We will use this lemma with j=1 and N =depth(9) + 1. The following example shows
that we really need that many identical states:

] o Kpa Kq

° ° ° ° Kp

—
0

1 2 3 4 S 6 7%

This picture represents the model in which nothing is known at time point 0, p is known
from time point 1 onwards, and q is known from time point 5. We have

(M, 3+ 1) F G(Kq) but (M,3)¥ G(Kq) (we need an extra Kp state between 4 and 5);
also (M,2-1) F H=Kp) but (9, 2) ¥ H=Kp) (we need an extra Kp state between 0
and 1).

The next lemma shows that if we have a sequence of identical states, a middle state can

be duplicated or removed without changing the truth of formulae with sufficiently small

depth of operator-nesting:

13



Lemma 5.4
Let 9 be a model as in lemma 5.3. Define f: N—>N as follows:

fm)= n if n<s
n-1 if n>s

and let N be a model satisfying N; = Mg for all ie N.
Then for all formulae ¢ with depth(p) <N we have:
MNL,DFOQ o M, fi)Foe forall ieN.

Proof
By induction on ¢, where the only non-trivial cases are the operators (for which we

will take H and G):
Suppose (N, i) = Hp. Take k < f(i). Then there exists t<i such that

* Ho
f(t) = k and then (N, t) F @, so by i.h. (M, k) E ¢. Thus (O, (i) F He.
Suppose (N, f(i)) F Ho.
-If i<s: Take k<i then f(k) < f(i), so (M, f(k)) = ¢ and by i.h.
(N, k) F @. We have (N, i) - Ho.
-If i2s+1: Take k<i;
*If k#s then f(k) <f(i), so (M, f(k)F ¢ and by i.h. N, K F @.
*If k=s then s-1<f(), so (M,s-1)kF ¢. As depth(Hp) <N
we have 1<1<N-depth(p) and by lemma 5.3 we have
M, ¢ and by i.h. (N, 9)Fo@,or N, K FE @
So we have (N, i) F Ho.
* Go Analogous.

The following picture sketches the situation with N =2:

14



Another way of proving this lemma is to show that there exist bisimulations up to N
between these two models. The main use of the lemma lies in the possibility of enlarging
or reducing sequences of identical states in a model without disturbing truth of formulae

with sufficiently small depth of nesting.

Observation 5.5
For the models O, N of lemma 5.4 the following holds: if 9 is conservative then
O\ is conservative and vice versa, NSO, and if there exists t2s+N such that
Me< MKi+1 then N<K.

Proof
Take se N, then I = My). Since f(s)<s and K is conservative we have
M) SMs 50 Ns S M. If there exists t2s+N such that Me< M1 then Ny 41 =
Mee + 1) = Me< MK+ 1-

This observation and the previous lemma allow us to conclude that for each formula
there is a time point such that the minimal models of the formula must stabilize before

this point. From now on we will again restrict ourselves to subjective formulae.

Lemma 5.6
Suppose the propositional signature P consists of n atoms. If a conservative model
o of signature P is a minimal model of a subjective formula ¢ then it stabilizes on
or before time point (2" - 1)-2-depth(e).

Proof
First we will show that a minimal model K of ¢ cannot have more than 2-depth(p)
successive identical states before it stabilizes. Suppose M min ¢ and it has at least
2-depth(g) + 1 successive identical states before it stabilizes. So there exists
s > depth(9) such that Ms=Ms+i=Ms-i forall 1<i< depth(g), and
t>s + depth(e) such that 9y < ¢ + 1. Now consider the model O as described in
lemma 5.4. Since M ¢ we have N ¢, and by observation 5.5 we have N <M.
Therefore O cannot be a minimal model of ¢.

As P has n atoms, there exist 2" different propositional models. Since a
conservative model O consists of a decreasing sequence of (non-empty) sets of
propositional models, there are at most 2 -1 points s such that s < Ms+ 1. If XK
is a minimal model of ¢ then there can be at most 2-depth(@) successive identical
states before it stabilizes, and therefore O must stabilize on or before time point
(2" - 1)-2-depth(o).
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Lemma 5.7
For a conservative model 9 , se N and a formula ¢ it is decidable whether
M9 F 0.

Proof
Suppose we have a conservative model o and s e N. By Observation 5.1, &
stabilizes at some point s. It is easily seen from lemma 5.3 that for a formula ¢ we
have (M, tH)E @ < (M, wkF ¢ forall t,u>sy + depth(e). Then use induction on ¢.

Most importantly, it is decidable if a model is a minimal model of a subjective formula:

Lemma 5.8
For a conservative model 9 and a subjective formula ¢ it is decidable whether
MFmin @-

Proof
First, we need to check whether Ok ¢, which is equivalent to checking (9, 0) k O,
decidable by lemma 5.7. Suppose P has n atoms. If o stabilizes after time point
(2" - 1)2-depth(e) it is not a minimal model of ¢ by lemma 5.6. So suppose XKk ¢
and 9 stabilizes on or before time point (2 - 1)-2-depth(e).

In order to check whether O E=min @ We have to see if there exists a conservative
model smaller than 9 which satisfies @. Of course in general there are an infinite
number of conservative models smaller than 9, but we will show that we only have
to consider models which stabilize not later than time point (2" - 1)-4-depth(¢) + 1). In
other words, we will show that if there exists a conservative model smaller than 9
satisfying @, there also exists such a model which stabilizes on or before point
(2" - 1)@depth(e) + 1). The converse of this statement is of course trivial.

Suppose we have a conservative model N with N< 9 and N o, and let s be
the stabilizing point of M. If s<(2"-1)-@-depth(e) +1) then we are done, so suppose
not. Now consider the following procedure for constructing a model ON: if there
exists a sequence of more than 2-depth(@) +1 successive identical states in N
between time points (2" - 1)-2-depth(p) and s then we delete as many points from
this sequence until it has length 2-depth(g) + 1. Lemma 5.4 ensures that we can do
this without disturbing the truth of ¢. It is also easy to see that the result is
conservative and still (strictly) smaller than 9 Let @U be the model which results
from applying this procedure for every such sequence. Then N ¢ and N <O Let
s' be the stabilizing point of . Then in Q' there are at most 2" -1 points t with
(2" - 1)-2-depth(g) <t <s and Ny <N}y +1. Between such points there are at most
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2-depth(g) + 1 identical states and therefore
s (27 - 1)-2-depth(g) + (2" - 1)- 2-depth(@) + 1) = 2" - 1)- (4-depth(p) + 1).

It is easy to see that, given the finite signature, there are only a finite number of
conservative models which stabilize not later than time point (2 - 1)- (4-depth(e) + 1).
For each such model O we can check whether N <9 (only the first
(2" - 1)- (4-depth(g) + 1) time points have to be considered), and we can check if Nk ¢
(again decidable). If we find such a model then 9K¥ min @, otherwise M Emin 9.

Now we are ready to prove decidability of minimal entailment:

Theorem 5.9 (Decidability of minimal entailment)
For two subjective formulae @,y it is decidable whether @ . .

Proof
We can take the signature P to consist of the atoms occurring in ¢ and y. Suppose
there are n such atoms. Then lemma 5.6 states that we only have to consider models
which stabilize not later than time point (2" - 1)-2-depth(¢), and since the signature is
finite, there are finitely many such models. For each such model 9« it is decidable by
lemma 5.8 whether O Emin ©. Now we only have to check for each of these (finitely
many) minimal models 0 of ¢ whether Ok y, decidable by lemma 5.7.

Of course the procedure given in the proof will be very inefficient.
Having established that both TELC and minimal entailment are decidable, in the next
section we will look at the complexity of these notions, and in particular whether the

minimalization process has a structural impact on complexity.

6 Complexity

In order to study the complexity we will first look at satisfiability of TELC. We restrict

ourselves to satisfiability of subjective formulae in time point 0.
Definition 6.1 (TELC(0)-SAT)

A subjective formula ¢ is in TELC(0)-SAT if there exists a TELC-model 9K such
that (O, 0) F o.
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Remark 6.2
It is easy to see that TELC(0)-SAT is polynomially reducible (and vice versa) to
satisfiability (in any time point): ¢ is satisfiable iff ¢ v Fo isin TELC(0)-SAT, and ¢
is in TELC(0)-SAT iff O(aty — @) is satisfiable.

Definition 6.3 (Size of a TELC-model)
For a TELC-model 9K we call its stabilizing point the size of O, denoted size(9K).

Definition 6.4 (Subformula)
Let Subf(e) denote the subformulae of ¢, where maximal S5-subformulae of ¢ are
not further decomposed, and let SubfS5(¢) denote the set of subformulae of ¢

which are in Lgs.

We give an example to clarify this definition: Subf(G(Kp A Kq)) = {G(Kp AKq), Kp AKq}
and SubfS5(G(Kp A Kq)) = {Kp A Kq, Kp, Kq, p, q}. So Subf(9) U SubfS5(9) is the set of
all subformulae of ¢.

First we will prove a small-model theorem for TELC. Let length(g) denote the length of

the formula ¢ as a string.

Lemma 6.5 (Small model theorem)
If a subjective formula @ is in TELC(0)-SAT then there exists a TELC-model 9
such that (9, 0) E o, size(K) < 4-(length())2, and for all ie N the S5-model 9
contains less then 2-length(e) valuations.

Proof
Suppose for some TELC-model ™N we have (N, 0) F ¢ and let S\ be the
stabilizing point of M. _
Let £g denote the propositional language based on P.
Now let A={wy,—y|ye Ly,ye SubfS5(p) } andfor ie N:
B() = {Ky | ye A,N; F Ky} U{—Ky | ye A, N; # Ky} . Based on these sets we will
define a TELC-model WO
- Foreach —Ky e B(sq{) choose a valuation m e Mod(P) such that m¥ y and mk a
for each Ka e Bisqy) (such a valuation exists since (N, so) ¥ Ky and (N, s F Kot
for each Ko e B(sqy ). Let M be the set of these valuations. We have Mk B(sqy)- If
there are no formulae —Kye B(sqy then choose any valuation m with mk o for
each Ka e B(sqy (which again exists). Set N'j=M for all j 2sqy: It easy to verify that
N B(j) for all j 2 s\
- Now using induction on sy >4 20
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Let B@) \B(G+1) = {—=Kvyyq ,..—Kyp } (because I is conservative there will be no
formulae Ky in this set!). For k=1..n choose a valuation my with my# yx and
mk a for each Ka e B(j) (again such valuations exist). Let Nj=N}j+1V
{my, ..., my }. It is again easy to verify that O = B(j).
The resulting model @ has the following properties:
1. N is a TELC-model.
2. Nk B() forall je N
3. The number of valuations of M is smaller than the number of elements in
A (< 2-length(g)).
4. (N, 0) = ¢: Take ye Subf(p) nLss (which must be subjective!). Then using a
normal form described in [MH92] it is easy to see that y is equivalent to a formula
V=8 v..vdy withfori=1.m: & = Kopi A .. A K@i A=Ky A ... A=Kyj); with
Ojk » Wjk € A. So using 2. we have:

N E Kojk o N F Kojk and

NiF-Kyjxk <& NjF-Kyjk SO
NjEY & NjFVY' so NjkFy & NjF y. An easy induction gives:
for all ie N, for all ye Subf(@): (N, i) vy < (N, i)y and therefore (N, 0) E @.
5. The number of i for which INj < Nj4+1 is less then 2-length(e): real updates occur
at most once for each —Ky with ye A and A contains at most 2-length(o)
elements.
Now construct the model 9 as follows:
for each sequence of more than 2-depth(g) +1 identical states in O\, before its
stabilizing point, delete (as many) states from this sequence until it has length
2-depth(p) + 1. Let O be the resulting model. Now lemma 5.4 ensures that
(9, 0) = ¢. Furthermore 2-depth(e) + 1 <2-length(p) so that: size() < (2-length(e))2.

With this lemma we can show that TELC(0)-SAT is in NP, using methods similar to
those in e.g. [SC85], [La77]:

Theorem 6.6
TELC(0)-SAT is in NP.

Proof
For a subjective formula ¢ we present the following nondeterministic algorithm to
verify if ¢ isin TELC(0)-SAT. A nondeterministic Turing machine (M) guesses
4-(length(g))2 Kripke models 9K; with each less than 2-length(e) valuations, such
that M; 2 Mi+1- M will be this model, remaining constant after time point
4-(length())2. Then it verifies if (9, 0) = ¢ as follows: for each
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i € {0, ..., 4-(length(e))? + length(p) } M maintains a set label(i) which is initialized to
the empty set and at the end will contain the subformulae of ¢ true at time point i.
Now for each y e Subf(g) (increasing in the length of ) and for each

i € {0, ..., 4(length(9))2 + length(p) } update label(i) as follows:

1. Add ye Lg5 to label(i) iff Ok y (this can be checked in time polynomial
in the number of states in 9, using a labelling algorithm similar to the one
described here, see e.g. [HMS8S5]).

2. Add —wy to label(i) iff vy e label(i).

3. Add aap to label(i) iff oe label(i) and P e label(i).

4. Add Fo to label(i) iff ae label(j) for some j>i
(If i = 4-(length(e))? + length(p) then add Fa to label(i) iff oe label(i)).

5. Add Pa to label(i) iff o e label(j) for some j<i.

Now we have (9, 0)kE ¢ iff ¢e label(0) at the end of this procedure. It is easy to
verify that this algorithm works properly in time polynomial in length(@). Lemma
6.5 ensures that there is a guess for which M halts in an accepting state iff ¢ is in
TELC(0)-SAT.

This gives us:

Corollary 6.7
TELC satisfiablity is NP-complete.

Proof
The reduction given in remark 6.2 ensures that TELC satisfiablity is in NP, and
clearly a propositional formula ¢ is satisfiable iff M is TELC satisfiable, and as
satisfiability of propositional formulae is NP-complete, TELC satisfiability is also

NP-complete.

We would like to show that the minimalization of models makes the consequence
relation more complex, and we can do this using the reduction of sceptical consequence

in default logic to minimal consequence, as described in example 3.5.

Proposition 6.8 ,
Minimal consequence is IT;-hard.

Proof
The reduction of example 3.5 is clearly polynomial, and sceptical consequence in
default logic is TT}-complete ([G192], [St92], see also [PS92]).

20



So, minimal consequence is harder than TELC-consequence (which is IT; -complete, or
co-NP-complete), provided that the polynomial hierarchy does not collapse (see [Jo90]).

In [ET95] a sublanguage of the subjective part of Ltgyr, is proposed as a specification
language for (conservative) reasoning processes and it is shown that this language is
suited for this task. We will now look at the complexity of minimal entailment restricted
to this language. Let Hoe be an abbreviation for (aty — ¢).

Definition 6.9
The language L' is the smallest set such that:
1.If ae Ly then Kae L'
2.If B, v, w and @e Ly then HyKo) A Hy(—KP) A KyAa G(=K(—Vy)) = G(Ko) € L'
3.If g,ye L' then paye L'

c

For ge £' and y=F(Ko with ae £y we define @k'.. v iff eF . w.

[
min

Since we can reduce default logic to this fragment, k' is n;’ -hard. However, it is no

harder than that:

Proposition 6.10
E ' nclin

Proof

It is easy to describe a nondeterministic Turing machine M with access to an NP-

is TT}-complete.

oracle for determining whether not @', v (similar to the proofs in [St92], [PS92]
or [G192]). A minimal model of ¢ can have no identical states before it stabilizes.
For each conjunct Hy(Ka) A Hy(—=KB) A Kya G(—K(=8)) - G(Ke) in ¢, M guesses
a time point i 21 but less than the number n of these conjuncts, from which time
onwards & will be assumed to hold (or it guesses that & will never hold). Denote for
ie {0,..n}, the set of formulae assumed to hold at i plus the formulae a for
which there is a conjunct Ka in ¢, by A(). Then M uses the NP-oracle to perform
the following:

1. Let f(e) be the point from which € is assumed to hold (so fe) € {1, ..,n,o}).
Now it checks for all ie {1,...,n} if {Ke |[f(€)<i}u{—Ke |f(e)>i} is S5-satisfiable
(note that S5-satisfiability is in NP). If not, it halts in a rejecting state (the guess does
not induce a TELC-model).

2. For each conjunct Ho(Ko) A Ho(—=KB) A Kya G(—=K(—38)) - G(Ke) and for each time
point i€ {0, ...,n} it computes whether A(0) F o, whether A(0) ¥ B, whether AG) Y
and whether for no i<j<n, A(j) F 3. If this is true for no time point then it checks

21



whether e is assumed never to hold; otherwise it takes the first such point and checks
whether € is assumed to hold from the next time point on. If these conditions are
violated then M halts in a rejecting state (the guess does not induce a minimal model
of ¢).

3. It checks if Am)Eyx (when y=F(Xy) ). If this is the case then in this minimal
model of @, y holds, so M halts in a rejecting state (the guess does not induce a
minimal model of ¢ in which y fails). Otherwise it halts in an accepting state (the
guess induces a minimal model of ¢ in which y does not hold).

This nondeterministic algorithm is polynomial in ¢ (using an NP-oracle for
propositional consequence and S5-satisfiability) so the converse of k'S, isin X;
which implies that 'S~ isin IT;. Together with II;-hardness this gives the

desired result.

Apart from default logic, sceptical consequence relations of many other well-known
monotonic logics such as McDermott and Doyle's nonmonotonic logic, autoepistemic
logic and nonmonotonic logic N are TT}-complete ([G192]) which means that we can
reduce these relations to minimal consequence (or even k'r. ), using a polynomial
reduction. Further research is needed to find these reductions.

We would also like to have an upper bound on the complexity of minimal consequence.

In order to get this, we need to sharpen some previous lemmas.

Definition 6.11
For a subjective formula o, define A(@) ={ v, —y|ye Ly nSubfS5(g) }. A
TELC-model O of ¢ is called based on ¢ (abbreviated bo(g)) if there exist sets
A() foreach ie N with A(0)cA(l) c..cA@ and ;= Mod(A®D)) =
{m e Mod(P) | m = A() }.

Lemma 6.12
If MFmin @ then O is bo(g) and size(9K) < 4-(length(e))?.

Proof
Suppose M is not based on ¢. Define A() = {o,—a|ae A(g) and K;F Ka} and let
N = Mod(A()). Clearly A(0) cA(1) c...c A(@) so N is a TELC-model and N< K.
Furthermore for all ae Lo N SubfS5(p) we have Mk Ko < NjF Ko and
M; E Ma < Nk Ma, so using the same argument as in the proof of lemma 6.4 we
have Ok ¢. This contradicts the assumption, so O is based on . But then the
number of "updates" cannot be larger than the number of elements of A(g) and in-
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between such updates there cannot be sequences of identical states longer than
2-depth(g) + 1 so size(K) < 4-(length(ep))2.

Notice that a model ¢ based on ¢ can equivalently be described by giving for each
formula in A(p) the time point at which it is known in 9, or "infinity" if this is never
the case. We have a similar result for models which refute that 9 is a minimal model
of o:

Lemma 6.13
If O @ but O (¥min @ then there exists a TELC-model 0N such that N< M, N F ¢
and QY is based on @ with size(N) < size(9K) + 4-(length(e))2.

Proof
Suppose M= @ but ¥ min ¢ then there is a TELC-model o with o <9 and
X E ¢. In the same way as in the proof of lemma 6.12 we can make a model o'
which is a model of ¢ based on ¢ and ' <. Now from any sequence of
identical states in OQ' after size(9K) but before size(') with length more than
2-depth() + 1 we can delete states until it has length 2-depth(p) + 1. Let O be the
resulting model (this construction is the same as the one used in the proof of lemma
5.8). So we have N<M, N F ¢ and N is based on ¢. Furthermore, O has less
than 2-length(e) updates, and sequences between size(9) and size(N) have length
no greater than 2-depth(e) + 1, so size(N) < size(9K) + 2-length(p)-2-length(g) =
size(9K) + 4-(length(@))2.

Lemma 6.14
Deciding for a formula ¢ and a model 9 based on @ whether Emin @ is in I1;.
Proof
We assume the model O encoded as described in the remark after lemma 4.18: there
is a function f: A(@) » N U {e} such that f(o) gives the time point from which a is
known. We will show that deciding whether M ¥min @ isin X by describing a
nondeterministic Turing machine M with access to an NP-oracle. Let
size() = max fA()] \ {e} (if fA(@)] = {=}, then let size(9K) = 0). First we check if
size(9K) < 4-(Iength(e))?; if not we halt in an accepting state. Otherwise we use a
labelling algorithm as described earlier to check if 9k ¢. The range of time points
we have to check is from 0 to size(9K) + length(e). The subformulae in Subf(e) N Lss
are treated as follows: for such a formula a and time point i it is checked (using the
NP-oracle) if { Ke|f(e)<i}u{—Ke |f(e)>i}Fgsa Ifso, o is added to label(i),
otherwise not. If O(# @, M halts in an accepting state (certainly ¥ min 9).
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Otherwise M guesses a TELC-model O by guessing a function g: A(g) » N U {«}
such that:

1. f(e) < g(e)

2. either g(e) < size(K) + 4-(length(g))2 or ge) = =

3. For at least one g€ A(gp) we have g(e) > f(e)

Then we know that g induces a TELC-model ®N with N< 9 (if such a guess is not
possible then we halt in a rejecting state because 9 Fmin @). Next we use the
labelling algorithm to check if NI= ¢; if not we halt in a rejecting state, otherwise in
an accepting state: O is a smaller model of ¢. It is clear that the algorithm works in
polynomial time (using the NP-oracle). Lemma 6.13 ensures that there is a guess for
which M halts in an accepting state iff O #¥min @. Thus deciding if ¥ min @ is in
>* so the complement is in IT;.

Theorem 6.15

Deciding whether @
Proof

We will show that deciding whether not ¢ &

c
min

. . P
y isin IIj.

c
min

y isin X; by giving a
nondeterministic Turing machine M with access to a IT} -oracle. First M guesses a
TELC-model 9K based on ¢ by guessing a function f: A(@) >N U {es} such that
either g(e) <4-(length(p))® or g(e) = . Then it checks for ie {0, .., 4-(length(e))2}
whether {Ke|f(e) <i} u{-Ke | f&) > i} is S5-consistent, using the oracle. If not it
halts in a rejecting state (f does not induce a TELC-model). Now it uses the

II;’ -oracle to determine if OCEmin @. If not it halts in a rejecting state. Otherwise it
uses a labelling algorithm to check if Ok w (as in the proof of the previous lemma,
using the IT; -oracle for S5 consequence); if this is true M halts in a rejecting state,
otherwise in an accepting state. The algorithm works in polynomial time, and lemma
6.12 ensures there is a guess for which M halts in an accepting state iff not ¢ F,, v.

So as this is in z;’ , the complement is in II;) .

7 Downward persistence

The entailment relation we have defined is a non-monotonic one, which means that one
can have that o ;. v but not aAp k,,, v for some formulae o, and y (see also the
appendix). We are interested in the class of formulae B which can be added to the
premises without disturbing any of the conclusions. It will turn out that this is the class of

downward persistent formulae. In the rest of this chapter we will investigate the class of
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formulae which are preserved under decreasing or increasing (with respect to <) the
models. Since our logic is essentially a temporalized version of S5, we will first look at
S5 formulae preserved under going to larger and smaller models.

Definition 7.1 (Preservation under supermodels)
i) An S5 formula ¢ is preserved under supermodels if for any two S5 models M, N
such that Nc M, and me N:if (N, m) Eg5¢ then (M, m) Eg5 0.
ii) Define the class of S5 formulae DIAM by:
DIAM::= p | —p | DIAM A DIAM | DIAM v DIAM | M(DIAM)

We want to prove that formulae in this class are the only ones (up to equivalence) which

are preserved under supermodels:

Theorem 7.2
An S5 formula ¢ is preserved under supermodels if and only if it is S5-equivalent to
a formula in DIAM.

Proof
It is easy to see that a formula equivalent to one in DIAM is preserved under
supermodels. Now let ¢ be preserved under supermodels. Suppose
Mod(P) = { my, .., my }. Fori=1.. n define A®)=min {NcMod(P)| (N, mj) Fs5 0},
where for a set @ of S5-models, min @ = { N e @ | there is no M e @ such that M
is a proper subset of N}. Define for j=1..n:
og:=A{p|lpe P,mjrp}Aa A{-p|pe P, m; ¥ p} and for an S5-model M,
Oy =A{Moj|j=1.n and mje M }. Itis easy to see that for an S5-model N: Mg N
iff (N, m) kg5 @y, for some/all me N. Now define for j=1.n:
yj= oAV {gy|MeAj} if there exists and S5-model N with (N, mj) Fs5 @,

1 otherwise

Note that L is equivalent to M(p A—p). Now let y=V{y; |j=1.n} Then y isin
DIAM, and v is equivalent to @:
Suppose (N, mj) Fss . Then there exists an M e A(i) with McN, so (N, mj) Fg5 @y,
and (N, mj) Fs505,50 (N, mj)Ess yi and (N, mj) Ess .
Suppose that (N, m;) Fss y. Then there exists a j such that (N, m;) kg5 y; but then
i =j and there exists Me A(i) such that (N, mj) kg5 @y, SO0 Mc N and (M, m;j) Fgs

@, but since o is preserved under supermodels we have (N, m;) kg5 .

We are also interested in formulae preserved under taking submodels:
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Definition 7.3 (Preservation under submodels)
i) An S5 formula ¢ is preserved under submodels if for any two S5 models M, N
such that NcM, and me N: if (M, m) Fg5 ¢ then (N, m) kg5 0.
ii) Define the class of S5 formulae BOX by:
BOX ::= p | —p | BOX A BOX | BOX v BOX | K(BOX)

We have:

Proposition 7.4
An S5 formula ¢ is preserved under submodels if and only if it is equivalent to a
formula in BOX.

Proof
Easy.

Now we are ready to use these results to get a preservation result for TELC formulae. As
we were interested in downward persistent formulae because of the link with the rule of
Monotonicity for minimal consequence, the definition of downward persistence should
use the corresponding notion of satisfaction of a formula in a model (KF @). Also the

notion of equivalence between formulae should be based on this notion.

Definition 7.5 (Upward and downward persistence)
i) A subjective TEL formula ¢ is called
downward persistent (dp) if for all TELC models O, N:
if <N and Nk ¢ then M o.
upward persistent (up) if for all TELC models 9, N:
if <N and M F ¢ then N F o.
ii) Define DP := DIAM | DP A DP | DP v DP | F(DP) | G(DP) | P(DP) | H(DP)
UP := BOX | UP A UP | UP v UP | F(UP) | G(UP) | P(UP) | H(UP)
iii) For two subjective TEL formulae o, y:
o~y & for all TELC models M : Mk o &M EF vy

We can link the notion of ~ with the notion k¢ : if we denote oy & yEC@ by o=ty

then: @~y < O¢=‘Oy. This implies that ~ is decidable.

Now we are ready to prove:
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Theorem 7.6
A subjective TEL formula ¢ is downward persistent if and only if it is equivalent (in
the sense of ~) to a subjective formula in DP.

Proof
For a subjective (!) formula ¢ in DP one can easily prove that for all TELC models
M, N and ie N:if (<N and (N, i)k @ then (9, ik ¢. This implies that a
formula equivalent (in the sense of ~) to one in DP is dp.
Suppose ¢ is a subjective dp formula. We will construct its equivalent in DP. If
there is no TELC model o such that O ¢ then ¢ is equivalent to L. Note that L
is equivalent to M(p A—p) Wwhich is a subjective formula in DP. Suppose we have a
propositional signature P with m atoms. For a set of TELC-models @ define max
B ={MKe B |there isno Ne B with M <N }. If there is a TELC model 9K such
that 9k @, then we define A = max { | M= ¢ }. Suppose = ¢ and 9K stabilizes
after time point (2™ - 1)- 2-depth(p) + 1). Then we can delete points in sequences of
more than (2-depth(e) + 1) identical states before the stabilizing point, without
disturbing the truth of ¢. If we do this for each such a sequence we end up with a
model of ¢ which is larger (with respect to <) than 9K and stabilizes not later than
(2m - 1)- (2-depth(@) + 1). Thus:
A=max { M| Mk ¢ and 9 stabilizes not later than (2™ - 1)- (2-depth(p) + 1) }. As the
set we take the maximal elements of is non-empty and finite and the relation < on
TELC-models is transitive and irreflexive, A4 is non-empty and finite. Note that the
argument used here (for maximal models) is similar to the one used for minimal
models in the proof of lemma 5.6: there the idea was that a model which is too long
can be enlarged (yielding a smaller model w.r.t. <), whereas here the idea is that if a
model is too long, it can be reduced (yielding a bigger model w.r.t. <).
Suppose Mod(P) = { my, .., mp } (With of course n=2M). Again define for j=1. n:
oj:=A{p|peP,mjEp}r A{-plpe P,mj¥ p}. Now define for i=1..n and for a
TELC-model 9K:

nGi, )= sup{je N|mje O} where sup @ =-oo
Let‘ y(i, M) = O(atp, o) > Mos) if nbM) e N
O(Mo; ) if n(i, ) =0
T if n(i, ) =- oo

(Note that T is equivalent to M(p v —p))

Furthermore, define Vo= A {yGi, M) |i=1..n}. Now it can easily be proven that
NF g © NN the formulae (i, ) make sure that the valuation m; is in Ny
at least until the last time point s for which m; isin O . Finally, define:

\|;=V{\|lg(|9(e A}. Then vy isin DP and ¢~ y:
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- Suppose Kk ¢. Then there exists N e A with N (1), so MK wey and Kk v.
- Suppose 9Kk . Then there exists N e A with oKk Yoy, 50 KN and as N e A
we have NF ¢, and ¢ was dp, SO KF o.

As in the case of S5-formulae we have:

Proposition 7.7
A subjective TEL formula ¢ is upward persistent if and only if it is equivalent (in the
sense of ~) to a subjective formula in UP.

Proof
If ¢ is up then —O¢ is dp so by the previous theorem —0O¢ ~y for some ye DP.
Then @ ~-0y and —0Oy is equivalent to some formula in UP.

Furthermore, the property of downward persistence is decidable:

Proposition 7.8
For a subjective formula ¢ it is decidable whether o is dp.

Proof
Suppose P contains n propositional atoms. We will prove that ¢ is dp iff for all
TELC models 9, N with size(9K) < (2 - 1)-2-depth(e) + 1),
size(N) €2:2" - 1)-2-depth(e) + D: if N<XK and KkF @ then Nk . This implies the
decidability of dp.
Suppose ¢ is not dp, then there exist TELC-models 9, N with N< M, MKF ¢ and
N # 9. Now we construct a TELC-model o by deleting points from sequences of
more than 2-depth(p) + 1 identical states before the stabilizing point from 9 until
each such sequence is at exactly 2-depth(g) +1 states long. Then
size(M) < 2" - 1)-2-depth(e) + 1), N<M and K k ¢ (by lemma 5.4). Now we
construct a model N using the following procedure: for each sequence of identical
states in O\ after time point (2™ - 1)-2-depth(e) + 1) but before the stabilizing point of
QO of length more than (2-depth(p) + 1) points, we delete points until each such
sequence has length (2-depth(p) + 1). Then size(MN) < 2-2" - 1)2-depth(¢) + 1), N ¥ @
(lemma 5.4), and it is easily checked that N <O .

Similarly it is decidable whether a formula is up, and this gives us another way of

verifying TELC theorems since Frgrc ¢ > Mk ¢ and ¢ isup, where i s the
totally ignorant model defined by Mg = Mod(P) for all s (note that for all

28



TELC-models N we have ot < O ; use soundness and completeness of TELC). Since
TELC-theoremhood is co-NP-complete, we have as an immediate consequence:

Corollary 7.9
Upward persistence for subjective formulae is co-NP-hard.

For a valuation m e Mod(P) we can define the TELC-model o by (M™);={m} for all
t. It is easy to see that such a model is maximal in the ordering < and this gives us
another way of checking TELC theorems since FrgLc @ < ¢ isdp and "k ¢ for
all m e Mod(P). Furthermore we have: ¢ upanddp < FT1gELC @ or @ ~.L1, which gives

us:

Corollary 7.10
Checking whether a subjective formula is downward and upward persistent is

co-NP-complete.

One of the reasons we were interested in formulae preserved under shrinking models was

the link to monotonicity, which we can now prove:

Proposition 7.11

If a formula B is downward persistent then for all formulae a,7:
If ak;, vthen Ak, ¥

Proof
Suppose B is downward persistent and that for two formula o,y we have ok, ¥.
Take a minimal model O of a AP, then M aAB so Mk a, but M is also
minimal with respect to this property, for suppose N <M and Nk o, then since B is
downward persistent, we also have N kB, so N F a A B, but since 9 was a minimal
model of aAp we must have N=M. So X is a minimal model of a so MKk y. We

c
min I°

have proved that aABE

We have given a syntactical characterization of downward persistent formulae, and the
link with monotonicity, but it is also possible to characterize the downward persistent

formulae using monotonicity (referring only to minimal entailment):

Proposition 7.12
A formula ¢ is downward persistent if and only if:
Va,B: o ES

B = aAQES. B

min
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Proof
The "only if" part is Proposition 7.11.
Suppose ¢ is not dp, then there exist TELC-models 9, N such that N< M, K ¢
but N # ¢. For a TELC-model d,, define (using notation from the proof of theorem
7.6):
m(i,9) = min {j € N|mj ¢ O;} where min @ = o, and
y={0O( aty G, q — K(~0) [i=1.n mGqQ)<ee}
It is easy to see that for a TELC-model &K, Kk ¥ iff &, 29, Now take
a=(yNa@o - vX)) and B = 0(—¢). Any TELC-model 9 of a has to satisfy
q 2N and Nk o (N=0O¢9 - v M since (N, i)# O¢ for all i e N). Therefore
Nl min © and it is the only minimal model of a. Since N ¢(—~¢) we have ak, .. B.
Any TELC-model 9, of aa¢ has I=00¢ so 9 yX which implies 4> K. Also
ME oA (since N<M) so K is the unique minimal model of a A @, but 9Kk B
and therefore we do not have aa@ k.. B.
So this proposition says that a formula is downward persistent if and only if you can
always be sure that adding this formula to your knowledge does not disturb any

consequences.

8 Conclusions and further research

The logic TELC was proposed to describe the behaviour of a conservative reasoning
agent. This logic was shown to be decidable, and a sound and complete axiomatization
was given. Based on this logic we defined a notion of minimal entailment and studied the
decidability and complexity. Furthermore, a syntactical characterization of formulae
preserved under going to smaller models was presented and a link with monotonicity was
given. As minimal entailment restricted to a sublanguage was shown to be decidable and
complete for the complexity class where most nonmonotonic formalisms reside, a
program for deciding minimal entailment can be used as a general "theorem prover" for
these formalisms. The translation of default logic into TEL is already known ([ET93]);
Further work is needed to find the translations for other nonmonotonic logics such as
Autoepistemic Logic.

Although a decision procedure is sketched for minimal entailment, we would also
like to have an axiomatization, although this might not be easy: it would immediately

yield an axiomatization for default logic, which has not been given before.
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We have characterized the downward persistent formulae. We would like to find a
similar result for the class of formulae which have no minimal models (like F(Kp)).
These are the formulae which are in a sense not "honest" since they do not describe the
reasoning behaviour of an agent properly.

The use of S5 as the logic to describe the knowledge of the agent at any point in
time (allowing negative introspection) is not always realistic. If we use another modal
logic such as S4, many results in this paper would have to be re-examined; in particular
the complexity might be higher. A number of constructions used in the proofs will no
longer work, and we might have to use methods like those in for instance [ABN95].

It would also be interesting to lift the restriction of conservativeness. This plays
an important role in many of the proofs, but does not allow retraction, needed for belief
revision (see for instance [AGMS85]). In the non-conservative case, we would also like to
extend the language with operators like Next, Since and Until.
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Appendix A

We have studied the notion of minimal entailment as a logical formalism. In this
appendix we will look at minimal entailment as a nonmonotonic relation and study it
using a number of rules as proposed in [GM94]. As . is not a cumulative relation
(see [KLM90]) and therefore does not fit into the framework described in [KLM90] we

will define a class in which it fits and try to give a characterization of this class.

A.1 Inference Rules

c
min

this by looking at inference rules for nonmonotonic inference relations proposed in the

We would like to study the behaviour of our notion k;, in more detail, and we will do

literature, specifically those mentioned in [GM94]. We will first list these rules,

c
min

substituting our notion for the nonmonotonic inference relation and the

consequence relation ¢ of TELC for the classical inference relation. Here K ; o is

an abbreviation for T k,, o where T is the constant true.

Inference rules
1. Supraclassicality: If aky then ok, v

. Left Logical Equivalence: If Fa < B and ok, v then B . v

. Right Weakening: If kB—y and o =, B then ok, v

And: If o E

min

B and o ki, v then a k=, BAY
. Weak Conditionalization: If ai={. B then . o—f

. Conditionalization: If aABk;, v then ok ., B—oY
. Weak Rational Monotony: If ¥, —o and k,, o—p then o, B

. Rational Monotony: If ab, —B and ak,. ¥ then aABk . ¥

c
min

10. Cut: If akS. B and aABE;. v then a k., v

min min

O 00 NN N i AW

. Cautious Monotony: If ak:. B and ak,, vy then aaBrE . v

11. Consistency Preservation: If ak;, L then ok L1

[
min

12. Cumulativity: If ak:, B and BFa then (ak, vy BEr. Y)

13. Reciprocity: If ok, B and Bk, « then (ak,. v & BFo ., 7)
14.0r: If ak;, v and BEg,. v then avBE . ¥

min

15. Disjunctive Rationality: If avpi,, v then ak;, vy or Bk, ¥
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Proposition A.1.1 (Inference rules for ;. )
Of the rules stated above, k&

Equivalence, Right Weakening, And and Cut.

c
min

satisfies only Supraclassicality, Left Logical

Proof
We will first prove that the above rules are satisfied:
- Supraclassicality: Any minimal model of o is a model of o and with a1y also a
model of .
- Left Logical Equivalence: Suppose M min B. Then 9Fmin &z O is a model of B
and, as F a © B, also a model of o. If N<OK and NF o then by Foa« B also
N B, which is impossible since MFmin B- AS MFmin @ and o k., vy we have
M F v. Therefore BE,, ¥.
- Right Weakening: Suppose Mk min & then kB and using E B — vy also Kk v.
We have akg, 7.
- And: Suppose M Fmin @ . Then =P and My so KEPBAY, so ak,, BAY.
- Cut: Suppose M Fmin @ Then o and by ok, B also P, so MEanP
and even MEmin & A B, for if N< and NF oA B, then Nk o, which is impossible
since M=min o Therefore Mk v, s0 ak,,, ¥.

Now for the rules which are not satisfied:

- Weak Conditionalization: Take o =P(-Ka) and B =Ka (with some ae P). Since
there is no model O such that 9k o, there are no minimal models of a, so

o <. B. Define the totally ignorant model i by OMlig=Mod(P) for all se N. Then
it is easy to see that this is the (only) minimal model of T. Furthermore (M, DEa,
but (M, DB, so Mira—-p, so ¥, a—B.

- Conditionalization: Number 5. is a special case of this one (take a=T).

- Weak Rational Monotony: Take o= H(Ka), B =—Ka, then (Mt,0)F a so Mk -
so B —o. Also MtikB,s0 ko, a—B. Define 9 by MK¢={me Mod(P) |/ mkEa}.
Then 9K is a minimal model of a but not a model of B.

- Rational Monotony: Take a =Ka, B =Kb v H(L),y=—-F(Kb).

The details are left to the reader from here on.

- Cautious Monotony: Take a =F(Ka), B = Ka, y=—Ka.

- Consistency Preservation: Take a=F(Ka).

- Cumulativity: Take o =F(Ka),f=G(Ka) and y= 1.

- Reciprocity: Take o =F(Ka), B=Ka and y=.1.

-Or: Take oo=P(T),B=—=P(T) and y=1.

- Disjunctive Rationality: Take a=H(l) v Ka, B =P(T) v Ka, y=—Ka.
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These results indicate that our consequence operator is not a very well-behaved notion
and one of the reasons for this is that there is an implicit modal operator in the definition
of minimal consequence. We take the minimal elements of the set of models of
(meaning that always y must hold), and check if they are all models of ¢ (again
meaning that always ¢ must hold). This is a source of counterexamples, for instance for
rule 14 (Or): although there are no models where always P(T) holds, nor models where
always —P(T) holds, there are models (in fact all models) where always P(T) v = P(T)
holds. In order to get a better behaved notion, it would therefore make sense to remove
this implicit modal operator (as is argued on p. 190 of [KLM90}):

Definition A.1.2 (Minimal anchored models and entailment)

i) A TELC-model 9K is a minimal (conservative) anchored model (minimal
a-model) of ¢, denoted MF2pin 0, if (M, 0) = ¢ and for all conservative models N,
if (N,0) Fo and N< O then N =K.

ii) For TEL-formulae ¢, vy, we say ¢ is a minimal (conservative) anchored

c,a
min

consequence of v or y minimally anchoredly entails ¢, denoted y k. ¢ if for all

minimal (conservative) a-models O of v it holds (9, 0) E ¢.

Notice that whereas the old notion was not a "preferential logic" in the sense of Shoham
[Sh88], the new one is. This new definition is also more in line with the definition of
classical consequence. Fortunately, these two alternative notions of entailment can be

related easily:

Proposition A.1.3
For all formulae ¢,y we have:
VE i @ e Oy F,, 00
VF o @ & HL) > W) F oy HL > 0)

As these reductions are polynomial, the new notion of minimal (conservative) anchored
consequence inherits the properties of minimal (conservative) consequence described in
the sections 4, 5 and 6 regarding decidability and complexity.

Let us look at the rules satisfied by this new notion:

Proposition A.1.4 (Inference rules for ;. )

Of the rules stated above, 0.2 satisfies only Supraclassicality, Left Logical
Equivalence, Right Weakening, And, Weak Conditionalization, Conditionalization,

Weak Rational Monotony, Cut and Or.
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Proof
We will again first prove the rules which are satisfied:
- Supraclassicality, Left Logical Equivalence, Right Weakening and And are easy.
- Weak Conditionalization is implied by Conditionalization.
- Conditionalization is implied by Supraclassicality, Right Weakening, Left Logical
Equivalence and Or ([KLM90], Lemma 5.2)
- Weak Rational Monotony: Suppose o2 a.Then (M, 0k —a so (M,0)F a
and (M, 0 oo > B so (M, 0) = B. Since Mt is the only minimal a-model of o
we have ok B.
- Cut is implied by Right Weakening, Conditionalization and And ([KLM90],
Lemma 5.3).
- Or: Suppose M F2yip v B. Then (M, 0 Fa or (M, 0k B and even (!)

c

MFE3min @ O M E3pin B, therefore (M, 0 v,50 avBEDS v.

Now the rules which are not satisfied:

- Rational Monotony: Take o =Kav Kb, B =Kb -K—a and y=-—K-a. Consider the
following three models M1, M2 and M3, defined by Ml¢={m|mka} forall t,
Mi={m|mkb} forall t and M3 ={m|mkE—=aab} forall t. Then Ml F2p;,
and (M!,0FPB so a k2 —B. Furthermore, 1 and M2 are the only two minimal
a-models of o, and (M!,0) =y and (MZ,0Fy so ok v. But & is a minimal
a-model of oA B with (M ,0)F K—a,so (M3,0 8 7,50 aaBEL Y.

- Cautious Monotony: Take a=F(Kp), B=Kp and y= L.

- Consistency Preservation: Take o = F(Kp), this has no minimal a-model (See

also 9.).

- Cumulativity: Take o=F(Kp), B=Kp and y= L.

- Reciprocity: Take o=F(Kp), B=Kp and y= L.

- Disjunctive Rationality: Take o=XKav F(Kb), B =Kbv F(Ka) and y=L.

So although minimal anchored consequence behaves better then minimal consequence, it
still does not satisfy all the rules, and the most important reason for that is that
Consistency Preservation does not hold: there are formulae which are classically
satisfiable but have no minimal model. A formula like F(Kp) is in a sense not honest,
because it says that sometimes we will know p, but does not (by itself) specify when we
will know p. The tuple of the set of conservative models with our preference relation
does not satisfy the condition of smoothness (or well-foundedness or non-stopperedness)

(see [KLM90]), so it is not a cumulative model, and therefore the consequence relation
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based on it cannot be supposed to be cumulative (see the representation result in
[KLM90] for cumulative relations).

As said before, with our new notion of anchored consequence we have a

c,(a)
min

preferential logic in Shoham's sense. In the above, we have interpreted k" o as

TES® o and (since ot is the only minimal model of T), this essentially reduces
Fo® o to Kk a, respectively (oMM, 0) = o. In Shoham's book ([Sh88]), another
definition is given: k% o iff —a is not preferentially satisfiable (i.e. has no minimal
model). If we use this definition, we get strange results with the non-anchored case: since

neither P(T) nor —P(T) are preferentially satisfiable we would get both _. P(T) and

kS, —P(T). The only two rules affected by this change are Weak Conditionalization and
Weak Rational Monotony and they are still not met (counterexamples: o= Ka, B=—Ka
and o = Ka, B = P(T)). In the case of anchored minimal consequence we can never have
o2 @ and K52 —g: for the model oK, either (MU, 00 ¢ or (Y, 0) = —g, and since
ofli is the smallest model of all, it is either a minimal a-model of ¢ (in the first case) or

a minimal a-model of —o, so either ¥> @ or Koo —¢. The effect on the rules is that

Weak Conditionalization no longer holds (¢ = F(Ka) and B =—Ka) and Weak Rational
Monotony still holds. (Suppose o ¥ B then there exists O such that M F2pip o0 and

(M,0EB so (M,0k—=B.So (MK,0Fanr-p and even KF23pip & A—=p, so a and

a A - B are preferentially satisfiable so ¥o> — o and . a— B. Note that the

condition ;> —a is not even needed.)

The consequence relations which are studied in [KLM90] all satisfy the rule of
Cautious Monotonicity, and it is argued there (but also by others, e.g. Gabbay) that a
system which does not satisfy it, should not be considered a logical system. But even
there it is said: "This appreciation probably only reflects the fact that, so far, we do not
know anything interesting about weaker systems" ([KLM90], p.176). Since we have
defined a consequence relation which does not satisfy Cautious Monotonicity, we are
interested in such systems, and in the next chapter we will look for representation results

analogous to those in [KLM90] for systems which do not satisfy this rule.

A.2 Non-cumulative preferential reasoning

In the previous chapter we have seen which rules are satisfied by minimal anchored
consequence. Of these rules, (Weak) Conditionalization is implied by Supraclassicality,
Right Weakening , Left Logical Equivalence and Or ([KLM90], p. 191); furthermore,
Right Weakening, Conditionalization and And imply Cut ([KLM90], p. 191). We will
therefore focus on the rules Supraclassicality, Left Logical Equivalence, Right
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Weakening, And, Weak Rational Monotony and Or. First we will look at the first four of
these, after which we will add the Or rule.

The rules of Supraclassicality, Left Logical Equivalence, Right Weakening and
And imply that the set of consequences of a formula o is a deductively closed set of
formulae containing a, and that this set is the same for formulae equivalent to o. We can
give semantics to such consequence relations, borrowing from the theory of
nonmonotonic model operators (see e.g. [DH94]). In a way analogous to the techniques
in [KLM90] we define inference models to base consequence relations on. We make the
same assumptions as in [KLM90]:

Assumptions

- we have a language, L, of well-formed formulae, closed under the classical
propositional connectives.
- the semantics of this language is given by a set ¥, the elements of which will be
called worlds, and a binary relation k of satisfaction between worlds and formulae,
which satisfies, for o,Be L,ue U:

(1) uk —o iff ui o

2Q)uFavp iff uka or ukp
- we have compactness: A set of formulae is satisfiable if all of its finite subsets are.

Note that we do not have compactness for TELC.

Definition A.2.1 (Inference models)
An inference model W is a triple <S,1,P> where S is a set (the set of states), 1 is a
function 1: S —» U which assigns a world to every state and P is a function
P: L - ®S) which assigns to every formula a set of states (the intended states) such
that:
1.P@) c{se S|ls) = o}
2.F ae B implies P(a) = P(P)

Definition A.2.2 (Consequence relation of an inference model)
Given an inference model W =<8, 1, P> we define the associated consequence

relation fw by: o fwp iff P@)FB, where P(o) = B iff for all se P(@) we have
I(s) = B.

Before we prove a representation theorem, we need one more definition from [KLM90]:
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Definition A.2.3 (Normal world)
A world ue U is called a normal world for o with respect to a consequence
relation | ifforall Be L for which a | B we have uk .

So a normal world for a satisfies all consequences of o. Now we will show the

representation result for consequence relations satisfying the above mentioned four rules:

Proposition A.2.4
A consequence relation |~ satisfies Supraclassicality, Left Logical Equivalence,
Right Weakening and And if and only if | =} w for some inference model W.
Proof

The proof from right to left is easy and left to the reader. For the other direction
define W=<S,1,P> with S=,1 is the identity function and for all o:
P(@) ={m e U |m is a normal world for o with respect to | }. Since ak o, by
supraclassicality we have that o | a so P(@) c{se S|I(s) = a}. Furthermore by Left
Logical Equivalence we have that if k a.«<>B then o |y iff B |~y soaworld misa

- normal world for o iff it is a normal world for B, so P(e) = P(B). Thus, W is an
inference model.
Now we have to prove that forall o,fe L: o | B iff o }wB.
- Suppose o}~ B and choose m e P(e) then m is normal for a so mkB. So
P() E B,s0 o pwB.
- Suppose a }+ B. We will prove that {=B}u{y |a | v} is satisfiable. Suppose not,
then by the compactness assumption there is a finite set Dc{y |o |~ v} such that
DuU{—B} is unsatisfiable, so we have = AD — B. But for all ye D we have afy
and so, using the And rule, we have o |~ AD and with Right Weakening we have
o | B contrary to our assumption. Thus there is an m e U such that
mk{=B}U{y|a} v}, but then m is a normal world for o, so me P(@) and
m# B,s0 Pk B so o twp which was to be proven.

Now we want to look at consequence relations which satisfy in addition to the above four
rules also the rule Or, and we will see that we can get a similar representation result. For

this, we will first need a small lemma:

Lemma A.2.5
If a consequence relation |~ satisfies Supraclassicality, Left Logical Equivalence,
Right Weakening, And and Or, then for any o, B and 7y:
If Fa—p and oy then B a—7.
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Proof
From ka—pB we have F ae (Baa) and with Left Logical Equivalence we have
B A a | v. Using Conditionalization (which follows from the other rules), we get

Bl a-r.

Proposition A.2.6
A consequence relation |~ satisfies Supraclassicality, Left Logical Equivalence,
Right Weakening, And and Or if and only if | = }w for some inference model
W =<S,1, P> with P such that for all a, B:

If Fa—p then PR)Nn{seS|ls) ca} cP().

Proof
- Going from right to left we have to prove that |~ satisfies Or: suppose a fwY
and B w?. Choose se P(avp). Then Is)Foavp,so I(s)=a or Ks)kB. Suppose
I(s) Fo. As Fa— (@vP) wehave se P and as o fwy we have I(s) F v. So
PavB kEy,s0 avpwy asrequired.
- For the other direction we take the same definition for W as in the previous
proposition, and we only have to prove the extra condition. So suppose ka—B and
take m e P(B) n{se S|l(s) F a}. Suppose that o |~ v. Then lemma A.2.5 gives us
that B a—7y and as m is a normal world for B we have mE o — v, but as
me{seS|ls)Ea} we have mk a and so mky. We have proved that m is a

normal o world, so m e P(0).

So we have a representation result, but it uses a rather strange condition. We would like

to use a preference relation on worlds instead of a model operator, as in [KLM90].

Definition A.2.7 (Non-cumulative preference model)
A non-cumulative preference model W is a triple <S,1, <> where S is a set (the set
of states), 1 is a function 1: S$—» @ which assigns a world to every state and < isa

binary relation on S.

Definition A.2.8 (Consequence relation of a non-cumulative preference model)
Given a non-cumulative preference model W =<8, 1, <> we define the associated
consequence relation fw by: o pwB iff mkEB forall me m[gn{ se S|Is)Fa}
where nhin A={ae A| there exists no be A such that bRa}.

We want to prove that the class of these consequence relations is exactly the class of

consequence relations which satisfy the basic four rules and the Or rule. First we show
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that the class of consequence relations of a non-cumulative preference model satisfies the

five rules:

Lemma A.2.9 (Soundness)
For any non-cumulative preference model W, its associated consequence relation
satisfies Supraclassicality, Left Logical Equivalence, Right Weakening, And and Or.
Proof
Let W =<S,1, <>. We will show that W' =<S,1,P> with P(a) = mgn{ seS|lFa}
defines an inference model which satisfies the condition in proposition A.2.6. It is
then easy to see that jw = jw' and that W' is an inference model. Now suppose
Fo—p andtake se PB) n{se S|ls)Fa},so Is)k o Suppose se P(). Then there
exists te S such that I(t) = a and tRs, but since = o—pB we have (=B and tRs,
which contradicts the assumption that s e P(B). So se P(o and the condition is
satisfied, so proposition A.2.6 gives that fw satisfies the five rules.

We now intend to show that for any consequence relation satisfying the five rules we can
define a non-cumulative preference model with a consequence relation identical to the

one we started with:

Definition A.2.10

Given a consequence relation | which satisfies Supraclassicality, Left Logical
Equivalence, Right Weakening, And and Or we define its associated non-cumulative
preference model W =<S,1, <> by:

S={<m,0>|me U, € L},

I(<m, 0>) =m and

<n, 0> < <m, B> iff mk a, m not normal for o w.r.t. b, nk o and

(if m is normal for B w.r.t. | then ni B).

We want to show that the consequence relation based on this model is identical to the

one we started with:

Lemma A.2.11
For a consequence relation - which satisfies Supraclassicality, Left Logical
Equivalence, Right Weakening, And and Or, its associated non-cumulative

preference model W induces a consequence relation pw with | = w.

43



Proof
Again defining P(a) = min{s e S|1(s) o} we want to show that
IP(]={me U|m is nz)rmal for a w.r.t. |- }. Suppose we have <m,y> with mk a
and m is not normal for a. We distinguish two cases:
- m is not normal for ¥, then we have <m, a> < <m,y>, s0 <m, y> ¢ P(0) .
-m is normal for y. Now we want to find a world n such that nk= o but n# y. So
suppose F o —y. Then as m is not normal for o there exists a B such that o |~ B
and m# B. Then with F a—y we have F ae (ya® and with Left Logical
Equivalence we have yAaa |~ B and with Conditionalization (which follows from the
five rules) we have yj a— B, but as m is normal for y we have mk a—p and
mE o SO mk B, in contradiction with our assumption. Therefore we have ¥ a — Y, so
there exists an n with nk a and n# y. Then we have <n,0> < <m,y> and therefore
<m,Y> ¢ P(o).
So if m e I[P(®] then m is normal for a.
Now suppose m is normal for a. Then I(<m, a>) = o (using Supraclassicality).
Furthermore, if we have <n,y> < <m, o>, then as m is normal for o« we must have
n k¥ o, SO <m, o> € P(a), SO m € I[P(m)].
We will now use a lemma from [KLMO90], stating:
If |~ satisfies Reflexivity, Right Weakening and And (where Reflexivity means that
o |~ o for all a) then all normal worlds for a satisfy B iff a | B.
So then we get:
o pwB iff IP(@]kFP iff {me U |m is normal for o w.r.t. fYEB iff o B
Indeed p = pw as required.

Theorem A.2.12
A consequence relation |~ satisfies Supraclassicality, Left Logical Equivalence,
Right Weakening, And and Or if and only if | =} w for some non-cumulative
preference model W =<S, 1, <>.

Proof
Follows immediately from lemma A.2.11 and lemma A.2.9

We can even restrict the relation < to an irreflexive one. Each reflexive point s in a
non-cumulative preference model W =<S,1, < > can be replaced by an infinite sequence
(sj) of states labelled with the model I(s) and s; < sj;1. Each element s <t has to be
replaced by s; <t for all i, and the same for elements t < s. It is easy to see that pw is

not affected by these changes.
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We would like to find a similar representation result when the rule of Weak Rational
Monotony is included, and we would like to find other rules (possibly including temporal

operators) to be able to characterize our notion of minimal consequence further.

A.3 Downward persistence for minimal anchored entailment

As said before, decidability and complexity results transfer from minimal entailment to
minimal anchored entailment. We will now look at the persistence results of section 7.
First we have to change the notion of satisfaction of a formula in a model (now

(M, 0) F 9) and equivalence between formulae.

Definition A.3.1 (Upward and downward persistence)
i) A subjective TEL formula ¢ is called
downward persistent(?) (dp?) if for all TELC models O, N:
if <N and (N,0F ¢ then (M, 0) Eo.
upward persistent(?) (up?) if for all TELC models ¢, N:
if M<N and (M, 0)E ¢ then (I, 0) F .
ii) For two subjective TEL formulae o, y:
o~2y & forall TELC models : (M, 0E @ < (M, 0) = v.

Again we can link the notion of ~2 with the notion K¢: ¢~2y &
O(atg — @) = O(atg — ). So also ~* is decidable.

Theorem 7.6 and proposition 7.7 also transfer; the proofs are similar:

Theorem A.3.2
A subjective TEL formula ¢ is downward persistent(®) (upward persistent(?)) if and
only if it is equivalent (in the sense of ~2) to a subjective formula in DP (UP).

The link with monotonicity again holds, but now for minimal anchored entailment. The

proof is similar to that of proposition 7.10:

Proposition A.3.3
A formula ¢ is downward persistent(?) if and only if:
Va, B: o=t B = oAQ ECB

min min
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