Institute for Language, Logic and Information

SOME COMPLETE LOGICS FOR BRANCHED TIME

PARTI
WELL-FOUNDED TIME, FORWARD LOOKING OPERATORS

Kenneth A. Bowen
Dick H.J. de Jongh

ITLI Prepublication Series 86-05

5438

University of Amsterdam



Instituut voor Taal, Logica en Informatie

Faculteit der Wiskunde en Informatica, Roetersstraat 15, 1018 WB Amsterdam, or
Faculteit der Wijsbegeerte, Grimburgwal 10, 1012GA Amsterdam

SOME COMPLETE LOGICS FOR BRANCHED TIME

PART1I
WELL-FOUNDED TIME, FORWARD LOOCKING OPERATORS

Kenneth A. Bowen
School of Computer and Information Science
Syracuse University

Dick H.J. de Jongh
Department of Mathematics
University of Amsterdam

Received October 1986

Abstract. Completeness proofs are given for tense logics for branched time under the additional assumption of
well-foundedness, both with the sole operator F, and with the operators F and G combined. A relationship with
intuitionistic logic is established.

key words: tense logic, branched time, intuitionistic logic

| Institute for Language, Logic and Information

Faculty of Mathematics and Computer Science, Roetersstraat 15, 1018WB Amsterdam, or
Faculty of Philosophy, Grimburgwal 10, 1012GA Amsterdam



SO. Introduction

Completeness proofs for tense logics for branched time tend to be
difficult (cf. Burgess 1980). Adding well-foundedness (for future time)
turns out to make things much easier. Therefore, even though this
condition in itself does not seem particularly natural, it seems worthwile
to work things out. In this first part we will concentrate on the forward
looking operators F and G. Furthermore, we will look into the natural
connection which exists with intuitionistic logic via the concept of bar
(Beth-models). The latter connection is also one reason that we consider
reflexive as well as irreflexive time structures. In Part II we will
concentrate on branched time ordered as the integers. We thank Johan van
Benthem, Krister Segerberg and Frank Veltman for their encouragement
and their suggestions.

S1. The frames, the language

We consider frames T = ( T,< >, where < is a well-founded branched
partial order, either reflexive or irreflexive. We call a partial order
branched if it fulfills the following conditions:

(VLY 2t Attt At Lt = T A<t AL <EY))
(i) Viat<t)
) VI ITU<U At 2t) = I 1" < AL<E AL 2" At LAt L))

Condition (i) is the condition of agownward /inear orager (DLO). We have
decided to include condition (ii) which expresses socalled swccession:
each element has a successor. Inessential changes result if this condition
is left out. Of course, condition (ii) is only effective in the irrefiexive
case. Also, in the irreflexive case, the branching condition (iii) can be
stated in a simpler form:

Vit <t Attt At #t" At Lt At L),
which then also implies (ii).

The propositional language considered has, besides the propositional
variables p,q,r,... and the connectives A, V,—, e, 1,1 T, the temporal



modifier F, and the temporal modifier G may be added. (The other temporal
modifiers will be added in Part II.) The forcing conditions are defined in
the usual way for the connectives and for G, e.g.
tiFGe iff VE>t(t'IFg).
For F the definition is as follows:
tIFF e iff in each maximal chain CET containing t there is a t'>t such
that t'lIk¢.

§2. The systems WR-F, WI-F, WR-FG, WI-Fb6

The systems WR-F, WI-F, WR-FG, WI-FG are tense logics respecively
for formulae with F only on reflexive frames, with F only on irreflexive
frames, with both F and G on reflexive frames, and with both F and G on
irreflexive frames. We give, for each of the systems, the axioms and rules
added to classical tautologies.

Axiom system WR-F:

(a) @ —Fp

(b)F1—-1

(c)Fp AFy =F((ip AFY)V(Fp A y))
(C)FFp —=Fp

R)e—=¢/Fp—Fy

Axiom system WI-F:

(b),(R) +

(c*)Fp AFy =F((p Ap)V(p AFg)V(Fp A y))
(d*) F(Fp v)—=Fgp

(e)FT

Axiom system WR-FG:

(a), (b),(c),(d) +

() Glp = ¢)—>(Fp —Fy)

S4-axioms for G

rule of nessitation (N) ¢ /G

(f) G(ep 2 Gy)AG(Fp = ¢)—=(Fp —=Gy)



Axiom system WI-FG:
(b), (c*), (d),(e), (r),(f) +
Gy =66y

G(gp = ¢)—>(Gp = Gy)
rule of necessitation.

The validity of most of these schemata for their intended interpretation
needs little clarification. Axiom (a) expresses reflexivity, (d) transitivity,
(R) is a substitute for the rule of necessitation: it implies a version of the
latter: Fp = F7p—=21 = FFT@2Fl = FT FI=2"F g =
F 7F T p. The strengthening of (d) to (d*) in WI-F seems to be needed (see
lemma 4.1). The systems WR-F and WI-F are non-normal, since the
analogue of G(gp —¢)—(Gp —Gy) is not derivable. We will discuss the
schemata (c) and (c*) now and leave () for later. For each of the systems
the rule (R) or the rule of necessitation plus the axiom schema (r), plus in
the FG-cases G(ip — ¢)—(Gp —»Gy) imply that a replacement lemma
holds. It will be obvious that that in none of the systems the formula
F(p Vy)—Fp VFy is derivable. This formula is needed in most standard
completeness proofs for tense logics.

2.1 Lemma. Within the context of the reflexive frames, (c) is valid on the
well-founded frames (likewise for (c*), within the context of the irre-
flexive frames).
Proof. Let < T,< > be well-founded, t€T. To show is that:

tIFFpand tiFFg = tIFF((p AFQ)V(FpAQ)).
Take an arbitrary maximal chain C through t. There are t',t" on C with
t'>t, t">t, such that t'lkp and t"IFq. Let t be the #7/7/ma/ node on C past
t which forces p or q. If t. forces p, then on any maximal chain through t .
(and therefore through t by DLO) there will be a node beyond t; which
forces q, since Fq is forced at t; so t;lFFq. Similarly, if t.lFg, then
tcIHFp. So, t-IFH(p AFQ)V(Fp AQ), and as C was arbitrary,
tikF((pAFQ)V(FpAQ). B

2.2 Lemma. If {T,< > is areflexive branched partial order containing a
sequence t, <. < t,< t, < t,, then there is a forcing relation on T such
that t, IFFpAFaq, t, FF((pAFQ)V(FpAQ)). (Similarly for irreflexive
branched orders.)



Proof. Define IF as in the picture below:

e 3 & & e
. ) P & . r F & &~ g".;
p! p n Iq ..‘_,' ﬂ .-.‘; q , & p "._, .’J
a 7 a s s s
T t: :

™, "'«. ", ™, ",
- *, "-.._ - "~.__'. ., ., ~

ie,forteT, tikqg iff t=t, forsomenew,ort, < tandforalln, tns( t,

tikp iff t=t,.,,for somenew,ort, < tandforalln, t &€t
Clearly, the required conditions are fuilfilled, because by the branching
condition, neither Fp Aq, nor pAFqis forcedonanyt,. X

2.3 Corollary. Within the context of the reflexive branched frames
Fp AFg—=F((p AFQ)V(Fp AQ)) characterizes the locally well-founded fra-
mes (i.e. for each teT, (t'eT|t'>t] is well-founded). (Similarly for (c*),
with respect to the irreflexive branched frames.)

2.4 Remark. The branchedness condition is not superfiuous in lemma 2.2.
Axiom schema (c) is valid on every reflexive linear ordering. In fact, and
this is remarkable, under the standard semantical interpretation of F
axiom scheme (c) expresses linearity (or to be more precise: nonbranched-
ness towards the future), and on linear orderings, the standard semantical
interpretation and the one of this paper are, of course the same. On frames
which are only required to be reflexive or DLO validity of (c) determines a
more complex condition. As is semantically obvious, axiom schema (c)
naturally generalizes to more than two propositional variables. This is
spelled out in the next lemma.

2.5 Lemma. Forn>1, byp e Aj( Fip; & FV (A i nlFip A
Proof. Forn=2, = is axiom (c).

o= (for n=2): byn Fp, Ap,—2Fip, AFp,and

Fwr-r @ 1 AFp,—Fp, AF@ 5, by axiom (a). Therefore

Fwrr (Fo A V(g AFp ) —=>Fp, AFp,. Now apply (R) and (d) to both



conjuncts.
Next we prove in WR-F, by inductiononn: n = n+l.

NigiF i < A FoiAFR
o Fvis’.n(Aj,:i,jsnF‘PjA(P;)AF(an (ind. hyp.)
« F((FViSn(Aj#i,jSnF(PjA(Pi)A(Pnﬂ)V
(ViSn(Aj,si,j SnF(PjA(Pi)AF([)nH)) (h=2)
S FUAFoi ARV Vil anniF o Atpy)) (ind. hyp.)
S FVianlAjijaafejAg)). K

A similar lemma holds for WI-F. We will return to it 1ater.

§3. Completeness of WR-F

3.1 Definition. A set A of formulae is goeguate if
(i) A is closed under the formation of subformulae,
(i1) if p € A, @ is unnegated, then g € A,

(iii) FLeA.

In this section we work in a fixed A. We consider I, ", . . . € A such
that I, I, . .. are maximally consistent in A with respect to WR-F (we
write for short: maxcon in A).

3.2 Lemma. If " maxcon in A, then:

(i) If T eA then el iff @ ¢rl,
(iDIfeApeA,then @Ayel iff pelandyerl,
(iDIf pvyed,then @Vyel iff peloryerl,
(iv) If Fpen,then pel = Fperl.

3.3 Definition. (a) Fy is yet tobe barred in T iff Fp €T, @ ¢T.
(b) Fp:T =T iff (i)Fg isyet tobebarredinT,

(i) perl,

(iii) For each Fy yet tobe barred inT, Fy el
(c) Fr=rI" iff Fp:T =T forsomeFg.
(d) T needs 3 bar if some Fep is yet to be barred in T



3.4 Lemma. If I needs abar and *Fy €T, then there is some ' such that
F=r, 7Fyel, Tyel

Proof. Let Fg,,..,Fp, be all the formulae yet to be barred in " (n21).
Assume that, for each I" such that '=TI", Fy €l". Then, apparently, for
each i (1<i¢n), {Fg,,.., Fo,.1,@;, F@i,y,..,Fp,, Fyl is inconsistent,
i.e.foreach i, Fyps(FO A AFQ,_AQ,AFp,, A..AFp, )2Fy.So,

Fwrr Viet oF@ A AFp_ A, AFp A  AFp )Fy. Withrule (R):
F(Viey (Fo A AF@,_ ApAFp,, A . AFp ))—Fy.

Now, using lemma 25, kype(Fp,A .. AF@ )—Fy contradicting the
consistency of I, since each of Fip,,..,F@ , "Fy €l Finally g ¢T, since
¢ 2 Fy is an axiom of WR-F. [

3.5 Definition. (a)Fy is yet tobe barred in T 1, (), if for some p<A,
Fi is yet to be barred ineach I, for p< at<\.
(D) (T )4 <) 776605 3 bar; if some Fp is yet to be barred in {1 ¢,
(c) Fp:{l 1, = T is defined by induction on X (writing {';} ; (=T
for Fy:{F )y ¢y = I for some Fy) by:

(i) foreach p<x, M=Tg

(i) for each limit p<x, {Fglg =T,

(iii) Fep is yet to be barred in { ;}, (,

(ivigerl

(v) ForeachFy yet tobebarredin{l  } . FyeT.
(DT }q ¢ iscalleda = -sequence if (T}, , fulfills c(i) and c(ii).
(@) ([ g}, () iscalleda “Fy-sequence if (T 1 ¢, iS a = -sequence with
Fyelr, foreach a<\

3.6 Lemma. Let X be a limit, {F;}, ., @ T'Fy-sequence which needs a
bar, then, for some ' with 'Fye T, yel, ([}, =T
Proof. Like lemma 3.4 R

3.7 Definition (a) (T}, p 4= [, if [ = T.
(D) (T ;Y4 () uses Fp, if for some y<N, Fo: (M}, =Ty
(c) Fg is used cofinally in (T g}q ¢y, if, for each y<X, {Fly¢q ¢) USES

Fi.

3.8 Lemma. If {[ } ., uses Fp cofinally, then it is impossible that
Fop: (M l,an=T.
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Proof. Trivial. K

3.9 Lemma. If {F';}, ., 1S @ = -sequence using only Fy,,...,Fy,, then
pLwk !

Proof. By induction on k:

(@ k=1: IT{l} 5 usesonly Fy, then Fy: T => Ty Then ¢ €T, S0

Fg: Iy = I, is impossible: p<1=w?.

(b)k=2:Let {F },(, beasequence in whichonly Fy,,Fy,are used Say
Fg,: Ty =T, Then it is only possible that Fy, Iy =T, Fy; ;= Iy,
etc. Both Fy, and Fy, are used cofinally in {I' .}, ., and neither can, by
lemma 3.8, be used to extend the sequence. So, if {F} ., isa

=» -sequence wich uses only Fy, and Fy,, then p£ w.

(c) Finally , assume the lemma holds for k (where k22), and let {T' ;} ¢,k
use only Fy,...,Fy.,q. It is, by lemma 3.8, sufficient to show that
{F}qcuk uses each Fy; (1<i<k+1) cofinally. For this purpose we divide
wk up as follows: wk = X, A;, where A, = {at|wk1j ¢ a< k1 (j+1)} For
each j, the ordertype of A; is wk"! so, by induction hypothesis, each
member of a subset of cardinality k of {Fy,, ..., Fy,,,} is used cofinally
in A, (For, if not, there would be some ¥ € A; such that in {a]at €A, o 2 bl
only k-1 of Fy,,..,Fy,,, would be used, whereas {ollot eAj,otzz} has
ordertype wk!) Since there are only a finite number of such subsets at
least one of them has to occur an infinite number of times. Without loss of
generality we can assume this to be {Fy,,..,Fy,} This immediately
implies that each of Fy,,...,Fy, is used cofinally in {I'  }, & But the
same holds for Fy,,,, since, for each A; in which Fy,,..,Fy, are used
cofinally, Fy,,y{I,|a€A}= Iy, where 6=UA; So, all of
Fg,,...Fy, are used cofinally in {I" ;}, .,k which was to be proved. X

3.10 Lemma. Each = -sequence has length <w Y.
Proof. Immediate from lemma 3.9; in fact the length is <wld!l -1, X

It is not clear at present if the bound w® is the best possible one.In
the linear case it can be shown that w? will do (cf. van Benthem 1986).

3.11 Theorem. Axiom system WR-F is complete with respect to well-
founded branched reflexive frames.
Proof. Assume ¥yp 6. We construct a countermodel to 6. Let A be the



set of subformulae of 8 and F1 together with the negations of such
formulae. Then A is adequate. Since Kyp ¢ 8, there is a maxcon subset of
A containing '8 For the frame of the model we now take the set of all
=» -sequences with 'y = I'. By lemma 3.10, this is indeed a set. For the
nodes t,t' of this frame we define t<t' if t is a (not necessarily proper)
initial segment of t' Finally, {I'; };, IFp, for p a propositional letter, if
pe rp. We now show, by induction on the length of ¢ that, for each g € A,
{Fq)ep Fip iff e [p.The only interesting case is where @is Fy:

=>: Assume Fy ¢I"P ,ie. TFye I"P. It is clearly sufficient to show that
there is a A-maximal ~F y-sequence with FP as its first element. But the
existence of such a sequence follows from the lemmas 3.6 and 3.10.

e=: Assume Fyel,. Let {F )¢y be an arbitrary A-maximal =»-
sequence with I"P as its first element. It is sufficient to show that Fy is
used in this sequence. This is clear though from the way these sequences
are constructed. Since Fy is yet to be barred in I"e, Fy will remain a
member of each ', as long as F¢ is not used. This implies that, if F¢ is
not used at all, Fy is yet to be barred in {I'y };¢y - But then {['; ), ¢y needs
a bar which by lemma 3.6 contradicts the maximality of {F'; }, ¢y -

It may be that the resulting frame is not branched. That is, of course
easy to repair. If from some point on everything is linearly ordered, we
make it into an infinite binary branching order instead and copy all the
forcing relations on each "level”. [

S4 Completeness of WI-F

We will just give the changes in the definitions of §3, as well as some
hints for the simple changes in the proofs needed to give a complete-
nessproof for WI-F.

4.1 Lemma (analogue of lemma 2.5).

Forn >1, byt At oF @i F Ve (1l Nigx @i AN joxF 0 )

Proof. The induction is like in lemma 2.5. The em-step (for n=2) is
slightly different:

Fuir (Fe A VI  AFpIVIp,Ap)2(Fp Vi DA(Fp,Vip,)
Therefore, by (R),

Fui-e FAFp A VI(p  AFp V(g A ) =F(Fp Vi DAF(Fp Vi,



Now apply (d*) to both conjuncts. X

4.2 Definition. In the definition of A being adeguate (definition 3.1) A
is now required to also contain FT.

4.3 Definition (replacing definition 3.3).
(a)Fe is yet tobe barredin T, if Fpe T.
(b)F@y,...,Fo M= Iiff (i)Fg,,..,Fp areyet tobebarredinT,
(i) @y,..,0,€ T,
(1i1) For each Fy¢ yet to be barred inT, not
among Feg,,...,F@,  Fyel.
()r=rifFp,...,Fp . T=>T" forsomeFgp,,..,Fp,

4.4 Lemma. Like lemma 3.4.

45 Definition (yet fo be barred needs a bar, = -sequence, ~Fy-
sequence). Obtained by obvious changes from definition 3.5.

4.6 Lemma. Like lemma 3.6.

4.7 Definition. Obtained by the obvious changes from definition 3.7
({Fgdgcr uses Fiy, if for some ¥<N, Fp ., F e (Teloey = Ty

4.8 Lemma. Like lemmas 3.8.

4.9 Lemma. If (I, }“P is @ = -sequence which only uses Fipy,....Fip,,
then p £ w*

Proof. (a) k=1. Now Fy: 'y =T =T, is of course possible, but, if
{Fg Yoy usesonly Fy, then clearly Fy is used cofinally in {I'g Jo ¢, . SO
{Fg)e¢y =T is impossible. Steps (b) and (c) can be amaigamated in this
case and present no problem. [

4.10 Theorem ( Completeness of WI-F). Axiom system WI-F is complete
with respect to the well-founded branched irreflexive frames.

Proof. The proof is just slightly different from that of theorem 3.11. The
only noteworthy distinction is that we take FT to be in A. This entails
that each I needs a bar (though not each ([} ¢, . B
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§5 Completeness of WR-FG and WI-FG

In the proof of the completeness of WR-FG we just note the changes
and additions to be made to the treatment of WR-F in §3. The complete-
ness of the system WI-FG is then left to the reader. We remark that in
WR-FG, if T' is maxcon, then G €l" implies @ €I". We therefore add to the
definition of Fe: =" (Def 3.3.(b)) as a fourth clause that, if Gg €T,
then G €™ and @ €. A similar change is of course to be made in Def.
3.5(c).

We note that the rule (R) is now a derived rule. To be able to take care
of the case that G €I" we also define:

5.1 Definition.
(@) G: T =T iff
(i) 7Gp el, pell
(i) g ¢
(i) if Gy €T, then Gy el
(iv) if Fy yet to be barred in ", then Fy €.
(b) T =" iff for some @, F: T =T " orGy: T =T".

The basic lemma is in this case:

5.2 Lemma. If TGy, €T, then there is a I'" such that either (i) or (ii),
(i) Gg: T =T
(ii) for some Fy, Fy: T =T "and TGy el
Proof. Assume Fy,.. ... Fy, are all the formulae yet to be barred in I' and
GOy, ..., GO, all the G-formulae in I'". Just to make writing and reading
easier, assume k=m=2. Suppose G, @ €l and neither (i) nor (ii)
applies. Then

(1) Fyprc(GO, AGA)A(Fy, AFy,) >

(i1) Fyp+c(G8,; AGO)A(Fy, Ay,)—Gep and

Fwr-re (GO, AGO) Ay, AFy,)—Gip, so



Fwrr6 (GO AGO) A((Fy, Ay ) V(g AFy))—=Grp.
From (i) and lemma 2.5:

Fwr-s (GO AGB ) AF((Fy, Ay )V(y, AFy D)=,
and hence,

Fwrrg G(8; A0 ) =G F((Fy; Ay)V(p, AFyo))— ),
and from (ii),

Fwr-rg G(8, AB)A((Fy Ay ) V(p, AFy,)) =G,
and hence,

Fwr-rg G0, AB)2G(Fy  Ay,) V(g AFy)—2Gip).
Now apply Axiom (f) to obtain,

Fwrrs 0(0, A8,)2G({(Fy, Ay )V(p, AFy,)—Gp),
whence finally, by a second application of lemma 2.5,

Fwr-rs (GO, AGB)A(Fy, AFy,) =G,
contradicting the consistency of I'. [

5.3 Definition
Gy: (Mg lgq =T iff
(i) for some <\, TGgp,pel, for each a (BLa<N) (Ml en
needs a block (for Gg))
(ii) @ ¢r
(ii1) if for some p<\ , Gy €l for each ot (p< a<\), then Gy €T,
(iv) if Fy yet tobe barred in ([} ¢, , thenFy €Tl

5.4 Lemma. If (T} .\ needsa block for G, then there is a I" such that
either (i) or (ii),

(NG: Fglgqn =T

(ii) for some Fy, Fy: ([ )., =T and TG eT.

Proof. Obvious. K

It is now clear that any = -sequence which needs a bar or a block can
be extended. As in §3 the length of =» -sequences is bouded by w% . In the
proof of the completeness theorem itself the only interesting new case to
be considered is, where G, @ €l'. Now, if in such a circumstance case
(i) of lemma 5.1 applies, we are of course done immediately. If it doesn't,
case (ii) applies and we get ' =TI with G, €l™. Continuing in this
way, if we keep only getting case (ii), also at limit stages, we remain all
the time in @ = -sequence (I ) ., Wwith Ty =T and Ge,pel, for
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each o {A. This will come to a stop, since the = -sequences are bounded,
and at some stage no F-formula can be used to extend the sequence: case
(i) will apply.

§6 The relationship of WR-FG with intuitionistic logic

In this section it will be indicated how intuitionistic logic can be
interpreted in WR-FG. This is done by first looking at the combination FG
as a modal operator O, and then interpreting intuitionistic logic in the
resulting modal logic S4~, which is a little weaker than S4. It is a
well-known fact that for the Gédel-translation of intuitionistic logic into
modal logic the full strength of 54 is not needed. The present sytem, 547,
is suggested by the Beth-models for intuitionistic logic in which the
forcing conditions are somewhat different than in Kripke-models.

Suggestive is, for example, that in Beth-models, tiF @ V¢ < in each
maximal chain CCT containing t there is a t' >t (> being reflexive) such
that t'lk@ or t'lIFy. We first introduce the modal logic 54~ with the
axiomatization:

O(p—¢)=2(0p—0vy)
O0¢—-=0¢g
Oe—-00¢

Ol-1

©/O¢

This system occurs in Segerberg (1971) under the name KAD4. We
transiate modal formulae g into thG, by simply replacing O with FG.
Formulae ¢ from intuitionistic propositional logic IPC are translated into
modal formulae ¢8O by the standard Gddel-translation procedure for
transiating IPC into S4 (Gddel, 1933):

6.1 Definition.

(a) pB = Op for propositional formulae p (including 1)
) (pAp)T=pOAD, () (pvy)D=¢pHveD

(D (p—-y)P=D0(pH-y¢D)
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6.2 Proposition. Fpctp=tgqe 9O

Proof. —<: 3Since 5S4~ is a subsystem of S4 this follows immediately
from the Godel result. (Of course, in a direct semantic proof this is where
the Beth-models would come in; we will not even need them.)

=s: Just a matter of checking that the proofs of the transiations of the
axioms can be executed in S4~. &

The most straightforward way of getting the translation of 34~ into
WR-FG is to prove a completeness theorem for 54~ with respect to
reflexive well-founded branched models with the following non-standard
definition of forcing for O-formulae:

tiF O ¢ = for each complete chain CET containing t there isa t'>t
such that, for all t">t", t"Fp.

The method of proof is suggested by Kripke's (1965) method in comparing
Kripke-semantics with Beth-models.

6.3 Theorem. 5S4 is complete with respect to the reflexive well-founded
branched models.

Proof. Checking the validity of the axioms is again a routine matter. We
did not succeed in proving the completeness part of the theorem directly,
but luckily it does follow from the completeness theorem that Segerberg
(1970) proved for S4~ (under the name KAD4) with respect to standard
Kripke-models. He proved completeness of S4~ for pseudo-aense (ie. for
all k,k'eT, such that k<k' there is a k"€T such that k<k"<k’'), succes-
sive, transitive Kripke-models. So, let us assume that T is such a
structure, with a forcing relation IF defined on it. Define T' to be the set
of all non-empty finite sequences <t,,...,t > over T such that t,< .. <t,.
For two such sequences u and v, u<'v is defined to hold if u is a (not
necesssarily proper) initial segment of v. It is clear that <' is a reflexive
and transitive relation. To prove completeness for 34~ it is clearly
sufficient to show that, if we define <{t,,.. .t >IF'p iff t Ikp for
propositional variables p, then

<ty t> kg iff to Ik for all formulae @. As V and 77 are treated
the same in both cases we will just have to check O.
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First assume t IF Og. This means that, for each t' >t , t'IFg. By
induction hypothesis, this implies that, for any proper extension
u=<ty, Lttt OF <ty 82, Ul . So, indeed
<t Lt 2 Og.

Next assume t K O . This means that, for some t'>t , t'}F @. From
the fact that < is pseudo-dense it follows then that there is a sequence
Sg.8y,-- such that t <s,<s,<..<t. Consider the following chain from
St 02 in T, 0 0, <y, 502, <yt 80,802,

Any element <t,,..,t ,Sq,Sy,..,5,> from this (maximal) chain can be
extended to v =<t,,...,t,,5,.5.....5, 1>, and v, by induction hypo-
thesis, does not force ¢ in T Clearly, therefore, <t,,...,t > does not

force O inT. [

6.4 Theorem. (a) bgq- p = byprs 87, (D) Fpclp = bypre P BFC
Proof. Immediate from the preceding. X
It is to be noted that the fragment of WR-FG into which 5S4~ is trans-

lated needs no models of order type larger than w.
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