5438

Institute for Language, Logic and Information

A RELATIONAL FORMULATION OF THE THEORY OF TYPES
Reinhard Muskens
ITLI Prepublication Series 86-04

University of Amsterdam

Instituut voor Taal, Logica en Informatie

Faculteit der Wiskunde en Informatica, Roetersstraat 15, 1018WB Amsterdam, or
Faculteit der Wijsbegeerte, Grimburgwal 10, 1012GA Amsterdam

A RELATIONAL FORMULATION OF THE THEORY OF TYPES
Reinhard Muskens

Department of Philosophy
University of Amsterdam

Received October 1986

| Institute for Language, Logic and Information

Faculty of Mathematics and Computer Science, Roetersstraat 15, 1018 WB Amsterdam, or
Faculty of Philosophy, Grimburgwal 10, 1012GA Amsterdam

1 Introduction
1.1 Relational Type Theory

In Montague semantics it is common procedure to specify a translation
function taking the expressions of some fragment of natural language to
logical expressions. If all is done well, the translated phrases and their
translations show the same logical behaviour. Their truth conditions
should match, for example, and the relation of logical consequence on the
translations should mirror the relation of entailment that is imposed on
the natural language fragment by natural logic.

The logic that is usually taken as the range of values of this translation
function, is Montague's IL (Intensional Logic), defined in Montague
[1973] and extensively described in Gallin [1975]. Being an intensional
extension of Church's [1940] beautiful formulation of the simple theory
of types, it can be embedded in a two-sorted version, TY, of this theory,

as was shown by Galilin.

Historically, Church's formulation of type theory was much influenced by
his formulations of the lambda calculus, which is a theory of functions.
The 1940 article defining the logic is mainly of a syntactical character, but
in the first section a brief suggestion is made concerning the intended
interpretation of the system. This interpretation is to be functional. While
in earlier and less precise formulations of type theory (see Russell [1908],
Carnap [1929]) classes and relations played an important and more
independent rdle, these now seem to have to be equated with their
characteristic functions. Multi-argument relations are identified in this
way with multi-argument functions, which in their turn, following
Schonfinkel [1924], are equated with functions in one argument whose
values are functions again.

Now these moves seem innocent erough. Technically it is clearly
equivalent to consider relations directly or to explain them recursively
with the help of Schoénfinkel's Trick. But, although equivalent, this
identification is - I claim - not very felicitous. Relations are 'moved up'
recursively in the set-theoretical hierarchy and this complication makes it
extremely difficult to formulate the usual model-theoretical notions for
the logic. In fact, in aimost all cases where an interesting notion is defined,
this is done by the use of a recursion that reverses the effect of
Schonfinkel's Trick.1

ISeee. g. the definition of persistence in Gallin [1975, §4] (and compare it with the one
in §9).

This kind of problems made S. Orey define his higher-order predicate
calculus in 1959 (see also Gallin [1975], Van Benthem & Doets [1983]).
Avoiding the Trick, he formulated type theory in such a way that model-
theoretic concepts as, for example, substructure or end extension (of a
general model) have simple and natural formulations. Types, in his
system, are of a relational, not of a functional, character as they are in
Church's, and the objects in his domains are either individuals or
relations.

DEFINITION 1. The set of zypes is to be the smallest set such that:
1. e and s are types,

ii. if ay,...,ap are types (n=0), then <a,...0,> is a type.

We shall equate <> with @ or, equivalently, with 0. The types e and s we
call basic, all other types relational.

DEFINITION 2. A standard Orey frame is a family of sets
{Dg | o is atype}such that Dg# @, Dg# @ and D g go> =

PDgx ... xDgy)-

(The cartesian product of the empty sequence of sets is to be equated with
{<>}.So D_.=P ({@}) = {0,1}, the set of truth values.)

Orey's relational models can now be defined in the usual way adding an
interpretation function to the frames just given (see also section 3
below).The use of these relational models instead of the standard
functional ones is not only advantageous from a model-theoretic point of
view, but has also much to be recommended from the perspective of
applications of type theory in Montague semantics. I shall give four
arguments in support of this.

The first argument is that, although the standard logic has in a sense to be
explained below 'more’ types than relational type theory has, these extra
types are in fact seldom used. Almost all proposed translations of natural
language expressions have (functional) types that correspond closely to
the relational types defined above. In order to put this more accurately, I
shall first give the familiar definition of Church's types and then define
the subclass of them that is in fact - I claim - most popular.

DEFINITION 3. The set of Church types is to be the smallest set such that:
i e, s and t are Church types,

ii. if a and B are Church types, then (aff) is a Church type.

DEFINITION 4. Define the function X (T is for Schonfinkel) taking types
to Church types by the following double recursion:
I e)=¢e, X(s)=s
II i I(<>) =t
. Z(<oq...05>) = (Z(o)Z(<0)...00>)) if n=1.

So, for example, Z(<e>) = (et), Z(<<e>>) = ((et)t), Z(<ee>) = (e(et)) and
(<<se><se>>) = ((s(et))((s(et))t)). On the other hand, Church types like
(se) or (ee) are not values of =. If a is the type of some relation then (o)

is the Church type of the unary function that codes this relation in
functional type theory.

Ever since Bennett [1974] removed individual concepts from the standard
formulation of Montague Grammar, the vast majority of types that have
proposedly been assigned to linguistic categories have been values of =. If
the semantics of a natural language is described with the help of a
functional type theory, then linguistic expressions tend to get semantic
values having values of X as their types. This seems to be an important fact
about semantics, but it is a fact that is not reflected in the overall
organization of current Montague Grammar. It would be so reflected if
we could somehow trade the usual type theory for a relational one and
assign relational types « to linguistic categories instead of their functional
counterparts (o). Since arguments of this function tend to be more
simple than the corresponding values, this would give a slight
simplification of the theory too.2

The second argument concerns the complexity of the objects that are used
in functional semantics as compared with the complexity of their
relational counterparts. In the functional theory, elements from Orey
frames are coded as elements from Church frames:

DEFINITION 5. A Church frame is a family of sets
{Dg | o is a Church type} such that De # @, Dg # @, D¢= {0,1} and D g
is the set of functions from Dy, to Dg.

2The choice of a particular logic should of course not preclude certain analyses of
natural language. It should, for example, not be made impossible by our logic to use
individual concepts (type (se) objects, functions from worlds to entities). However,
since all functions are relations, there is no problem. Those who think that individual
concepts are useful (see Janssen [1984]) may keep them as <se>-type relations
(relations between worlds and entities). Expressions like the pope can then be treated as
individual concepts. Note that the pope can't be a function since there have been times
that there was no pope and once, during the Avignon period, there were three.

Let us take a closer look at the function S that codes multi-argument
relations as unary functions. Its definition is somewhat less simple than
might be thought:

DEFINITION 6. Let {D | o is a type} be a standard Orey frame and

{D'q | o is a Church type} the Church frame such that D, = D' and
D¢ = D's. For each type o, define a bijection Sg: Dy — Dy, by the
following double recursion:
I Se(d) =d, if d € De; Sg(d) =d, if d € Dg;
I1 i. Sco(d)=d,ifde D_,;
ii. Ifn>0, o =<a;...0,>and R e D, then Sy(R) is the function
F of type (Z(a;)Z(<0,...0>)) such that for each f € D'y (qy)
F(f) = S<a2,...,an>({<d2,---,dn>l <dy,d2,....dp> € R}),
where d; = Sg;71(%).

It is routine to prove that this is well-defined. Define the function S to be
UaSa.

Obviously, the function S tends to rather dramatically increase
complexity. For example, an object of type <<se><se>> (arguably the
kind of object that can be taken to be the extension of a natural language
determiner), which is a two-place relation taking relations between
indices and entities in both its argument places, is coded as a function
taking functions from indices to functions from entities to truth values to
functions taking functions from indices to functions from entities to truth
values to truth values.

Now, if there would be any need to do so, we could gladly accept these
intricacies, since in a sense the functions Sy are isomorphisms: for all
relations R (of any type) <dy,...,d,> € R iff S(R)(S(d1)) ... (S(dy)) =1, as
can easily be verified. But I think that this doubly recursive encoding is
just a needless complication. If we want Montague Grammar to look a

little less like a Goldberg machine (the comparison is taken from Barwise
& Cooper [1981]), we may as well skip it.

My third argument pro a relational logic also has to do with elegance of
formalization and simplification of the theory. In view of the fact that
natural language and, or and not can be used with expressions of almost all
linguistic categories, type domains should have a Boolean structure. This
has been argued for by a variety of authors, beginning with Von Stechow
[1974] (see also Keenan & Faltz [1978]). Obviously, Orey's relational
models have a Boolean structure on all their (non-basic) domains, since
these are power sets. So we can give a very simple rule for the
interpretation of natural language conjunction, disjunction and negation:

they are to be treated as n, U and - (complementation within a typed

domain) respectively (I shall propose a slight emendation on the negation
rule below). Entailment between expressions of the same category is to be
treated as inclusion. This does not differ much from the usual treatment
of both entailment and the expressions just mentioned in the literature (see
Gazdar [1980] for generalized coordination, Groenendijk & Stokhof
[1984] for entailment). The point is rather that the relevant Boolean
operations are not as easily available in a functional type theory as they
are here. They can only be obtained by using a pointwise recursive
definition reversing the effect of Schénfinkels Trick.3 In a relational type
theory such unnecessary complications can be avoided. If coding relations
as unary functions makes very simple things more or less complex, it may
very well make really complex things unintelligible. Therefore I think we
should turn to a relational formulation of type theory in Montague
Semantics.

A few paragraphs back I have contrasted the model-theoretic view upon
type theory with the perspective from the point of view of its applicability
in semantics. But this contrast may not be absolute. Elementary relations
between models may play some part in the semantics of natural language
expressions. In Muskens [1983] it was argued that the recipe for
evaluating a degree adjective-noun construction like small elephant is:
evaluate small (a recipe for that evaluation was given, but need not
concern us here) on the substructure of your model that has the set of
elephants as its e-domain. Similar evaluation rules, using submodels, can
be given for other linguistic constructions (see Muskens [in preparation]).
So my third argument runs as follows: If one tries to formalize the
evaluation of natural language with the help of model theory, it may well
be that elementary relations between models (like the relation of
substructure) can fruitfully play a part in that formalization. Therefore,
other things being equal, one should choose a logic that allows easy
definitions of such relations. Defining a type theory for Montague
Grammar, one should choose a relational rather than a functional
formulation.

Are other things equal? Although there are, as I have just argued, good
reasons to prefer Orey's relational models over Church's functional ones,
there are equally good reasons to prefer Church's syntax over Orey's
when it comes to choosing a logic for our purposes. In fact the latter logic,
as it was defined in Orey [1959], lacks the operations of application and
abstraction, which are absolutely crucial for the Montague semanticist. So
at this point it may seem that we can either have an applicable logic with a

3But this cannot be done for all non-basic type domains, only for the so-called
conjoinable ones; see Partee & Rooth [1983] for a definition and notice that a Church
type is a value of X iff all its subtypes are either basic or conjoinable.

complex model theory or a logic with a more simple model theory which
is inapplicable.

But the dilemma is only apparent. We can have our cake and eat it by
taking the syntax of standard type theory and evaluate it on relational
models. Let us consider application. Suppose that A and B are terms of

types <Bay...o,> and B respectively. Then the value of the term AB (of
type <0o...0,>) in some model M (under an assignment a) is given by the
following rule:

(1) |AB|M:2 = {<dj, ... dy>| <IBIM2 dy, ... dp> € [|AM:2}

Let, for example, the domain of M be some set of people and let love be a
constant of type <ee> that is to be interpreted as the love relation among
them ({<d;,d2>| dj loves d1}). Let j and m be constants of type e,

interpreted on M by John and Mary respectively. Then |[lovej|[M will be
equal to {d;| d; loves John}, the set of persons loving John, while

llovejm|[M equals {<>| Mary loves John}, which is equal to the value 1
just in case Mary indeed loves John.

Suppose now that A is a term of some type <aq...0.,> and that x is a

variable of type B. Then we can define the value of the term AxA (of type
<Bay...0n>) in M under a as follows:

(2) INxA|M:2 = {<d,dy, ... ,dy>] d e Dg and <dj, ... ,dp> € |A|M.ald/x]}

For example the term AxcAy.3ze(x<z A y<z) will receive the relation
'having a joint successor' on the D, domain as its interpretation in any
model, as the reader can easily verify.

1.2 Definite and indefinite description operators

In the preceding pages I have sketched how type theory can be interpreted
in a relational way. It would be easy now to fill in the details of this sketch
and obtain a completely defined relational semantics. The crucial clauses
in the Tarski truth definition would be (1) and (2) of course, and the
resulting system would look a lot like Gallin's TY, although its model

theory would be much simpler.

Note, however, the following little asymmetry: while in the standard type
theory it is possible to obtain terms of a basic (e or s) type by application,
this is not so in relational type theory; the results of clauses (1) and (2) are
always relations. In the functional theory the result of applying a (say)

(ee)-type function to an e-type argument gives a value of type e, but in the
relational formulation the same function, seen as an <ee>-type relation
now, applied to the same argument, gives an <e>-type singleton as a
result. To get the original value we need a description operator.

Since a description operator is generally useful, we may add it to the
logic# and define 1xq(9) to be a term of type o if ¢ is a formula (a term of

type <>) and X a variable of type o and demand that at least:

(32) |1xg(9)|[M-2 = the unique de D, such that ||o||M-ald/x] = 1, if there is
such an object de Dy,

What to do if there is no such unique d? This is a classical problem of
course and it has been discussed extensively in the literature from Frege
onwards (see Scott [1967], Renardel [1984] for short expositions of the

main points of view). If a is a relational type, a type of the form
<0q...0> that is, then there are two obvious candidates for the value of
Ixo(@)|M:2 in case there is no unique d such that d satisfies ¢: we can
either let it be the empty set or we can take it to be the cartesian product
Dgi%x ... xDgy. Following Frege, we shall take the first option. If, on

the other hand, « is basic, that is if a=e or a=s, we must proceed in some
other way.

To this end we shall follow Scott [1967] in distinguishing between the
proper objects of some basic type and an improper one, designed to be the
'non-referent’ of non-referring expressions. The proper objects are just
those entities that you have always allowed in your domain D, or just

those worlds you allow in Dg. To those we now add an improper one.

Since we can - up to isomorfism - take any set to play the part of this
object, we might as well choose @ again for uniformity's sake. So from
now on we shall assume that @ D, and @e D and we demand that:

(3b) [hx(@)|M-2 = @, if there is no unique d € D, such that ||o||Mald/x] =1

The sets D \{@} and D\{@} of entities and worlds proper, we shall
denote by E. and Eg respectively and we inductively define E_g, 4.~ to

be P (Eg, x - x Eg,). Note that Dy o Eq for each type c.

4 It should be emphasized however, that the addition of description operators is not
essential. Relational type theories can be formulated without them. See §3.

Thus, for each type o, we now have two domains of quantification (and
lambda-abstraction and description): Dy and Ey. The Ey are domains

that either consist of individuals, or of relations over those, or over
relations over those relations, etcetera, etcetera. The Dy are somewhat
larger, in order to allow for improper objects in the basic domains. I shall
call Dg, the outer domain of type o and E the inner domain of this type.5
Since we have only enlarged the inner domain in order to evaluate non-
referring expressions, it seems reasonable to demand that in applications
of the logic to natural language semantics all expressions except the non-
referring ones should get their values in some inner domain; non-
referring expressions may take their values outside the Ey's. If we adopt
this rule we must slightly revise the general rule for the interpretation of
natural language negation. Since, for example, both the verb phrases is
bald and is not bald are referring expressions (and therefore should take
their denotations in some Eg), and since the second expression is the
negation of the first, we can no longer treat negation as complementation
with respect to some Dg. Instead, negation should be treated as
complementation with respect to the relevant inner domain. If we do this,
Scott's treatment of the iota-operator makes it possible to give e-type

translations to natural language descriptions and have them behave in a
Russellian way. Consider the famous sentence:

(4) The present king of France is bald,
which may be formalized by:

(5) baldix(kingx)
(where both bald and king are type <e> constants).

In a model M where there is no unique king of France, such that || king||M
is not a singleton, the interpretation of the present king of France,
Ix(kingx)||M, will be equal to @. Since, as was assumed, E.2||bald|M,

but @eE,, rule (1) will ensure that ||baldix(kingx)|[M = 0, so the sentence
is false in M. Of course this implies that its direct negation

(6) 1t is not the case that the present king of France is bald

is true in M. On the other hand the sentence

5 In this introduction we shall restrict our attention to abstraction and description
operators over the outer domains, but in section 2 we shall define operators over the
inner domains from those. The inner operators are best suited to the formalization of
natural language, but the outer operators are useful in setting up the logical system and
we shall take an outer operator as a primitive.

(7) The present king of France is not bald,

containing a verb phrase negation, will come out false in M. Again, since
the interpretation of the verb phrase is not bald is a subset of E. (the

complement of ||bald|M in E;) and |[ix(kingx)||M = @ ¢ E., rule (1)
ensures (7)'s falsity in M.

In recent times there has been a tendency to view all terms allowing
discourse anaphora (proper nouns, definite descriptions and even
indefinites) as being of type e. The following quotation is from Partee
[1986] (I have changed both the example numbering and the type
notation):

Evidence for type e. The claim that proper names are basically of type e and
only derivatively of type ((et)t) hardly needs defense, and there is almost as
much tradition (though more controversy) behind the treatment of singular
definite descriptions as entity-denoting expressions. However, there seemed to
be no harm and considerable gain in uniformity in following Montague's
practice of treating these NP's always as ((et)t), until attention was turned to the
relation between formal semantics and discourse anaphora by the work of
Kamp [1981] and Heim [1982]. As illustrated in examples (8) and (9), not only
proper names and definites license discourse anaphora, but indefinites as well;
other more clearly "quantificational" NP's do not.

(8) John / the man / a man walked in. He looked tired.
(9) Every man / no man / more than one man walked in. *He looked tired.

The generalization seems to be that while any singular NP can bind a singular
pronoun in its (c-command or f-command) domain, only an e-type NP can
license a singular discourse pronoun. The analysis of indefinites is particularly
crucial to the need for invoking type e in the generalization, since if it were only
proper names and definite descriptions which licenced discourse anaphora, one
could couch the generalization in terms of the retrievability of a unique
individual from the standard Montagovian generalized quantifier interpretation
(an ultrafilter in those cases).

Thus far, we have sketched a logic in which it is possible to treat both
proper names and definite descriptions as e-type expressions. It still is not
possible to treat indefinite descriptions in this way. If one wishes to do
this, the most obvious idea that comes to one's mind is to add not only a
definite description operator to the logic, but also an indefinite
description operator. Can this be done?

An interesting thing is that it already has been done. In Church [1940] the
author takes 'selection operators' (somewhat misleadingly denoted by
iotas) as some of his logical primitives. These operators are constants of

types ((at)a) (in our notation), so intuitively they take sets of objects of
type a to objects of type a. Church then proposes two alternative axiom

10

schemes that should govern the behaviour of these iotas. The first gives a
set of axioms of descriptions : the iotas should assign to singletons their
unique elements. This is of course still in line with the usual interpretation
of the iota symbol. But the latter remark holds not true for the second,
stronger, axiom scheme that Church proposes. This scheme gives axioms
of choice : the iotas should pick out some element from every non-empty
set, which makes the symbol into an indefinite description operator.
Henkin, in his famous article in which the generalized completeness of
Church's system is proved (Henkin [1950]), gives a (very sketchy)
semantics for the selection operator that seems to be close in spirit to the
semantics that we shall give to our indefinite description operator in
section 2 below.

Another proof-theoretical treatment of an indefinite description operator
was given by Hilbert & Bernays in their classical Grundlagen der
Mathematik (Hilbert & Bernays [1939]), to which Church acknowledges
a debt. It often happens in mathematical texts that when a statement of the
form

(10) There are x such that ¢

is derived, the author continues with a statement like
(11) Now let a be an arbitrary x such that ...

It is easy to reason away such talk about arbitrary objects by translating
the whole mathematical argument in question into standard predicate
logic. But Hilbert & Bernays do not take such a course. Instead, they take

the arbitrary ¢ seriously, give it a name, €x(¢), treat this as a term, and
give axioms ruling its proof theory (first-order equivalent to Church's
axiom of choice for a=e). The ordinary quantifiers can then be defined
using e-terms and ordinary quantification theory can be derived from
their e-calculus.

What is the appropiate semantics for Hilbert's e-symbol? Hilbert &
Bernays themselves give none, since they are only interested in proof-
theoretical investigations, but a semantics is given in Asser [1957] (see
also Leisenring [1969]). Asser uses choice functions , choosing an element
from every non-empty subset of the domain. The value of the term ex(¢)
in some model M is then a choice from the set of objects that satisfy ¢ in
M. This seems a good way to interpret the indefinite description operator.

Again the classical problem arises: what if the set of ¢'s is empty? Asser
considers two possibilities to solve this problem. Either one can let choice

11

functions assign some arbitrary element of the domain to the empty set or
one can leave them undefined for that set. As Leisenring correctly

remarks, the first option gives a nice semantics for Hilbert's e-symbol, but

the second one is better suited to the interpretation of the n-symbol,

another indefinite description operator that Hilbert & Bernays consider
shortly.6

It is this n-symbol that we shall take as a logical primitive in this paper,
and we shall let it be interpreted in a manner that resembles Asser's
second way. Thus, the value of a term nx(¢) in a model M will be an

arbitrary x such that ¢ (given by the choice function on M) if there are ¢'s
in M and it will be @ if there are none. The usual variable-binding
operators (to wit the lambda-operator, the iota-operator and the
quantifiers, both the 'inner' and the 'outer' versions) as well as the
epsilon-operator can then be defined using n and the propositional
connectives.

The next section of this paper will be devoted to a presentation of the
technical details of all this. In the third section, for its own interest and for
the benefit of those readers that may have some misgivings about basing
the logic on an indefinite description operator, it will be shown that our
system is conservative over the higher order predicate calculus.

6Hilbert's m-symbol has entered the linguistic literature on a modest scale via
Reichenbach [1947].

12

2 The system TT»

In this section I shall present a formal development of the logical system
TT,, a two-sorted relational type theory with an indefinite description

operator.

2.1 Syntax and semantics
Symbols come in four kinds. First, for each type a, we shall assume the
existence of a set of constants of type a. There are two special constants,

denoted by L and —, of types <> and <<><>> respectively, called logical
constants. They will get a fixed interpretation. All other constants are
called non-logical. The set of non-logical constants forms the language L.

Second, for each type «, there are a denumerably infinite set of free
variables of type o and, third, there are a countable infinity of bound
variables of type o.7 I shall sometimes, but not always, indicate the type
of a constant or a free or bound variable by a subscript. Fourth, there are
four improper symbols, denoted by (,), n and =. It is clear that the four
sets of symbols should be disjunct. If ¢ and ¢' are strings of symbols and s
is a symbol, then [c"/s]c denotes the string of symbols obtained from o by
replacing every occurrence of s in ¢ by ¢'.8

DEFINITION 7. We define, for each o, the set of terms of that type by the
following inductive definition:

1. Every constant or free variable of some type a is a term of that
type.

ii. If A is a term of type <Baj...an> and B is a term of type B, then
(AB) is a term of type <a1...0n>.

iii. If A and B are terms of equal type, then A=B is a term of type <> (a
formula).

iv. If ¢ is a formula, ug a free variable of type o and xy a free variable
of that type and u does not occur in any substring of ¢ of the form
nx(o), where an equal number of left and right brackets occur in o,
then nx([x/u]e) is a term of type .

A term A of type o may be denoted by Ag. I shall suppress round brackets

wherever this does not lead to confusion (under the understanding that
association is to the left). Terms of the form nx([x/u]e) will be called n-

"This distinction between free and bound variables makes it easy to avoid variable
clashes in cases of substitution, but it is not an essential feature of the theory.

8To avoid any confusion: the [6'/s]G notation is a way to refer to strings. The square
brackets are not part of any string.

13

terms. We shall often write nx(¢(x)), or even nxo(x), for nx([x/ule). A

term is closed if it contains no free variables. A closed formula is called a
sentence ; a set of sentences is a theory.

Now, let us turn to the semantics of the logic. We shall give a standard
interpretation as well as a generalized one (see Henkin [1950]).

DEFINITION 8. A frame is a family of sets {Dy| o is a type} such that
P(Dg, %+ x Dg,) 2 Dg for each type o = <aj...0n> and Pe Dy for

each a. A frame is standard if Do, = P (Dg, % =+ x Dg,) for each a =
<0U]...0p>.

DEFINITION 9. Let F = {Dg} be a frame. An interpretation for Fis a
function I having the set of constants as its domain, such that I(c)e D, for

each constant ¢ of type o, and such that I(L) = 0 and I(—) =
{<0,0>,<1,1>,<0,1>}. An assignment to F is a function a, taking free
variables as its arguments, such that a(u)e D, if u is a free variable of type

o. If a is an assignment, then a[d/u] is to be the assignment a' such that
a'(v)=a(v) if v#u and a'(u)=d.

In order to be able to interpret n-terms we need choice functions:

DEFINITION 10. A choice function for a set D is a function G: P(D) - D
such that:

i. G(X)eX,if Do Xand X # 9,

ii. G(©@)=09.

Let F={Dg}q be a frame. A set of choice functions for F is a set {Hy }q
such that each Hy is a choice function for Dy,.

DEFINITION 11. A weak general model is a triple <F,],H> such that F is a
frame, I is an interpretation for F, and H is a set of choice functions for F.
A weak general model is a (standard) model if its frame is standard.

A note on notation: I shall follow the convention that a weak general
model M, its frame F, its interpretation I, its set of choice functions H, and
all the elements of both F and H will be denoted by metalinguistic
variables that carry the same superscripts.

We are now able to give a Tarski truth definition (or, more adequately
expressed: a Tarski value definition) for the logic:

DEFINITION 12. The value ||A||M:2 of a term A on a weak general model
M under an assignment a is defined by induction on the complexity of
terms in the following way:
i llc|Msa = I(c) if ¢ is a constant
Ilu|M>2 = a(u) if u is a free variable
ii. [JAB|M2 = {<dy, ... ,dp> | <[BIMA,dy, ... ,dy> € [|A[M-2}
iii. ||JA=B|M.2 =1 iff ||A|M:2 = ||B|M.2
iv. [nxq([x/ule)|Ma = Hy({deDg] [lo|M-ald] = 1})

It would have been misleading to speak of 'the value of a term in a weak
general model' since, in general, there is no guarantee that the value of a
term Ay on M will be an element of Dy. This does not effect the

correctness of the definition, however. In standard models as well as in
general models (to be defined below) each term Ay will find its
interpretation in Dy (and we may speak of the value of a term in a
(general) model).

We say that a formula ¢ is true in a weak general model M under an
assignment a, or, alternatively, that M satisfies ¢ under a, or, to use still
another phrase, that M is a weak general model of ¢ under a, if ||p||M-2 = 1.

As is usual, ||A|[M>2 depends only on the values that a assigns to the free
variables actually occurring in A. So if A is a closed term, we may write
IIA|[M instead of ||A|M>a,

The usual logical operators may be obtained by means of definition now.
The following definition needs no comment:

DEFINITION 13. Let ¢ and y be formulae.

—0 abbreviates o—L

oV abbreviates —p—Y

OAY abbreviates —(p—>—y)
QY abbreviates (9—=>Y)A(y—0)

We can define the (outer) quantifiers with the help of the n-operator in
essentially the same way as Hilbert & Bernays defined quantification in
their e-calculus with the help of the e-symbol:

DEFINITION 14. Let ¢ be a formula
Ixg([x/u]e) abbreviates [nxg([x/u]p)/ule

Vxo([x/u]e) abbreviates Mxg(—[x/u]e)/ule

15

We shall often write 3x(¢(x)) or Ix¢(x) instead of IAx([x/u]e) and

Vx(o(x)) or Vxe(x) instead of Vx([x/u]e¢) and follow analogous

conventions with respect to other variable-binding operators to be defined
below.

The outer quantifiers get the interpretations we want them to have:

LEMMA 1. For any weak general model M:
|Exq([x/u]e)|M>a = 1 iff there is a de D, such that ||¢||M-ald/u] = 1

IVxg([x/u]p)||Ms2 = 1 iff for all de Dy ||o||Ms-ald/u] = 1
PROOF. This follows easily from definition 14 and the following theorem.

THEOREM 1. (Substitution Theorem). Let M be a weak general model, a
an assignment for M, A a term and B a term of the same type as the free
variable u, then: ||[B/u]A|M-a = ||A||M;ald/u], where d=||B|M-a.

PROOF. This is proved by an induction on the complexity of the term A.

Turning to the definite description operator now, we define:

DEFINITION 15. 1xq([x/u]ep) abbreviates nxyVyq,(x=y < [y/u]e), where y

is the first bound variable of type a in some fixed ordering that is not
equal to x.

Again, it is easy to see that the abbreviation thus defined has its intended
interpretation:

LEMMA 2. For any weak general model M:
Ihxo([x/u]l@)|M:a =d, if d is the unique element of D¢, such that
[lplM-ald/u] = 1,
= (), if there is no such unique object.

Abstraction is defined in the following manner:

DEFINITION 16. Let A be a term of type <ay...0.,>, X @ bound variable of

type B and u a free variable of that type, then Ax([x/u]A) abbreviates
nRVx(Rx=[x/u]A), where R is the first variable of type <Baj...0,> that
does not occur in A.

This time there is no guarantee that an expression AxA(x) will get its
intended interpretation on a weak general model. The reason for this is
that the required relation may simply not be present in the relevant
domain (in that case AxA(x) will get the value). We may want to restrict

16

our attention to those weak general models wherein all lambda-terms do
get their intended interpretations:

DEFINITION 17. Any sentence of the form Vyj...y,3RVx(Rx=[x/u]A),

where A, x, u and R are as in definition 16, is called a comprehension
axiom. A general model is a weak general model that satisfies all
comprehension axioms.

All standard models are of course general models. Note that lambda-
conversion is just another form of the comprehension axioms under our
abbreviatory definitions: by definition any general model satisfies all

sentences of the form Vy1...y,Vz(Ax([x/u]A)z=[z/u] A).

It is not difficult to see that the following lemma holds:

LEMMA 3. Let M be a general model, a an assignment to M, A a term of
type <o...0> and x a variable of type B, then:

Ix([x/u]A)|M:a = {<d,dy, ... ,dp> | de Dg and <dy, ... ,dp>€ ||A|[Mald/u]},
So general models conform to requirement (2) of the introduction.

The last outer operator that we consider is Hilbert's e-symbol. The
following definition is given in Hilbert & Bernays [1939]:

DEFINITION 18. The string exy([x/u]¢) abbreviates

NXo(Ayoly/ulo—[x/u]e), where y is the first bound variable of type o in
some fixed ordering that is not equal to x.

This gives a semantics for the e-symbol that is closely analogous to that in
Hermes [1965]:

LEMMA 4. For any weak general model M:
lexg([x/u]e)Ma = Hy({deDgy| lloM-ald/u] = 1}), if there is some de Dy,
such that ||p||M-ald/u] = 1,
= Hy(Dy), else.

As I have written in the introduction, the outer operators are fundamental
in setting up the logical system, but we need inner operators too. We have
introduced an object into our models that we do not wish to consider as a
'real' object, rather we use it as a formal device to be able to treat non-
referring descriptions. And since in applications we wish to quantify,
abstract, etcetera only over objects that we consider to be proper, we need

17

to relativize the outer operators to the domains Ey, defined in the
introduction. To this end we define:

DEFINITION 19. For each o the term E® of type <a> is defined by the
following induction on a:
i. Ee abbreviates Axe(—x=nyeLl)
Es abbreviates Axg(—x=nyl)
ii. E® abbreviates
AR VX - Xon(RXqpo- - Xom= (E¥ Xy A ... A EOQnxy) if
A=<O0l]...00>.

It is clear that in general models M: |[EXM = E,,.

DEFINITION 20.
NExg([x/u]o) abbreviates NXo(E%X A [x/u]p)
Ag =By abbreviates A =B AECA

LEMMA 5. Let M be a general model, a an assignment to M.
InEx o([x/u])[M:2 = He({de Eqf llolM-ald/ul = 1})
|Ag=BolM-a iff [|A|M:a = ||B||M:2 and ||A|[M-2 e Eg.

The other inner operators are now defined with the help of these and the
predicates EO:

DEFINITION 21.

FEx([x/u]o) abbreviates EoMmEx([x/u]e)
VEX([x/u]e) abbreviates —FEx—([x/u]o)
Ex([x/u]e) abbreviates NExVEy(x=y-[x/u]¢)
AEX([x/u]A) abbreviates NERVEXx(Rx=[x/u]A)

It is easy to check that these operators have the semantics we want them to
have:

LEMMA 6. For any general model M:
|I3Ex o ([x/u])||M>2 = 1 iff there is a de E such that ||o|[Msald/u] = 1;

IVExg([x/u]e)|M:2 = 1 iff for all de Ey ||o|M-ald/u] = 1;

IBxo([x/u]e)|Ma = d, if d is the unique element of E, such that
[lolMsald/u] = 1,
= @, if there is no such unique object;
INEx o ([X/u]A)M2 = {<d,dy,....dp> | de Eg and <dy,....dp>e ||A[Mald/ul},

Relational type theory enables us to generalize the notion of entailment
somewhat. Not only formulae can entail another formula, but any set of
terms of a relational type can entail some term of that type:

DEFINITION 22. Let T'u {A} be a set of terms of some type a=<a;...0,>.
I entails A (T g-entails A, T wg-entails A), TA (T =g A, T eyg A), if
IIAIM:2 5 Mg 1 ||B]Ms2 for all models (general models, weak general
models) M and assignments a to M.

In natural language too, expressions of many categories may entail one
another (see Groenendijk & Stokhof [1984]). It is obvious that definition
20 is indeed a generalization of the usual notion of entailment:

LEMMA 7. LetT' L {¢} be a set of formulae. T'= ¢ (T1= 5 ¢, T =, 9) iff for
each model (general model, weak general model) M and assignment a to
M holds that if M satisfies all y € I" under a, then M satisfies ¢ under a.

DEFINITION 23. We say that two terms A and B are (g- ,wg-)equivalent
if both A (g-,wg-) entails B and B (g-,wg-) entails A.

2.2 Proof theory and completeness

I shall now give a standard Henkin proof to the effect that the notions i,
and =y, defined in the preceding section, are recursively axiomatizable.

Of course, | is not axiomatizable by Godels Theorem and the fact that the
natural number system is categorically definable in TT, with the standard

semantics.

DEFINITION 24. All formulae of one of the following forms are axioms :
Propositional axioms:

AS1 o> (y—09)

AS2 (9= (y—x))—((9—=y)—(9—-%)

AS3 ((p»L)—-L)—>e

Eta axioms:

AS4 —nxq(L)B1...B, ,where o = <a;...0,> and each B; is of type o;.

ASS5 ¢(Ag)—=o(NXg (X))
AS6 VX (9(X)y (X)) oMY o@(y)=NZqy(z)

14

Extensionality:
AS7 VRgVR'g(VXg1. - Xan(RXq1---Xgn ©R'Xg1.--Xgn)>R=R"), where
A=<0lq...0;>

Identity axioms:
AS8 A=A

AS9 A=B—(p(A)—¢(B)) (Leibniz' Law).

DEFINITION 25. A proof for a formula ¢=¢, is a sequence ¢,...,¢, of
formulae such that each ¢, (k<n) is either an axiom or follows from two
formulae earlier in the sequence by the rule of modus ponens
(9, 9>y / y). A formula ¢ is provable, |-o, if there is a proof for it. The
formula ¢ is said to be derivable from a set of formulae T, I |-¢, if there

are ¢g,...,¢, € I' such that [-(¢gA...A@,)— ¢. A set of formulae is consistent
if 1 is not derivable from it.

LEMMA 8.

i [-Vxe(x)—9(B)

ii. If |-p—wy(u) and the free variable u does not occur in ¢, then
[-o—VXy(X).

PROOF. Part i. of the lemma follows easily from AS6 and the
propositional axioms AS1-AS3. To prove part ii., suppose that x,...,x, s
a proof for ¢ — wy(u); it is not difficult to verify that
[nx—e(x)/ulxy,....[NnX—@(x)/u]y, is then a proof for ¢—>Vxy(x).

From lemma 8 it follows that the usual quantification theorems are
provable for 3 and V.

THEOREM 2. Let T be a theory and ¢ a formula, then T |-¢ = T |=,, ¢
PROOF. By a straightforward induction on the length of proofs.

THEOREM 3. Let T be a theory and ¢ a formula, then T |=y,¢ = T|-¢

PROOF. This is proved in the usual way, with the help of the Consistency
Theorem below.

COROLLARY (Generalized Completeness Theorem). Let T be a theory
and ¢ a formula, then T |=,¢ < T U COMP|- ¢, where COMP is the set of
all comprehension axioms.

THEOREM 4 (Consistency Theorem). If a theory is consistent, then it has a
weak general model.

PROOF. Let T be a consistent theory. We construct a maximal consistent
set of sentences I' o T having the so-called Henkin property. To this end

20

let Ag,...,Ap,... be some enumeration of all terms (of all types). For each
ne o define a set of formulae I'y, by: T'g=T and I'y,, 1 =T v {Ay=u},

where u is the first free variable in our enumeration which has the same
type as A, has and which does neither occur in A, nor in any of the

formulae in I'y. Clearly, all T';, are consistent and hence U I’y is

consistent.
Next, we expand U, I, to a maximal consistent set by the Lindenbaum

construction. Let ¢,...,0,,... be an enumeration of all formulae. Let
Ig'=\Ulp and let Ty 1'=Tq'v {9} if Tp'u{e,} is consistent, else
Ine1'=Iy'. The union T of all I} is consistent; moreover, it is maximal
(for each ¢ either p e TorT U {9} |- 1) and - by the construction in the

previous paragraph, the properties of maximal consistent sets of formulae
and Leibniz' Law - it has the Henkin property : if ¢(u) e T for all free
variables u of some type a, then (since nx—([x/u]p)=u' € T for some u')
Vxo(x) e T.

Now define an equivalence relation ~ between terms: A~B iff A=B e T".

For each term A, let [A] be the equivalence class {B| A~B}. For each type
a we define a function @ having the set {[A]| A is a term of type o} as its

domain. If a=e or a=s, then let ®y([nxyLl]=0@ and let @y ([Agl)=[A] if
[A]#[nxgl]. If a=<a...0> let
O ([Ag)={<@e ([Ba])s--»@pn([Bon)>| ABg;---BaneT}. This is well-
defined by Leibniz' Law and the maximal consistency of T.
The functions @ are injections. This is obvious in case a=e or a=s, so let
a=<0q...0.;>. Suppose that ©y([A])=Dy([A']). Let uy,...,u, be free
variables of types o,,...,a, respectively, then Auj...u, e T iff
A'ui...uy e T. From this it follows that Auj...upe>A'uy...upel’. By the
Henkin property: Vxi...Xp(AX1...Xpe>A'X1...Xz)e T, so, using
Extensionality and the maximal consistency of I, we see that A=A'e T
and [A]=[A"].
For each type a define: Dy = {®y([A]) | A is a term of type a}. From the
definition of the functions @ and the fact that AS4 is an axiom scheme it
follows that F={Dg} is a frame. Define I(cy) = ®y([cy]) and define for
each a and each D such that Dy o D:
Hy (D) = O([NXa(x)]) , if D = {@q([u]) | ¢(u) € T'};

= ®y([u]) , where u is the first free variable such that

®y([u]) € D, else.

21

The functions H, are well-defined. First, note that @={®y([u]) | L e T},

so the second clause is all right. Next, suppose that for all free variables
Ug: ¢o(u)eT iff y(u)eT. Then Vx(o(x)ey(x))eT and by ASG6:

nxe(xX)=nywy(y)eT, from which it follows that [nxe(x)]=[nyw(y)].
The functions Hg are choice functions for the sets Dy. Clearly

Hy(D)=®([nxgL]). Suppose that D=@. If the second clause of Hy's
definition obtains, then obviously Hy(D)e D; if, on the other hand,
D={®y([u]) | ¢(u) e T} for some ¢, then ¢(u)eI for some u and, by ASS
and the properties of T, o(mx¢(x))eT. Since u'=nxe(x)eT for some u’,
both ¢(u') € T and [u']=[nxe(x)]. Hence @y ([nxe(x)])eD.

Now, let M be the model <F,I,LH> and let the assignment a be defined by
a(ugy)=0y([u]). We prove by induction on term complexity that
|A|M;a=d,([A]) for all terms A of type «, hence that ||¢ |[M-2=1 iff p € T,

for all formulae ¢ and hence that M is a weak general model of T:

1. llciMsa = I(c) = @([c]) if ¢ is a constant;
|lulM:a = a(u) = ®([u]) if u is a free variable;

ii. ||JAB|M:a = {<dy, ... dp> | <|[B|M:2,dy, ... ,dp> € [JA|M:2} =
{<dy, ... ,dp> | <®([B]),dy, ... ,dp> € ®([A])} = ©([AB]);

iii. ||A=B|M2=1¢ ||A|Ma=|B|M2 < ®([A]) =®([B]) « [A]=[B]
< A=B e T'e o([A=B))=1;

iv. |nxg([x/ulg)M:a = Hy({de Dy [lo|M-ald/ul = 1}) =

Ho{@o([ul) lplM:2 = 1}) = Ho{ @a([uD)] 9eT}) =@g([nx([x/u]p)]).

22

3 Conservativity over the higher order predicate calculus

In this section I shall compare TT9 with the higher-order predicate

calculus as it was defined in Orey [1959] (see also Gallin [1975]). It will be
proved that TT, is a conservative extension of this logic.

In TTj terms are evaluated with the help of choice functions. There is a

wide class of terms, however, whose evaluations do not depend on choice
functions:

DEFINITION 26. A term A of any type is called choice independent if for
any two general models M and M' such that F=F' and I=I' and any
assignment a for M: ||A||M:a=||A|[M'a,

This semantical notion can be characterized syntactically:

DEFINITION 27. A term A is called an {application, A, 1, =}-term if it is
built up in the usual way with the help of non-logical constants, free
variables, application, abstraction, definite description and identity. A
formula that is an {application, A, 1, =}-term is called an {application, A, 1,
=}-formula.

So, in {application, A, 1, =}-terms, etas may occur, but only in certain
contexts.

THEOREM 5. A formula is choice independent iff it is g-equivalent to a
{application, A, 1, =}-formula.

PROOF. That any formula that is equivalent to an {application, A, 1, =}-
formula is choice independent is trivial. Let ¢ be a choice independent
formula. For each type o and each term G of type <<a>a> let 'G is a

choice function' be an abbreviation of the conjunction of the following
three formulae:

1. VY co>IxoVZo((GY)ze>x=2)

2. VY ox(3xqYx = YX((GY)X))

3. VY ou(3xg YX = xX((GY)x)=1x(L1))

Clearly, if M and a satisfy 'G. .y is a choice function' then ||G||M2 is
indeed a choice function on Dy. Now, for each type a such that some n-
term MXqy(X) occurs in ¢, let Fo g~ > be a bound variable of type
<<a>o> and let Fy,...,F, be the bound variables that can be obtained in
this way. Define ¢' to be the formula

()

3F;..3F,(F; is a choice function A ... A F,, is a choice function A ¢"),
where ¢" is obtained from ¢ by replacing each n-term nxgwy(x) by
1z (FAx(y(x))z), where F=F._.g>q>. The formula ¢' is not an

{application, A, 1, =}-formula itself, but it is g-equivalent to one, since the
propositional connectives and the quantifiers can be defined with the help
of abstraction, application and identity alone (see Henkin [1963]). On the
other hand, using the choice independency of ¢, it can easily be shown that
¢ and ¢' are g-equivalent. So ¢ is g-equivalent to an {application, A, 1, =}-
formula.

COROLLARY. A term is choice independent iff it is g-equivalent to a
{application, A, 1, =}-term.

To facilitate comparison with the higher order predicate calculus, we may
describe the latter as a subsystem of our logic:

DEFINITION 28. An O-term (Orey-term) is either a non-logical constant
or a free variable. An atomic formula is either a formula of the form
AB1...By, where A is an O-term of type <a;...a,> and each Bj is an O-
term of type o, or it is a formula of the form A=B, where both A and B
are O-terms, or it is L. The set of O-formulae is the smallest set such that
any atomic formula is an O-formula and if ¢ and y are O-formulae, then
both ¢—y and Vxqy([x/u]e) are O-formulae.

{application, A, 1, =}-formulae can almost be reduced to O-formulae. The
reason that the reduction cannot be complete is that in all weak general
models the terms 1x¢(L) and 1x¢(L) denote the improper object @, while in

some weak general models there may be no constants that name this
object:

THEOREM 6. Let ¢ be a {application, A, 1, =}-formula in a language L; let
*e and *¢ be two non-logical constants, of types e and s respectively, that
are not elements of L. There is an O-formula ¢' in the language
L U {*¢,*s} such that for each weak general model M such that
I(*o)=I(*¢)=0 and each assignment a for M: ||¢||M-a=||¢'||M-2,

PROOF. The proof combines proofs in Gallin [1975] and Scott [1968]. For
each {application, A, 1, =}-term A, in the language L and each free
variable ug not occurring in A, define the O-formula Eq(A,u) (A equals

u) in the language L U {*¢,*¢} by induction on the term A:

24

1. Eq(u',u) := u'=y, if u' is a free variable;
Eq(c,u) := c=u, if c is a non-logical constant;
ii. Eq(BCu):=

3R3y(Eq(B,R)AEq(C,y)AVXq1..- Xon(UX g1+ X o RY X 1 -+ X))
if B is a term of type <Bo;...a,;> and C a term of type B;

iii. Eq@Axp([x/u]B)u) :=
VxgIR(Eq([x/u']B,R) A Vyqy...Yon(UXY qi1---YonORY a1+ YX)5 if
B is a term of type <a;...0,>;

iv. Eq(xg([x/u'le),uy) =
Vx(Eq([x/u']e,L— L)ex=u)v(—3yVx(Eq([x/u']¢,L—L)c>Xx=0)AE),
where & ;= —3xXq;... Xgn(UX e+ Xgn) 1f O = <0y...0> and & := u=x, if
o=€ Or o=S;

V. Eq(A=B,u_.) := 3xy(Eq(A,x) A Eq(B,y) A u & (x=Y)).

Define ¢' to be Eq(p,L—1) and the theorem is proved.

We now give a quick sketch of Orey's logic, so that we can compare it to
ours.

DEFINITION 29. An Orey frame is a family of sets {D, | a is a type} such
that D@, Dg#@ and P(Dg; X ... X Dgp) 2 Deqi...an>- A general

model in Orey’s sense is a tuple <F,I> such that F is an Orey frame and I
is an interpretation function for F. A (standard) model in Orey’s sense is a

general model in Orey's sense such that its Orey frame is standard (see
definition 2).

DEFINITION 30. Let M and M' be general models in Orey's sense An
isomorphism from M onto M' is a set of functions {h}q such that:

i. Each h is a bijection from D onto Dy,

ii. If a=<o,...0,>, ReDy and dieDgyy,...,dpe Dy, then <dy,...,dy>e R
L — <ha1(d1),...,han(dn)>e ha(R)

iii. I'(ce)=hy(I(cy)) for each constant c,.

M and M' are said to be isomorphic if there exists an isomorphism from
M onto M'.

DEFINITION 31. Define the value of an O-term t in a (general) model in
Orey's sense M under an assignment a, ||t|M-2, to be equal to I(c) if t=c for
some constant ¢, and to a(u) if t=u for some free variable u. Define the
satisfaction relation M |= ¢[a] (the (general) model in Orey's sense M
satisfies the O-formula ¢ under the assignment a) by the following
inductive clauses:

(]
wn

i M |= 1[a] & 0=1;

ii. M]|=Roytoy--tolal & <lltqlMA,...,[ltea|M3> e [[Rq|M-3, if
o = <0y...0,,>;

iii. M|=t=t[a] & [lto]M-2=|t'y|M:2;

iv. M|=9-vy[a] &if M |= ¢[a] then M |= y[a];

V. M |= Vxgola] < for each de Dy: M |= ¢[a[d/u]].

DEFINITION 32. A set of O-formulae I O-entails (O,g-entails) an O-
formulag, T'|=0 ¢ (T |=0,g ¢), if for each (general) model in Orey's sense
M and assignment a for M such that M |= y[a] for all yeT it also holds that
M= gfa].

It is clear that if <F,LH> is a (weak general) model then <F,I> is a
(general) model in Orey's sense. On the other hand, if the general model
in Orey's sense M' satisfies NULL, the set of all sentences of the form
IR IXgyg -+ X RX -+ Xrn), Where a=<a;...0,>, then M' is isomorphic
to a general model in Orey's sense <F,I> that can be extended, using the
axiom of choice, to a weak general model <F,I,H>. Standard models in
Orey's sense always satisfy NULL and can always be extended to our
standard models. From this and the previous theorem it follows that we
can embed the {application, A, 1, =}-part of the logic into the higher order
predicate calculus (with extra constants *, and *g):

THEOREM 7 (AC). LetT U {¢} be a set of {application, A, 1, =}-formulae.
For each {application, A, 1, =}-formula v, let ' be as in theorem 6 and let
I'={y'| yeT}; then:

1. I' UNULL |=0,g ¢ Iff T l=wg ¢;

ii. =0 ¢'iff T |= .

The conservativity of TTy over the higher order predicate logic now
follows as a corollary:

COROLLARY. Let " U {¢} be a set of O-formulae, then:
1. I' UNULL |=0,g ¢ iff T |=g ¢;
ii. Tl|=0oiff|=0¢.

Acknowledgements
I would like to thank Johan van Benthem and Dick de Jongh for their

moral support and their critical comments on earlier versions of this
paper. Martin Stokhof and Elias Thijsse also made very valuable remarks.

26

The research for this paper was supported by the Netherlands
Organization for the Advancement of Pure Research (Z.W.0.).

References

Asser, G.: 1957, Theorie der logischen Auswahlfunktionen, Zeitschrift fiir
mathematische Logik und Grundlagen der Mathematik 3, 30-68.

Barwise, J. and Cooper R.: 1981, Generalized Quantifiers and Natural Language,
Linguistics and Philosophy 4, 159-219.

Bennett, M.: 1974, Some Extensions of a Montague Fragment of English, UCLA,
Dissertation.

Van Benthem, J.F.A.K. and Doets, K.: 1983, Higher-Order Logic, in Gabbay &
Guenthner [1983], pp. 275-329.

Camnap, R.: 1929, Abriss der Logistik, Vienna.

Church, A.: 1940, A Formulation of the Simple Theory of Types, The Journal of
Symbolic Logic §, 56-68.

Gabbay, D. and Guenthner, F. (eds.): 1983, Handbook of Philosophical Logic,Vol.
1, Dordrecht.

Gallin, D.: 1975, Intensional and Higher-Order Modal Logic, Amsterdam-Oxford.

Gazdar, G.: 1980, A Cross-Categorial Semantics for Coordination, Linguistics and
Philosophy 3, 407-409.

Groenendijk, J. and Stokhof, M.: Studies on the Semantics of Questions and the
Pragmatics of Answers, Dissertation, University of Amsterdam.

Heim, 1.: 1982, The Semantics of Definite and Indefinite Noun Phrases, Dissertation,
University of Massachusetts.

Henkin, L.: 1950, Completeness in the Theory of Types, The Journal of Symbolic
Logic 15, 81-91.

Henkin, L.: 1963, A Theory of Propositional Types, Fundamenta Mathematicae 52,
323-344.

Hermes, H.: 1965, Eine Termlogik mit Auswahloperator, Berlin-Heidelberg-New
York.

Hilbert, D. and Bernays, P.: 1939, Grundlagen der Mathematik, Vol. 2, Berlin.

Hodges, W.: 1983, Elementary Predicate Logic, in Gabbay & Guenthner [1983], pp.1-
131.

Janssen, T.: 1984, Individual Concepts are Useful, in F. Landman and F. Veltman
(eds.), Varieties of Formal Semantics, Dordrecht, 171-192.

Kamp, H.: 1981, A Theory of Truth and Semantic Representation, reprinted in
J. Groenendijk, T. Janssen and M. Stokhof (eds.), Truth, Interpretation and
Information, Amsterdam, 1984, 277-322.

Keenan, E. and Faltz, L.:1978, Logical Types for Natural Language, UCLA
Occasional Papers in Linguistics, 3.

Leisenring, A.C.: 1969, Mathematical Logic and Hilbert's e-Symbol, London.

Montague, R.: 1973, The Proper Treatment of Quantification in Ordinary English,
reprinted in Montague [1974], pp. 247-270.

Montague, R.: 1974, Formal Philosophy, New Haven.

Muskens, R.A.: 1983, Over de semantiek van adjectieven, unpublished manuscript,
University of Amsterdam.

Muskens, R.A.: in preparation, Submodels and the Semantics of Degree Adjectives
(working title).

Orey, S.: 1959, Model Theory for the Higher Order Predicate Calculus, Transactions
of the American Mathematical Society 92, 72-84.

Partee, B.:1986, Noun Phrase Interpretation and Type-Shifting Principles,

Partee, B. and Rooth, M.:1983, Generalized Conjunction and Type Ambiguity, in
R. Bauerle, C. Schwarze and A. von Stechow (eds.), Meaning, Use and
Interpretation of Language, Berlin,361-383.

Reichenbach, H.: 1947, Elements of Symbolic Logic, New York.

27

Renardel de Lavalette, G.: 1984, Descriptions in Mathematical Logic, Studia Logica
43, 281-294.

Russell, B.: 1908, Mathematical Logic as Based on the Theory of Types, American
Journal of Mathematics 30, 222-262.

Schonfinkel, M.: 1924, Uber die Bausteine der mathematischen Logik, Mathematische
Annalen €2 335-316.

Scott, D.: 1967, E:xistence and Description in Formal Logic, in R. Schoenman (ed.),
Ber:rand Russell, Philosopher of the Century, London, 660-696.

Von Stechow, A.:1974, e-A kontextfreie Sprachen: Ein Beitrag zu einer natiirlichen

foriralen Semantik, Linguistische Berichie 34, 1-33.

25

