KRZYSZTOF APT,
RACHEL BEN-ELIYAHU

Meta-variables
in Logic Programming,
or the Praise of Ambivalent Syntax

CT-95-06, received: October1995

ILLC Research Report and Technical Notes Series
Series editor: Dick de Jongh

Computation and Complexity Theory (CT) Series, ISSN: 0928-3323

Institute for Logic, Language and Computation (ILLC)
University of Amsterdam

Plantage Muidergracht 24

NL-1018 TV Amsterdam

The Netherlands

e-mail: illc@fwi.uva.nl

Meta-variables in Logic Programming,
or in Praise of Ambivalent Syntax

Krzysztof R. Apt
CwWI
P.O. Boz 94079, 1090 GB Amsterdam, The Netherlands
and
Dept. of Mathematics, Computer Science, Physics & Astronomy
University of Amsterdam, Plantage Muidergracht 24
1018 TV Amsterdam, The Netherlands

Rachel Ben-Eliyahu
Technion - Israel Institute of Technology
Haifa 32000

Israel

Abstract

We show here that meta-variables of Prolog admit a simple declarative interpretation.
This allows us to extend the usual theory of SLD-resolution to the case of logic programs
with meta-variables, and to establish soundness and strong completeness of the corresponding
extension of the SLD-resolution. The key idea is the use of ambivalent syntax which allows
us to use the same symbols as function and relation symbols.

We also study the problem of absence of run-time errors in presence of meta-variables.
We prove that this problem is undecidable. However, we also provide some sufficient and
polynomial-time-decidable conditions which imply absence of run-time errors.

1 Introduction

One of the unusual features of Prolog is the use of variables in the positions of atoms, both in
the queries and in the clause bodies. Such a use of a variable is called a meta-variable. Meta-
variables, when added to logic programs, allow us to extend their syntax in a simple way. For
example, the program

or(X,Y) « X.
or(X,Y) « Y.

“.n

allows us to define disjunction, which can be declared as an infix relation “;”, and subsequently
used in another program or query, like in the following program ISO0:

iso(tree(X,Left1,Rightl), tree(X,Left2,Right2)) «
(iso(Leftl,Left2),iso(Right1,Right2)) ;
(iso(Left1,Right2),iso(Right1,Left2)).

iso(void, void).

which tests whether two binary trees are isomorphic.

Using meta-variables some other extensions of logic programming can be defined. For exam-
ple, assuming for a moment that the cut “!” facility is present in the language, we can introduce
an if_then_else predicate by means of the program

if then_else(P, Q, R) « P,!,Q.
if then_else(P, Q, R) « R.

and then define negation by the single clause
neg(X) « if_then else(X, fail, 0O).

where O is the empty query which immediately succeeds.

Meta-variables are also useful when writing meta-interpreters, as they allow us to execute
certain calls by “lifting” them to the system level — see for an instance the program considered
in Example 6.2. Other uses of meta-variables can be found in Prolog programs that solve puzzles.
As an illustration consider the following puzzle from Smullyan [Smu94, page 23] and its solution
in Prolog given in Casimir [Cas88]:

“Then there’s my cook and the Cheshire Cat” continued the Duchess. “The Cook
believes that at least one of the two is mad.” What can you deduce about the Cook
and the Cat?

It is assumed that every person is always saying the truth or always lying, and “mad” is to
be identified here with “always lying”.

is(truthful).
is(1lying) .

believes(Somebody, Sth) «
Somebody = truthful, Sth ;
Somebody = lying, — Sth.

puzzle(Cook, Cat) «
is(Cook), is(Cat),
believes(Cook, (Cook = lying ; Cat = lying)).

Here “;” denotes disjunction, as defined above, “=” denotes negation and “="

built-in, called “is unifiable with” and defined by the single clause

is Prolog’s

X =X.
Executing the query puzzle(Cook, Cat) we get the desired answer:

?7- puzzle(Cook, Cat).

Cat = lying,
Cook = truthful ;

no

In this paper we provide theoretical foundations for the study of logic programs with meta-
variables. We show that this seemingly illogical use of variables can be easily accounted for
on a semantic level by means of ambivalent syntax which allows us to use the same symbols as
function and relation symbols. More precisely, we first adopt a version of ambivalent syntax, then
introduce a simple declarative semantics for logic programs with meta-variables, and establish
soundness and strong completeness of the corresponding extension of the SLD-resolution.

Intuitively, a meta-variable is a “place holder” which before its selection should be replaced
by an atom. Consequently, following Prolog, we stipulate that the selection of a meta-variable
by the selection rule leads to a run-time error. We prove that — as expected — absence of run-time
errors in presence of meta-variables is undecidable. However, we also provide some sufficient
and decidable conditions which imply absence of run-time errors.

The use of the ambivalent syntax was first advocated in mathematical logic by Richards
[Ric74], in the theory of logic programming by Kalsbeek [Kal93] and Jiang [Jia94], and in the
programming languages area by Chen, Kifer and Warren[CKW89] in their logic programming
language proposal HiLog.

In each of these references different versions of ambivalence are assumed. Qur version just
boils down to identification of function and relation symbols. This approach is related to that of
De Schreye and Martens [DM92] in which overloading of function and relation symbols is used
in order to provide semantics to meta-programs. For a systematic treatment of various versions
of ambivalent syntax the reader is referred to Kalsbeek and Jiang [KJ95].

The results of our paper show that once ambivalent syntax is permitted, meta-variables
admit a natural logical interpretation and can be easily reasoned about. Hence the title.

2 Syntax and Proof Theory

The step from meta-variables to ambivalent syntax is very natural. If we accept solve(z) — z
as a syntactically legal clause, then it is natural to accept any instance of it as syntactically
legal, as well. So for any non-variable term ¢ in the assumed language solve(t) «— t is a legal
clause. Now the outermost symbol of ¢ occurs in this clause both in the function symbol position
and the relation symbol position. As t was arbitrarily chosen, we conclude that in presence of
meta-variables the classes of function symbols and of relation symbols in the assumed language
coincide, as soon as the closure under instantiation is assumed.

So assume from now on a fixed first-order language £ such that the classes of function
symbols and relation symbols in £ coincide. In the sequel we consider queries and programs
written in this subset. Their syntax extends the customary syntax of logic programs as both
in queries and in the clause bodies we allow variables to appear in atoms positions. In such
a context they will be referred to as meta-variables. From now on we write meta-variables in
capital.

Formally, a query, is a possibly empty sequence of atoms or variables. In turn, a clause is
a construct of the form A «— B where A is an atom and B is a query. Thus we do not allow
variables to appear as a head of a clause. In this way we conform to Prolog syntax restrictions.

In the subsequent analysis we shall also use resultants which are constructs of the form
A — B, where A and B are queries. By an ezpression we mean an atom, query, resultant or a
clause. Given a program P, we denote by inst(P) the set of all instances of clauses of P and by
ground(P) the set of all ground instances of clauses of P. All the considered expressions and
their instances are built out of symbols present in L. If a query (respectively, a program) does
not contain meta-variables, it is called a logical query (respectively, a logical program).

The SLD-resolution in presence of meta-variables is defined as for logical programs (see e.g.
Lloyd [L1087]), with the exception that for every resolution step:

o the mgu employed acts now also on meta-variables,
o the selection of a meta-variable by the selection rule leads to an error.

The second condition is consistent with Prolog’s interpretation of meta-variables.

It is useful perhaps to mention here that for more powerful versions of ambivalent logics, like
the ones discussed in Kalsbeek and Jiang [KJ95], the unification algorithm has to be appropri-
ately generalized. This is not so for the version of the ambivalent syntax we use here since it
does not yield any syntactic changes on the atom level.

We now refer to SLD-resolution with the leftmost selection rule as LD-resolution.

Example 2.1 Consider the query p(X), X. When the program is {p(a) < }, then the only (up
to renaming) LD-derivation fails, when the program is {p(y) < } then the only LD-derivation
ends in an error after one computation step, and when the program is {p(a) —, a < } then
the only LD-derivation is successful and yields the computed answer substitution {X/a}. This
agrees with Prolog’s interpretation. a

Formally, we extend the SLD-resolution by stipulating that an SLD-derivation ends in an
error when at the moment of evaluation the selected atom is a variable.
The following notion will be useful in our considerations.

Definition 2.2 Consider an SLD-derivation

0 6
Qo=Q1- = Qn ... (1)
Let forz >0
Ri = Q001. . .0,‘ — Qi'
We call R; the resultant of level i of (1). a

In Section 4 we shall need the following lemma which involves resultants.

Lemma 2.3 (Disjointness) Consider an SLD-derivation of PU{Q} with the sequenced,, ..., dny1,. ..
of input clauses used and with the sequence Ry, ..., Ry, ... of resultants associated with it. Then
fori>0

Var(R;) N Var(di41) = 0.

Proof. It suffices to prove by induction on ¢ that

Var(R;) C Var(Q) U U (Var(6;) U Var(d;)), (2)
Jj=1
where 0y,...,0,,...are the substitutions used. The claim then follows by standardization apart

(defined as in Lloyd [L1o87, page 41], so as the condition that each input clause d; is variable
disjoint with (Var(Q) U U;;ll(Var(60;) U Var(d;))))-
Base. ¢ = 0. Obvious.

Induction step. Suppose (2) holds for some ¢ > 0. Note that if R; = Q' — A, B, C where B
is the selected atom, and d;;; = H — B, then R;;1 = (Q' — A,B, C)f;;1. Thus

Vll?"(Ri+1)
Var(R;) U Var(0;41) U Var(d;41)
{induction hypothesis (2)}
i+1
Var(Q) U U(Var(ﬂj) U Var(d;)).

i=1

N 1N

3 Semantics

As a next step in our study of logic programs with meta-variables we study their meaning. To
this end we define the meaning of expressions, so a fortiori of queries and programs.

In general, it is not clear how to define the meaning of an expression in an interpretation
of the language £, because it is not clear how to define the meaning of meta-variables. We
circumvent this problem by limiting our attention to a restricted classes of interpretations, the
Herbrand interpretations. Then we discuss to what extent this restriction could be relaxed.

Formally, by a Herbrand interpretation we mean a set of ground atoms (or equivalently
ground termms) in the language £. By a state we mean a mapping assigning to each variable a
ground term.

We now define a relation I |=, E between a Herbrand interpretation I, a state o and an
expression E. Intuitively, I =, E means that E is true when in I when its variables are
interpreted according to o.

o if X is a variable, then
Ik, Xiffo(X) €I,

o if A is an atom, then
Ik, Aiff Ao € I,

o if A,... A, is a query, then
Ik, Ay,.. A iff T =, A; for i € [1,n),
o if A — B is a resultant, then
I'=, A —Biff (I =, Bimplies I |5, A).
In particular, if H «— B is a clause, then
I=, H—Biff (I |, B implies I =, H),

and for a unit clause H «
Ik, H— iff I =, H.

In this definition only the first statement is unusual. In the usual setting the condition on
its right hand side does not make sense, and consequently can never succeed. But now the

5

ambivalent syntax is assumed, so this statement is perfectly legal as every term is also an atom
and consequently it can succeed.

Finally, given an expression E and a Herbrand interpretation I, we say that E is true in I,
or I is a Herbrand model of E, and write I |= E, when for all states o we have I |=, E. Note
that the empty query O is true in every Herbrand interpretation I. An interpretation I is called
a model of a program P if all the clauses of P are true in I. When FE is true in all Herbrand
models of a program P, we write P = E.

The following example hopefully clarifies the introduced notions.

Example 3.1 Suppose that £ has only one constant (and 0-ary relation symbol) ¢, and one
unary function (and relation) symbol solve. Let P = {solve(X) — X}, and let I = {c, solve(c)}.

Then I is not a model of P, because I = solve(c) but not I |= solve(solve(c)). On the other
hand for every k > 0, J = {solve™(c) | n > k} is a model of P, since every ground term of L is
of the form solve™(c) for n > 0 and solve™(c) € Ji implies solve™(c) € Ji. Also, the empty
Herbrand interpretation is a model of P.]

When trying to define the meaning of expressions in more general interpretations one has to
clarify how to assign meaning to meta-variables. We see two possible approaches. The first one
consists of considering term interpretations, that is interpretations whose universe consists of all
terms. Then the appropriate notion of a state is that of a mapping assigning to each variable
a (not necessarily ground) term and the first statement in the above definition of semantics
still makes a perfect sense, as every term interpretation for the ambivalent language £ can be
identified with a set of terms. In our presentation we decided to limit our attention to Herbrand
interpretations, as they are easier to understand and to deal with.

The second approach (suggested by a referee of an earlier version of this paper) consists of
transforming each program and query into a logical program and a logical query in a first-order
non-ambivalent language without meta-variables, and assign the meaning to the latter objects.
To this end it suffices to replace every atom or meta-variable A by holds(A), where holds is
a new unary relation symbol. This type of transformations is actually useful when studying
meta-interpreters. From the proof theoretic point of view the transformed program and query
behaves in an equivalent way to the original one with the important exception that errors due to
the selection of a meta-variable X are mapped onto the selection of atoms of the form holds(X).

We find this approach somewhat artificial as it circumvents the original problem by a program
transformation. Using our approach it is possible to associate a meaning with a program directly,
so that programs like P in Example 3.1 can be studied in the same direct way as logical programs.
This is important, as the declarative semantics of logical programs is usually associated with
the least Herbrand model of the program and the same viewpoint can be now adopted for logic
programs with meta-variables. Further, in our approach the run-time errors correspond to a
“natural” phenomenon and not to a rather artificial restriction of the SLD-resolution.

The program IS0 of Section 1 suggests that one might get rid of meta-variables by unfolding.
Indeed, by unfolding in IS0 the call to the “;” relation we end up with a program without meta-
variables. Unfortunately, this approach does not work in general. For example the meta-variables
cannot be eliminated in this way from the other program from Section 1 or from the program
P in Example 3.1.

We conclude this section by mentioning the following result which can be established by
mimicking the corresponding proof for the case of (standard) SLD-resolution.

Theorem 3.2 (Soundness) Suppose that there exists a successful SLD-derivation of PU{Q}
with the computed answer substitution §. Then P |= Q4. |

4 Completeness

In this section we establish a completeness result. To this end we adjust the proof of strong
completeness of SLD-resolution due to Stark [Std90]. We begin by introducing the following
concept.

Definition 4.1 A finite tree whose nodes are atoms, is called an implication tree w.r.t. P if for
each of its nodes A with the children By, ..., B,, the clause A « B, ..., B, is in inst(P). We
say that an atom has an implication tree w.r.t. P if it is the root of an implication tree w.r.t.
P. An implication tree is called ground iff all its nodes are ground. a

In particular, for n = 0 we get that every leaf A of an implication tree is such that the unit
clause A « is in inst(P). The following lemma reveals the relevance of the implication trees
for the semantics.

Lemma 4.2 The Herbrand interpretation
M(P) := {A| A has a ground implication tree w.r.t. P}

is a model of P.

Proof. First note that for a Herbrand interpretation I, I = P iff I |= ground(P). Now to
show that M(P) = ground(P) it suffices to prove that for all A — By, ..., B, in ground(P),
{B1,...,B,} C M(P) implies A € M(P). But this translates into an obvious property of the
ground implication trees. m|

In fact, M(P) is the least Herbrand model of P, but this property is not needed here. This
brings us to the following conclusion.

Corollary 4.3 Assume that the language L has infinitely many constants. Suppose that P |= Q.
Then Q is a logical query and every atom in Q has an implication tree w.r.t. P.

Proof. By Lemma 4.2 M(P) E Q. First note that @ is a logical query. Indeed, suppose
otherwise. Then for some meta-variable X we have M(P) = X, so every constant ¢ of £ has a
ground implication tree w.r.t. P. (Here the ambivalence of the syntax is used and the constants
are “interpreted” as 0-ary relations.) So for every constant ¢ of L there is a clause of P with ¢
as its head. But P has only finitely many clauses, so this is impossible.

For the proof of the second property, let 4, .. ., 2, be the variables of Q and ¢y, .. ., ¢, distinct
constants of £ which do not appear in P or Q. Let v := {21/¢1,...,2n/cn}. Then Q7 is ground
and M(P) | Q~, so @y C M(P), that is every atom in @7 has a ground implication tree w.r.t.
P. By replacing in these trees every occurrence of a constant ¢; by @; for ¢ € [1,n] we conclude,
by virtue of the choice of the constants cy, ..., ¢y, that every atom in @ has an implication tree
w.r.t. P. a

Given a program P and a query @, we now say that @ is n-deep if it is a logical query and
every atom in @ has an implication tree w.r.t. P such that the total number of nodes in these
implication trees is n. Then a query is 0-deep iff it is empty.

The following lemma relates two concepts of provability — that by means of implication trees
and that by means of SLD-resolution.

Lemma 4.4 (Implication Tree) Suppose that Q0 is n-deep for some n > 0 and that all SLD-
derivations of P U {Q} via a selection rule R do not in end error.

Then there exists a successful S LD-derivation of P U {Q} via R with the computed answer
substitution n such that Qmn is more general than Q0.

Proof. We construct by induction on ¢ € [0, n| a prefix

Qong'"'%Qi

of an SLD-derivation of P U {Q} via R and a sequence of substitutions 7y, .. .,7;, such that for
the resultant R; := A; «— @Q; of level ¢

o Q0= Ay,
e Q;7;is (n — 7)-deep.
Then Q.7 is 0-deep, so @Q,, = O and consequently

QOQQI"'éQn

is the desired SLD-derivation, since A,, is then more general than Q0 and A, = Q6;.. .0,.
Base. i = 0. Define Qo := @ and o := 4.

Induction step. Let B be the atom or the meta-variable of Q; selected by R. By the assump-
tion of the lemma B is an atom. @; is of the form A, B, C. By the induction hypothesis By;
has an implication tree with » > 1 nodes. Hence there exists a clause ¢ := H «— B in P and a
substitution 7 such that By; = H7 and

BT is (r — 1)-deep. (3)

Let 7 be a renaming such that ¢r is variable disjoint with @ and with the substitutions and
the input clauses used in the prefix constructed so far. Further, let a be the union of v;| Var(R;)
and (m~!7)| Var(cr). By the Disjointness Lemma 2.3 a is well-defined. o acts on R; as y; and
on ¢r as 7~ 7. This implies that

Ba = By; = Hr = Hr(r"'7) = (H7)a,
so B and H~ unify. Define 6,1 to be an mgu of B and Hx. Then there is 7,41 such that

a = 011741 (4)

Let Q;y1 := (A,Bw,C)f;41 be the next resolvent in the SLD-derivation being constructed.
Then A;0;11 « Qit1 is the resultant of level 2 + 1. We have

Qo
= {induction hypothesis}
Ay
= {definition of a}
Aa
= {4}
Aibit1Yiv,

and

Qit17Yis1,
= (Aa B”a C)0i+17i+1

= {4}
(A,B7,C)a

= {definition of a}
A~;, BT, Cr;.

So @;4+17i+1 is obtained from @;7; by replacing Bv;, that is H7, by Br. By the induction
hypothesis and (3) we conclude that Q;417i+1 is (n — (2 + 1))-deep. This completes the proof of
the induction step. a

We can now prove the desired result.

Theorem 4.5 (Strong Completeness) Assume that the language L has infinitely many con-
stants. Suppose that P |= Q6 and that all SLD-derivations of PU {Q} via a selection rule R do
not end in error.

Then there ezxists a successful SLD-derivation of P U {Q} via R with the computed answer
substitution n such that Qn is more general than Q6.

Proof. By the Corollary 4.3 P |= Q6 implies that Q8 is n-deep for some n > 0. The claim now
follows by the Implication Tree Lemma 4.4. a

The assumption that the language £ has infinitely many constants is necessary here. Indeed,
suppose that £ has only finitely many constants, say ci,. .., ¢,. Let P consist of the unit clauses
solve(cy), . . ., solve(c,), and the clause solve(solve(z)) «— solve(z), where solve is a unary func-
tion and relation symbol (we make use here of the ambivalence of the syntax). Note that every
ground term in £ is of the form solve’(c;) for some i > 0 and j € [1..n], and that every such
term, viewed as an atom, belongs to every Herbrand model of P.

Take now the query @ := solve(z). Note that P |= Q¢, where € is the empty substitution.
Also, all LD-derivations of P U {Q} do not end in error. In fact, meta-variables are not used
here. However, every successful LD-derivation of PU{Q} yields a computed answer substitution
n such that @7 is of the form solve(c;) for some j € [1..n], so not more general than Qe.

This is in contrast to the classical theory of the SLD-resolution where the strong completeness
does not depend on the underlying language. It is useful to understand the reasons for this
difference.

In the classical case of logical programs and logical queries semantics is defined for arbitrary
interpretations, whereas in presence of meta-variables only for Herbrand interpretations. Now,
for logical programs and logical queries the truth in all interpretations is in general not equivalent
to truth in all Herbrand interpretations but the equivalence does hold when the underlying
language has infinitely many constants — see Maher [Mah88]. So when infinitely many constants
are present in the language, the completeness theorem for logical programs and logical queries
does hold when only Herbrand interpretations are used. Thus the above theorem extends this
version of the completeness theorem to programs and queries in presence of meta-variables.

It is worthwhile to note that when the semantics based on all term interpretations is used,
then the corresponding completeness result does not require that the underlying language has
infinitely many constants. The proof of this result is analogous to the proof of the Strong

Completeness Theorem 4.5 and is omitted. In fact, in the case of logical programs and logical
queries the truth in all interpretations is always equivalent to truth in all term interpretations
— see Falaschi et al. [FLMP89], and this results extends to programs and queries in presence
of meta-variables.

Also, when the other approach to semantics of programs and queries discussed at the end of
Section 3 is used, so the one involving the translation by means of the relation symbol holds, the
corresponding completeness result does not depend on the assumptions about the underlying
language. This is the consequence of the fact that the semantics of the translated program and
translated query is given in terms of arbitrary interpretations and not only Herbrand interpre-
tations.

The assumption that the language £ of programs has infinitely many constants sounds
perhaps artificial. However, at a closer look it is quite natural. For example, any Prolog manual
defines infinitely many constants. Of course, in practice only finitely many of them can be
written or printed. But even in the case of one fixed program arbitrary queries can be posed,
and in these queries arbitrary constants can appear. So when studying behaviour of a program,
it is natural to assume a language in which all these constants are present.

5 Absence of Errors

When studying SLD-resolution in presence of meta-variables it is natural to seek conditions that
ensure that the SLD-derivations do not end in error. It is particularly of interest when studying
correctness of Prolog programs that use meta-variables, like the IS0 program discussed in Section
1. The following result shows that this property is in general undecidable.

Theorem 5.1 For some logical program P the following property is undecidable:

a query Q is such that all LD-derivations of P U {Q} do not end in error.

Proof. Below Mp denotes the least Herbrand model of a program P and Bp the Herbrand base
determined by P. By the strong completeness of SLD-resolution we have for every program P
and a ground atom A:

A € Mp iff there exists a successful LD-derivation of P U {4},

SO

A € Bp — Mp iff no successful LD-derivation of P U {A} exists
iff all LD-derivations of P U {A, X} do not end in error,

where X is a meta-variable. Thus to prove the theorem it suffices to exhibit a program P for
which the set Mp, and consequently the set Bp — Mp is undecidable. Now, this is the contents
of Corollary 4.7 in Apt [Apt90]. This completes the proof. a

6 Sufficient conditions for error-free computations

In this section we provide sufficient conditions on programs and queries that imply absence of
errors of the kind defined in the previous sections. We also show that these sufficient conditions
can be checked in time polynomial in the size of the program and the query.

10

We start by introducing meta-modes. Meta-modes indicate how the arguments of a relation
should be used. Intuitively, in order to prevent run-time errors, we should avoid having a variable
as the i’th argument of the query p(...) if 7 is in the meta-mode for p.

Definition 6.1 [meta-mode| Consider an n-ary relation symbol p. A meta-mode for p, m,, is a
subset of {1,...,n}. By a meta-moding for a program P we mean a collection of modes, one for
each relation symbol in the language £ and such that m, = @ for all relation symbols p not in
P. a

Sometimes we shall say just mode (resp. moding) instead of meta-mode (resp. meta-moding).

Example 6.2 Consider the following program SOLVE from Sterling and Shapiro [SS86, pages
307-308], where solve(Goal) succeeds whenever Goal is deduced from the Prolog program
defined by a binary relation symbol clause. We also assume that the relation symbol system
defines the system predicates.

solve(true).

solve((A,B)) «— solve(A), solve(B).
solve(A) « system(A), A.

solve(A) « clause(A,B), solve(B).

Below we consider the following meta-moding for this program: m,oe = {1}, m, = 0 for all
other relation symbols of L. a

We now define when a variable is considered to be a meta-variable in a query. From now on
assume a fixed moding for each considered program.

Definition 6.3 [The relations ~» and ~»*] Consider an atom A := p(¢,...,t,). Suppose that
i € mp. Then we write A ~ t;. Due to the ambivalent syntax ~» can be viewed as a binary
relation both on terms and on atoms. ~+* denotes the transitive, reflexive closure of ~». ad

Definition 6.4 [meta-variable in a query]

e A variable X is a meta-variable in an atom A if A ~* X.

e A variable X is a meta-variable in a query if it occurs in it as a meta-variable or it is a
meta-variable in some of its atoms. O

Intuitively, A ~* X holds if in the parse tree for A an occurrence of the variable X can be
reached from the root via a path with only “meta-moded” links.

Example 6.5 For the moding given in Example 6.2, X is a meta variable in the queries
solve(solve(X)) and system(X),X, but X is not a meta-variable in the query solve(p(X)),
where p is a relation symbol different from solve. a

To deal with absence of errors in presence of meta-variables we now introduce the notion of
well-meta-modedness.

Definition 6.6 [well-meta-moded (wmm)]

e A query @ is called well-meta-moded (in short wmm) if no variable is a meta-variable in

Q.

11

o A clause A «— @ is called well-meta-moded if for every meta-variable X in @ we have
A~ X,

e A program is called well-meta-moded if every clause of it is.]

The theorem below explains our interest in the notion of well-meta-modedness. We need the
following lemma.

Lemma 6.7 An SLD-resolvent of a well-meta-moded query and a well-meta-moded clause that
1s variable disjoint with it, is well-meta-moded.

Proof. First note that an instance of a wmm query is wmm. Indeed, if A8 ~»* X then either A
is a meta-variable or A ~»* X or for some binding Y/s € § both A~*Y and s ~* X.

Suppose now that a wmm query @ is (successfully) resolved with the wmm clause ¢ :=
p(t1,...,tk) — B. Let A be the selected atom in Q. For some terms s1,...,8¢ A := p(s1,..., Sk).
Let X be a meta-variable in B. Since ¢ is wmm, for some z € [1, k] we have X =t¢; and i € m,,.
Since @ is wmm, s; is a term having no meta-variables. Hence when c is instantiated with
an mgu of A and p(t4,...,t,) all the meta-variables in B are replaced with terms having no
meta-variables.

This implies that the SLD-resolvent is wmm. a

Theorem 6.8 (Absence of Errors) If P and Q are well-meta-moded then all SLD-derivations
of PU{Q} are error-free.

Proof. It is an immediate consequence of Lemma 6.7. a

We now turn to complexity issues. First note the following result.

Theorem 6.9 Let p be a moding for a program P. There exists an algorithm which checks
whether P (resp. a query Q) is wmm w.r.t. p in time polynomial in the size of P (resp. Q).

Proof. The size any moding for a program P is polynomial in the size of P. In fact, it is O(nk),
where n is the number of relation symbols and k the maximum arity. Hence, the relations ~»
and ~*, defined in Definition 6.3 can be computed in time which is polynomial in the size of P,
and the number of pairs in these relations is polynomial in the size of P.

Deciding whether a variable is a meta-variable in some query (Definition 6.4) can be done in
time linear in the size of the relation ~»*. So for each clause and for each query we can decide
whether it is well-meta-moded (Definition 6.6) in time polynomial in the size of the relations ~»
and ~»*. Hence we can decide whether a program P (resp. a query Q) is wmm with respect to
some moding in time which is polynomial in the size of P (resp. Q). a

This shows that the conditions of the Absence of Errors Theorem 6.8 can be checked in
polynomial time.

Frequently, a moding that assigns to each n-ary relation symbol of the program the mode
{1, ..., n} will make the program well-meta-moded, but then the class of well-meta-moded queries
becomes too restrictive. Hence the motivation for a minimal meta-moding.

Definition 6.10 A moding p for a program P is a good meta-moding for P iff P is well-meta-
moded with respect to g and g is minimal. That is, there is no other moding u' such that P is
well-meta-moded w.r.t. ' and for some relation symbol p, m’, € p', m, € p and m’, C m,. O

12

Example 6.11

(i) The moding provided in Example 6.2 is a good meta-moding for the program SOLVE. By
the Absence of Errors Theorem 6.8 applied to the program SOLVE and the query solve(p(X))
we conclude that the SLD-derivations of SOLVE U {solve(p(X))} are error-free. This conclusion
cannot be drawn for the query solve(solve(X)) which is not wmm. In fact, an SLD-derivation
of SOLVE U {solve(solve(X))} that repeatedly uses the third clause of SOLVE ends in an error.

(ii) The program which consists of the clause
p(X) « q(X), Y

does not have a good meta-moding.

(iii) Consider the following program P:

p(X,Y,2) « q(X,Y), Z.
q(X,Y) « r(V), X

Let p be a moding such that m, = {1,3}, my = {1}, and m, = 0. Then p is a good
meta-moding for P.

The query p(a,b,Z) is not wmm w.r.t. p, whereas the query p(a, Y, r(X)) is wmm w.r.t. to
i. The query X is not wmm w.r.t. any moding. By the Absence of Errors Theorem 6.8 all
SLD-derivations of P U {p(a,Y,r(X))} are error-free. o

We conclude with the following result concerning good meta-modings.

Theorem 6.12 There exists an algorithm which checks whether a program P has a good meta-
moding and provides such moding if it exists. This algorithm runs in time polynomial in the size
of P.

Proof. Consider the algorithm Good-meta-moding (in short, gmm) given in Figure 1. Suppose
the input to algorithm gmm is some program P. First, note that the while-loop repeats at
most n * k times, where n is the number of relation symbols and k£ the maximum arity of any
relation in P. Recall that the relation ~»* can be computed in time which is polynomial in the
size of the program, and once this relation is given, testing whether a variable is a meta-variable
in some query is also easy. Hence the algorithm runs in time which is polynomial in the size
of the program. To verify that the algorithm indeed generates a correct output, note that the
following invariants hold after each time the body of the while-loop is executed:

1. For every relation symbol p, if j € m, then also j is in m, in every other moding that
makes P well-meta-moded,

2. If fail = true then P has no good meta-moding

The proof of the invariants is done by induction on z, the number of times the body of the
while-loop was executed so far. Hence we have shown an algorithm which checks in polynomial
time whether a program P has a good meta-moding and provides such moding if it exists. O

Acknowledgements

We would like to thank the referees of an earlier version of this paper and Marianne Kalsbee for
useful comments.

13

Good-meta-moding
Input: A program P
Output: If P has a good meta-moding, such a moding will be the output.
Otherwise false is returned.

Let pq, ..., pn be all the relation symbols in P.
for i := 1 to n do m,, := 0;

~*:={(X,X)| X is a variable in P};

change :=true; fail := false;

while change and not fail do

change := false;
for each clause p(t1,...,tx) «— @ in P do

for each X which is currently a meta-variable in @ do
if for some 1 <j<kt; = X then
if j ¢ m, then
begin
my = mpU{] };
change := true;
end;
else fail:=true;
endfor;
endfor;

compute ~»* according to the current values of m,, ,...,mp,;
endwhile;
for each relation symbol p not in P do m, = §;

if not fail then return m,,, ..., m,, else return false

Figure 1: Algorithm Good-meta-moding

14

References

[Apt90]

[Cas88]
[CKW89]

[DM92]

[FLMP89]

[Jia94]

[Kal93]

[KJ95]

[L1087]

[Mah88]

[Ric74]
[Smu94]
[SS86]
[St490]

K. R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, pages 493-574. Elsevier, 1990. Vol. B.

R. Casimir. Is Prolog echt zo bijzonder. Informatie, 30(7/8):484-491,1988. In Dutch.

W. Chen, M. Kifer, and D.S. Warren. Hilog: A first-order semantics for higher-order
logic programming constructs. In Proceedings of the North-American Conference on
Logic Programming, Cleveland, Ohio, October 1989.

D. De Schreye and B. Martens. A sensible least Herbrand semantics for untyped
vanilla meta-programming and its extension to a limited form of amalgamation. In
A. Pettorossi, editor, Proceedings Meta 92, Lecture Notes in Computer Science 649,
pages 192-204. Springer-Verlag, 1992.

M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative modeling of the
operational behavior of logic languages. Theoretical Computer Science, 69(3):289—
318, 1989.

Y. Jiang. Ambivalent logic as the semantic basis of metalogic programming: I. In
P. Van Hentenryck, editor, Proceedings of the International Conference on Logic
Programming, pages 387—401. MIT Press, June 1994.

M. Kalsbeek. The vanilla meta-interpreter for definite logic programs and ambivalent
syntax. Technical Report CT-93-01, Department of Mathematics and Computer
Science, University of Amsterdam, The Netherlands, 1993.

M. Kalsbeek and Y. Jiang. A vademecum of ambivalent logic. In K.R. Apt and
F. Turini, editors, Meta-logics and Logic Programming, pages 27-56. The MIT Press,
Cambridge, Massachussets, 1995.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, second
edition, 1987.

M.J. Maher. Complete axiomatizations of the algebras of finite, rational and infinite
trees. In Proceedings of the Fifth Annual Symposium on Logic in Computer Science,
pages 348-357. The MIT Press, 1988.

B. Richards. A point of reference. Synthese, 28:431-445, 1974.
R. Smullyan. Alice tn Puzzle-land. Penguin, Harmondsworth, 1994.
L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

R. Stark. A direct proof for the completeness of SLD-resolution. In Borger, H. Kleine
Biining, and M.M. Richter, editors, Computer Science Logic 89, Lecture Notes in
Computer Science 440, pages 382-383. Springer-Verlag, 1990.

15

institute for logic, language and computation

ILLC Research Reports and Technical Notes

Coding for Research Reports: Series-Year-Number, with LP = Logic, Philosophy and Linguistics; ML =
Mathematical Logic and Foundations; CL = Compuational Linguistics; CT = Computation and Complexity
Theory; X = Technical Notes.

All previous ILLC-publications are available from the ILLC bureau. For prepublications before 1994, contact
the bureau.

ML-94-01 Domenico Zambella, Notes on polynomially bounded arithmetic

ML-94-02 Domenico Zambella, End Extensions of Models of Linearly Bounded Arithmetic

ML-94-03 Johan van Benthem, Dick de Jongh, Gerard Renardel de Lavalette, Albert Visser, NNIL, A Study in
Intuitionistic Propositional Logic

ML-94-04 Michiel van Lambalgen, Independence Structures in Set Theory

ML-94-05 V. Kanovei, IST is more than an Algorithm to prove ZFC Theorems

ML-94-06 Lex Hendriks, Dick de Jongh, Finitely Generated Magari Algebras and Arithmetic

ML-94-07 Sergei Artémov, Artém Chuprina, Logic of Proofs with Complexity Operators

ML-94-08 Andreja Prijatelj, Free Algebras Corresponding to Multiplicative Classical Linear Logic and some
Extensions

ML-94-09 Giovanna D’Agostino, Angelo Montanari, Alberto Policriti, A Set-Theoretic Translation Method for
Polymodal Logics

ML-94-10 Elena Nogina, Logic of Proofs with the Strong Provability Operator

ML-94-11 Natasha Alechina, On One Decidable Generalized Quantifier Logic Corresponding to a Decidable
Fragment of First-Order Logic

ML-94-12 Victor Selivanov, Fine Hierarchy and Definability in the Lindenbaum Algebra

ML-94-13 Marco R. Vervoort, An Elementary Construction of an Ultrafilter on X1 Using the Axiom of Deter-
minateness

LP-94-01 Dimitar Gelev, Introducing Some Classical Elements of Modal Logic to the Propositional Logics of
Qualitative Probabilities

LP-94-02 Andrei Arsov, Basic Arrow Logic with Relation Algebraic Operators

LP-94-03 Jerry Seligman, An algebraic appreciation of diagrams

LP-94-04 Kazimierz .§w1'rydowicz, A Remark on the Maximal Extensions of the Relevant Logic R

LP-94-05 Natasha Kurtonina, The Lambek Calculus: Relational Semantics and the Method of Labelling

LP-94-06 Johan van Benthem, Dag Westerstahl, Directions in Generalized Quantifier Theory

LP-94-07 Natasa Rakié, Absolute Time, Special Relativity and ML

LP-94-08 Daniel Osherson, Scott Weinstein, Dick de Jongh, Eric Martin, Formal Learning Theory

LP-94-09 Harry P. Stein, Linguistic Normativity and Kripke’s Sceptical Paradox

LP-94-10 Harry P. Stein, The Hazards of Harmony

LP-94-11 Paul Dekker, Predicate Logic with Anaphora

LP-94-12 Paul Dekker, Representation and Information in Dynamic Semantics

LP-94-13 Jeroen Groenendijk, Martin Stokhof, Frank Veltman, This Might Be It

LP-94-14 Jeroen Groenendijk, Martin Stokhof, Frank Veltman, Update Semantics for Modal Predicate Logic

LP-94-15 Henk Zeevat, The Mechanics of the Counterpart Relation

LP-94-16 David Beaver, When Variables Don’t Vary Enough

LP-94-17 David Beaver, Accommodating Topics

LP-94-18 Claire Gardent, Discourse Multiple Dependencies

LP-94-19 Renate Bartsch, The Relationship between Connectionist Models and a Dynamic Data-Oriented The-
ory of Concept Formation

LP-94-20 Renate Bartsch, The Myth of Literal Meaning

LP-94-21 Noor van Leusen, The Interpretation of Corrections

LP-94-22 Maarten Marx, Szabolcs Mikulds, Istvan Németi, Taming Arrow Logic

LP-94-23 Jaap van der Does, Cut Might Cautiously

LP-94-24 Michiel Leezenberg, Metaphor and Literacy

CT-94-01 Harry Buhrman and Leen Torenvliet, On the Cutting Edge of Relativization: the Resource Bounded
Injury Method

CT-94-02 Alessandro Panconesi, Marina Papatriantafilou, Philippas Tsigas, Paul Vitdnyi, Randomized Wait-
Free Distributed Naming

CT-94-03 Ming Lee, John Tromp,
Paul Vitdnyi, Sharpening Occam’s Razor (extended abstract)

CT-94-04 Ming Lee and Paul Vitdnyi, Inductive Reasoning

CT-94-05 Tao Jiang, Joel I. Seiferas, Paul M.B. Vitdnyi, Two heads are Better than Two Tapes

CT-94-06 Guido te Brake, Joost N. Kok, Paul Vitianyi, Model Selection for Neural Networks: Comparing MDL
and NIC

CT-94-07 Charles H. Bennett, Péter Gécs, Ming Li, Paul M.B. Vitdnyi, Wojciech H. Zurek, Thermodynamics
of Computation and Information Distance

CT-94-08 Krzysztof R. Apt, Peter van Emde Boas and Angelo Welling, The STO-problem is NP-hard

CT-94-09 Klaus Ambos-Spies, Sebastiaan A. Terwijn, Zheng Xizhong, Resource Bounded Randomness and
Weakly Complete Problems

CT-94-10 Klaus Ambos-Spies, Hans-Christian Neis, Sebastiaan A. Terwijn, Genericity and Measure for Expo-
nential Time

CT-94-11 Natasha Alechina, Logic with Probabilistic Operators

CT-94-12 Marianne Kalsbeek, Gentzen Systems for Logic Programming Styles

CT-94-13 Peter Desain, Henkjan Honing, CLOSe to the edge? Advanced Object-Oriented Techniques in the
Representation of Musical Knowledge

CT-94-14 Henkjan Honing, The Vibrato Problem. Comparing two Ways to Describe the Intraction between the
Continuous Knowledge and Discrete Components in Music Representation Systems

X-94-01 Johan van Benthem, Two Essays on Semantic Modelling

X-94-02 Vladimir Kanovei, Michiel van Lambalgen, Another Construction of Choiceless Ultrapower

X-94-03 Natasha Alechina, Michiel van Lambalgen, Correspondence and Completeness for Generalized Quan-
tifiers

X-94-04 Harry P. Stein, Primitieve Normen
Linguistische normativiteit in het licht van Kripke’s sceptische paradox

X-94-05 Johan van Benthem, Logic and Argumentation

X-94-06 Natasha Alechina, Philippe Smets, A Note on Modal Logics for Partial Belief

X-94-07 Michiel Leezenberg, The Shabak and the Kakais: Dynamics of Ethnicity in Iraqi Kurdistan

LP-95-01 Marten Trautwein, Assessing Complexity Results in Feature Theories

LP-95-02 S.T. Baban, S. Husein, Programmable Grammar of the Kurdish Language

LP-95-03 Kazimierz gwirydowicz, There exist exactly two Maximal Strictly Relevant Extensions of the Relevant
Logic R*

LP-95-04 Jaap van der Does, Henk Verkuyl, Quantification and Predication

LP-95-05 Natasa Rakié, Past, Present, Future and Special Relativity

LP-95-06 David Beaver, An Infinite Number of Monkeys

LP-95-07 Paul Dekker, The Values of Variables in Dynamic Semantics

LP-95-08 Jaap van der Does, Jan van Eijck, Basic Quantifier Theory

ML-95-01 Michiel van Lambalgen, Randomness and Infinity

ML-95-02 Johan van Benthem, Giovanna D’Agostino, Angelo Montanari, Alberto Policriti, Modal Deduction
in Second-Order Logic and Set Theory

ML-95-03 Vladimir Kanovei, Michiel van Lambalgen, On a Spector Ultrapower of the Solovay Model

ML-95-04 Hajnal Andréka, Johan van Benthem, Istvan Németi, Back and Forth between Modal Logic and
Classical Logic

ML-95-05 Natasha Alechina, Michiel van Lambalgen, Generalized Quantification as Substructural Logic

ML-95-06 Dick de Jongh, Albert Visser, Embeddings of Heyting Algebras (revised version of ML-93-14)

ML-95-07 Johan van Benthem, Modal Foundations of Predicate Logic

ML-95-08 Eric Rosen, Modal Logic over Finite Structures

CT-95-01 Marianne Kalsbeek, Yuejun Jiang, A Vademecum of Ambivalent Logic

CT-95-02 Leen Torenvliet, Marten Trautwein, A Note on the Complexity of Restricted Attribute-Value Gram-
mars

CT-95-03 Krzysztof Apt, Ingrid Luitjes, Verification of Logic Programs with Delay Declarations

CT-95-04 Paul Vitanyi, Randomness

CT-95-05 Joeri Engelfriet, Minimal Temporal Epistemic Logic

CT-95-06 Krzysztof Apt, Rachel Ben-Eliyahu, Meta-variables in Logic Programming, or the Praise of Ambiva-
lent Syntax

Titles in the ILLC Dissertation Series:

1993-1 Transsentential Meditations; Ups and downs in dynamic semantics, Paul Dekker

1993-2 Resource Bounded Reductions, Harry Buhrman

1993-3 Efficient Metamathematics, Rineke Verbrugge

1993-4 Extending Modal Logic, Maarten de Rijke

1993-5 Studied Flexibility, Herman Hendriks

1993-6 Aspects of Algorithms and Complexity, John Tromp

1994-1 The Noble Art of Linear Decorating, Harold Schellinx

1994-2 Generating Uniform User-Interfaces for Interactive Programming Environments, Jan Willem Cornelis
Koorn

1994-3 Process Theory and Equation Solving, Nicoline Johanna Drost

1994-4 Calculi for Constructive Communication, a Study of the Dynamics of Partial States, Jan Jaspars

1994-5 Executable Language Definitions, Case Studies and Origin Tracking Techniques, Arie van Deursen

1994-6 Chapters on Bounded Arithmetic & on Provability Logic, Domenico Zambella

1994-7 Adventures in Diagonalizable Algebras, V. Yu. Shavrukov

1994-8 Learnable Classes of Categorial Grammars, Makoto Kanazawa

1994-9 Clocks, Trees and Stars in Process Theory, Wan Fokkink

1994-10 Logics for Agents with Bounded Rationality, Zhisheng Huang

1995-1 On Modular Algebraic Protocol Specification, Jacob Brunekreef

1995-2 Investigating Bounded Contraction , Andreja Prijatelj

1995-3 Algebraic Relativization and Arrow Logic, Maarten Marx

1995-4 Study on the Formal Semantics of Pictures, Dejuan Wang

1995-5 Generation of Program Analysis Tools, Frank Tip

1995-6 Verification Techniques for Elementary Data Types and Retransmission Protocols, Jos van Wamel

1995-7 Transformation and Analysis of (Constraint) Logic Programs, Sandro Etalle

1995-8 Frames and Labels. A Modal Analysis of Categorial Inference, Natasha Kurtonina

1995-9 Tools for PSF, G.J. Veltink

1995-10 (to be announced), Giovanna Cepparello

1995-11 Instantial Logic. An Investigation into Reasoning with Instances, W.P.M. Meyer Viol

1995-12
1995-13
1995-14
1995-15
1995-16
1995-17
1995-18
1995-19
1995-20
1996-01
1996-02

Taming Logics, Szabolcs Mikulds

Meta-Logics for Logic Programming, Marianne Kalsbeek

Enriching Linguistics with Statistics: Performance Models of Natural Language, Rens Bod
Computational Pitfalls in Tractable Grammatical Formalisms, Marten Trautwein
The Solution Sets of Local Search Problems, Sophie Fischer

Contexts of Metaphor, Michiel Leezenberg

Logical Investigations into Dynamic Semantics, Willem Groeneveld
Investigations in Logic, Language and Computation, Erik Aarts

Modal Quantifiers, Natasha Alechina

TBA, Lex Hendriks

Categories for Profit, Erik de Haas

