Extending ILM with an operator for >1-ness:
by
Evan Goris

Abstract

In this paper we formulate a logic XILM. This logic extends ILM
and contains a new unary modal operator ¥;. The formulas of this logic
can be evaluated on Veltman frames. We show that ¥ILM is modally
sound and complete with respect to a certain class of Veltman frames.
An arithmetical interpretation of the modal formulas can be obtained by
reading the X7 operator as formalized 3;-ness in PA and > as formalized
I11-conservativity between finite extensions of PA. We show that under
this arithmetically interpretation 3ILM is sound and complete.

The main motivation for formulating XILM at all is that one coun-
terexample for interpolation in ILM seems to emerge because of the lack
of ILM to express ¥i-ness. We show that XILM does not have interpo-
lation either. Our counterexample seems to emerge because of the in-
ability of XILM to express X-interpolation[7]. (A formula ¢ — 1 has a
3 i-interpolant if there exist some o € ¥; such that PA + ¢ — o and
PAFo—1.)

I1The text of this paper formed the master’s thesis of the author at the ILLC, June 2003,
under supervision of Prof. Dr. D.H.J. de Jongh.
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In this paper the logic XILM is introduced and some of its properties inves-
tigated. XILM is basically the union of the known logic ILM and the in this
paper introduced logic L. In section 1 the main preliminaries are explained. In
section 2 and 3 the logics XL and XILM are treated. We show that both logics
are sound and complete w.r.t. a modal and an arithmetical interpretation. We
also show that both logics lack the interpolation property.

1 Introduction

In section 1.1 the modal logic ILM and its relation to arithmetic is introduced.
We define a class of structures called Veltman frames. These serve as a basis
for a modal semantics for all the logics we will see in this paper. More on ILM
will be introduced in later sections when needed. In section 1.2 we motivate our
study.

1.1 Preliminaries: Interpretability logics

In this paper we will be concerned with what are known as interpretability
logics. These are nonstandard extensions of the normal modal logic GL and
their language contains, besides the O, a binary modal operator .

Definition 1.1 (PROP). PROP is a (fixed) countable infinite set of propo-
sitional variables.

Definition 1.2 (IL-formulas). IL-formulas are built up using PROP, the
propositional connectives, a unary modal operator O and a binary modal oper-
ator >.

With regard to priorities > behaves similarly as —, although > binds stronger
than —. So AAB>C means (AAB)>C and A — Br>C means A — (B> C).

As is well-known one can give arithmetical meaning to modal formulas by
substituting for the proposition variables (arbitrary) arithmetical sentences and
interpreting the O as a formalization of ‘provable in PA’. See for example [2].
We can extend this to formulas which contain > as follows. If A and B are
modal formulas and A* and B* arithmetical ones, the ‘arithmetical meaning’ of
A and B respectively, then the arithmetical meaning of A> B is a formalization
of:

PA + A* interprets PA + B*.

In general: a theory T interprets a theory S if there exists a translation of
formulas of S into formulas of T" such that T proves all the (translations of the)
theorems of S (for a precise formulation see [10][19], I will not bother with this
here since we will switch to another interpretation of > anyway).

Why is interpreting (S into T) interesting? Interpreting a theory into an-
other is useful for e.g. showing relative consistency or, as we shall see, showing
partial conservation results. Moreover, if we replace PA by some other theory T
(that is: O means provability in 7" and [> means interpretability between finite



extensions of T') then > gives us a means to distinguish between different theo-
ries T far better than was possible with only the O. For example I¥; and PA
are indistinguishable using O only but A > B — O(A > B) is a valid principle
(what this means will be made precise below) in I¥; but not in PA. So, in
general, replacing PA by another theory will change the discussion. However
there is a basic system with nice properties that is present in all (reasonable)
choices. This logic is called IL. It should be noted that this is not the largest
logic present in all reasonable choices. What is, is still open. For conjectures
(and for a definition of reasonable) see [13].

Definition 1.3 (IL). With IL we will refer to the following set of axiom
schemata:

1. O(A — B) — OA — OB,

2. O(0A — A) — OA,

3. 0(4— B)— (A B),

4. (A B)AN(B>C)— (A C),

5 (A C)A(B>C)— (AVB©®>C),
6. (A>B) — (CA — OB),

7. CA> A

We will obtain the logic IL by taking all instances of the above schemata,
classical propositional logic in the enriched language?, and close off under ne-
cessitation and modus ponens. We write IL - A for A € the logic IL. Without
danger of confusion we speak of IL when we mean the logic IL.

The class of valid interpretability principles for certain theories can be ax-
iomatized by adjoining to IL appropriate axiom schemata. PA is a theory for
which such a schema has been obtained. The schema called (M).

Definition 1.4 (ILM ,(M)). With (M) we denote the schema:
A>B— AnNOC>BAOC.

ILM is the set of schemata { (M)} + IL and we obtain the logic ILM by taking
the universal closure of (the schemata) ILM and close off under necessitation
and modus ponens. Again we write I LM when we mean the logic ILM.

We can evaluate IL-formulas on Veltman frames and in Veltman models.

Definition 1.5 (Veltman Frame). A Veltman frame, or just frame, is a triple
F = (W,R,S) where

1. W is a set, the domain of F,

2 Alternatively one can add a few schemata which axiomatize classical propositional logic.



2. R is a binary relation on W,

3. S is a ternary relation on W such that for all w,a,b: (w,a,b) € S =
(wva)a (w7b) € R

We will write aS,b for (w,a,b) € S, and S,, designates the binary relation
{(a,b) | (w,a,b) € S}.

Definition 1.6 (Veltman model). A Veltman model, or simply model, is a
quadruple M = (W, R, S, V) where (W, R,S) is a Veltman frame and V is a
function PROP — P(W). With a valuation appropriate for a frame F' we
mean such a function PROP — P(W).

Veltman frames and Veltman models will serve as a basis for a semantics for
all logics to be seen in this paper. How exactly will be postponed until later
sections.

1.2 Motivation

Although modally and arithmetically complete (for PA) there still is a problem
with ILM. It does not have the interpolation property. This problem is easier
addressed when we switch to another arithmetical interpretation of .

Definition 1.7 (Bounded quantifier, 11!, ¥;!, II; and X;-formulas).
Vae<z ¢(x) abbreviates Va(z<z — ¢(z)) and Fz<z¢(z) abbreviates Jz(r<z A
¢(z)). Ve<z and Jx<z are called bounded quantifiers.

A TI;!-formula is a formula of the form Vz¢(x). Where in ¢(z) all quantifiers
occur bounded. A ¥;!-formula is a formula of the form Jz¢(x). Where in ¢(x)
all quantifiers occur bounded. A II;-formula is a formula equivalent to a II;!
formula. A ¥4 -formula is the negation of a IT; formula.

Definition 1.8 (II;-Conservativity). Let T and S be theories. We say that
S is II; -Conservative over T if for any IT;! sentence 7

Strrn=T*Fm.

Besides being the logic of interpretability, ILM happens to be the logic of II;-
Conservativity of PA as well (in fact in PA these notions coincide, see e.g. [10])3.

Now let us see why the (M) schema is, in some sense, true when we read >
as II;-Conservativity between PA finite extensions of PA and O as provability
in PA. We show that for all arithmetical first-order formulas ¢, ¥, n:

o> = o AOn> Adn. (1)

Suppose ¢ > 1 and 7 is some II; sentence provable in PA + ¢ A On. Then
PA + 1 proves the II; sentence (II; since On is a X7 statement) On — 7, and
thus PA + ¢ proves On — 7 as well, conclusion: PA + ¢ A On proves .

31t should be noted however that ILM is the logic of II;-Conservativity for IX; as well.
And thus we can no longer distinguish between the two under this interpretation of >.



Now let us consider a well-known counterexample, due to Ignatiev, for in-
terpolation in ILM [19]%:

O(p < 0q) = (r>s —=rAp>sAp). (2)

Suppose we could express >.1-ness by a ILM-formula with one proposition vari-
able, say 31(p). The above proof that the (M) schema is true actually shows
that the following schema is true:

(C)—- (A>B—-ANC>BACQC).

Moreover that argument can be carried out in PA and that means, by definition,
that (1) is arithmetically valid. Since O(A « OC) — X;(A4) is arithmetically
valid as well, and ILM is known to prove all arithmetically valid formulas, we
would have an interpolant for (2) (namely 3 (p)).

The main subject of this paper is to investigate the possibility of adjoining
an operator to ILM which should express ¥1-ness and see what it gives us. As a
starting point we reduce the logic HGL [8], which contains, among other things,
for each n > 1 a predicate expressing 3.,,-ness, to a logic, which we will call 3L,
with only the ¥; predicate. We give a simple proof of modal and arithmetical
completeness for this logic. It turns out, however, that XL has no interpolation.
These results are extended to show that it is insufficient to extend ILM with a
31 predicate in order to obtain a logic with interpolation.

1.3 Notations

In this section we agree on some notations and conventions.

Upper case characters A, B, C,... range over modal formulas (of all kinds
to be seen in this paper). The lower case characters a,b,c,...,p,q,r,... range
over elements of PROP and over nodes in frames and models.

For models M we will use the notation M for both the model and its domain.
Similarly for frames. If ' = (W, R, S) then we write W for W, RF for R, ST
for .S:

<WF3 RF? SF> =det F.

We define all the set-theoretic operations and tests on frames by performing
them on their components. So for instance:

FoN Fy =g (W n W RFon RFY §Fo q gF1y,

Similar definitions hold for Fy U F} and Fy C F;. For two models My and
M, similar conventions hold but of course this only makes sense when = €
Mo N My = Vp € PROP : z € VMo(p) & x € VMi(p).

For binary relations R we write R* for the reflexive transitive closure of R.

4In [19] it is shown that O(p < Og) — (r>s — Or Ap > s Ap) is a counterexample for
interpolation. The proof works unmodified for O(p «» Og) — (r>s — r Ap> s Ap) ,the
original unpublished counterexample by Ignatiev, as well.



If A is a modal formula then
LA =40 OA N A.

If T is a finite set of formulas (first order or modal), say I' = {vo,...,Yn-1}
then

/\F:def’YO/\"'/\"Yn—l

and
VT =aet %0V Vyni.

If I is a set of modal formulas then

OF =gef {07 | v € T}

and
O =ger {0y |y € T}

2 The logic XL

A amodal logic called XL is defined. We show how the formulas of this logic can
be evaluated on Veltman frames. A specific class of Veltman frames is defined.
These are essentially the frames Japaridze used for his HGL [8] reduced to the
Y1-case. In Section 2.2 and 2.3 XL is shown, by a relatively simple proof, to be
sound and complete w.r.t. this class of frames. In Section 2.4 we show that XL
does not have interpolation. In Section 2.5 we make a note on an arithmetical
interpretation of XL but a treatment is postponed until Section 4.2.

2.1 Definitions

Definition 2.1 (XL-formulas). With a X L-formula we will mean a formula
over PROP constructed using boolean connectives and two unary modal oper-
ators: O and 7.

Y1 binds like the O. So e.g. 31 A — B means (X1 A4) — B. We will be evaluating
Y L-formulas on Veltman frames.

Definition 2.2 (XL forcing relation). For a model M = (W, R,S,V) we
let =ps be the unique relation between elements w from W and YL-formulas
satisfying

1. wEMmpifweV(p),
2. w =y OA i for each v s.t. wRv: v |=p A,
3. wlEnm E1A if for each u,v s.t. uS,v: uEM A= v ENM A,

4. the usual constraints for boolean connectives.



In what follows we write M,v | A for v =) A or, when M is clear from
context, v = A.

For a justification for this forcing relation one can think about the following.
In our setting 3; sentences are those sentences that are preserved along the
Sy relations. By the Los-Tarski theorem (see [6]) and Matjasevich’s theorem
(see [16]) a sentence is X1 in PA precisely if it is preserved along embeddings of
models of PA. For a full discussion on this see the appendix in [19].

Definition 2.3 (Frame validity). We say that a formula A is valid on a frame
F = (W,R,S), and write F' = A, whenever for any valuation V' : PROP —
P(W) and any w € W, w [=w,r,s,v) A.

Definition 2.4 (XL). With XL we denote the set of schemata:
1. O(A— B) — (DA — OB),

0O(0A — A) — OA,

Y1AANYB — X1(AAB),

Y1ANEB — E1(AV B),

S1AAD(A < B) — 5, B,

YA — 0¥ A4,

i,

04,

Y1214,

10. 1A — O(A — OA).

© 0 N ok W N

The logic 3L is obtained by taking the universal closure of the above schemata,
classical propositional logic and closing off under necessitation and modus po-
nens. We write XL+ A, or - A, for A € the logic XL.

Definition 2.5 (XL-frame). F = (W, R, S) is a XL-frame if F' is a frame and

1. R is transitive and conversely well-founded,
2. for all a,b,c,w,t:

(a) aSybRc = aRe,
(b) wRaRb = aSyb,
(¢) wRv and aS,b = aSy,b,
(d) wSiv and aS,b = aSyb.

It is possible to take the S,,’s to be transitive and reflexive. In later sections
we will do so but for now we keep it like this.

Definition 2.6 (XL-model). A model M = (W,R,S,V) is a ¥L-model if
(W,R,S) is a ¥L-frame



2.2 Modal soundness
In this section we will show that the logic XL is sound with respect to X L-frames.
Theorem 2.7. If XL F A then A is valid on each LL-frame.

Proof. Tt is well-known that frame validity is preserved under modus ponens (if
A and A — B are valid on F' then so is B) and necessitation (if A is valid on F
then so is OA). See for example [5]. Propositional tautologies are clearly valid
on any frame. What is left is to show that any formula which is of one of the
forms 1-10 from Definition 2.4 is valid on any XL-frame.

The (relevant parts of the) proof of modal soundness for GL (see [2]) with
respect to transitive conversely well-founded Kripke frames can be copied here
to show Items 1 and 2.

So we show the Cases 3-10. In each of the cases below let F' be a XL-frame,
w € F and let V be a valuation for F' (a function PROP — P(WT)).

3. Suppose w = X1 A AX1B. Let z,y be such that wRz,y and xS,y and
x = AANB. Thenz |= A, soy = A, and ¢ = B, so y = B, and therefore
yE ANAB.

4. Suppose w = 31 A A X1 B. Let z,y be such that wRz,y and xS,y and
xE AVB. Ifx = Athen y = A, and if x = B then y = B. Either way
yEAVB.

5. Suppose w = 31 AAO(A < B). Let x,y be such that wRz,y, S,y and
x = B. Then z = A, so y E A, and thus y = B.

6. Suppose w = 31 A. Suppose wRv, we will show v = X1 A. Choose z,y
such that vRz,y and xS,y and x = A. By Property 2c of YL-frames we have
xS,y and therefore y = A.

7. Clear, since the situation z = L cannot occur.

8. Choose z,y such that wRxS,y, x = OA. We want to show: y = OA.
Choose z such that yRz. By Property 2a of XL-frames (Definition 2.5) we have
xRz and thus z = A.

9. Choose z,y such that wRz,y and xS,y and = | 31 A. We want to
show y = £1A. Choose zp, z1 such that yRzp, 21 and 29Syz1 and zp = A. By
Property 2d of YL-frames we have z9S,z and thus z; = A.

10. Suppose w = ¥1A. Choose v such that wRv. We want to show v =
A — OA. So suppose that v = A. If w is such that vRu then by Property 2b
of ¥L-frames we have vS,u and thus u = A. =

2.3 Modal completeness
2.3.1 Introduction and definitions

In this section we prove completeness of the logic XL with respect to XL-frames.

Theorem 2.8 (Completeness). Let A be a YL-formula such that XL I/ A.
Then there exist a YL-model M = (W, R, S, V) andw € W such that M,w [~ A.

The proof will be postponed until Section 2.3.3. The main ingredient in the
proof is the notion of a maximal consistent set, MCS for short.



Definition 2.9 (Inconsistent/Consistent). A set of formulas I' is called
inconsistent if for some finite subset IV C T" we have XL+ AT — L. A set of
formulas is consistent if it is not inconsistent.

Definition 2.10 (MCS). A mazimal consistent set is a set of formulas which
is consistent and of which any proper superset is inconsistent.

It is easy to prove, using the appropriate variation on Lindenbaum’s lemma,
see for example [3], that any formula consistent with XL is contained in some
maximal consistent set. Also, for any model we can associate to each world an
MCS, namely the set of formulas true in that world. The road followed in most
modal completeness proofs is: Fix a nonprovable formula A and some MCS A 4
containing —A and find a model which contains a world w such that the set of
formulas true at w is A 4.

In general MCS’s are infinite. If there are infinitely many formulas of the
form ¢ B in an MCS then we might need infinitely many successors.

So in cases in which one wants a finite model, and this is such a case, one
needs to refine a bit.?

One solution is to take maximal sets which are maximal as a subset of some
(fixed) finite set.

Another is to take (full) MCS’s but only to require the model to contain a
world w such that a finite number of formulas in A4 are true at w. We take
the latter option. What finite subset of A 4 to take depends on the particular
nonprovable formula. So we make the following definition:

Definition 2.11 (Relevant Set). If A is a formula then define R 4, the relevant
set of A, to be the smallest set such that

1. A€ Ry,
2. R4 is closed under subformulas and single negation.

Next let us have some definitions to talk about MCS’s in combination with
frames.

Definition 2.12 (Labeled frames). A quadruple (W, R,S,v) is a labeled
frame if

e (W, R,S) is a frame and
e v is a function W — {z | x an MCS}.

Definition 2.13 (<, Cyx,). Let Ag, Ay and T' be MCS’s. Define the binary
relations < and Cyx;, 1 as follows:

° A0<A1©{D,DD|DDEAO}§A1,
e AgCyyr Ay & {DelAy|EiDeT} C A

5In any case, GL is not compact (see [2]) so the use of infinite MCS’s in this way is bound
to fail anyway.



How will we be using labeled frames? We fix a nonprovable formula A, an
MCS A4 which contains = A and construct a labeled frame F with a world w
such that v¥'(w) = A4. We can define a model M from a labeled frame F by
putting V¥ (p) = {w | p € v (w)}.

As mentioned above we want a finite set of the formulas in A 4(= v (w))
(namely the set R4 N A4) to be formulas forced at w € M, in fact we will
construct F' in such a way that for each v in F the formulas R4 N v (v) are
true at v. Let us say that ‘a truth lemma holds’ if the frame at hand possesses
this property. This is somewhat imprecise since we do not specify the formula
A but it will be clear what is meant. Now labeled frames could possess certain
‘problems’ which prevent such a truth lemma to hold:

Definition 2.14 (X-problems). Suppose X is a set of formulas, F' a labeled
frame. An X -problem in F is a node w € F and a formula A € X Nv¥ (w) such
that one of the following two cases applies:

1. A=-%1B and for no uStv: B € v¥'(u) and -B € v (v),
2. A= -0B and for no wRv: =B € v (v).

How are we to determine an F without any such problems? We take the
limit of a series of better and better approximations: F will be the union of
a chain Fy C Fy C --- of labeled frames where each frame Fj;; has fewer
‘problems’ than its predecessor F;. In view of this goal the usefulness of the
following lemma is evident.

Lemma 2.15. If F and G are two labeled frames such that F C G. Then if
w € F and (w,A) is an X-problem in G then (w, A) is an X -problem in F as
well.

Proof. Trivial -

Besides having no problems we need (for a truth lemma to hold) that F is
reasonable:

Definition 2.16 (Reasonable). We say that a labeled frame F' is reasonable
if:

o vRFw = v (v) < v (w),
o vSEw = v (v) Cs, ey vF (w).

Finally, the resulting frame should satisfy all the Y L-frame properties for
a truth lemma to imply the completeness theorem. It is easy to see that the
intersection of any set of (labeled) frames that satisfy all the XL properties
satisfies the XL properties as well. If there is at least one frame which satisfies
all the YL-frame properties extending a given one then we can talk about the
smallest extension of a frame that satisfies all the XL properties.

10



Definition 2.17 (XL-closure). If F = (W, R, S) is a finite frame such that R
is conversely well-founded. Then we define the X L-closure of F' to be the inter-
section of all the ¥L-frames with domain W (the same domain as F') and which
extends F. If F is a labeled frame then the YL-closure of F is (W&, R, S, vF)
where G is the XL closure of (W! RF SF).

Lemma 2.18. Suppose F = (W, R,S,v) is a finite labeled frame such that
R is conversely well founded. If F is reasonable then the XL-closure of F is
reasonable as well.

Proof. 1t is easy to see that, since the XL-closure of a frame F' is a XL-frame.
And is the smallest YL-frame extending F'. The XL closure of a frame F' is
equal to the union of a chain Fy C F; C --- which satisfies®:

1. Fy = F and
2. if i > 0 and F; = (W, R, S,v) one of the following applies:

f) F; is a ¥L-frame and F;11 = F;.

‘We show with induction on 7 that each F; is reasonable. The case i = 0 is
trivial. So assume that i > 0 and Fj is reasonable. Assume we are in Case 2e.
Then RF = RFi+1. Moreover for all i: W =W and v =v. So

Fi = <VV7RaSFi7V>7
Fip1 = (W, R, 8F+1 1),
We thus have to show:

for all a,b: aRb = v(a) < v(b), (3)

for all a,b, w: aSL+'b = v(a) Cs, 4w V(b). (4)

By (IH) (3) holds directly. So what is left is to show (4). Pick a, b, w and assume

aSetb, D € v(a) and 2;(D) € v(w). If aSEb then we are done since Fj is
reasonable so we can assume that for some u,t: wS{ u and aSEb. By (IH):

v(w) Cx,w v(0), (5)

V(a) g21,1/(1)) V(b)- (6)

Since ¥1X1D € v(t) we have by (5): £1D € v(v). And thus by (6): D € v(b).

Which shows (4). The other cases are even easier.
_|

6Since F is finite any such chain will do. If we allow F to be infinite we should be more
careful.

11



2.3.2 Tools

Lemmas 2.20 and 2.21 are the main engine behind the definition of the chain
of approximations. Before we can prove them we need some well-known facts
about GL. For proofs see for example [2][15].

Lemma 2.19. Suppose X is a finite set of formulas. Then
1. YJLF AEBX - (0DA— A) = 3L - ABDX — A

2. If X + {A} is XL-consistent. Then DX + {A,0-A} is XL-consistent as
well.

_|

Lemma 2.20. Let w be an MCS. Suppose =31 A € w. Then there exist u,v

st.ow < u,v, A€u, ~A€vand u Cx, ) v. Moreover we can ensure that
1A € u,v.

Proof. Let

() — {D,0D|OD e},

Y(x) = {D|XD €z},

Yeon = {Y CE(w)|{-A}+E(w)+Y is consistent and maximally such}.

Although we do not strictly need to show it separately, let us first prove that
Yeon is not empty. The argument is a simplification of the complete proof of
Lemma 2.20.

For X.,, to be not empty it is sufficient that {=A} 4+ (w) is consistent.
Suppose, for a contradiction, that this is not the case. Then for some finite
w' C w:

= /\D(w') — A,
thus
FO(AB(w)) — 04,

but trivially HF OA — ¥ A so
YA € w.

A contradiction.

If we write - A (w) — A above as - A(w)A—A — L, then the argument
below is an extension of the argument above replacing | by a more complex
Y 1-sentence.

Claim. For some Y € X, the set
{A, 1A+ H(w) +{—0 |oc € Z(w) - Y}

is consistent.

12



Proof of Claim. Suppose the claim is false. Then we can choose for each Y €
Yeon a finite set Fy C ¥(w) — Y such that

{A, 214} +B(w) +{—~o | o € Fy} (7)
is inconsistent. Next we will show that:
{~A} +B(w) +{ \/ oY € Tcon} is inconsistent. (8)
oc€Fy

For suppose (8) is not the case. Then for some S € X.,, (note that X(w) is
closed under disjunctions):

{\ oY €S} CS.

oc€Fy

In particular we have

\/ oces.

oc€Fs
But for all o € Fg we have
oS,

in contradiction with the maximality of S. Thus we have shown (8). So we can
select some finite Y’ C .., and a finite w’ C w such that

FoAANANB@w) =~ A\ o (9)

YeY’' oeFy

By the inconsistency of the sets (7) for each Y € X, there exists a finite
wy C w such that

|—A/\21A/\/\E|(wy)—>_| /\ —0.

oc€Fy

So we certainly have

FAANSIANAD(CY wr)—=-\ A o (10)

Yey’ YeY’' oeFy

Combining (9) with (10) we get

FOABw'U ([ wy)AoiA—0lde A\ o).

Yey’ YEY' 0€Fy
Thus
FoOABw' U [ wy) > (0514 - 5,4).
Yey’
And by Lemma 2.19
F/\w'U U wy — D1 A.
Yey'

In contradiction with =31 A € w, and thus the claim must be true. -

13



So, to summarize, we have for some Y € X, that both the sets

{A, 21 A} + B(w) + {—0 | 0 € B(w) - Y} (11)

{-A}+8(w)+Y (12)

are consistent. Since Y1 A then must be in Y the lemma follows by taking wu, v
extending (11) and (12) respectively. =

Lemma 2.21. Suppose w is an MCS. Suppose 0D € w. Then there exists v
such that w < v and =D € v. Moreover we can choose v such that =0OD & v.

Proof. The usual proof already gives a v s.t. OD € v. See for example [2][10]. -

Now we put the previous two lemmas to work in showing that once we have
a reasonable frame F; we can extend it to a reasonable frame Fj;q with fewer
problems. Before we state and prove this theorem we need to measure the
number of X-problems in a node v € F;. We will do this for finite X only and
we will not count them exactly but bound them from above only.

Definition 2.22 (Jv|x). If F = (W, R, S,v) is a labeled frame, v € W and X
a finite set of formulas then define:

v|x =#{- 1A evv)Nn X} + #{-04 cv(v)NnX}.

2.3.3 Extension theorem

Theorem 2.23 (Extension theorem). Let F be a labeled frame. If F is
reasonable and (w,A) an X-problem in F then, there exists a labeled frame
G such that: F C G, G is reasonable and (w, A) is not an X -problem in G.
Moreover if X is finite then:

veEG@—-F =|vx < |w|x.
And if F is finite then so is G.

Proof. We treat the case A = =X, B. The case A = —-0OB goes similarly. Let
u,v be two nodes not in F. Ay, A; be two MCS’s such that v(w) < Ag, Ay,
AO gzhyF(w) Al, ZlB,B S AO and ZlB,_\B € Aq. These Ao, Al exist by
Lemma 2.20. Now put

G = WF+{u, v}, RE+{(w,u), (w,v)}, ST 4+{(w,u,v)},vF+{(u, Ao), (v, A1)}).

Clearly G is reasonable and (w, A) is not an X-problem in G. Now suppose X
is finite. Since for each C: YL OC — 0OC, YL+ ¥,C — 0%;C and v(w) <
Ag, Ay we have |u|x < |w|x and |v|x < |w|x. So since ¥1 B € v(u) — v(w) and
Y1B € v(v) — v(w), we conclude: |u|x < |w|x and |v|x < |w|x. -

Proof of Theorem 2.8. Let A be some formula not provable in XL, let Ay be
some MCS containing —=A and let R4 be the relevant set of A. We define a
chain Fy C F} C --- of labeled frames inductively.

14



o [h= <{w0}7 (2)7 (Z)a {(’wo, AA)}>7
o If F; is defined then

— If F; is not a YL-frame then let F;;; be the XL-closure of Fj,
— Else if F; contains no R 4-problems let F 1 = Fj,

— Else let (z, B) be some R 4-problem and apply the Extension theorem
(with R4 for X and (z, B) for (w, A)) to find Fj41.

It is evident that each Fj is reasonable and finite. We show that F' = (J,~, F;
is a finite Y L-frame without any R 4-problems. B

If we combine Lemma 2.15 (once we have solved a problem it will not reoccur)
with the fact that R4 is finite (for each node v there are only finitely many
problems involving v) we see that F' is finitely branching: for each w € F,
{v | wRFv} is finite. In addition we have wRfv = |w|g, > |v|r, > 0.

Conclusion: F is finite and thus for some j we have j' > j = F;; = F;. This
latter fact implies that F' is a ¥L-frame and does not have any R 4-problems.

If we define M = (WF RF SF V) by putting V(p) = {w € WF | p €
v (w)} then one proves by induction on B that for each w € M and B €
vF(w)NRa4: w = B. So in particular wy = —A. =

2.4 Failure of interpolation

Definition 2.24 (Interpolant). Suppose XL F A — B. We say that I is an
interpolant for A — B if all the proposition variables in I occur in both A and
Band Y LFA —-Tand XL+1 — B.

Alternatively one can say that if {A, B} is inconsistent then I is an inter-
polant for {A, B} if all proposition variables in I occur in both A and B and
SLFA—Tand XL+ B — —I.

Theorem 2.25. If M = (W, R, S, V) is a YL-model and M = (W, R,SV},
where S is the unique ternary relation on W such that for each w € W: S, is
the transitive closure of S,,. Then

1. M is a XL-model and
2. for each formula I and eachx € W: M,z =1 < M,z = 1.
Proof. 1 An easy verification of the properties 2.5.

2 Induction on the complexity of I. Boolean connectives and O cases are
trivial, so suppose I = X1y. (<) Take g,z s.t. £Rxo, 21 and for some
rRw 20S.,T1 To E Iy. Take any sequence xg = 205,215y « -+ Swzk = 1.
z1 | Iy and thus 29 | Iy and thus ... and thus zx = 1 | I. Which was
to be proved. (=) Trivial.

_|
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Definition 2.26 (XL-Bisimulation). Let My and M; be XL-models and
P a set of proposition variables. A binary relation Z C My x My is a X L-
Bisimulation w.r.t. P if the following conditions are met.

1. If apZay then for each p € P: ag € Vo(p) < a1 € Vi(p).
2. If agZa; and agRby then there exists by such that bgZb; and a1 Rb;.
3. Same as 2 with My and M; interchanged.
4. If agZaq then for all by, co € My. If
agRbo, co and bySq, o,
then there exist by,c; € My such that bgZb, and cgZc,y

alel, C1 and blsalcl.

5. Same as 4 with My and M; interchanged.

Notationally this notion of bisimulation is somewhat complex. However, in
essence, it is in fact simpler than the notion of bisimulation for ILM (Definition
2.30 below). If you look at satisfaction as a game, then falsifying a formula A
in a point x requires Falsifier to simultaneously pick xRy, z with yS,z whereas
in ILM the falsification of a formula A > B requires two moves. First Falsifier
picks 2Ry = A and then Verifier should (not be able to) pick some 2Rz | B
with y5,z.

Theorem 2.27. If My and My are XL-models and Z is a XL-bisimulation
w.r.t. P between them, then for any formula I whose proposition variables all
occur in P, mg € My, my € My and mgZmy then

Mo,mo |:I<:>M1,m1 ):I

Proof. Induction on I. Let mg € My and my € M; be such that mgZm;. The
atomic and boolean connective cases are trivial.

Case I = OI,. (<) Assume My, mg = OIy. Then there exists ng such that
moRng and My, ng j= Ip. Then by 2 of Definition 2.26 there exists ny such that
m1Rny and ngZn,. But then by (IH), M1, ny = Iy. (=) Analogously.

Case I = ¥11y. (<) Assume My, mg [~ 311y. Then there exist ng,ly such
that moRno, lo, noSmelo and My, ng = Iy and My, ly = Ip. By 4 of Definition
2.26 there exist n1,1; such that m; Rn1,l; n1Sm, 01 and noZn; and l[pZ1;. Then
(IH) My, ': I, and Ml,ll % 1. (ﬁ) analogous -

Immediately the question arrises whether Theorem 2.27 can be reversed. In
Corollary 2.29 below this is answered negatively.

Clearly definition 2.24 can be given for all sorts of modal logics (e.g. GL,
ILM, K4 etc.). We say that such a logic (Lgc say) has the interpolation property,
or simply has interpolation, whenever Lgc - A — B implies that A — B has an
interpolant. Now we formulate the main result of this section:
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Figure 1: Two bisimularions.

Figure 2: Almost the same models.
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Theorem 2.28. The logic XL does not have interpolation.

Proof. Consider the following two formulas

A(paq75) —def —Elq/\le/\D(Sﬂq)/\D(p/\qﬂs),
B(p,q,7) =dget —X1qAZir AD(r — ¢) AO(-pAg—r).

Write A; = A(p,q,s) and B, = B(p,q,r). Then {A,, B} is inconsistent but
for no formula I = I(p,q) with all proposition variables among p,q we have
SLE Ay, — I and XL + B, — —I. First their inconsistency. We have

FA;AB, —0O(qg—1rVs),

as well as
FAs A B, — 31(rVs).

Thus
F A AN B, — Yqq.

So indeed {As, B, } is inconsistent.

Now, to show that no interpolant exists, consider Figure 1. The upper
left model forces A in its center point and the upper right model forces B,
in its center point. The upper left model is bisimilar w.r.t. {p,q} with the
lower left as indicated by the dotted lines. Similarly for the two models on the
right. Moreover if we replace in the lower two models the S, relations by their
transitive closures, the two models become the same. This is clarified by Figure
2, where the lower two models of Figure 1 are drawn again but the left one is
layed out a bit differently. Applying Theorem 2.25 and Theorem 2.27 we see
that the upper two models force the same {p, ¢}-formulas in their center point.
So clearly an interpolant for A, — —B, cannot exist. -

From the above proof we can immediately extract the following corollary.

Corollary 2.29. There exist two models M and M’ and two worlds m € M
and m’ € M’ such that m and m' force the same formula. But there does not
exist a bistmulation between M and M’ that connects m and m’'.

Proof. As was shown, the two center-points of (the restrictions to the proposi-
tion variables {p.q} of) the two upper models of Figure 1 force the same formulas.
One easily verifies directly that there does not exists a ({p, ¢}-)bisimulation that
connects those two points”. -

Two questions arise.

1. What additions to the language would make an interpolant of Ay, — =B,
exist and

"Below one can find an indirect argument for this fact, namely that no two bisimilar model
can distinguish between As and B;.
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2. Can we simplify the proof by using two bisimilar models (the models in
Figure 2 are not bisimilar).

To answer the first question we use the idea of an arithmetical semantics for a
modal logic. The reader should first read Section 2.5 if (s)he is unfamiliar with
this. A sufficient addition for an interpolant is ¥;-interpolability[7]:

I, (¢, ) = o (E1(0) AD(¢ — o) ADB(o — ¥).
For any mapping * : PROP — ‘arithmetical sentences’® clearly:
PAEA(p*,q",s") = Is,(p" N ¢, ") (13)

and
PAF B(p*,q",r") = Is,(—p" Nq",q").

Moreover
PAF 31¢" < Is, (¢", ¢%).

Lemma. For all ¢g, ¢1 and 1. PA & Is, (¢0,0) A, (¢1,0) — I, (do V d1,1).

Proof. Reason in PA. Assume that for some o¢: ¥1(0g), PA F ¢9g — 0 and
PA F o9 — t¢. And assume that for some o1: ¥1(01), PA F ¢; — o1 and
PAF o1 — 4. Then PAF og Vo — ¢ and PAF ¢g V ¢y — 0 V o1. Since
Y1(o0 V 01), this concludes the proof. o

So, by the above lemma:
PAE Iy, (=p* A", q") A s, (P" Aq",q") = I, (7, q7).

So
PAF -%1¢" AN Ix, (—p* AN ¢",q") — —Is, (p" A ¥, q).

And thus
PAF B(p*,q*,7") — —Is,(p" AN q",q"). (14

)
So, combining (13) and (14), if we could express X;-interpolability, by a (modal)
formula Is, (p, q) say, then the formula I, (p A ¢, ¢) is an interpolant for A, —
- B;.

In [7] a modal theory, which language contains, besides the O, an operator
for Xi-interpolability, is developed. And indeed this logic has the interpolation
property. This logic is also evaluated on Veltman frames and the same notion
of bisimulation that we used is appropriate for this extended® logic. But this
answers the second question: We will not be able to give two bisimilar models
that differentiate between A and B,. (Since in this enriched language of X1-
interpolabilty we do have an interpolant.) The harmless looking Theorem 2.25
is thus an essential part of our present argument that shows Theorem 2.28.

8 Actually * should map to Gddel numbers of arithmetical sentences but we are only sketch-
ing an idea.
9%}, is definable in the language of ¥1-interpolability.
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Figure 3: >-bisimilar but not o-bisimilar.

With one of the goals of our investigation in mind: extending ILM in such
a way that we get interpolation, it is reasonable to think about an extension of
the present result to a combination of ILM with L. Let us therefore state and
investigate a notion of bisimulation for IL-formulas.

Definition 2.30 (IL-bisimulation). Let M and M’ be two models and P a
set of proposition letters. A relation Z C M x M’ is an IL-bisimulation w.r.t.
pPif

1. wZw' = foreach p € P: w e V(p) & w' € W(p),

2. If wZw' and wRv then there exists some vZv’ such that w’Rv’ and for
each v'S, u’ there exists some uZu’ with vS,u,

3. Same as 2 with M and M’ interchanged.

Of course we have a theorem asserting that two IL-bisimilar (w.r.t. P)
models force the same IL-formulas (with proposition letters in P) in bisimilar
points [18].

One difficulty arises. The two notions of bisimulation are incomparable. We
say that two models are IL(XL)-bisimilar if a IL(XL)-bisimulation w.r.t. PROP
exists.

Fact 2.31. There are two models which are YXL-bisimilar but not IL-bisimilar.
And there are two models which are IL-bisimilar but not XL-bisimilar.

Proof. The proof is contained in Figures 3 and 4. Namely the claimed bisimu-
lations are indicated and the models in 4 are distinguished by p > —p and those
in Figure 3 by Y1p. -

A notion of bisimulation which handles both types of formulas is thus strictly
stronger than the two separate notions. In Section 3.6 below we will see that
it is sufficient to use only these two separate notions of bisimulation in order to
extend the result of this section to a combined logic of XL and ILM.
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Figure 4: o-bisimilar but not r>-bisimilar.

2.5 Arithmetical interpretation

It is possible to give an arithmetical meaning to X L-formulas. We will however
first extend the logic XL to a logic ¥ILM, give arithmetical meaning to the
YILM-formulas and project this on ¥L. The reader is referred to Section 4.2
for details.

3 The logic XILM

In Section 3.1 we elaborate some more on ILM. In Sections 3.2 and 3.3 the logic
YILM and a modal semantics is introduced. This semantics are not the most
obvious one. In Section 3.3.1 we explain why we deviate from the more obvious
choice. In Section 3.4 and 3.5 we show that ¥>ILM is sound and complete w.r.t.
the proposed semantics. In Section 3.6 we extend the results in Section 2.4 to
show that XILM lacks interpolation. In Section 4 we give arithmetical meaning
to XILM and in Section 4.2 we reflect this on XL.

3.1 ILM

The interpretability logic of PA known as ILM has been introduced in Section
1.1. To investigate this logic we can evaluate IL-formulas on the same frames
we have used for XL. But first let us prove a lemma.

Lemma 3.1. The following is provable in IL.
1. 0-A— A> 1,
2. AVOAD> A
3. ANO-Ap> B — Ap> B,

Proof. (1.) By IL Axiom 6: ILF A1 — (=01 — =CA). Trivially IL - =< L,
so ILF A 1L — O-A. The other direction is simply an instantiation of Axiom
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3. (2.) By Axiom 3: IL - A A. 2 follows if we combine this via Axiom 5 with
Axiom 7. (3.) We use the following fact about GL (see [10]):

GLF A — (AADO-A)V O(A A DO=A).

Using necessitation and Axiom 3: ILF A (AADO-A)V OG(AADO-A4) and then
using part 2 of this lemma and Axiom 4:

ILFA> AANO-A.

So, again using Axiom 4, we conclude ILF AANO-A> B — A> B. -

Note that the first item allows us to only consider > and define OA as
(mA) > L.

Definition 3.2 (IL forcing relation). If M = (W, R, S, V) such that (W, R, S)
is a Veltman frame and V is a valuation on W then let =, be the unique relation
between worlds w € M and I L-formulas which satisfies:

L. wkypewe VM),

2. wEym A B & for each wRu such that u =5 A there exists uS,v such
that v |:M B,

3. The usual clauses for propositional connectives.
The proper Veltman frames differ slightly from those for XL.

Definition 3.3 (IL-frame). A triple F' = (W, R, S) is called an IL-frame if F
is a frame and

1. R is transitive and conversely well-founded,
2. for all a,b,c,w,t

(a) wRaRb = aSyb,
(b) aSy,bSyc = aSyc,
(¢) wRa = aSya.

Definition 3.4 (ILM-frame). A triple F' = (W, R, S) is an ILM -frame if it
is an IL-frame and satisfies the additional requirement (M):

aS,bRc = aRc.

As usual we can talk about the validity of an IL-formula on a frame and it
turns out that we have the following theorem (see [10][4]).

Theorem 3.5. The logic IL(M) is sound and complete w.r.t. finite IL(M)-
frames.
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3.2 The logic XILM

In this section we begin the development of an arithmetically complete logic
which can talk about both II;-Conservativity and ¥;-ness. The II;-Conservativity
part is taken to be ILM except for the (M) axiom, which we can replace by
S51CAN(A>B) — AANC D> BAC. The ¥, part of the logic is simply XL from
Section 2. The resulting logic will we denote by XILM.

Definition 3.6 (XILM-formulas). ©ILM -formulas are built up from vari-
ables in PROP, propositional connectives, unary operators O and ¥; and the
binary operator r>.

Definition 3.7 (XILM). XILM is the set of schemata IL + XL together with
the schema M (X):

Yi]CA(A>B)— AANC> BAC.

The logic XILM is the smallest set of XILM-formulas which contains the uni-
versal closure of all the X1 LM schemata and is closed under modus ponens and
necessitation. We write XILMF A, or - A, for A € the logic XILM.

Ideally we would like to prove this logic to be complete with respect to the
class of frames which both satisfy the ¥L- and ILM-frame conditions. And this
can indeed be done except for the fact that we must then allow for infinite
models.

This, however, makes the situation somewhat problematic if we want to show
the logic to be arithmetically complete. As in [1] we could introduce the notion
of a primitive recursive model. These are models which, among other things,
have as their domain a primitive recursive set of numbers so that (for instance)
PA can easily talk about them, almost as easily as with finite models (which
are a particular case of primitive recursive models). But since our construction
works with maximal consistent sets of formulas and selecting (or constructing) a
specific maximal consistent set requires decidability, the arithmetic theory (PA
in our case) needs to know that XILM is decidable, which we, at this point, did
not even show for ourselves.

Therefore we will show YILM to be modally complete with respect to a
slightly modified semantics in which we have translated some of the frame prop-
erties into the forcing relation.

3.3 Modal semantics
3.3.1 A complication

As mentioned, simply taking the intersection of all the ¥L- and ILM-frames will
not give the finite model property. Let us show this assertion.

Fact 3.8. There exists an IL-formula which has an infinite ILM-model with the
additional property aSib N\ cSpd = ¢Syd, but does not have a finite such model.
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Proof. Let A be the formula
S A(p>q) > ~(p>q) A(~(p>q) > (pr>q)).

Let M = (W, R, S, V) where

1. W=A{a} +{yo,v1, 92,95 ...} + {21, 22, 23, .. .},

2. 1>20=zRy;,1 > 1= xRz,

3. If i is even and ¢ < j then y; Rz;,

4. If i is odd then y; Rz; and if i 4+ 1 < j then y; Rz,

5.1 < j = yiSzyy,

6. If i is odd and j <, 2,5y, 2i41,

7. V(p) ={z1,23,25,...} and V(q) = {22, 24, 26, . - - },

Then M satisfies all the requirements and forces A in x. A part of M is shown
in Figure 5. For clarity some arrows which should be there since R and the S,,’s
are transitive, wRa = aS,a and aS,b = wRa,b are not drawn. It remains to

p q p q

®------------- =>@ 2o 23 ®---c--—-—---- =>@ Zy
S}/o

21

p>q ;
Yo h Y2 Ys

(p>q)>-(p>q)
~(p>q) > (p>q)

Figure 5: Initial part of M.

show that A does not have a finite model with the required property. So let N

be any model satisfying
aSib A c¢Spd = ¢S,d. (15)

Let n € N be such that n | A. Let u = ug, u1,us, ... be a sequence of worlds
of N such that

a. For all 1 > 0, u;Spu;11,

b. For all i > 0 ug; = (p> q),
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c. For all i > 0 ugi41 = —(p> q).

Such a sequence exists since n |= A, it might however be cycling. We claim
that this is not so: the set {u; | ¢ > 0} is infinite. For suppose it is not. Then
there exists ¢ < j such that u; = u;. Assume ¢ is even (the case i is odd goes
similarly). We have u;Spu;41S,u; = u;. Moreover, since ¢ + 1 is odd by 3,
we can choose some u;11Rv such that v = p and for no vS,,, , w: w |= q. By
property (M) of ILM-frames u; Rv and thus there exists some vS,,w such that
w E ¢q. But vS,,w and u;11S,u; imply vS,,,,,w by (15), a contradiction. -

Ui41

3.3.2 YILM semantics

As we have seen above (Theorem 2.25) taking the S, relations to be transitive
does not harm the YL completeness result. It is even easier to see that taking
the S, ’s reflexive is harmless as well. Modifying the modal completeness proof
for ILM as to incorporate aS,b AwRv = aSy,b (and keeping the model finite) is
no problem either but the remaining property: a.S,bAwS;v = aS,,b is somewhat
of a problem as we have shown above. The solution is to transfer this frame
property into the forcing relation.

Definition 3.9 (XILM-frame). A XILM-frame is a Veltman frame (W, R, S)
such that

1. R is transitive and conversely well-founded,
2. for all a, b, c,w:

) aSwb = wRa,b,

) aSybRe = aRe,
(¢) wRaRb = aSyb,

) aSybSyc = aSyc,

) aRb = bSyb.

Definition 3.10 (XILM-model). (W, R, S, V) is a SILM -model if (W, R, S)
is a XILM-frame and V is a mapping PROP — P(w).
Definition 3.11 (XILM forcing relation). For a model M, let =5 be the
unique relation between WM and XILM -formulas satisfying:

L. wkEypewe VM),

2. wEM A B < for all wRv such that v =p; A there exists some vS,u
such that u =y B,

3. w 1A & for all vSy u such that w(RUU,cp; Su)*w': v Fy A =
u = A (see Figure 6),

4. The usual clauses for the boolean connectives.
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Figure 6: X1 A is not forced in u.

As usual we write M, w = A for w E=ps A or even, when there is no danger of
confusion, w = A.

Using this forcing relation we define frame validity as usual: A is valid on a
frame F if w =3 A for any model M = (W RF SF V) and w € M.

3.4 Modal soundness

Theorem 3.12 (Modal Soundness). If XILM F A then F = A for any
YILM-frame F.

Proof. Frame validity is preserved under modus ponens and necessitation. Clearly
all propositional tautologies are valid on all frames so it is sufficient to show that
all the XILM schemata are valid on each frame.

The XL part is just like in the modal soundness for ¥L (Theorem 2.7).
Where the change in the forcing relation compensates for the change in frame
properties.

So it is sufficient to show that the schema M(X) and all IL schemata involving
the operator > are valid. Below let M be a YILM-model and w,u,v,v’ € M.

Suppose w = O(A — B). Suppose wRu and u |= A. Then v |= B and thus
since uSy,u: w = A> B.

Suppose w = A> B and w = B> C. Suppose wRu and u = A. Then
for some v’: uS, v and v’ = B and thus for some v: v'S,v and v = C. By
transitivity of Sy,: uS,v.

Suppose w = Ar> C and w | B> C. Suppose wRu and u = AV B. Then
u = A or u = B and in either case there exists some v such that uS,v and
v=C.

Suppose w = A> B and w = ©A. Then for some u: wRu and u = A. Thus
for some v: uS,v and v = B. Since S,, C {(a,b) | wRa,b}: w = OB.

Suppose wRu and u = ©A. Then there exists v such that uRv and v = A
and thus since wRuRv implies uS,v: w | CA> A.
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Suppose w = %1C, w = Ar> B. Suppose wRu and u = A A C. Then there
exists v such that uS,v and v = B. Since w = £1C also v = C. -

3.5 Modal completeness
3.5.1 Introduction and definitions

In this section we are to prove the modal completeness theorem for the logic
SILM.

Theorem 3.13 (Modal completeness). Suppose SILM t/ A. Then there
exist a SILM-model M and some m € M such that m = A. Moreover we can
take for m a root of M (that is: Ym'eM (m'#£m — mRBRm')).

The method used will be the same as for XL above, that is we will be
using labeled frames, identify ‘problems’ in these frames and prove an extension
theorem which solves these problems. This method was first applied in [12]
to give a modal completeness proof for ILM. Consequently we will be using
the same concepts, notations and definitions as before but then translated to
the case at hand (e.g. maximal consistent sets are SILM-consistent in stead of
YL-consistent, etc). Also we again use the notion of a relevant set (Definition
2.11).

Applying that method will not go as smoothly as in the case of XL. If
we simply take the truth definition of > and deny this to create the definition
of a problem we will not be able to prove an analogue of Lemma 2.15 (once
problems are solved they do not reoccur). The solution is to broaden the notion
of a problem in such a way that, although we do a bit too much, we do have
that once a problem is solved, it will not return. To this end let us first extend
the notion of a (labeled) frame.

Definition 3.14 (Labeled frames). A labeled frame is a quintuple (W, R, S, R., V)
such that

1. (W,R,S) is a frame,
2. v is a function W — MCS and

3. R. C {A| A aXILM-formula} x W x W such that for each B: RP =
{(uw,v) | (B,u,v) € R.} CR.

Having this extended notion of a frame we define problems as follows:

Definition 3.15 (X-problems). Let X be a set of formulas. An X -problem in
a labeled frame (W, R, S, R.,v) is a world w € W and a formula A € v(w) N X
such that one of the following two cases applies:

1. A=—(Cr> D) and there does not exist wRPv with C € v(v).

2. A = —X1B and there does not exist vS,u with B € v(v) and B & v(u).
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Notice that this definition differs from problems in labeled frames in the
more natural sense:

~(B > C) € v¥(w) but for all v for which wRv and B € v (v)
we have a u such that vS,u and C € v¥'(u). (16)

The > parts in Definition 3.15 and (16) are incomparable. A labeled frame
without any problems in the sense of Definition 3.15 might still posses problems
in the sense of (16). (And the other way around.) A lot of work will be put
in ensuring that Definition 3.15 will be good enough on the frames we will be
considering.

Moreover the 31 part in problems as defined above is stronger than we ac-
tually need for Theorem 3.13. This stronger version is useful in the arithmetical
completeness theorem below so we give it a name.

Definition 3.16 (Strong ¥; YILM-models). A YXILM-model is strong ¥, if
whenever M, w = =31 A then there exist u and v with uS,,v such that u = A
and v = A.

Theorem 3.17 (Extended modal completeness). Suppose YILM I/ A then
there exist a strong 31 SILM-model M and w € M such that w is a root of M
and M,w £~ A.

Before we move on let us note that we now do have an analogue of Lemma
2.15.

Lemma 3.18. Suppose F' C G are labeled frames, uw € F, A a formula such
that (u, A) is not an X-problem in F. Then (x,A) is not an X -problem in G
either.

Proof. Trivial. —

How are we to ensure that our notion of a problem is appropriate? Let us
fix a world v. The intention of the relation R, is to provide for an example for
v |= =(B > C) whenever —(B > C) € v(v).

Let us say that a world w avoids a formula C' if for any w for which wS,u
we have C' ¢ v(u). Then we organize things so that, (1) for any D, vRPw =
‘w avoids D’ and (2) if =(B > C) € v(v) then there exists w such that vRS w.

We would like to recognize whether a world is avoiding by only considering
the world itself. An attempt to this is the notion of critical successor [4].

Definition 3.19 (Critical successor). Let A and " be MCS’s. We say that
A is a B-critical successor of I' and write I' < A if I' < A and for each A for
which A> B el -A,0-4 € A.

Lemma 3.20. Let A, T' and IV be MCS’s and B a formula. If A <p T < T’
then A < I".

Proof. A < T' is clear. Suppose A> B € A. Then O-A € I'" and thus, since
I <IV,-A,0-A eI =
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Part of Definition 3.19 is clear. If A € v(v) and A > B € v(w) then by
the truth definition of > (and by anticipating on a truth lemma) there must
exist some vS,u such that B € v(u), precisely what we are trying to avoid. If
-0-4 € v(v) then for some vRu: A € v(u). By transitivity of R: wRu and
thus there exists some v’ with wS,,u’ and B € v(u'). But wRvRu implies vS,,u
and so by transitivity of S,: vS,u’, again not what we want.

So

v avoids B = v(w) <p v(v).

Can we strengthen this to get a sufficient condition for v to avoid a formula B?
Yes:
v avoids B < Yu(vSy,u = v(w) <p v(u)).

Since ILM B > B the sufficiency is clear. Necessity is easily shown by using
transitivity of S,, and R.

Let us identify the worlds we have to check whether indeed these RZ suc-
cessors avoid what they should in such a situation.

Definition 3.21 (Critical cones CP). If (W, R, S, R.,v) is a labeled frame,
B a YXILM-formula and 2z € W. Then the B-critical cone of x, denoted by CZ,
is defined to be the smallest set such that:

1. 2RBy =y € CB,
2. y€ OB ANyS,z = 2€CB,
3. ye CBAyRz = 2 € CB.

Our main concern will be to ensure that the CZ-Critical cones (indeed) lie
B-critically above x.

As in the XL case there is more than just solving problems (but see the
remarks before Definition 3.23). There is the issue of reasonability. In this
notion we have incooperated the above considerations on the critical cones.
And an additional technical requirement.

Definition 3.22 (Reasonable). A labeled frame F is called reasonable if
1. For each B, z € F and y € CB: v(y) lies B-critically above v(z),
2. For each z and B # B": CBnCB' =),
3. 2Ry = v (z) < v (y),
4. xS,y = vl (x) Cs,vF(2) vE (y).

If we compare the notions introduced in this section to the corresponding
notions in the XL case we see a difference.

Suppose we want to show that a labeled, reasonable, ¥L-frame F' without
problems satisfies a (XL) truth lemma: ‘v = A & A € v (v)". If we proceed
by induction on A then the nonexistence of problems handles the =0 and —3;
cases and the reasonability of F' handles the O and ¥, cases. The possibility
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of such a treatment lies in the quantifier complexity of the =0 and —X; truth
definitions (3) and the quantifier complexity of the O and ¥; truth definitions
(7).

The formulation of truth of an IL-formula has, however, quantifier complex-
ity V3 and its negation, thus, 3V. Via the introduction of the relation R, we
will manage to handle the =(A > B) truth definition as if it has quantifier com-
plexity 3. Luckily a property of a labeling function v with quantifier complexity
V3 behaves quite well under frame extensions (Lemma 3.25 and Lemma 3.24).
So problems in frames involving a formula B > C', called defects, are handled
‘directly’.

Definition 3.23 (X-defects). An X-defect in a labeled frame (W, R, S, R, v)
is a world w € W together with a formula C'> D € v(w)NX such that for some
wRv with C' € v(v) there does not exists a v.Sy,u with D € v(u). In this case we
say that (w, A) is an X-defect (or simply defect when X is understood) w.r.t.
v.

Lemma 3.24. If F C G are labeled frames, B a formula and z,y € F such
that (x, B) is a defect w.r.t. y in G then (x, B) is a defect w.r.t. y in F.

Proof. Trivial. -

Lemma 3.25. Let Fy C F} C Fy C -+ be a chain of labeled frames. If for each
© > 0 F; is reasonable then so is F' = UiZO F;.

Proof. Trivial. -

And, of course, besides ensuring a truth lemma we need to make sure that
our model satisfies the XILM-frame properties:

Definition 3.26 (XILM-closure). If F' = (W, R, S) is a finite frame such that
R is conversely well-founded. Then the XILM -closure of F' is defined as the
intersection of all YILM-frames with domain W (the domain of F') which extend
F.

Lemma 3.27. Let F = (W, R, S) be a finite frame such that R is conversely
well founded. If G is the XILM closure of F' then:

1. G is a XILM-frame,

2. If (z,y) € RC or, for somet, (x,y) € S¢. Then there exists a z such that
(z,y) € R and (z,2) € (R UU,cp SE),

8. G is reasonable if F is.

Proof. Since the intersection of any set of XILM-frames is a XILM-frame and
there exists at least one frame extending F' which satisfies all the XILM-frame
properties the first assertion is trivial. Knowing this it is easy to see that the
YILM closure is equal to the union of a chain Fy C F} C --- which satisfiesi?:

10Since F is finite any such chain will do. If we allow F to be infinite we need to be more
careful.
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1. Fhb=F,
2. Fori>1:

zRYiyRYi 2 but not xRz and Fi11 = (W, R + {(z, 2)}, ST%) or
xS yRz but not 2Rz and Fy, = (W, R" 4 {(x,2)}, S™) or
2SFySEi 2 but not 28z and Fyyy = (W, R, SFi 4 {(x,t,2)}) or
xRy but not ySkiy and Fipy = (W, R, ST 4 {(z,y,9)}).
rRFiyRYi 2 but not ySFiz and Fyyy = (W, R ST 4+ {(y, 7, 2)}) or
F; is a XILM-frame and F;;1 = F;.

Now one easily shows that 2 holds for each F; in such a chain and therefore
for G as well.

To show 3 only that the XILM-closure satisfies 3.22-1 needs a proof. We
show that 3 holds for each F; with induction on i. The critical cones in Fy and
Fy are equal to those in F' so assume ¢ > 1. Suppose we are in situation 2e.

Since successors of critical successors are themselves critical successors (Lemma
3.20) F;11 satisfies 3.22-1 if F; does. The other cases are handled similarly. -

3.5.2 Tools

As in the YL case we need some mathematical facts on maximal consistent sets.
In one of the proofs below we will be using a well-known equivalent (equivalent
in ZF set theory) of the axiom of choice known as ‘Zorn’s lemma’, which reads
as follows: If (X, <) is a partial order such that any chain has an upper bound
then (X, <) has a maximal element, that is: there exists some z € X such that
forally € X: o <y =z =y. See for example [14].

Lemma 3.28. Suppose A is an MCS and =1 A € A. Then there exist MCS’s
Iy and I'1 such that T'y ggl,A Iy, Ac Ty, A §§ Ty and 1A eTyNTy.

Proof. This lemma has been proven in the context of YL above (Lemma 2.20).
Exactly the same proof works here. -

Lemma 3.29. If A is an MCS and =(B > C) € A then there exists an MCS T
such that A <¢c T', B€T and O-B €T.

Proof. Let A, B, C be as in the condition of the lemma. Then the set
{D,0D | 0D e A} +{0-A4,-A| A>C € A} +{B,0-B} (17)

is consistent. For suppose it is not. Then there exist Dy,..., Dy, Ag,..., 4;
such that:

N\ (DinOD)A N (A AO=A;) ABAD-B — L.

0<i<k 0<i<l
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By some standard GL reasoning:

F( /\ BD)—0BAD-B— \/ (4 Vo)),
0<i<k 0<i<1

and therefore by IL Axiom 3:

F( A\ ©D)— (BAD-Br \/ (4;VOA),
0<i<k 0<i<li

and thus applying Lemma 3.1 2-3 and IL. Axiom 3 we conclude

0<i<k 0<i<l

For each 0 <4 < k: OD; € A and thus B> \/ (., A; € A. Using that for each
0<3i<!l: A;>C € A we conclude B> C € A, a contradiction.
So (17) is consistent and we can take for I' any MCS extending it. -

Lemma 3.30. If A is an MCS, B> C € A and there exists I' such that B € T
and for some D: A <p T then there exists an MCS I such that A <p TV,
I' Cs, ATV and C € I'. Moreover among such I there exists a Cs;, A-mazimal
one.

Proof. We first show the existence of such a IV and then the existence of a
Cs,,a-maximal one.
Suppose A, B, C, T" and D satisfy the conditions of the lemma. We claim
that
{E,0F |OE € A} +{0-A,-A| A>D e A} +{C} (18)

is consistent. For if this is not the case we can reasoning as in Lemma 3.29
and conclude B> D € A. But since A <p T' this then implies =B € T', a
contradiction. Next we claim that

(18) +{Del'|x1D e A} (19)
is consistent. For suppose it is not. Then for some Do,..., D, € {D € T' |
21D € A} the set

is inconsistent. But - X1 Dg A+ AX1 Dy — 31 (Do A---ADy) s0o X1 (Do A~ A
Dy) € A. Therefore replacing B by BADgA---ADy and C by CADgA---ADy,
in the above argument which shows that (18) is consistent then shows that (20)
is consistent, a contradiction and thus (19) is consistent. Now for I we can
take any MCS which extends (19).

Now, for the existence of a Cy, a-maximal MCS among those I'"’s, let

I0Co,all ConaTh Copn e (21)
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be a chain of MCS’s extending (19). Let I'l, = Uy, {& € I'; | ¥1£ € A}. Then
I, +(19) (22)

is consistent. For if this is not the case then for some finite subset ' of T the
set I + (19) is inconsistent. But this set is a subset of some I'}, a contradiction.
Now any MCS extending (22) will be an MCS extending (19) and a Cx, A-

upper-bound for the chain (21). Therefore by Zorn’s lemma there exists a I'}, ..

extending (19) such that for all I extending (19) we have I, Cx, A IV =
=T, 0 —|

The Cs;, a-maximality of I in the above lemma is used to show the existense
of a finite countermodel for an unprovable formula. In [12] Cg-maximal sets are
used to do the same for ILM. (A Cp '« {0OC |0OC € A} CT})

3.5.3 Extension theorem
Definition 3.31. if z is a node in a labeled frame then put
|zja =#{-"ZAcv(@)NRa}t+#{-0-Acv(z)NRa}

With the above definition we can bound the number of problems in a world
in the sense that if |z|4 = 0 then x does not have any R 4-problems. Moreover
if the frame in question is reasonable:

TRy = |x|a > |y|a. (23)

Using #{—(A> B) € v(z)NR 4} instead of #{-0-A4 € v(z) R 4} might seem
more logical but then, since YXILM I/ A > B — O(A > B), we cannot guarantee
(23).

Theorem 3.32 (Extension Theorem). Let X be a set of SILM-formulas.
If F is a reasonable YILM-frame without any X -defects and with some problem
(z,A). Then there exists a reasonable SILM-frame G without any X -defects
such that F C G and G does not have the problem (x, A).

Moreover if F and X are finite then so is G. Also if B is a formula such
that A € Rp then for eachv € G — F: Jv|p < |z|B.

Proof. Let F be as in the conditions of the theorem.

First, let Q be some set such that W C Q and Q—W T is countable infinite,
and < be some well-ordering on Q x {A | A a ¥ILM-formula} x Q.

Now let (z, A) be some problem. G will be the union of a chain Gg C Gy C - -,
of reasonable labeled frames defined inductively as follows:

e For the definition of Gy we distinguish the following cases:
— If A=-%B then
G(] - <WF+{Z(]7 Zl}a RF+{($7 20)7 (1’7 Zl)}7 SF—’_{(xv 20, Zl)}v Rfa VF+{(207 AO)) (217 Al)}>

for some 20, 21 € Q@ — W and MCS’s Ag and A, such that B € Ay,
B € Ay, 1B € AgN A7 and Ay gZ‘l,uF(w) Aq.
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— Else ift A= —(B>C) then
Go = <WF + {Z}’ R" + {(xv Z)}’ SFv Rf + {(C)xv Z)}a v + {(Z, A)}>

for some z € Q — W¥ and an MCS A such that A is a C-critical
successor of v¥'(z), 0-B € A and B € A.

o If G has been defined. Then

1. If G; is not a XILM-frame then let Gj11 be the XILM-closure of G,
2. else if no defects in G exist put G411 = Gy,
3. elselet (z,C'>D,y’) be some <-minimal element such that (z, C'>> D)
is a defect in G; w.r.t. y'.
Let us call an MCS A good if it satisfies:
— VYY) oo A,
v(z) < A,
— DeA,
if for some B, y' € CB. Then A lies B-critically above v%(z).

Now distinguish the following two cases:
(a) If there exists some y € G; — Gy such that
i. 1% (y) is good,
ii. zRy,
iii. if for some B: y’ € CB then y € CB.
then put G, = (W% R% SCi + {(z,y’,y)},ReGj,qu>.
(b) Else let y” € @ — G; and A some MCS such that

i. Ais good,
ii. Ais maximal wrt. Cy e,y among the MCS’s which are
good,
and put G = (W +{y"}, RO +{(z.y")}. 5% +{(2.9/.y")}, R %o+
(", A)).

In what follows, to enhance readability, I will drop all superscripts on the
labeling functions v. So instead of ¥ or v%i I will just write v. Since if j > i
then G; is an extension of G; there never is any danger of misunderstanding.
Alternatively one could think every v superscripted with G.

Lemma. For each j > 0: G; is well-defined and reasonable.

Proof. We show simultaneously that each G; is well-defined and reasonable by
induction on j.

G is clearly well-defined. G is reasonable since F' is.

Now suppose G is reasonable (and well-defined). We have to distinguish three
cases:

1. Gj41 is the YILM-closure of Gj,
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2. Gj41 is defined out of G; by applying case 3a or
3. by applying case 3b.

If we are in Case 1 then G4 is clearly well defined and G4 is reasonable by
Lemma 3.27.
Case 2 is trivial.

So suppose we are in Case 3. Assume that for some B, y' € CZ. Such a B is
unique, so we can find A by Lemma 3.30. And thus G4 is well defined. The
newly added y” is in CZ and in no other critical cone of 2. And since v(y") lies
B-critically above v(z) this implies that G4 is reasonable. The case that for
no B, y' € CB goes similarly. -

The rest of the proof of Theorem 3.32 is given by the following three claims.

Claim 1. G is reasonable, a YILM-frame, does not have any X-defects and
does not have the problem (z, A).

Proof. G does not have any X-defects since if z,y € G then for some j: x,y €
Gj, but then if (x, B) is a defect w.r.t. y in G then by Lemma 3.24 (2, B) is a
defect wrt. yin Gj. If n = #{z € @ x {A | A a XILM-formula} x Q | z <
(x,B,y)} then for some k < n+ 1: (z,B) is not a defect w.r.t. y in G4 and
thus, again by Lemma 3.24 it is not a defect in G either. A contradiction.
Furthermore by Lemma 3.25 G is reasonable since each G; is. And finally
by Lemma 3.18 G does not have the problem (z, A) since Go does not have this
problem and Gy C G. =

Claim 2. if D is such that A € Rp then for each v € G — F, |[v|p < |z|p.

Proof. We show by induction on j that if v € G; — F then |v|p < |z|p. If j =0
then zRv and thus |v|p < |z|p.

If A=-%A" then ¥14" € v(v). If A =—=(B>C) then 0-B € v(v) since
ILM F B> B and v(v) is chosen to be a B-critical successor of v(x). In either
case if A € Rp we conclude: |[v|p < |z|p.

The inductive step is handled trivially using a < b < ¢ = a < ¢ and the fact
(for reasonable frames): wS,v = |ulp > |v|p. -

Claim 3. if F and X are finite then so is G.

Proof. First a word on terminology. Using the same (variable and formula)
names as in the definition of the chain. If G, is defined out of G; by applying
Case 3a then we will say that: ‘The defect (z,C' > D) w.r.t ¢’ in G; is solved by
y'S.y by applying Case 3a.” Similarly if G,;41 is defined out of G; by applying
Case 3b we say that: ‘The defect (z,C > D) w.r.t y' in G; is solved by y'S.y”
by applying Case 3b.” Additionally when, for instance, z,C' > D,y’ and " are
understood or nonimportant we may just say: ‘“The defect in G; is solved by
applying Case 3b.’
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Let us assume, for a contradiction, that F' and X are finite and that G is
infinite. Then there would exist a sequence:

yOSZleszlyQ e
and a sequence of formulas:
Co DDo,Cl > Dq,...

and a sequence jo < ji < ... such that the defect (z;,C; > D;) wr.t. y; in Gj,
is solved by v;5,yi+1 by applying Case 3b. See Figure 7.

Co " Dy, C4

D,,C3

D
Y2 1,C2 Y3

Yo

20 z1 Z9

Co > Dy Ci> D, Cor> Do

Figure 7: An infinite chain of solved defects.

Claim 3a. There exist k < I, z,C > D such that
oz =2z =z,
e C>D=C>C =Cy> Dy,
o for any B: y;41 € OB iff yp 1 € CB.

Proof. For each i > 0: y; € G — F since, as one easily checks, defects only occur
w.r.t. worlds in G — F. Since for worlds v € G — F pairs (u,v) are in R€ — RF
only for worlds v € F' this implies that for all i: z; € F.

Now each of those y; can be colored by three of its properties:

1. The world z; € F,
2. the formula C; > D; € v(z;) N X,
3. a formula B such that y; € Cg or | if no such B exists.

Since F' is finite there are only finitely many possibilities for Property 1.
There are also finitely many possibilities for Property 3 since for each z; and
B € MCS C’f_ is nonempty iff there exists some y such that z; RPy. Clearly RS
is finite so only finitely many C'Z are nonempty. X is finite so there can be only
finitely many possibilities for Property 2 as well. Conclusion: there are only
finitely many colors and there exists & < I such that y, and y; have the same
color (z,C' > D, B). 4
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C>D C>D

Figure 8: The defect (z,C > D) occurs twice.

Fix k <1, z and C' > D as given by Lemma 3a. See figure 8.

We are going to show that we can ‘link back’ y; to yx4+1. The only non
trivial thing we need for this is v(y;) Cs, u(z) ¥(yr+1). We are going to show
V(Yr41) = v(Yi+1). Which is clearly sufficient.

Claim 3b. v(yrt1) Cx,0(2) Y(W141)-

Let us first see why this claim finishes the proof of Claim 3. By 3(b)ii v(yx+1)
is chosen to be maximal w.r.t. Cyx,, () among the MCS’s A with the properties:

1. DeA,
2. v(yYk) Sy ,0(2) A and
3. if for some B: y; € CP then A lies B-critically above v/(z).

Clearly v(y;1+1) satisfies properties 1 and 3. Claim 3b implies that v(y;11)
satisfies 2.

So v(yr+1) is a Cx, (»)-maximal element of a class v(y;11) belongs to and
thus by Claim 3b: v(y;11) = v(yxr1). This together with the fact zR% gy,
implies that the defect (z,C > D,y;) in Gy, is solved by applying Case 3a. A
contradiction.

So indeed Claim 3b suffices.

Proof of Claim 3b. Let 5" = Uwer SE. We show by induction on [ — h:
It k < h <1 then z(RF US ) 2. (24)
See Figure 9.
If h = [ the statement is trivial. So suppose the statement holds for h + 1.

It is sufficient to show _F
Zh+1 (RF us )*Zh. (25)

Lemma. for alli>0 and u € F':

uRG"th = U(RF UEF)*Zh.
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Yi—2 Yi—1 Ui Yi+1

21—2 21—1 2]

Figure 9: 241 (R¥ U ep SE)* 2

Proof. Induction on 4. If i < j;+1 we are done since uRGﬂ'h“th S u=zp. SO
assume the statement for some ¢ > j, +1 and suppose uRG“lth. If uRG’?y;LJrl
then we are done so suppose this is not the case. Then since y,4+1 € G; it must
be the case that G;y1 is the XILM-closure of Gj;, since this is the only way
that ‘R relations are added between existing worlds’. By Lemma 3.27 Item 2
there exists some v € Gy such that vRGiy,y, and u(RF US' )*v. By (IH)

U(RFU§F)*zh. Conclusion: u(RF UEF)*zh. 4

By Lemma 3.5.3 and since zh+1RGjh+1 Yn+1 we conclude (25) and thus also
(24).

Now suppose 1D € v(z), D € v(yky1). Since z = z;: 1D € v(z).
Formulas of the form X1 D are preserved along S,, (by reasonability) and R (by
reasonability and since XILM  ¥; A — 0% A). And thus by (24)

foreach k <h <l X1D € v(zp).
So since

V(yk+1) gzhlj(szrl) V(yk+2) gzl,l/(zk+2) A gzlﬂ/(zl) V(yl+1)7

it follows that
for each k <h <l D €v(ynt1)-

end of proof of Claim 3b. .
end of proof of Claim 3. -
end of proof of Theorem 3.32. -

Proof of Theorem 3.13. Let A be a formula as in the assumption of the theorem:
YILM i/ A. We define a labeled YILM-frame F' as the union of a chain Fj C
Fy C .- of finite, reasonable ILM-frames, all of which are without any R 4-
defects, inductively as follows:

o Fy = {{w},0,0,0,{(w,A4)}), where A4 is some MCS containing —A.
e Suppose F}; has been defined.

— If F; does not have any R 4-problems then put Fj;; = F},
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— else let (z, A) be some R 4-problem in F; and let Fj;q be a frame as
given by the extension theorem (Theorem 3.32) (with R 4 for X and
(z, A) for (w, A)).

As F is the union of reasonable frames F itself is reasonable (Lemma 3.25).
Similarly as the union of a chain of frames without any R 4-defects, F itself does
not have any R 4-defects.

One shows as in the XL case that F' is finite, which implies that F' is a
YILM-frame and does not contain any R s-problems.

Let M be the model defined out of F' by putting V(p) = {v | p € v¥(v)}.
As in the XL case: M,w = —A. =

3.6 Failure of interpolation

In this section we extend ‘failure of interpolation for X1 (Section 2.4) to XILM.
The definition of interpolant (Definition 2.24) clearly translates to ¥ILM so we
simply state the theorem:

Theorem 3.33. XILM does not have interpolation.
First let us proof two preliminary lemmas.

Lemma 3.34. For all SILM-formulas A, B, D = D(p):
SILM F G(A < B) — (D(A) < D(B)).

Proof. By the modal completeness theorem it is sufficient to show that [J(A «
B) — (D(A) < D(B)) is forced in any root of a XILM-model.

So let M be a XILM-model and let m be a root. Suppose m |= (A < B).
Since m is a root of M: A « B is forced in any world of the model so trivially
D(A) is forced in m iff D(B) is forced in m. .

Lemma 3.35. Let D = D(p) be a ZILM-formula such that p only occurs under
the scope of a > or 1. Then for any two formulas A and B:

SILM F O(A < B) — (D(A) < D(B))

Proof. Induction on D. If D = ¢ then p # ¢ and thus D(A) = D(B). Truth
functional cases are trivial.

Assume D = Dy(p)> D1 (p). Again we use the modal completeness theorem.
Let w be a world in a XILM-model for which we have w = O(A < B). Then
for each v for which wRv we have v |= [J(A < B) and thus by Lemma 3.34
above for each v for which wRuv:

v Do(A) < Do(B),

Now trivially by the definition of >: w | Do(A) > D1 (A) < Do(B) > D1(B).
The case D = X1 Dy(p) goes similarly. -
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Corollary 3.36. If D = D(po,...,Pk,q0,---,qr) 15 a ILM-formula such that
each p; and q; only occurs under the scope of a I> or ¥ then:

YILM F OOl — {D(A0l>B(), . ,AkDBk, 21C0, ey ElCT) — D(T, ey T T

Proof. SILMF OL — ((pr>q) A¥qr) so
SILMEFOOL - O(p> g« T) and SILM F OOL — O(Zq7 « T).

So the corollary follows by repeated application of Lemma 3.35. —

Figure 10: M

=@

Figure 11: M’

Proof of Theorem 3.33. Just as in the proof of Theorem 2.25 let

A(p,q,8) = As =dot "X1¢ A E1sANO(s — ) AO(pA g — 5),
B(p,q,7) = By =det " 21¢ A X7 AO(r = ¢) AO(-pA g — 7).

As was shown in the proof of Theorem 2.25 {A,, B, } is inconsistent.

To show that no interpolant exists consider the Figures 11 and 10. Figure
10 shows a model M and Figure 11 a model M’. If we say that a formula is
forced in M, resp. M’, we mean that it is forced in the center point of M, resp
M’. M’ is a model of A; and M is a model of B,..
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In a very similar way as in the proof of Theorem 2.25 one shows that these
two models force the same Y L-formulas. We will first show that they force the
same IL-formulas as well and then combine these two facts to show that they
force the same YILM-formulas.

To show that they force the same IL-formulas it is sufficient to give an IL-
bisimulation (see Definition 2.30). It is easy to check that Z as given by:

Definition 3.37. Let Z be the binary relation between M and M’ such that
(m,m’) € Ziff one of the following cases applies

e m and m’ are both center points.

e m and m’ both are not center points and:

m € V(p) & m' € V'(p) and
meV(q) &m e V'(g).

is an IL-bisimulation w.r.t. {p,q}.

Now in order to show that these two models force the same YILM formulas
let D be some YILM-formula which is forced in one of them. Note that both
models are YILM-models and force OO and thus by Corollary 3.36 we can
assume w.l.o.g. that the operators > and ¥; do not occur nested: D is a
boolean combination of YL and IL-formulas. But since both models force the
same of such formulas they either both force D or both do not. B

4 Arithmetical interpretation

In this section we are going to give arithmetical meaning to the logic 3ILM.

Now capital letters like A, B and C can denote YLILM-formulas as well as
first order formulas, with identity, in the language of PA: (4, x,0,1).

We assume a coding of the syntax of PA in PA [2]. If A is a formula we
denote by "A7 its code. With - we denote the primitive recursive function such
that for each formula A: =" A7 =T"-=A". Similar conventions hold for the other
boolean connectives. Moreover we assume a formalization of provability in PA:
a predicate O(z) such that for any sentence A:

PAF A< PAFOAY). (26)

Bold face characters like n and w denote fixed (standard) natural numbers.
We do not make a distinction between natural numbers and numerals. Normal
characters like n and w are (just) variables.

Using a primitive recursive function Azyz.sub(z,y, z) such that for each for-
mula A(xz) and n € w: sub("A(z)", "z, n) = "A(n)" ([2]) we define for formulas
A(x) with at most z free:

O[FA(2)7] =qef O(sub(TA(x)™, 2™, x)).
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If A has more than one free variable then we can iterate the use of sub and
obtain similar definitions (all denoted by O[.]).

In what follows we write O(A4) and O[A] for O("A™) resp. O[T A7. Since
for sentences A PA + O[A4] < O(A) we will drop the notations O(.) and O[]
altogether and just use O (probably using brackets for grouping) to mean 0O[.]*!.

Besides (26) we assume the Lob derivability conditions ([2]): for all formulas
A B

1. PA+OA — OOA,
2. PAFO(A — B) — (0A — OB),
3. PAFO(0A — A) — OA.

Using the provability predicate and a predicate ¥1!(z) for syntactic ¥;-ness
we define
¥1(x) =det FoX1!(0) A O(x>0).

And we define a binary predicate >, expressing II;-conservativity, as follows:
x>y =det V(I () — (O(y—7) — O(z—-7))).

I1; (x) is a shorthand for ¥4 (-x).
Now we can interpret a XILM-formula in PA.

Definition 4.1 (Arithmetical realization *). An arithmetical realization
is a function ‘XILM-formulas’ — ‘sentences of PA’ which satisfies:

1. p* is a sentence if p € PROP,

2. Commutativity with boolean connectives (e.g. (A A B)* = (A*) A (B*)),
3. (A B)*="A*">"B*7,

4. (1A =3 (TA).

We say that a YXILM-formula A is arithmetically valid if PA proves A* for
each arithmetical realization x*.

In the case of PA we can change the notion of an arithmetical realization by
changing the meaning of A > B to: ‘PA + A relatively interprets PA + B’. In
fact this notion coincides with the notion of II;-Conservativity [10]. However
when considering II;-Conservativity (as we do) the results below do extend to
certain finitely axiomatized theories (like for example IX,, for n > 1) but this is
not the case if we change to relative interpretability.

Theorem 4.2. IfYXILM F A and x is an arithmetical realization then PA F A*.

U There is danger of confusion here since if A(x) has x free then O(TA(z)7) means PA
Ve A(xz) and O[A(z)] means: for alln PAF A(n). We take the risk.
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Proof. Clearly the class of arithmetically valid formulas is closed under modus
ponus and, by (26) under necessitation so it is sufficient to prove that all axiom
schemas of XILM are arithmetically valid.

The validity of the GL part in XILM holds by choice of the predicate O
(for an explicit definition of such a predicate see ([2])). The validity of XL is
therefore trivial. The validity of M(X) is discussed in Section 1.2 so what is left
is the validity of the schemas 3-7 of Definition 1.3.

In the following let * be some realization, reason in PA and let 7 be some
1I; sentence.

3. Suppose O(A* — B*). If O(B* — 7) then O(A* — 7).

4. Suppose A* > B* and B* > C*. If O(C* — 7) then O(B* — 7) and thus
O(A* — 7).

5. Suppose A* > C* and B* > C*. If O(C* — ) then O(A* — 7) and
O(B* — ) and thus O((AV B)* — ).

6. Suppose A* > B*. If =OB* then B*> L (trivially the equivalence O—p «
p > L is arithmetically valid) and thus A* > L by Item 4 of this theorem.

7. Suppose O(A* — 7). Then O(O-7w — O-A*) and thus

O(CA* — Om).
7 is Iy so O(—m — O-7) and thus:
O(or — ).

Conclusion: O(CA* — ). 4

4.1 Arithmetical completeness of YILM

Now we are going to prove that all arithmetically valid YILM-formulas are
theorems of XILM:

Theorem 4.3. If A is a YILM-formula and XILM F/ A then there exists some
arithmetical realization * such that PA 1/ A*.

The first theorem of this kind is the arithmetical completeness theorem for GL
[17][2]. A lot of variations on this theorem are formulated and proved. One of
them is the arithmetical completeness theorem for ILM (under the interpretation
of II;-Conservativity) [9][10]. In the rest of this section we extend the proof as
given in [10] by adding the X;-case to obtain a proof of Theorem 4.3.

Let A be some XILM-formula not provable in XILM. Then by the extended
modal completeness Theorem 3.17 there exist a strong X1 YILM-model M’ =
(W' R',S", V'Y and a world w € M’ such that w = —A. Without loss of
generality assume W/ ={1,2,... , n}, w =1 and w is a root of M": Yuw' € M" :
w # w' = wR'w'. We define a new XILM-model M = (W, R, S, V) as follows:

1. W=W'+{0},
2. R=R +{(0,w) |we W'},
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3. S=8"+{0,2,9) | (1,z,y) € '} +{(0,1,2) | x € W'},
4. V(p) =V'(p)if 1 ¢ V'(p) and V(p) = V'(p) + {0} otherwise.

Evidently we have for each n > 1: M,n E B & M',n = B and thus in
particular:
M,1E-A.

We are going to embed M into PA: assign sentences in the language of PA to
the worlds of this model. The sentence assigned to a world w will we denote by
limy,. We will show then that it suffices to take the arithmetical realization
such that p* =V ¢y, limy.

For w € M the sentence lim,, expresses that a function h : w — W (to be
defined below) has w as a limit.

In order for PA to prove certain things about these sentences PA should
be able to talk about M. This is accomplished by identifying the worlds with
numbers, as we did above. To talk about the properties of M we define the
following predicates:

R(ZL’, y) —def \/ (x:u N y:V),
uRv
S(Z’:L'7y) =def \/ (Z:t/\x:u/\y:v)

uSv

In what follows we will, as we did in the modal case, write 2.5,y for S(z, x, y) and
xRy for R(x,y). Notice that all the XILM-frame properties are Ag expressible
and therefore, by 3;-completeness PA proves them.

For each m € w let Fy, denote the formula with Godel number m. Let
Amau.lim(m, u) be the primitive recursive function such that for each m and u:

lim(m, u) = "Jy(y=u A JwVz>wFy,)™".

So if f is the code of a formula F(z,y) that defines a function f, then lim(f, u)
is the code of the statement: ‘u is the limit of f’.

Let ANhwun.Ap(w,u,n) be the primitive recursive function such that for all
h, w, u and n:

Ap(w,u,n) = "Ft>n{(Fyz[y=urz=tAFy]) \Ve(n<z<t — Jy(y=wAFn))} "

If f is the code of a formula F'(z,y) that defines a function f then Ag(w,u,n) is
the code of the statement: ‘For some ¢t > n f(t) = u and for each z: n < <t
implies f(z) =w.’

Before we define our function h we need two more preliminary definitions.
First it is well known that truth for ¥;-sentences is definable([16]). There exists
a X formula X;-Tr(x) such that:

PAF X1!(0) — O(o < X1-Tr(0)).
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Secondly let RegWit(w, z) be the primitive recursive predicate for which
for all : N |= 3;-Tr(z) & N | JwRegWit(w, x).
Now define the function Aha.Hy(x) as follows:
1. H,(0) =0,
2. if Hp(x) is defined then:

(a) If for some w: Hp(x)Ru and for some m < z:
i m<y<az— Hp(y) = Hp(x) and
ii. Pf(z,lim(h,u)>-Ap(Hp(x),u,m))
then Hp(x 4+ 1) = u,
(b) else if for some m there exist u, o, z such that
i. Hp(x)SH,m)u,
ii. m <z and Pf(m, lim(h, u)->"0),
iii. 3!(0),
iv. z < z and RegWit(z, o).
If moreover for each m’ < m there do not exist u, o, z with the above
four properties, then Hy,(z + 1) = u,
(¢) in all other cases: Hp(z + 1) = Hp(x).
The function Ahx.Hp(x) is built up from primitive recursive case distinction
and primitive recursion and is therefore primitive recursive. Let H(h,z,y) be

a Yi-formula defining this primitive recursive function and for which PA +
Vha3yH (h,z,y). Apply the diagonal lemma to find a formula h(z,y) such that

PAF h(z,y) < H("h(z,y)", 2, y).

h(x,y) defines a function which, of course, is primitive recursive. In what follows
we will write h(z) =y for h(x,y).
Next define, for u € W the sentences lim,:

limy, =gef Jy(y=u A IwVr>wh(z)=y).
And the formula A, (n):
A () =ger I>n{(FyTz{y=urz=tAh(x)=y})A\Vz(n<z<t — Jy(y=wAh(z)=y))}.

Now let us verify that in the definition of h (that is: the formula H("h(x,y)", z,v))
we can replace all occurrences of lim("h(z,y)”, u) with "lim, " to obtain a for-
mula H'(z,y) such that (still) PA F h(z,y) < H'(z,y). For this it is sufficient
that:

PA + lim("h(z,y) ", u)="lim,, .
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But this is clear since Azy.lim(z, y) is primitive recursive and lim("h(z, y) 7, u)="lim,, "
is true. Similarly one verifies that we can replace all occurrences of Arp,(, )7 (W, 1, n)
with Awy(n).

Before we move on let us agree on some terminology. If A(xz+1) is determined
by Case 2a above then we say that h makes an R move at z. If h(z + 1) is
determined by Case 2b then we say that h makes a S move at z. If in the latter
case in addition h(z) # h(z + 1) then we say that h makes a real S move at x.

If A makes an .S move then for some m there exist u, o, z such that conditions
2(b)ii-2(b)iv are satisfied and for no m’ < m there exist such u, o, z. This m
will be called the rank of the S move. Moreover we will drop the dots in =,
—,.... From the context it will be clear what is meant.

Lemma 4.4.
1. PAFV e limy,
w # u = PA F —(limy A limy),
wRu = PA F limy, — —0O-lim,,,
w # 0 and “-wRu = PA | lim,, — O-lim,,,
If uSyv then

Gro o e

PA F limy, — limy > limy,

6. If w # 0 and M C {w' | wRw'} such that for all x,y,w': © € M,
wZ - Zw' where Z = RU gy St and xSy, imply y € M then:

PA F limy — ¥ \/ limy,
veM

7. If wRu and V. C W such that for all v € V we have not uSwv. Then

PA b limy — =(limy > \/ limy).
veV

8. If uSyv, PAF limy, — A and PA F lim, — —A then
PA F limy, — =31 A,
Before we show Lemma 4.4 let us show some preliminary lemma’s.
Lemma 4.5. For any formula A = A(x,y):
PA +VzO(A(z,y)) — OVz<zA(z,y))

Proof. First note that PA - Vae<zA(x,y) A A(z,y) — Ve<z+1A(z,y). And
therefore

PA F O(Vz<zA(z,y) N A(z,y) — Ve<z+1A(z,y)). (27)

Reason in PA. Induction on z. The case z = 0 is trivial. Assume VaO(A(z,y)) —
O(Ve<zA(z,y)) and VeO(A(z,y)). Then both O(Ve<zA(x,y)) and O(A(z,y)).
Applying (27) we get O(Ve<z+1A(z,y)). =
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Lemma 4.6. (PA ) For any z and w € W. PA+1lim,, proves that no S move
to w can have rank less than z.

Proof. Let

Az, A) = Im<zPf(m,limy, — —A) A Z1IA — =31-Tr(\).
We will show:

PA + O(limy, — VA<zA(z, A)). (28)
Suppose

PA F O(limy — (Im<zPf(m,limy, — —X) — =)). (29)

Then
PA F O(limy, — (Im<zPf(m,limy, — =) A X11(A) — =X1-Tr(A))).
Substitution gives
PA F O(limy, — A(z,\))

and thus (28) follows by Lemma 4.5.
So it remains to show (29). We have:

PA F Im<zPf(m,limy, — —A) — O(limy, — —A)
— O(limy, — (Im<zPf(m, limy, — —A) — =)

and

PA F —-3Im<zPf(m,limy, — —-A) — O(=Im<zPf(m,limy, — —A))
— O(FIm<zPf(m,limy, — =) — —A)
— O(limy, — (Im<zPf(m, limy, — —A) — =A)).

From which (29) follows at once. o
Lemma 4.7. PA I Vaw(h(z)Rw — Yy<zh(y)Rw).

Proof. Reason in PA and suppose h(z)Rw. We show by induction on n =z —y
that y<z — h(y)Rw. The case n = 0 is trivial. Suppose h(y+1)Rw. There
are three cases to consider (1) h(y)=h(y+1), (2) h(y)Rh(y+1) and (3) for some
v: h(y)Syh(y—+1). In case (1) there is nothing to prove. In case (2) h(y)Rw by
transitivity of R and in case (3) h(y)Rw by the M property. =

Lemma 4.8. (PA}) Consecutive real S moves have decreasing rank.

Proof. Reason in PA. Assume: Vz(i+1<x<j — h(z)=h(j)) and h makes a
real S move at ¢ and at j. Then there exist m, ¢ and z such that conditions
2(b)ii-2(b)iv of the definition of h are satisfied with w = h(i + 1) and « = ¢
and m the rank of this S move at i. But then, since j>i and h(j)=h(i + 1),
m, o and z satisfy these conditions also for « = h(j) and x = j and thus since
h(j + 1)#h(j) the rank of the S move at 7 must be < m. 4
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Proof of Lemma 4.4. 1. First we show by induction on the converse of R that
for each w € W:

PA F h(z)=w — Jz>aVy>z-h(y)Rh(y+1). (30)
The (IH) yields:

PA+ \/ h(z)=u — Fz>aVy>z-h(y)Rh(y+1). (31)
wRu

Now reason in PA and assume h(z)=w. If there exists some z such that z<z
and h(z)Rh(z+1) then for this z we have, by Lemma 4.7, h(z)=wRh(z+1),
that is \/,, g, P(2+1)=u, and thus (30) follows from (31). In case such a z does
not exist (30) follows at once.

Taking w = 0 and z = 0 in (30) we obtain:

PA + 32Vy>z-h(y)Rh(y+1). (32)

In other words: PA proves that after some point h does not make any R moves.

Now reason in PA. Pick z such that after z there are no more R moves. If
there are no more real S moves either then h(z) is the limit of h. So suppose h
does make some real S move after z. Let h make a real S move at i > z with
minimal rank. In other words pick a minimal m such that for some u there
exists 1 > z:

Jo<m3w<i(h(i)Sh(myu A Pf(m,limy — —0o) A E1!(0) A RegWit(w,)). (33)

Fix such 7 and u. By Lemma 4.8 any real S move after ¢ must have rank lower
than m which by the minimality of m is impossible, conclusion: h(i 4+ 1) (that
is u) is the limit of h.
2. h is primitive recursive so PA proves Jlyh(z)=y. So it follows at once
that h cannot have two different limits.
3. We have:
PA Dﬁlimu — D(limu — ﬁAwu(z)),

SO
PA F limy A O=lim, — 32(V2'>20(2")=w A O(limy — —Awu(2))).

Since PA proves that any provable sentence has arbitrary long proofs:

PA - limy A O=limy, — J23m>2((V2'>2h(2")=w) A Pf(m, limy — =Awu(2))).

But

PA F (Fz{m>2zAVz'>zh(2")=wAPf(m,limy — ~Awu(2))}) = h(m+1)=uArh(m+1)=w,

By assumption: wRu so w # u and PA - u#w and thus:

PA | limy, A O-lim,, — L.
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4. First assume w = u = n # 0. In this case the statement of the lemma
boils down to:
PA F lim, — O-limy,.

Since n # 0 and PA + h(0)=0: PA + 3zh(z)=n — Fz(h(z)#n A h(z+1)=n).
So since PA F lim,, — Jzh(z,n) we have:

PA + lim,, — 3z(h(z)#n A h(z+1)=n).
By definition of h:
PA F (h(2)#n A h(z+1)=n) —3y{Vzly<z<z — h(2)=h(y)] A O(limn — =Ap)n(y))}
V 3o (31!(0) A X1-Tr(o) A O(limy,, — —0)).
By definition of A and by ¥; completeness:
PA I (V{y<z<z — h(2)=h(y)} A h(z+1)=n) — Apya(y)
— O(Apy)n(y))-
Moreover PA + X1!(0) A X1-Tr (o) — O(0), so
PA F Jz(h(z)#n A h(z+1)=n) — O(-limy,).
Now assume w # u. It is sufficient to show
PA + h(z)=w — O(—limy,) (34)

and since PA = h(z)=w — O(h(x)=w) in order to show (34) it suffices to show
that
PA F O(h(z)=w — —limy,). (35)

We show that O(h(z)=w — —limy) is true. Our argument can be formalized in
PA to show (35).

So let x € w and reason in PA. Suppose h(x)=w and assume for a contra-
diction that u is the limit of h. Since u#w there must exists some z>x such
that h(z)#£u and h(z+1)=u. Since not h(x)=wRu=h(z+1) by Lemma 4.7:

x <y = not h(y)Rh(z+1). (36)
So in particular —h(z)Rh(z+1) and thus there exist some m and o:
h(2)Shm)h(z+1) A Pf(m,limy — o) A E1!(0) A E1-Tr(0).

By Lemma 4.6 this m must be >x. But since h(z)Sp(,)h(2+1) we must have
h(m)Rh(z+1) and thus by (36) m<x. A contradiction.
5. If u = v the statement is trivial so assume u # v. Suppose

PA + O{h(z)=w A Pf(z,lim, — ) AIl;!{(7)} — O(lim, — 7). (37)

Reason in PA and assume limy,. Choose 7 such that II; () and O(lim, — ).
IT; (7) means that for some 7’: II;!(7’) and O(7 < 7’) and thus w.l.o.g. we can
assume II;!(7). Choose z such that Vz'>zh(z")=w and Pf(z,lim, — 7). Then:
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a. O(h(z)=w) and

b. O(Pf(z,limy — 7)).
Moreover since II;!(7) is Ag:

c. O(IIy!(m)).

Applying this to (37) gives: O(lim, — 7) so it is sufficient to show (37).

We will show that O{h(z)=w A Pf(z,lim, — 7) AIl;(7)} — O(lim, — 7) is
true. Our argument can be formalized to show it provable.

So let z, "7 € w and assume

O(h(z)=w A Pf(z,limy, — ") A1 ("7 7)). (38)

Reason in PA and assume lim,,. Assume for a contradiction —7. Since X1 (="7")
there exists some w such that RegWit(w, ="77). Now choose x > w, z such that
h(x+1) = h(xz) = u. This is possible since u is the limit of h. So in particular
h does not make an R move at x. However, by (38) h does make an S move at
z and the rank of this move is <z. Now if the rank is <z then by Lemma 4.6
and since we have assumed lim,, h(z + 1) # u. A contradiction. So the rank
must be equal to z. But this implies h(x + 1) = v # u. Again a contradiction.

6. Let w e W, w # 0 and M C W as stated in the hypothesis. It is
sufficient to show:

PA Flimy, — O( \/ Jzh(z)=u— \/ lim,). (39)
ueM ueM

Assume:

PAFO(h(n)=wA \/ 3ah(z)=mo—  /\  -limy,). (40)
mo€EM no&M,wRng

Combining Item 1 and Item 4 of this lemma:

PA F limy, — O( \/ lim, ).

wRv

So, again using Item 1, (40) yields:

PA + limy, — O(h(n)=w A \/ Jzh(z)=my — \/ limy,,).
mo€EM no€M

Now (39) follows since PA I limy, — Inh(n)=w and PA F h(n)=w — O(h(n)=w).
So we have to show (40). Again, we will show that

O(hn)=wA \/ Jzh(x)=me— [\  -limy,)
moEM no&M,wRng

is true. Formalizing our argument will show it provable.
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So let n be some number and reason in PA. Suppose h(n)=w. Let mg € M
and assume Jzh(x)=my. Fix some x¢ such that h(z¢) = my and assume for
a contradiction that limy,, for some ny ¢ M, wRng. Pick z; > xp such that
h(z1) = ng. Let ug, u1,...,ur—1,ux be the sequence of all the values h assumes
between xg and z;. Let tg,t1,...,tx_1 be the sequence of values such that h
makes a move from u; towards u;41 at ¢;. Let j > 0 be minimal with property

for all ¢ with j <14 <k not ugRu,;. (41)

Such j exists since j = k satisfies this property.

By Lemma 4.7 we see that for these ¢ not u;_1 Ru; and thus the moves at
ti—q for j <4 < k must all be S moves. Using 4.6 the rank of the move to
ur = ng must be > n and since consecutive S moves have decreasing rank
(Lemma 4.8) this holds for all the moves between u;_; and u; and thus for
SOMEe M4, Njy1,...,Ng = N

Obviously for each n; there exist cg,c1,...,¢ s.t. h(n) = coZer Z -+ Ze, =
h(n;) where Z = RUJ,cy St- Moreover ug = u;_; or, by (41), ugRu;_ and
in either case since h(n)Ruo:

UOSh(n)Uj—L (43)

Combining (42),(43) we can prove, with induction on ¢ and using that h(n) =
w, that each u; € M. But uy, = ng € M. A contradiction.

7. Here we pay the price for our ‘ugly’ modal 3ILM semantics. If we (could)
assume that M is a X1-model then we could derive this item from item 6. Now
we have to copy large parts of the proof given there.

Assume

for each v € V: PA I O(limy, — =Awu(n)). (44)

Notice: PA I (=Awu(n)). Now reason in PA and assume lim,. Pick n such
that for all n’ > n, h(n’) = w. Then

-O(limy — —Awu(n)). (45)

Since otherwise for some n’ > n, Pf(n/, limy, — “Awy(n)) and thus by definition
of h: h(n'+1) = u # w, a contradiction. (44) implies

O( \/ limy, — =Agwu(n)). (46)

veV

Combining (45) and (46) we conclude —(lim, > \/, oy limy). So we are left
to show (44).

For each v € V we show that O(limy — —=Ayy(n)) is true. Our argument
can be formalized to show (44).
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Pick n € w and reason in PA. Assume lim, and assume for a contradiction
that Awy(n). In other words:

ds>n(h(s)=u AVz(n < x<s — h(x)=w)). (47)

Fix such an s and choose t > s such that for all ¢ > ¢ A(t') = v.
Let wg,u1,...,up_1,ur be all the values h assumes between s and t. Let
to,t1,...,t_1 be the sequence of values for which A make a move at ¢; from u;

towards u;41 and let ¢, = t. Choose j > 0 minimal with the property
for all ¢ with j < ¢ < k not ugRu;.

Then by Lemma 4.7 for each 7 < ¢ < k: not u;_1Ru; and thus the moves
at these t;_1 are S moves. If m;_1 is the rank of the S move at t;_; then
by definition of h: m;_1 < t;—1 and since h(m;_1)Rh(t;) = wu; consequently:
m;_1 < s. Moreover just like in Item 6 of this lemma these ranks are > n and
thus by (47):

for each i: j <1 <k = u;_1Swiy;.

By choice of j: ugRu;_1 or up = u;_1. In either case since wRuo(= u):
UOSWUjfl.

By transitivity of Sy we conclude: u = ugSwur = v, a contradiction.
8. Let uSyv. By Item 5 of this lemma:

PA F limy, — (limy > limy).
In other words:
PA F limy, — (V2z{O(limy — z) A O(limy — —z) — -1 (2)}).

Now if PA F lim,, — A and PA F limy — —A then PA F O(lim, — A) and
PA + O(limy — —A) and thus PA F limy, — —II3(T—A™). In other words:

PA F limy, — =X (TA7).

In what follows we let * be the realization such that p* =V, ¢y () limy.
Lemma 4.9. For each SILM-formula A and w € W, w # 0:

1. wE= A= PAF lim,, — A",

2. wlE A= PAF limy, — A"

Proof. Induction on the complexity of A.

If A is atomic then 1 is clear. 2 holds since PA proves that h cannot have
two different limits.

Truth functional cases are trivial.
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Case A = XA Put M ={v e W | wRv,v E A'}. By the (IH): PA
Vpen limy — A™ so

PA  limy, — O('\/ lim, — A™). (48)
veEM

By the (IH) PA 'V, gy ppear limy — —A™ s0

PAFlimy, —O( \/  lim, — -A4")
wRv,vEA’

and thus since PA - limy, — OV, 5, limy:

PA | limy, — O(A™ — \/ limy). (49)
veM

Combining (48) and (49) we get

PA b limy — (£,4” < 5 \/ limy). (50)
veEM

Suppose w = %1 A’. M is closed under R and S; steps, for ¢ such that
W(R U Uyew Sv)*t, so Lemma 4.4-6 gives PA F lim,, — ¥1\/ ¢, lim, and
thus (50) yields 1. Now suppose w £ X1 A’. Pick u and v such that wRuSy,v,
u | A and v £ A’ (these exist since M is strong 7). Then by the (IH)
PA + lim,, — A”™ and PA I lim, — —A"*. Applying Lemma 4.4-8 we get 2.

Case A= B> C. Suppose w = A. Put

Vi ={v | wRv and v £ B},
Ve ={v | wRv and v = B}
Ve ={v | wRv and v |= C}.

Then by (IH) PA+ B — — \/VE‘/]é limy and thus since PA F limy, — OV, g, limy:
PA b limy, — O(B — \/ limy). (51)
veVE

For each v € Vg there exists u in V¢ such that vSyu. By Lemma 5 for such
u: PA F limy, — lim, > lim, so

PA F limy, — \/ lim, > \/ lim,,. (52)
veVR ueVe
By (IH) PA FV ¢y, limy — C* and thus:
PA  lim,, — O( \/ limy — C*). (53)
ueVe
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Combining (51) (52) and (53): PA F limy, — B* > C*.
Suppose w £ A. Pick u s.t. wRu, u = B and for all uSyv: v £ C. Put

V ={v|wRv and v = C},
V' ={v | wRv and v [£ C}.

Then v € V implies not uSyv and thus by Lemma 4.4-7:

PA b limy, — —(limy > \/ limy). (54)
veV

By (IH) PA F lim, — B* and thus
PA F lim,, — O(lim,, — B™). (55)

Since PA F limy — O(V, oy limy V /¢y limy) and by (IH) PA - C* —
= V,yey limy we have:

PA | limy, — O(C* — \/ lim,). (56)
veV
Combining (54) (55) and (56) we conclude: PA F limy, — —(B* > C*). .

Lemma 4.10. limg is true.

Proof. By Lemma 4.4-1 some lim, is true. If v # 0 and lim, is true then by
Lemma 4.4-4: O-lim,, a contradiction. Conclusion: limg is true. -

Now we’re in position to finish the proof of Theorem 4.3.

Proof of Theorem 4.3. Since 1 = A: PA F lim; — —A* and thus
PA F =0O-lim; — —-0OA*.

By Item 3. of Lemma 4.4: PA + limy — —O-lim; so as limg is true (and PA is
sound) —OA* is true as well. 4

4.2 XL

One can look at YILM as if it is an extension of XL and if one does so it makes
sense to ask whether a XILM-formula A not containing > is provable in XL, is
valid on a YL-frame, and so on.

The next theorems use this to derive the arithmetical completeness theorem
for XL from the arithmetical completeness theorem for XILM.

Theorem 4.11 (Conservativity). If A is a XL-formula (in other words: a
SILM-formula that does not contain >) and XILM - A then XL+ A.
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Proof. Let A be as in the hypothesis of the theorem. Then by the modal sound-
ness Theorem 3.12 for YILM: A valid on all YILM-frames (using the XILM
forcing relation). But each XL-frame is equivalent (in the sense that the same
YL-formulas are valid on them, see Theorem 2.25) to a XILM-frame with the
additional properties: for all x,y,a,b,t

1. zRy and aSyb implies a.S;b,
2. xSy and aSyb implies aS;b.

One easily proves, with induction on the complexity of A, that A is valid on
all YILM-frames using the forcing relation for YXILM-formulas iff A is valid on
all XILM-frames satisfying 1 and 2 using the XL forcing relation. Applying the
modal completeness Theorem 2.8 for XL gives: XL F A. -

Theorem 4.12 (Arithmetical completeness). Let A be a YL-formula. If
YL I/ A then there exists an arithmetical interpretation * such that PA F/ A*.

Proof. If A is a YL-formula and XL I/ A then by Theorem 4.11 XILM I/ A
and thus by the arithmetical completeness theorem for >ILM there exists some
arithmetical interpretation x such that PA ¥ A*. B

5 Fragments and variations

Above we have studied formulas which are always provable (e.a. formulas A
for which for any realization x: PA F A*). A variation could be to study the
formulas A that are always true: for any realization x: N = A*. As is the case
with ILM the addition of reflxection (the principle OA — A) will probably do.

Another subject of study could be the determination of certain fragments
of the above logics. For instance the formulas that do only contain unnested
occurrences of the operator 3.

What follows is a copy of a note from J. Joosten [11] which can be cat-
egorized under these subject matters. The always true formulas of the form
No<icn 21Bi — 1A, where A and all the B;’s are propositional, are deter-
mined.

5.1 The propositional X -logic of PA

In this section three consequence relations will be introduced. These conse-
quence relations will concern the language of modal logic. First we will restrict
ourselves to the propositional case only. The main result will be to proof that
the three relations are the same.

5.1.1 An arithmetical consequence relation =y,

Definition 5.1. An arithmetical translation is a function * assigning arith-
metical sentences to propositional formulas (in our case) in such a way that
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(L)* = 1, and x “distributing over” the connectives, in the sense that, for
example, (p A q)* = p* A q*.

In the following definition the * is suppose to range over all possible arithmetical
translations.

Definition 5.2. A =y, ¢ <V [V6 € A §* € 51(PA) — ¢* € ¥, (PA)]

5.1.2 The syntactical consequence relation Fy,

Definition 5.3. Fyx,is the binary relation between sets of propositional for-
mulas and propositional formulas such that I' Fx, ¢ iff some conjunction of
disjunctions of formulas in I' is equivalent to ¢.

Instead of T U {¢} b5, ¢ we will often write T', ¢ b5, ¢.

One can give a more deduction-like definition of Fy, (with for example a
Cut rule, a Weakening rule etc.). In such a formulation it is then clear that Fx,
is a consequence relation. The above definition is in the present context more
useful and informative.

5.1.3 The semantical consequence relation Iy,

Where does the intuition come from and how to depict it.

Definition 5.4. An S-model is a pair < {l,r},IF> where I is a forcing relation
telling which propositional variables are forced on ! and r i.e. I+: {i,7} — Prop
and [IF T and r IF T.

The forcing relation extends on the natural way to sentences by stating that
it “distributes over the logical connectives”. So for example [ IF pA g & [ IF
p & I IF q. The letters [ and r stands for ‘left’” and ‘right’ respectively as we
depict them correspondingly.

Definition 5.5. Let M denote some S-model. The relation |>is defined by
Mpboe (lFp—ri-¢)and M T < Vy el M 2ry.

In this definition of >we use persistence of forcing from left to right. To indicate
this direction in our drawings we will connect [ to r with an arrow.

Definition 5.6. T' Iy, ¢ < for all S-models M [M T — M B¢].

We write I f&>¢ for =(I' =>¢). Likewise we write I' s, ¢ for =(T" kg, ¢).
In the latter case we can find a model witnessing this fact. So, for example
P s, PAQ is demonstrated in figure 1; an S-model.

) T

PQ P
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For indeed M =P but M &P A Q. In a picture we only indicate which
propositional letters are forced. Those letters not mentioned are not forced.

Theorem 5.7. The three above defined consequence relations, =y, , Fx,, and
IFs, coincide.

Proof. The Proof will consist of three steps.

A.) b5, C [Ex,; This is trivial and does not need a proof.

B.) E5,C IFy,; We reason by contraposition. So, suppose that T' Iffs;, ¢.
In this case we can find an S-model M with M =T and M [>¢. For the
propositional variables we can distinguish four different situations depending
on the variables being forced on [ and r or not. We now define a map h :
Prop — {L,T,0L,0T} as disposed in the table below.

| l|r ‘ h(p)
p|+ |+ T
p|+|—|OT
p|— |+ | OL
pl—1 - 4

So, for example, if [ If p and r Ik p, h(p) will take the value of O L. We see
that h(p) = T & M p. Now {L, T,0L,OT} can be made into a Boolean
algebra in the obvious way by considering it as a subalgebra of the Magari
algebra. Thus we can extend h to h Form — {1, T,0L,0T} by definition
h(d A ) = h(d) A h(¢), and h(=¢) = —h(¢), and of course h(p) = h(p) for
the variables. h is a homomorphism and again we have h(¢) = OT < M ¢.
(The latter fact can be seen as a consequence of the Boolean algebraic version
of 2 x 2 =4.) We also have h(y) € ¥; & M [=~. Taking h as an arithmetical
interpretation we obtain A[l'] C 3 and h(¢) ¢ %1, i.e. T fes, ¢.
C.) ks, C Fyx,; Suppose
T lks, ¢. (57)

Without loss of generality we can assume that all proposition variables in T’
occur in ¢. With a model we will mean a truth assignment for these variables.
For any model n put I', = {y € I' | n = v}. We will show: = ¢ < A, VI
So let m be some model.

Assume m = ¢. Suppose for a contradiction that there exists some model
n: n = ¢ and for all v € T',,;: m F& . Then the S-model ({m,n} IF), where I-
simply is |=, is a counterexample for (57).

Now assume m = A, .4V I'n. And assume for a contradiction that m [~ ¢.
Then m = \/{y €T | m £ ~}. A contradiction. o

6 Conclusion and further research

In this paper we have tried to extend ILM to a logic which has interpolation. A
well known counter example for interpolation seemed to emerge because ILM is
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unable to express Xi-ness (see Section 1.2 above and [19]). The main question
of this paper is therefore: Is it possible to adjoin to ILM a unary operator 3
and if so does it give us a logic with interpolation.

In preparation for this we formulated a logic XL, the language of which con-
tains the usual O and the operator ;. The axioms are a trimmed down version
of Japaridzes HGL [8]. HGL is a logic which contains, among other things,
operators for any class ¥,, n > 1. We showed this logic to be modally com-
plete w.r.t. a certain class of Veltman frames (Section 2.3) and arithmetically
complete when translating the modal ¥ predicate to a formalization of ¥1-ness
and the O to a formalization of provability (Section 2.5 and Section 4.2).

Bearing the main goal of this paper in mind it was somewhat of a disap-
pointment to find out that ¥L does not have interpolation (Section 2.4). We
carried on nevertheless.

Next we formulated a logic XILM. This was (simply) the union of ILM and
YL where we in addition replaced the (M) schema: Ar>B — AADOC > BAOC
by its more natural version ¥1C — (A> B — AANC > BAC). We showed
¥ L modally complete w.r.t. Veltman frames very similar to those ILM is shown
complete for (in for instance [10]). Basically we showed YILM to be complete
w.r.t. the class of Veltman frames which is the intersection of those two classes.
It was necessary however to fiddle a bit with the forcing relation (definition
3.11). And for our convenience in showing XILM arithmetically complete we
sharpened the formulation of the modal completeness theorem (Section 3.17).

In my opinion both fiddles are somewhat dirty and one direction for further
research could be to try to do without them. This does not give new results
directly but might give some more information on the relation between > and
3.

In this context a variation on Veltman frames is noteworthy, namely sim-
plified Visser frames. In simplified Visser frames we consider a binary S in-
stead of a ternary one and the forcing of a formulas A > B is defined as:
wE A> B & Yo(wRvand v = A = JuvSu and v = B). The appendix
in [19] suggests a very close relation between > and ¥; on these models (see
comments on the XL forcing relation on page 7). We could approach from the
other direction and set up a theory for Veltman frames as in [19]. This might
give some information on the (possible) necessity of my fiddles.

In order to investigate (the lack of) interpolation for XILM we need a notion
of bisimulation. We stated in Fact 2.31 that the notion of bisimulation for
(the language of) ILM is incomparable to the notion of bisimulation for (the
language of) XL. Therefore a notion of bisimulation for ¥ILM would be quite
strong. However in Section 3.6 we managed to show that XILM does not have
interpolation by using the two separate notions only. The counterexample given
was exactly the same as the one that showed XL to lack interpolation.

The gap in expressive power of XILM (the reason that no interpolant exists)
is that of ¥1-interpolability[7]. The most appealing direction for further research
is therefor to investigate the logic of ¥1-interpolability in combination with ILM.

So the answer to the main question thus reads as follows. Adjoining to ILM
a unary operator i gives us a relatively simple logic which is modally and
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arithmetically complete. It (still) lacks interpolation however.
Finally a third direction for further research could be the investigation of
fragments of XILM. One example of this is given in Section 5.
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Symbols!?

PROP . . . e 2
D> e 2
IL 3
ILM . .o 3
(M) 3
DD 1 4
A B,Co o0 o 5
DyQyTy e e o e e e e e 5
(WE RE SEY 5
v )
R e 5
B 6
AL 6
Ve 6
O o 6
LD . 6
D e 6
SLo 7
MCS . . e 8
RA - o o 9
Voo e e e e 9
Gy e 9
eSS 9
LIx - o 14
(M) 22
NILM ..o 23
Re o o e 27
RE 27
9 2 J 28
Si-Tr(@) o o o 44
RegWit(w, ) . . . . . . o oo 45

123ome symbols occur more than once since they are used for different (but related) pur-
poses.
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