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1. Introduction

The syntax of formal languages in logic is usually considered a rather
boring subject, to be restricted to a few hurried paragraphs on 'matters of
notation'. Undue attention to points of logicalsyntax calls up images from the
early days of logic in this century, with scholars engaged in remorseless
formalization and orgies of Sheffer strokes. And the current neglect may even
be reinforced by the rising interest in natural languages, whose more lively
logical structure is being brought to light these days.

In this paper, we try to modify this verdict, arguing by means of various
examples, that logicalsyntax can be as interesting as (say) logical semantics.

Our first illustration is one of grammatical complexity. Formal languages are

usually context—free, but complexity will be shown to increase, once apparently
innocuous formal conditions are added. This phenomenon may be contrasted with
recent discussions of the complexity of natural languages, where estimates tend
rather to decrease (from context—free to regular).

The second illustration concerns natural fragments of formal languages. A

formalism like predicate logic can be viewed as the result of letting certain
linguistic constructions (negation, quantification, etcetera) go on ad infinitum.
Looking back, one can cut it up into ascending hierarchies of fragments of
growing complexity (measured, e.g., by depth of nesting for quantifiers).
But, what may be counted as a natural fragment is a highly 'intensional' notion,
depending on intended applications and viewpoints. We shall present some
linguistically motivated examples of cutting the cake of predicate logic, which
generate new open questions about this reputedly 'totally known' language.

Next, logical semantics itself is not unaffected by changes in syntactic

perspective. We consider interpretation strategies for formal languages, using

notions from Automata Theory to implement recent ideas about 'radical' or
'progressive' interpretation. In particular, it turns out that such interpretation
is already possible on regular languages where (scope) disambiguation has not
yet fully taken place. In fact, the general thesis defended is that non-ambiguity
is a result, rather than a precondition of succesful interpretation.

Finally, some repercussions of all this are discussed for the notion of

inference. Some results are given on the complexity of logical theorems, as well



as proofs. (The latter can be viewed as pieces of text, rather than single
assertions.) But also, the issue of the proper syntactic format for doing
inference is considered: the outcome being that there is no single level where
inference must take place.

Thus, a more subversive purpose of this paper becomes visible. The syntax,
semantics and logic of formal languages are often presented in a 'unitary'
manner, suggesting that, e.g., natural language semantics must do likewise:
creating one all-purpose level of logical form where interpretation and inference
take place (in the proper compositional spirit). We hope to 'loosen up' this

picture, because it is already too strict for logic itself.

Grammatical Complexity

One of the most famous and persuasive parts of the linguistic classic
Chomsky 1957 is its investigation of the complexity of natural language. A
hierarchy of possible grammatical formats is presented, ascending in strength:

regular < context-free < context-—sensitive < type 0.
It is then argued that the first two levels are inadequate, by reference to
specific linguistic constructions beyond their reach: natural languages are at
least context-sensitive. This conclusion has become accepted, by and large,
throughout the linguistic community since.

In recent years, however, the case has been re-opened. Many of the early
arguments for non-context—freeness have been shown defective, and estimates for
natural language complexity are being lowered accordingly. A good survey of
this trend is Gazdar and Pullum 1985. Indeed, a strong case can be made for a
purely regular character of the major syntactic constructions. These turn out to
involve only so-called 'tail recursion', that can be mimicked already by Kleene
iteration (see Ejerhed and Church 1982). So, in the end, natural languages might
be at most context-free, with a regular backbone.

In this light, a comparison becomes of interest with the complexity of

formal languages, usually regarded as paradigms of simplicity. The latter are

easily seen to be at least context-free: and sometimes even more complex than

that.

Formal language complexity

First, consider a propositional language, with alphabet {p,1,A,),(} and

the usual formation rules for well-formed fomulas. It has a context—-free grammar:
S=p, S=15, S=(SAS).

(To create infinitely many proposition letters with a finite alphabet, one might



use instead
S=A, A=p, A=A'.l)

No simpler grammar suffices:

PROPOSITION. Propositional formulas are not a regular set of expressions.

PROOF. By an application of the Pumping Lemma for regular languages (see
Hopfroft and Ullman 1979). Let n be the iteration value in that lemma.
Consider the formula

A PA... n(AaAp) [n brackets]) .
There must be some non-empty part of the final string of brackets which can be
duplicated without disturbing recognition. But, the resulting expression is not

a well-formed formula, as it lacks the proper balance of brackets. ©

So, propositional logic requires one coordination at a distance: something
which needs precisely context-free rewriting rules.

With predicate logic, however, one seems to require an additional coordina-
tion, viz. that between predicate letters (with certain arities) and correspond-
ing numbers of arguments. With a finite set of predicate letters, this can be
handled still by enumeration of all possible atomic types, but we are interested
in the general case of P} ("the j-th predicate of arity i') . In principle,
two coordinations seem to go beyond context-free grammars - but in this case,

one is still available.

EXAMPLE. Let the language have an alphabet {P,x,',7,A,Y,),(}. Informally,
variables will be x,x',x'',..., and predicate letters all combinations

'...'"P'...", with the arity indicated on the left. Here is a recognizing

grammar :
V=x, V=>V' (individual wvariables)
m=p, m=T1 (proposition letters)
A=T, A= "AV (atomic formulas)

S=A, S=18, S=(SaAS), S=V VS (formulas).

\

Note the trick with the aritycount. E.g., "Pxx' is constructed by the stages

P, '"Px, "Pxx'.

Non-vacuous binding

A more natural class of predicate-logical formulas, however, (and one
intended by many users in the first place) has an additional restriction:
every quantifier occurrence is to bind at least one variable. Such simple

variations may already increase complexity:



PROPOSITION. The well-formed predicate-logical formulas without vacuous

quantification do not form a context-free set.

PROOF. By an application of Ogden's Lemma (Hopcroft and Ullman 1979, lemma 6.2),
which reads as follows

"Let L be a context-free language. Then there is a constant n such
that, if z 1is any word in L, and we mark any n or more positions of z
'distinguished', then we can write z =u v w s y,such that
1) v and s together have at least one distinguished position,
2) forall 1z0, u vi w si y is in L".
Consider the following (non-vacuously quantified) formula:

A x1 v x2 . xT U'p x1 x2 .o xn 3

where x' = x' . x2 = x" , etcetera.
Ordinary pumping may be admissible here, as in

Vx'Vx" "Px'x" =a2vVx'Vx" "Pxx'x".
A4

But, by marking all universal quantifier symbols V , one can make sure that at
least one quantifier must be involved in the Ogden iteration: and this always

produces at least one vacuous quantifier occurrence.

Examples:

i) v x1 v x2 vee =V x1 ' x1 v x2
.. 1 2 1 1 2
ii) Vx Vx ... == V¥Vx Vx VX

(i) Vx'VE" V"™ ... = Vx VeV ()Y ...,

but no 'matching' duplication is possible taking care of both the required

additional argument for P and the increased arity count. O

REMARK. This result appeared without proof in Van Benthem 1977. A prompt by
Hugues Leblanc led to writing up the above argument in 1985. In the meantime,
Theo Janssen has pointed at Partee and Marsh 1985, which also gives a proof
of the preceding result - as well as a further investigation just how far these
additional constraints push us up the language hierarchy.

The Partee-Marsh argument also works for a fixed finite set of predicates
without the above arity mechanism. But, with one further restriction, non-—
vacuously quantified predicate logic does become decidable: viz. when only

finitely many individual variables can occur. Let x » X be those variables.

R
Then create auxiliary symbols SX for each set X of variables ('the formulas
in which exactly the variables in X occur freely'). Now, binding can be encoded
in the rewriting rules. E.g., with one binary predicate letter P, there will

be atomic clauses such as

S{x1,x2} = Px1x2 s szx1 .



Further administration can then be done as follows:
S = (S¢y A Sy )
X1UX2 X1 X2 ’
SX—{X1} (provided that X, € X).
This last restriction may not be unreasonable for natural languages, whose

= V x1 SX
supply of anaphoric pronouns is limited — but it is less reasonable for formal

languages.

Discussion

It is tempting to conclude from the above observations that formal languages
can be more complex than natural languages. But there is something perverse in
this conclusion. After all, the language of predicate logic is learnt in one
session, with or without the proviso on vacuity - whereas natural languages,
regular or not, require a good deal more éffort. Does this point at a defect in
the conceptualization of complexity, through levels in the hierarchy of grammar ?
Or could it be that the main problem in language learning is the mastery of
'width' rather than 'depth': i.e. size rather than intricacy of the grammar ?

Another reason for caution concerns the possible dependence of the above
results on choices of notation. (For instance, the stroke notation used earlier
for predicate logic was certainly non-standard - even if not unmotivated.)
Usually, it is enough to know that different notations are effectively equivalent.
But, when the fine-structure of complexity is at issue, the complexity of
notational transformations itself becomes important. For instance, rewriting

propositional formulas in “1,A to ~,& form takes only a finite state trans-—

ducer (in the sense of Aho and Ullmann 1972), replacing symbols as they occur.
But e.g., rewriting such formulas into Polish forms requires memory space, and

in fact a push-down transducer. And one can easily find yet other 'equivalent'

notations whose conversion requires further Turing machine power. This is evident-

ly an issue for further investigation.

Appendix: Regular languages

The location of the boundary regular/context-free will be important again
in Section 4 on interpretation. Therefore, we add some preliminary observations
on this topic here.

First, the context—free complexity of propositional formulas is due entirely
to what is essentially a semantically inspired auxiliary construction: their

disambiguating bracket structure:



PROPOSITION. The propositional formulas with their brackets removed form a

regular language.

PROOF. Here is a finite state recognizer for this language:

‘r)‘l A
=70 5 °
®: accept
A p = .
. o: reject
Ac;():)1
P

Now, bracketing structure is (almost) absent in natural language - and

indeed, one can often 'regularize' prima facie context—free grammars. For
instance, the conditional sentences produced by the two rules
S=rp, S=8 if S
can also be described by the Kleene notation
p (if p)l*.
Or, consider the following recursive rewrite rules generating noun phrases:
NP = Det N , N=N PP, PP = Prep NP

Det = a, no , N = dog , boss Prep = with , without .

An equivalent regular version is
2 yfoe ) p MiEh | p2q g 0By
no [ | boss without [ | no [ |boss [/ -~

Of course, these pairs of grammars are only weakly equivalent: as they

assign quite different constituent structures. So, the question becomes if one
can make semantic sense of the regular format. After all, once 'unitary'
prejudices are given up, one need no longer assume that a simplest syntactic
format for a language is necessarily also the best format for its semantic
interpretation. We shall consider interpretation on regular syntax in Section 4
below.

As a final point, there might also be room for both types of description
simultaneously. Say, with some context-free 'competence grammar' and some
coarser regular 'performance grammar' modelling the blurring of recursive
structure which we experience after a few rounds. In this connection, one would
want to have some natural notion of 'regular closure' of any given context-free

system.



3. Natural Fragments

The examples in Section 2 also suggest a more 'structured' view of the
language of predicate logic, as a web of various fragments. There are many
principles of subvision here, for instance by the arity of predicates ('monadic'
predicate logic versus polyadic versions), or the depth of nestings of quam—
tifiers (a useful measure for model-theoretic complexity). In particular, many
fragments have been isolated in the search for decidable subsystems of full pre-
dicate logic (see Dreben and Goldfarb 1979).

In addition to these more purely logically motivated fragments, analogies
with natural languages suggest further subdivisions. In particular, it has often
been noticed that natural languages are less liberal with (bound) variables,
preferring constructions circumventing overt display of pronouns. Compare, e.g.,

"every house has a price" with
vx (Iix -» 3y(Py A A xy)) .
Or also the use of Passive in stating the inference pattern
dx Vy K xy = Vy 3x K xy :
"someone knows everybody" implies
"everybody is known by someone' , rather than
"for everybody there is someone who knows him" .
(The latter point is made in Dummett 1973.) Such phenomena invite a study of

variable—free notations for predicate logic - as has been done in Quime 1971.

In Quine's system, predicate-logical formulas express predicates, with proper
'bindings' between argument positions handled by operators of 'identification'
and 'permutation'. Such a perspective suggests entirely different fragments of
predicate logic, depending on which operators are allowed. Correspondingly, the
issue can be raised if some of these give us 'large' decidable fragments of

predicate-logical inference in some practical sense (cf. Bacon 1985).

REMARK. 1Incidentally, variable-free or variable-poor notations also occur inside
mathematics. For instance, the common notation for composition is a way of avoid-
ing variables - and Recursion Theory even has a complete variable-free notation
for recursive functions, involving operators for composition, recursion and
minimalization. It would be of interest to compare the necessary 'tricks' here,

including so-called 'projection functions', with those of Quine.

Also more generally, current systems of 'flexible' categorial grammar for
natural language can be viewed as variable-free mechanisms for encoding meanings.
For instance, applying a rule of Functional Composition to recognize a constituent

such as [knows everybody]NP has the following semantic effect:



types: (e, (e,t)) + ((e,t),t) = (e,t)
meaning: Kxe . everybody(e’(e,t)) (Xye . knows(e’(e’t)) (ye)(xe)) .

See van Benthem 1986, chapter 7, for a systematic account of these meaning in-
structions. The basic system here (correspondary to the so-called Lambek Calculus)
has the following strong restriction:
'every lambda operator binds exactly one occurrence
of a free variable'.
This leads to an obvious numerical hierarchy, of a rather unusual kind.
As anillustration, consider single bond predicate logic, having such formulas

as
Vx Ax , 3x Vy Rxy , 3x Ax = Vx Vy Ryx .

Non-formulas are Vx Rxx , dx (AxABx) . With a fixed finite non-logical vocabul-
ary , this fragment, though admitting arbitrary depth of quantifier nesting, is

rather simple:

PROPOSITION. Single-bond predicate logic is decidable.

PROOF. First, a normal form result is needed.

LEMMA. Every single—bond sentence is logically equivalent to a positive Boolean
compound of basic single-bond formulas of the form

< sequence of quantifiers - (negation of) atomic formula >,

PROOF. First, by well-known equivalences, push negations inward until they reach
atomic subformulas. This does not affect the single-bond constraint. Then,
starting withinnermost quantifiers, drive these inward too, using the well-known
prenex equivalences. Note that every connective A,V will be crossed, since,
e.g., 3dIx(évy) must be equivalent to either 3Ix¢vy or ¢vIxy (x occurs

freely in ¢ or in ¢ , but not in both). O

Next, validity can be computed as follows. Modulo logical equivalence, there
are only finitely many basic formulas. Now, the Boolean compound of the lemma
will be valid if and only if some finite number of disjunctions of basic formulas
is valid. So, to answer the general question of validity, it suffices to have

the validity of these (finitely many) possible disjunctions precomputed. O

REMARK. Choosing fragments may have unexpected repercursions. For instance, we
have to check if formerly acceptable rules of inference stay within the area.
E.g., an equivalence which would not have been admissible in the above arguments
is Distributivity:

Ax A (By v Cz) <> (Ax A By) v (Ax A Cz)



Of course, the single-bond restriction is too severe for natural language
in general. A restriction which has been proposed, however, for empirical

reasons, is that of bounded dependencies. It seems that bindings in most natural

languages cannot cross arbitrary layers of operators in a sentence. Again,
predicate logic is a good testing ground for such phenomena (a suggestion which
is due to Frank Heny).

Let the bound-1 fragment have only formulas in which any quantifier occur-
rence binds only occurrences of its variable x for which it is the first
quantifier in whose scope such an x occurs.For similar quantifiers, this
condition holds by convention:

dx (Ax A 3x Bx) .

——d [
(I S 4

But now, one also forbids such crossings as the following:

Ix (Ax A Iy Rxy)

.

On the other hand, arbitrary width is allowed:

Ix (AX A BX ACX A v..) .

PROPOSITION. All bound-1 formulas are equivalent with formulas of quantifier

depth 1, and vice versa.

PROOF. Formulas of quantifier depth 1 are automatically bound-1. Conversely, one
can remove possible nestings of quantifiers by the prenex equivalences.
Example: 3x (Ax v 3y R yz) 1is equivalent with 3Jx Ax v Jy Ryz . Note that x

cannot occur freely in the scope of disjuncts with quantifiers in front. O

For greater depths of dependency, however, this simple correspondence breaks

down:

EXAMPLE. The following formula is bound-2:

Ix Vy (Ryx v 3z Rzy) .
But, its quantifier depth is 3 - and this cannot be reduced to 2, witness the
following situation. The two graphs G1 ,G2 are '2-equivalent' in the sense of
Ehrenfeucht-Fralsse games (player II has a winning strategy for the case of two

rounds; see, e.g., Hodges 1983 for definitions):

[ e e — @
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It follows that G1 ,G2

tifier depth up to 2. On the other hand, G1 validates the above formula

(letting x be one of the right end-points), while G2 does not. O

validate precisely the same sentences in R of quan-

So,we have all kinds of questions for such a new division of predicate
logic into fragments. Is there an independent semantic motivation for the
levels bound-1, bound-2, etcetera (perhaps, in terms of different games)? Are
the logics of these successive fragments decidable? Such rather immediate open
questions suggest that, contrary to prevailing opinions, even such a familiar

system as predicate logic remains largely terra incognita.

Strategies of Interpretation

Lowering syntactic complexity by adopting a different grammar for a language
may have a cost too: perhaps, interpretation becomes more difficult (or even
impossible) - and the same could be true for inference. In particular, such ques-
tions can be raised at the border-line of regular versus context-free grammars,
encountered in Section 2.

As a preliminary observation, not even context—free grammars need be easily
interpretable. Of course, by their known equivalence with categorial grammars,
the latter's semantics can be borrowed — but this need not produce faithful
Fregean rule-by-rule interpretation. For instance, there just is no semantics
for a rule like V = V' 1in the earlier grammar for predicate logic, and at best
a rather fanciful one for the atomic formation rule A = 'AV. For further re-

flections on interpreting context—free syntax, see Suppes 1976, Janssen 1983.

Interpreting regular syntax

The question here is rather if we can still interpret regular syntax in some
plausible fashion. For instance, the earlier grammar p « (if p)* will produce
flat conditional sentences with all conditional clauses treated as adjoints, on
a par. Now what do we mean, intuitively, by a sentence such as

"John cries if Mary laughs if Porky grunts" ?
There seems to be a tendency toward right association here:

(J if (M if P)) .
And in any case, we can study certain systematic strategies of interpretation,
generating such preferences. (A 'deeper' treatment might consist in providing

a more conjunctive co-ordinating interpretation for these iterated clauses,

rather than the usual subordinating ome arising from obligatory bracketing.

This would be more in line with the methodology of Barwise and Perry 1983.)
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There are several reasons for exploring interpretation on regular syntax.
First, the usual bracketing structures seem somehow imposed, rather than being
really there. In a sense, they are one step on the way to regimented logical
form. But then, they might even give too little: as the 'worst case' represent-
ation level for natural language sentences needs not only scope disambiguation,
but also anaphoric linking (and perhaps further decisions as well). By contrast,
one might want to study at which level of representation one can do already what
kind of interpretation - without too rigid preconceptions about the proper
methodological order of Syntax and Semantics.

As suggested above, we can formulate various interpretative strategies on
regular syntax, such as
I 'Give each successive operator the widest possible scope',
or rather
II 'Give each successive operator the smallest possible scope’.

The very formulation here presupposes some order of processing, and in fact, the

literature contains various suggestions to this effect. For instance, Hintikka
has pointed at a 'Progression Principle' in interpreting sentences (see Hintikka
and Carlson 1979), and Barwise and Perry 1983 stress 'radical interpretation'’,
from left to right. (Of course, the 'resultant force' of understanding a text is
necessarily from left to right — but the question is how strictly this order
must be respected within sentences.) The model suggested by these views is that
of standard automata, traversing a string of symbols while (perhaps) using a
working memory, to build up an interpretation. How versatile we are as human
readers may be judged from our position, when viewed as being such automata, in
the usual Machine Hierarchy. (For a general development of 'semantic automata'
in a congenial, though not identical spirit, see van Benthem 1986, chapter 8.)
E.g., are we just finite state evaluators - or can we hope to be Turing machines?
This perspective enables us to use results from Automata Theory. For
instance, the well-known equivalence proof between context-free grammars and
push-down store automata may now be viewed as a 'linearization' result. It tells
us which assumptions need to be made about a linear processor recognizing, or
evaluating, a given context-free language. (In this light, the 'regularization'
mentioned in Section 2 might result from restricting the size of the push-down

stack to some empirical limit.)

Propositional formulas

A simple, but instructive test case for ideas of this kind is ordinary

propositional logic. Which kinds of machine are needed for its evaluation?



-12-

First, a representation is needed of the interpretative information. We
have a string of symbols, but also a valuation assigning truth values to pro-
position letters - and the problem is to compute the proper truth value for the
string. Calling the valuation may be viewed as an atomic subroutine, producing
values 0,1 in the place of proposition letters. Thus we need machines operating
on strings in which the latter replacement has been made throughout, which
produce truth values themselves. I.e., in principle, they are to be (rather
simple) transducers.

The most elementary case is that of finite state evaluators, being finite

state machines with a 0 or 1 value attachéd to certain states, and 3 ("non-inter-
preted') to others. Not surprisingly, such evaluators are inadequate for ordinary
bracketed syntax. For instance, as in the argument of Section 2, they will make
'errors of the first kind': mistakenly evaluating non-formulas. More seriously,
however, they will also make 'errors of the second kind': mis-evaluating well-
formed formulas. (The second kind of error does not arise in the usual case of

syntactic recognition.)

PROPOSITION. No finite state evaluator evaluates all propositional forms

correctly.

PROOF. (For greater perspicuity, Polish notation is used here.) Let n be the
number of states in the putative evaluator. Consider the following formula:

A [n times] A v [n times] v O[n+1 times] 0 1[n times] 1,
whose truth value equals O. In evaluating this string, the machine will loop in
the v-part (say, with cycle k £ n), and also in the 1-part (say, with 1 =n) .
Now, consider the above formula with k*1 copies of v interpolated, and as
many copies of 1. The result is again a formula, with truth value 1 this time.
(The total v-subformula gets value 1 now, as its initial v will capture an
argument 1.) But the evaluator will produce the same outcome as before: being 0.

=]

From now on, we will use ordinary notation again (leaving the possiblé
effects of notational variance for some future occasion - as in Section 2).

A suitable machine for correctly interpreting propositional formulas is a
simple variant of their push—-down store recognizer. The latter will be constructed

first.

EXAMPLE. The machine has three states:
1 ('going to read a formula'),
2 ("have read a formula'),

3 ("failure').
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Its stack alphabet is {€,4} , where # symbols indicate that the main con-

nective for this bracket is still to be located.

Here are the crucial transition rules (stated for binary A only):

state , stack , symbol read = new state, action on stack

1 empty A 3 none
( 1 store €
) 3 none
P 2 none

1 £ A 3 none
( 1 store €
) 3 none
P 2 none

1 <€ A 3 - none
( 1 store #
) none
P 2 none

2 empty any symbol 3 none

2 € A 3 none
( 3 none
) 2 erase top €
P 3

2 € A 1 replace € by €
( 3 none
) 3 none
P 3 none

To understand how this works, it is useful to write out a full trace of recogni-

tion, e.g., for the string

((pAq@ Ax) A (pAcx)

read state stack

1 - t 1, - 7 q 2, £ £+4 13 ( : 1,
2 ( t 1, € 8 : 2, €% 14 p 2,
3 ( 1, € £ A 1, €£+£ 15 A 1,
4 ( 1, €€ £ 10 ¢ 2, £+ 16 ¢ 2,
5 p 2, € €¢£ 11 2, £ 17 ) 2,
6 A T 1, € €< 12 A 1, < 18 ) 2,

€ %
€€
€
1
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Now, to obtain an evaluator from this recognizer, one has to multiply
states, encoding whether a true or a false formula has been read. Concurrently,

one can extend the stack alphabet with symbols {0 , € for those cases where

‘I s
the value of a first component already determines that of the whole formula

(i.e., OA ¢ , 1 v ¢). Details are omitted here.

Finite state evaluators

To explore possible interpretation of regular syntax, one can look at some

concrete examples .

EXAMPLE.

A 0
o : 0
Uv
| A

This finite state machine has 'neutral' states 0O, and evaluating states 0 and
1. Moreover, there is a failure state (not indicated here) where all omitted
transition arrows end. It will produce truth values for all propositional for-
mulas with brackets removed. Its action may be described as follows:
'small scope for 1, wide scope for aA'.

E.g., 7p A q is evaluated as (p) A q, and pAIgAar as (p A ((7Q) A 1)).
(Note how initial truth values determine the evaluation of the first A encounter-
ed. If it is 0, then the value is 0, provided that the remaining string is a
formula. (This is the function of the right-most subroutine.) If the initial
value is 1, then the procedure starts again.)

Actually, 'wide scope' is not an appropriate term here, as any way of handling
the conjunction will produce the same value (because of Associativity). Differen-

ces will only show up when two binary connectives interact, as in the following

illustration.

EXAMPLE. /‘\

"check if formula: then Q"

"check if formula: then {"
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This machine will evaluate, e.g., pAqQ V<Y to pA(qVr), rather than
(pAq vr.

Evidently, many variations are possible for these machines. A principled
choice might be to select evaluators with a minimal number of states, seeing
what strategies these incorporate.

For instance, evaluating with wide scope for 71 will be more costly:

EXAMPLE.
0
_— (v] SN LN "check if formula: then Q"
o 1

=

A
J //04 —2 "check if formula: then 1"

o 1
— 0

A

This machine will interpret, e.g., 7p A q as 1(p A q) . (Note the two dominat-—
ing 'positive'/'negative' states in front.)

There aré many further possibilities here for experimentation. We conclude
with two comments. One is that there might be just one basic strategy of inter-
pretation, with deviations triggered by syntactic indicators ("both ... and ...",
"if ... then ...", "if ... , ...") or phonological ones (emphasis, pauses).

These can be processed as indicators that some special subroutine is to be called -
still at the level of finite state automata.

The other point is that we may stillbe ensnared by traditional notions,
which are now obsolete - and 'scope' itself is one example. This point is made
in Barwise and Perry 1983; but we can now make it precise. The above evaluators
start interpreting before full syntactic structure is known: evaluation and
syntactic construction proceed in parallel. (This too is central in current
'Stanford philosophy', witness also Fenstad et al. 1985.) Therefore, it makes
less sense to talk about scope. For instance, when evaluating a conjunction
p A ¢, the procedure depends crucially on the value of p. If it is 0, the
internal structure of ¢ is largely irrelevant for the outcome (being O anyway).
(A similar point, concerning 'sequential interpretation', has been made in
van der Sandt 1986.)

REMARK. Here is a speculation on another possible virtue of the finite state/
regular syntax framework. Writing regular languages in Kleene notation suggests.:
an analogy with regular programs, as used e.g. in Dynamic Logic (see Harel 1984).

The grammar is a program which we can activate to produce sentences. As the
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program is non-deterministic (because of the available choices), every actual
sentence is the trace of an 'intensional' decision process as to what to say.
But of course, in some settings (such as Gricean®conversation), this intensional
view of what is actually said versus what might have been said is of the essence.
Can one also push the analogy in other directions, e.g., toward developing a

'correctness theory' for regular languages ?

Finally, up till now, interpretation has been taken in a very narrow sense,
as computing some truth value. But, there are much richer senses which could be
explored. For instance, in Discourse Representation Theory (Kamp 1984), process-—
ing raw syntax results in the incremental construction of discourse representa-
tions. Then, evaluators might be rather complex transducers, turning simple
syntax into more elaborate structures. Perhaps, the present hierarchical view-
point could help in distinguishing more elementary from more fanciful mechanisms

of representation - and thereby introduce some constraints on-the enterprise.

Varieties of Inference

The previous discussion of non-orthodox syntax and semantics has various
repercussions for the study of inference, the traditional testing ground for
semantic theories. Some observations to this effect are gathered here, under

two headings.

Inferential complexity

Like sets of well-formed formulas, sets of logicalvalidities can be viewed
as languages of a certain complexity. This is what happens already when logicians

prove decidability, and when computer scientists ask 'how' decidable various

logics are (in polynomial time ? in exponential time ? ). In line with Section 2,

we look at grammatical complexity of Togics:

PROPOSITION. On a finite set of proposition letters, the set of propositional

tautologies is context-free.

REMARK. With infinitely many proposition letters, complexity goes up.(The latter
situation is the setting for the usual complexity arguments about 'Boolean

satisfiability' being NP-complete.)

PROOF. Up to logical equivalence, there are only finitely many equivalent
formulas, say with representatives F,,...,F_. Now, the relevant grammar has
1’ b n g

auxiliary symbols S1""’Sn for each of these, with rewrite rules
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S. = n1S. if F. 1is equivalent to F.
1 J 1 J

Si =»(Sj A Sk) if F. is equivalent to (Fj A Fk)

S. =p if p 1is equivalent to Fi‘

A simple induction shows that, for any propositional formula ¢, ¢ is equivalent
with Fi if and only if F. rewrites to ¢ in this grammar. In particular,

the Si corresponding to the tautological F. rewrites to all tautologies. O

All that is used in this proof is the 'logical finiteness' of classical
propositional logic. With logics lacking this property, one can expect higher

complexity:

PROPOSITION. The set of validities in the minimal modal logic on two proposition

letters is not context—-free.
PROOF. First, we need a semantic observation.

LEMMA. A modal formula of the form (o'p A olq) » Dk(p A q) 1is valid if and only
if i=3j=k.

PROOF. 'If': this is a well-known type of validity.

'Only if': Consider the frame <IN,S> at the point 0. Let V(p) = {i} ,
V(q) = {j}. Then Dip ,qu hold at O, and hence so does Dk(p,Aq) . This can
only happen if k=1 =3j. 0O

Then, the intersection of the set of all validities with the regular set
(o*p A O%q) > 0%(p A q) is the non-context-free language

{(an A an) > Dn(p A q)}n. And so, the set of validities itself cannot be

context—free. O

REMARK. This observation also extends to other modal logics. For instance, in
S4 the above lemma breaks down; but it can be imitated as follows.

Define 'alternating' modal operators [Al" ¢
p

mg o :=a(p ~ ¢)
wg” o +=0(p>atp > HYO).

Note that Ngcb implies all Wg+l¢ in Sé4.

CLAIM. S4 proves ([A];'q A W; r) - WI; (gqAar) if and only if
k 2 maximum (i,j).

And then, an argument similar to the above establishes non-context-freeness.
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But, one can also look at grammatical complexity of sets of proofs,
instead of merely theorems. For instance, axiom systems for predicate logic
often carry such restrictions as the following:

'Vx¢ > ¢; , provided that t 1is free for x in ¢'.

The latter condition is reminiscent of those studied in Section 2, destroying
context—freeness. But also, purely propositional axioms can have this effect.
For instance, consider an axiomatization of propositional conditional logic in
the Hilbert style, with the usual axioms

(o> W ~>9))

(> @>x)) > (¢ ~>y) > (~>x))).
Let proofs be finite sequences of formulas, separated by commas, created with

instances of these axioms and the rule of Modus Ponens.

PROPOSITION. Hilbert proofs for conditional logic do not form a context-free set.

PROOF. Again, the method of proof is the above reduction; using the following

observation.

LEMMA. A formula of the form (7o - (18 > 1y)) 1is a (onc-element) proof if and
only if o = y. And again, the set {(7a > (18 ~ Wa))}a is not context-free.

(Compare {ww | w € £*} , as in Hopcroft and Ullman 1979.)

Note: Intersection is to be taken with respect to the regular set of all comma-
free strings of the form

(1 "string" - (7 "string" > 1'"string")) . o

A possible use of these considerations may be in substantiating our
intuitive feeling that some proof formats are simpler than others. As with
'equivalent notations' (cf. Sections 2,3), 'equivalent systems of proof' by
standard logical methods can be quite different. Compare, e.g., a Hilbert type
axiomatic system with a cut-free Gentzen calculus. But also, in an obvious sense,
various rules within one calculus have quite different complexities.

To see this, compare the elimination rule for - in Natural Deduction (being
Modus Ponens) with the introduction rule of Conditionalization, which requires
global book—-keeping of assumptions higher up in the tree.

The general moral here is that it might be profitable to extend considera-
tions of complexity to the level of texts, of which proofs are one eminent
example. For instance, the level of textual complexity of natural language may
be quite different from that of its sentential complexity. (One example is the
explicit recursion in keeping track of nmested levels of hypothetical reasoning,

which cannot plausibly be made regular.)
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Inference and syntax

When the locus of interpretation becomes more diffuse, because various
syntactic levels can contribute 'some meaning', the same question arises with
respect to inference. In fact, one could envisage different preferred levels
for syntactic parsing, semantic interpretation and logical inference - with
efficient parsing of, say, regular syntax incurring the price of inefficient
inference at that level. (The latter possible trade-off was pointed out by
Hans Kamp.)

There are some precedents for a somewhat looser order of priorities between
syntax and inference. For instance, in early logics of this century, rules of
inferenée sometimes produced theorems as well-formed formulas without defining
the latter level independently. (This is still possible, e.g., with Gentzen
calculi of sequents.) But also in the opposite direction, one might allow rules
of inference producing ill-formed output. For instance, the rule of 'Conser-
vativity' as used in current semantic theories for determiners

Det N VP & Det N (VP and N) ,
often produces ungrammatical oatput, which needs syntactic sugaring for its
conclusion.

A survey of varieties of natural language inference at various levels of
syntactic representation may be found in van Benthem 1986 (chapter 6), 1987.
Examples presented there range from a simplest case of monotonicity inference
on context-free syntax to anaphoric inference at the level of discourse
representation. In the light of the preceding Sections, can we still go one
step down in complexity, having inference on regular syntax? At least, this
fits in with claims made, e.g., in Fenstad et al. 1985 about the possibility

of inference before scopal disambiguation has taken place.

EXAMPLE. Inference from regular propositional syntax.
Here are some valid conclusions, regardless of eventual bracketing:
P Ag = (p A q)
PAQVTIT = pVvr , qVr
In fact, this type of inference is still decidable, as it amounts to consequence
from the disjunction of all fully bracketed variants of the premise. But, the

question here would be if there is some natural intrinsic description.

With this final speculation, we conclude our survey of the secret charms

of logical syntax.
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