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ABSTRACT

We consider the equational theory Axt of A-calculus extended with constants 7, 7, 7t; and axioms for
surjective pairing: Ty(nXY) = X, n,(nXY) = ¥, n(mX)(%;X) = X. Two reduction systems yielding
the equality of An are introduced; the first is not confluent and for the second confluence is an open
problem. It is shown, however, that in both systems each term possessing a normal form has a
unique normal form. Some additional properties and problems in the syntactical analysis of Ax and
the correponding reduction systems are discussed.

*) Author partially supported by ESPRIT project 432: Meteor.

Introduction

In this note we consider A-calculus extended with Surjective Pairing (SP), that is, extended with
constants T, T, 7t; and equations 7y(nXY) = X, ©;(nXY) =Y, n(nyX)(n,;X) = X. Here wis a
pairing operator and 7, Tt; are projection operators; the third equation amounts to the statement that
every object X is a pair—hence the name ‘surjective’ pairing. The equational system A-calculus
plus SP will be denoted here by Ar.

The aim of this paper is threefold. First, we survey several already known results about An and
some related systems. Among these results are a counterexample to confluence of a reduction
system generating the equality of Az (in KLOP [80]), and a recent theorem in DE VRIJER [87]
stating that A is conservative over A, the pure A-calculus.

Second, we present some new results, notably a proof of the fact that two reduction systems
which naturally correspond with Ax, have the property of ‘unique normal forms’.

Third, we list some open problems concemning further syntactic properties of the systems under
consideration.

The A-calculus with surjective pairing is of fundamental importance in the theory of categorical
logic: every theory with the signature of An and including the axioms of An and the m-axiom
Ax.Mx = M if x is not free in M, is equivalent in some sense to a certain cartesian closed category



called C-monoid. For the precise connection between the category of C-monoids and the category
of such extensions of An we refer to LAMBEK & SCOTT [86] (see Corollary 17.6). Recently, work
of Curien and others (CURIEN [86], COUSINEAU e.a. [85]) has shown the relevance of categorical
logic for computer science, in particular for implementations of functional languages. (The results
of the present paper do not cover the n-axiom though; see the remarks on open problems in Section
5)
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1. Preliminary notions

To fix our terminology and notation, we collect in this preliminary section some well-known
notions and facts about them. Most of the necessary concepts, such as confluence, can already be
defined on an abstract level as follows.

1.1. DEFINITION. (i) An Abstract Reduction System (ARS) is a structure A = <A, e

consisting of a set A and a sequence of binary relations — , on A, also called (one-step) reduction
relations or rewrite relations. Sometimes we will refer to —, as a. If the ARS has only one
reduction relation we often drop the subscript. In this paper we will only encounter ARS’s having
just one reduction relation. (Such structures are called ‘replacement systems’ in STAPLES [75].) If
fora,b e A wehave (a,b) € —, we write a —, b and call b a one-step (a-)reduct of a.

(i) The transitive reflexive closure of —, is written as — . So a — , b if there is a possibly
empty, finite sequence of ‘reduction steps’ a=ay—, a; = ... =4 4, =b. Here =denotes
identity of elements of A. The element b is called an (o-)reduct of a. The equivalence relation
generated by —  is =, also called the convertibility relation generated by —, (or conversion).
(iii) The reduction relation — is called weakly confluent or weakly Church-Rosser (WCR) if

VYab,ceA ddeA @>b&a—>c = b—>d&c—>d).

(iv) — is confluent or Church-Rosser, or has the Church-Rosser property (CR) if



Va,bce A ddeA (a—>b&a—>c > b—>d&c—>d).

The definitions of WCR and CR are illustrated by Figure 1a and b, respectively. (The dotted lines
denote existential quantification.) Often the CR property is defined as suggested in Figure 1c (and
confluence as in 1b); but one easily proves that the two are equivalent. For some of the arguments
in this paper it is better to think in terms of 1c.

6)) ®) ©

Figure 1

1.2. DEFINITION. Let A = <A, —> be an ARS.

(i) We say that a € A is a normal form if there is no b € A such that a — b. The set of normal
forms of A is denoted by nf(A).

(i) 4 (or —) has the unique normal form property with respect to reduction (UN ) if
Yab,ce A(a—b & a — ¢ & b,c are normal forms = b = ¢).

(iii) A (or —) has the unique normal form property with respect to convertibility (UN™) if
Vb,ce A (b =c & b,c are normal forms = b = c¢). In conformance with most of the
literature, we will henceforth denote the latter notion by UN, and refer to it as the ‘unique
normal form property’ without more.

(iv) A (or —) has the normal form property (NF) if
Va,be A (aisnomal form & a=b = b — a).

The normal form property should not be confused with the property of Weak Normalization
(WN), expressing that every element has a normal form, nor with the property of Strong
Normalization (SN), expressing that every reduction sequence ay — a; — a, — ... must end,
eventually, in a normal form. The reduction systems that we are primarily concermed with in this
paper are neither SN nor WN, and sometimes even not CR. (They are all WCR, however.) The
first implication of the following theorem is used only in 6.1; it is known as Newman’s Lemma.

1.3. THEOREM. (WCR & SN) = CR = NF = UN = UN"".

PROOF. Easy. 0



1.4. REMARK. Note that UN and UN™ are equivalent in finite acyclic ARS’s, but not in general.
An example of an ARS satisfying the latter but not the former is the one in Figure 2, consisting of
five elements and reduction steps as displayed.

Figure 2

For the formulation of our results we need the notions of a consistent equational system and of
a conservative extension. Also these notions can be defined already for ARS’s:

1.5. DEFINITION. Let A = <A, —,> and B = <B, —p> be two ARS’s. Then A is a sub-ARS of
B, notation A c B, if:

i AcB

(i) ais the restriction of Bto A, i.e. Va,a’e A (a —p a & a—>ga)

(iii) A is closed under B, i.e. Vae A (a — b = beA).

The ARS B is also called an extension of A.

1.6. DEFINITION. (i) Let A = <A, —> be an ARS. Then A is consistent if not every pair of
elements in A is convertible.

(ii) Further, let A = <A, > >, B = <B, —g>be ARS’s such that A c B. Then we define: B is
a conservative extension of A if Va,a’ € A (a =g a < a=gya).

The proof of the following proposition is trivial.

1.7. PROPOSITION. (i) If A is confluent and has two different normal forms, then A is consistent.
(ii) A conservative extension of a consistent ARS is again consistent.
(iii) A confluent extension B of A is conservative. O

In the sequel we will deal with ARS’s <A, —»> where A is a set of terms and the reduction
relation — is generated by some reduction rules. All concepts introduced thus far (WCR, CR, UN,
NF, consistency, conservativity) now apply to these reduction systems. Instead of ‘reduction
systems’ one can also adopt the phrase ‘term rewriting systems’ or TRS’s, although that name is
usually reserved for cases where no bound variables are around. In KLOP [80] reduction systems
of the kind we will consider in this paper are called ‘combinatory reduction systems’ or CRS’s.



2. Analyzing Am: first approach

We will suppose familiarity with the syntax of ‘pure’ A-calculus, that is the equational system with
terms built from variables by means of application and A-abstraction and subject to the B-rule only.
Likewise the corresponding reduction system, with the B-reduction rule, will be supposed known.
As to the latter, we will use without further explanation terminology such as ‘redex’ and
‘descendant’. As a general reference, one may consult BARENDREGT [81].
Let Aw be the extension of the pure A-calculus, or A for short, with the constants =, 7ty and 7

and with the following axioms (see Table 1), which express that 7, with the projections 7, and =,
is a surjective pairing.

AT

Fst: To(rXY) X
Snd: = ,(nXY) Y
SP: n(nX)(nX) = X

Table 1

The set of (possibly open) An-terms will be denoted by A, the set of pure A-terms by A.

The equational system AR is our primary interest in this paper. The foremost problem that is
posed now is to establish the consistency of AT, that is: to show that not all terms of An are
convertible to each other. As is well-known, this concern is no luxury: some early axiomatizations
of A-calculus and extensions were inconsistent. Three methods to establish the consistency suggest
themselves immediately.

1. Showing that AT is a definitional extension of A. Unfortunately, this method is not applicable.
It is easy to find A-terms P, Py, P, such that Po(PXY) = X and P,(PXY) =Y is derivable in A for
all X,Ye A; so Ax minus axiom SP (‘A-calculus + pairing’) is a definitional extension of A and
hence consistent. However, in pure A-calculus surjective pairing is not definable. That is, there do
not exist P, Py and P; in A, such that the equations Fst, Snd and SP of table 1 for P, P and P,
instead of m, 7, and =;, respectively, are derivable in A. This result is due to BARENDREGT [74].
A short proof of the non-definability of Az in A can also be found in Appendix 1 to Chapter 1 of DE
VRIJER [87].

I1. Constructing a model for Aw. There is a short and elegant model-theoretic proof of the
consistency of An via the graph model Pw of Plotkin and Scott. See e.g. SCOTT [75] or Exercise
18.5.12 in BARENDREGT [81].

III. Proving confluence (the Church-Rosser property) for the reduction system with terms AT, the
B-reduction rule and the reduction rules in Table 2.:



ArC

Ty To(nXY) - X
3L 7, (nXY) - Y
o n(rX)(mX) = X

Table 2

It is clear that confluence of this reduction system would indeed entail the consistency (see
Proposition 1.7(i) ). The question whether confluence holds for this reduction system was posed in
MANN [73] (see also BARENDREGT [74]), BOHM [75] and STAPLES [75]). Following DE VRIJER
[87] we use the notation AnC to refer to the system with this reduction relation; the © stands for
‘classical’. (In KLOP [80] the system An® is called A + SP.) It seems to be taken for granted in
most of the literature that , 7t; and n° are the natural reduction rules corresponding to the axioms
for surjective pairing.

However, also this syntactic approach fails: An is not confluent. In KLOP [80] the following
counterexample is constructed. We use the An-terms

Y = (Aab.b(aab))(Aab.b(aab))
Q = (Ax.xx)(Ax.xx)

C = Y Aex.Qn(myx)(r,(cx))]
A =Y, C

Here Y is known as ‘Turing’s fixed point combinator’. The term 2 is to be perceived as an ‘inert
symbol’; a variable x (or new constant) could play the same role. The ‘typical’ reductions for these
four terms are, respectively:

YiM — MY M)

Q -5 Q

M — QIn(rgM)(n, (CM))]
A — CA.

Let us furthermore introduce the abbreviations 0 = CA, 0'=Q0, 0" =C0'. By M | N we denote
that M and N have a common reduct,i.e. 3P M — P & N — P.

2.1. PROPOSITION. (i) 0 — 0O'and 0 — 0",
@) not o' 4 0",

PROOF. (i) We have

A — CA = Q[r(myA)(w,0)] = Qn(my0)(m;0)] — O



Deleting the first part of this reduction we have CA = 0 — 0'. Furthermore, since A — 0O, also
CA=po0 —» Co'=sD".

(ii) We give an intuitive argument. Note that:

o'l o )
0' 4 QIn(my0)(m 0] S0y
0 D)oY e
D' ¢ D".

Here < M is obvious. The other direction will not be treated here in full detail; a proof sketch is as
follows: since O' starts with the inert symbol Q, and 0" does not, the best way to find a common
reduct seems to be to perform the typical reduction

0" — Qn(my0")(%,0")].

The equivalence ) holds since both 0' and Q[r(r,0")(rt; 0")] start with €2, which, as it is inert,
can be removed. As t0 &3y, this is also obvious, noting that no reduct of 0" starts with 7 as first
symbol.

So, in order to find a common reduct for O and n(r,0")(,0"), the terms O', 0" must be
brought ‘in balance’ to make the n°-rule applicable; but that is the original problem. So the proof
attempt is circular. O

The precise proof of part (ii) of the proposition can be found in KLOP [80]. For another
counterexample to the confluence of An® see HARDIN [86]. The following theorem summarizes the
salient facts about An®.

2.2. THEOREM. (i) ArC is not CR.
(ii) A is not NF.

PROOF. (i) This is Proposition 2.1. For (ii) we use again the terms defined above. We further
abbreviate I = Ax.x and <M> = Ax.xM; so <M>N — NM. Now

T(My<O>)(my<0>)(Aal) = 1,
and also, using Proposition 2.1(i),
n(n0<|:|>)(n1<|]>)(?\a.l) — n(n0<n'>)(n1<u">)(M.I).

Due to the irreversible divergence of O into 0' and 0", the last term however does not reduce to L
Hence NF does not hold. O



3. Unique normal forms for a related system

We saw in Section 2 that the system An® is not Church-Rosser, and a closer analysis reveals that
the main obstacle in an attempted CR proof results from the ‘non-left-linearity’ of the rule n°: the
metavariable X occurs twice in the n°-redex m(mpX)(m,X), thus causing the redex to be unstable
under reduction in one of the X’s. (Le. if X — X" then the redex m(m X)(m;X) ceases to be a
redex after the reduction step n(mgX)(m;X) — m(meX")(n;X).) Another complication lies in the
ambiguity of the rules of An: the rules 7, and % and n; and =€ overlap. E.g. nty(n(myX)(n;X))
reduces 10 X in two different ways: by applying rule ©; on the whole term, or by applying rule
n€. There are also some other types of overlap, which are easy to find.

As the factor of non-left-linearity was diagnosed to be the most serious one, it was proposed to
isolate this phenomenon (by Hindley, see BOHM [75] or STAPLES [75]), by studying the extension
A" of A which results from adding a single constant & and the following simplified form of the
nC-rule:

&h: XX - X.

The system Adhis investigated in KLOP [80]. It was found there to be one of a few related systems
which lack the Church-Rosser property, but nevertheless satisfy UN. The counterexamples to the
Church-Rosser theorem for those systems are all along the lines of the one for An® described in
Section 2. In BUNDER [85] certain quite general conditions are formulated under which the
extension of the A-calculus with a rule of the form 8XX — A, where A is a A-term possibly
containing the metavariable X, lacks confluence.

The question of UN for An® remained open in KLOP [80]. It can now be settled on the basis of a
result from DE VRIJER [87], which allows the reasoning for UN in A" to be transferred to An®. In
this section we first present the proof of UN for A3™. The results for AnC are covered in Section 4.

Let Ad be the equational variant of AS". That is, A has the conversion rules:

B: (Ax.M)N = [x:=N)M,
o: 0XX =X.

(Here [x:=N] is the usual substitution operator.) Then the reduction rule 3" 8XX — X can be
conceived of as a restricted form of the more liberal conditional reduction rule:

3t SXY > X if A8+ X=7Y.

(The superscript ! stands for ‘left’.) In contrast to 3%, this rule is stable under reduction: a
descendant of a &§-redex is still a 8'-redex. It is easy to prove that the system AS! (the rule 8! in



combination with B) does satisfy the Church-Rosser property, and hence also UN. Note by the
way that the conversion relations generated by the one step reduction relation of AS" and that of AS!
are the same, viz. the ‘=" of AS.

3.1. REMARK. In DE VRIJER [87] it is pointed out that the system A8 which is obtained by
extending AS! with the rule

5 XYY if A6+ X =Y,

is also CR. The reason is that under this further extension of reduction the convertibility relation
that is generated remains the same: a common reduct of A3-convertible terms can be found already
by using only B- and 8!-reduction.

3.2. THEOREM. AdM satisfies UN.

PROOF. Since UN for A8! is an immediate consequence of CR, it will do to show that the normal
forms of A and A8! coincide. Now nf(A8) < nf(A8") is an immediate consequence of the fact that
the reduction rule & is a mere restriction of 3'.

For the converse inclusion assume N € nf(A8"). We use induction on N to show that
N e nf(A3Y). Suppose N does contain a 8-redex 8XY. Then by the condition on rule 8! we must
have Ad - X =Y. And consequently, by the induction hypothesis applied to X and Y and UN for
A8l, even X = Y . This already contradicts the assumption that N was a Ad"-normal form. 0

The above method does not work for An® without further ado. It will be instructive to try this
out by first devising a system An! and then attempting to prove CR for it.

4. Analyzing An: second approach

The syntactic consistency proof of An in DE VRIJER [87] makes use of a modification of the
reduction relation of An°, bearing some resemblance to the system A8! above. The modified system
is called An'%; to contrast it with AnC its one-step reduction is denoted by > (with reflexive transitive
closure >). Note that in the definition of the rules of An¥, the convertibility relation ‘=" of A,
defined in Section 2, is assumed.

4.1. DEFINITION. The set of terms of the system An" is A7; its one-step reduction relation > is
generated by the reduction rules given in Table 3.
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)mlr

B: (AxMN > [x:=NIM
Ty: (X X)) > X

T (XX > X,

1: (meX)Y > X ifAnkmX=Y

r: nY(mX) > X if AnkmX=Y
Table 3

Here ‘1’ and ‘r’ stand for ‘left’ and ‘right’. Again one readily verifies that the equivalence relation
generated by > coincides with the convertibility relation ‘=" of An. So there is no need to
distinguish conversion in Ax!" (or An° ) from conversion in Azx. Note that the rules ‘1’ and ‘r’ both
imply the rule n°: n(nyX)(n;X) >X .

The following definition is needed for stating the main result on Arlr,

4.2. DEFINITION. By ‘=’ we denote the least equivalence relation on A satisfying the clause
Xy=Y0 X, =Y, = C[nXyX,]= C[rY¥,Y,], for all ‘contexts’ C[ ].

4.2.1. EXAMPLE. One has e.g. ny(n((Ax.x)y)z) = ny(nyz), and Ay.n((Ax.x)y)z = Ay.myz, but not
(Ax.mxz)y = myz.

In effect, = disregards replacement of occurrences of subterms in the scope of a © by convertible
ones. Since there are no n’s there, on A the relation = is just syntactic identity (=).

Now in DE VRUIER [87] the Church-Rosser property for A is established modulo =, that is, in
the form of the following theorem. The proof is rather complicated and we will not go into any of
its details here. Instead, we show at once how this theorem can be used for inferring the
consistency of An and the conservativity of Ax over A; and, moreover, for establishing UN, both
for Al and A,

4.3. THEOREM (CR/=). If A+ M = N, then there exist =-equivalent Qy and Q,, such that
M2QyandN2Q,. O

- N

v

U

Figure 2
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4.3.1. EXAMPLE. An instructive test case for this theorem is the counterexample to confluence of
An® in Section 2. See the terms O', 0" there. Obviously, Ax - 0' = 0". Now there are indeed
converging reductions as follows:

0'=Q02=2Q0%
0" 2 Q[n(m,0)(r, 0")] >, Q0"

The first reduction is also possible in AxC; the second is not, namely as regards the > -step, which
is justified in An' because An F my0' = my0". Remarkably, we find an ‘exact’ common reduct
Q0" and not merely one modulo =. (Cf. question (iii) in Section 5.)

4.4, THEOREM (DE VRIJER [87]).
(i) Am is a conservative extension of A, i.e. if M,N € A, then \An+ M=N = A+M=N.
(i) Aw is consistent.

PROOF. (i) Assume A + M = N for M,N € A. Find Q and Q, as indicated in the statement of
Theorem 4.3. Then, as 2-reduction cannot introduce constants which were not already present, all
terms on the reduction sequences M 2 Q, and N 2 Q; must be in A, in particular 0,0, € A.
Hence the reductions M = Q, and N 2 Q, are B-reductions and Q,=Q;.So M and N are
convertible in A as well. :

(ii) Immediate by (i) and the consistency of A (see Proposition 1.7(ii) ). O

4.5. THEOREM. An' satisfies NF and UN.

PROOF. By Theorem 1.3 it suffices to prove NF. We must verify that for normal forms N with
M = N, one has also M = N. This will be accomplished by induction on the length of the normal
form N. First notice that, since N is a normal form, the diagram in Figure 2 here boils down to the
diagram in Figure 3.

N

Figure 3
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Let P have the form
P = ..1XiY|..1XpY,...... XY, ...,

with all maximal occurrences of the form XY displayed (n = 0). Then, since P = N, there must be
X;’=X;and Y;"=Y; (for 1 <i<n) such that

N = ..nX,Y{ . .1nX,7,. ... nX,Y, ...

N is a normal form, hence so are the X;" and the ¥;". So the induction hypothesis yields X; 2 X;’
and Y;2 Y;’ (for 1 <i < n). Then by combining these reductions P 2N follows and, since we
already had M = P, also M > N; this is the desired result. O

4.6. THEOREM. ARC satisfies UN.

PROOF. (The proof runs parallel to that of Theorem 3.2.) We show that the sets of An®-normal
forms and of An!f-normal forms coincide: nf(An®) = nf(Axn!T). Then the result follows from
Theorem 4.5 with the fact that the conversion relations of An¢ and An!T are the same. Of course a
An!'-normal form is also a An-normal form, for the one step reduction relation of AnC is a
restriction of that of An™.

For the converse assume N to be a An®-normal form. By induction on N we show that N cannot
contain a An!-redex. Suppose it does. It must be an 1- or an r-redex, say an l-redex n(nX)Y. Note
that X, being a subterm of N, is itself a An°-normal form too and cannot be of the form ©X,X;
therefore also 71X is a An®-normal form, and it follows by the induction hypothesis that both ;X
and Y are An'T-normal forms. Moreover, we have A3 - n,X =Y, since the condition to n(n,X)Y
being an 1-redex was supposed to be fulfilled. But then UN for An!f implies m,X =Y, contradicting
the assumption that N was a An®-normal form. O

5. Assessment and further questions

The situation that is attained is summarized in the following table. In the last column ‘cons’ stands
for ‘consistent and conservative’. Here A(M)®*® stands for typed A—calculus (with or without

M-reduction) extended with the rules Fst, Snd, SP and the corresponding constants, as in Table 1.
The results indicated by = are recent and were all derived from Theorem 4.3. (Consistency of Anlf
and An°® was already known via the model theoretic method II of Section 2, but not conservativity
of these systems over A.) The NF and UN results indicated by = are new in this paper.
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WN SN CR NF UN WCR cons

AMr™©  + + + + + + +

A - - + + + + +

Adh - - - - + + +

Amlt - - ? + + ? +

ArnC - - - - + + +
Table 4

Some questions that remain and seem interesting enough to grant further research, are the
following.
(i) The conservativity question for Anm (i.e. An extended with the n-axiom) over An.
(ii) UN for Ann® (i.e. An® extended with the n-reduction rule).
(iii) CR for Axl.
(iv) Is there a system (Am,—) such that — is a restriction of the one step reduction relation > of
AnYr satisfying the conditions a-c (and possibly d)?
(a) — is decidable,
(b) — generates the convertibility relation of Ar,
(c) — satisfies NF,
(d) - has the same normal forms as Azl (and hence Ax°).
Or, a related question:
(v) Does an effective normal form strategy exist for Amir?

Ad (), (ii). n—conversion was not considered in DE VRIJER [87]; it is not a priori clear whether the
methods used there can be extended to cover n-reduction as well.

Ad (iii). The weaker CR/= suffices for establishing the consistency/conservativity and UN results
that are indicated by ¥ in the table. These applications indicate that the reduction relation > of An!f
has at least proof-theoretical significance. Whether it can be considered as a sound computational
concept remains doubtful however. A positive answer to the CR question would shed some new
light on this matter. We know of no reason why > would not be CR. (Cf. Example 4.3.1.)

Ad (iv). This question touches on a second aspect of An!f making it suspect as a reduction system
that is natural from a computational point of view: its one-step reduction > is not decidable. This
follows from the undecidability of conversion in the pure A-calculus; for X,Ye A we have:

T(rX)(mY) >X & AFX=Y.

Notice that one-step reduction in An® is decidable all right; but for An® one has the failure of CR
and even of NF.



14

Ad (v). The existence of an effective normal form strategy would compensate for the lack of
effectiveness of >.

6. Positive results for some related reduction systems

As we have seen, obtaining confluence is highly problematic for reduction systems corresponding
to Am. We will now give a short survey of some positive confluence and unique normal form
results for reduction systems which also have non-left-linear rewrite rules or rules related to the
ones we have considered. As it turns out, certain more restrictive variants of An (or A9) yield a
better chance to get confluence.

6.1. In A(M)n™ (see Table 4) there is the restriction imposed by type constraints. Since the typed
systems are strongly normalizing and WCR is easily checked, confluence is a consequence of

Theorem 1.3 (see e.g. POTTINGER [81]).

6.2. Let CL (Combinatory Logic) be the TRS with constants I, K, S and rules as in Table 5:

CL
SXYZ —» XZ({¥2Z2)
KXY - X
IX - X
Table 5

Furthermore, CLx, CL7°, CLzY, CL§, CL3" are extensions analogous to A7 etc. Like in the case
of A, the reduction systems CLn® and CL&" are not confluent (see KLOP [80]). We expect that the
results of Section 4 hold also for the systems based on CL instead of A.

Now suppose that CL=C is restricted by requiring that 7, 7t; are unary operators and 7 is a
binary operator. This means that m,, 7t; always have an argument and that 7 always has two
arguments. (In CLn® these three operators can be thought of as having ‘variable arity’.) Call this
restriction CL7®. Confluence of CL~r° is an immediate consequence of the result of TOYAMA [87]
that confluence of TRS’s is preserved under disjoint sums. For A an analogous statement holds,
but then the extra restriction must be made that the arguments of the three operators are moreover
closed terms (see KLOP [80]). Similar facts hold for 8, & instead of &, ©° respectively.

6.3. In CHEW [81] it is shown that TRS’s including non-left-linear reduction rules have unique
normal forms, provided the left-hand sides of the rules satisfy a suitable ‘non-overlapping’
property. A corollary is that CL3" has the UN property; this result can also be obtained by a proof
analogous to the one we gave for A" (Theorem 3.2).
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A second application of Chew’s theorem is the unique normal form property for CL plus
applicative ‘parallel if’, that is, with three extra constants C, T and F (for ‘conditional’, ‘true’ and
‘false’ respectively) and rules

CIXY - X
CFXY »> Y
CZxx - X.

It is explained in CHEW [81] that this case is essentially more complicted than the former one; the
comparatively simple method we used for CL3" would not work now.

The system CL plus applicative ‘parallel if* is not confluent (KLOP [80]). In contrast it should
be noted that the confluence of CL plus ternary ‘parallel if’, with rules

if Tthen Xelse Y —» X
if FthenXelse Y —» Y
ifZthen X else X — X,

follows by the main theorem of TOYAMA [87] again—compare the case of CLn;° mentioned in 6.2
above.

6.4. A-calculus with Church’s d-reduction is the extension of the reduction system A with the
reduction rules

0XX —» 0  if Xisaclosed fd-normal form
XY »1 if X, Y are closed Bd-normal forms and X # Y.

Here 0, 1 can be taken e.g. as Axy.x and Axy.y respectively. A Bd-normal form is a term without
B-redexes and without subterms of the form 8XY. In MITSCHKE [77] this reduction system is
shown to be confluent. A proof and generalizations can also be found in BARENDREGT [81] and
KLOP [80].

6.5. (To answer a question of J.P. Seldin, personal communication.) Related to the system with
Church’s 6-rule is the variant of An® which one gets by restricting the n°-rule n(nyX)(n,X) — X
to cases where X is a closed An®-normal form. It is not hard to prove that B-reduction commutes
with the my-, 7¢-, and restricted n°-rules. By the Lemma of Hindley & Rosen (see e.g.
BARENDREGT [81]) confluence of the whole system then follows from confluence of -reduction
and confluence of the reduction relation generated by the other rules.
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