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II

Monadic and polyadic quantifiers
Standard generalized quantifiers are of the unary form
Qxe ¢ (x),

with a set-theoretic interpretation of the type '[¢] € Q'.
Polyadic quantifiers generalize this to higher arities:

Qx1...X 00 (X1,..0Xp)-

For instance, the following binary form defines the set of all transitive binary
relations: '

Qxyed(x,y) := VXVy(0(x,y) > Vz(¢(y,2)—>¢(x,2))).

The linguistic uses of the unary notion (introduced in Mostowski 1957) have
been amply demonstrated in the well-known trilogy Barwise and Cooper 1981,
Higginbotham and May 1981, Keenan and Stavi 1986. Recently, however,
linguists have also turned toward the more general version (due to Lindstrom
1966), witness Keenan 1987b and May 1987. This note addresses two issues
concerning this new development: its empirical motivation, and its theoretical
properties.

Empirical evidence

Leaving aside such technical examples as the above one, is there any
evidence for higher polyadic quantification in natural language? This is one
central empirical question to be answered.

One somewhat trivial example is induced by the basic case itself:

e [terated unary quantifiers
Iteration creates complexes such as

Q1xeQyy*0 (x,y)
(as in "every boy loves a girl”).

But of course, treating this as a binary complex per se ignores the crucial Fregean
insight, which put an end to traditional ad-hoc theories of 'multiple
quantification' (see Dummett 1973, chapter 1): such complexity can already be
accounted for by a compositional use of the meanings of unary quantifiers.

These iterated cases gain interest, however, with certain additions; such as
in Keenan's example

"every boy loves a different girl".



Here, the meaning is no longer a simple decomposable V3, as the dependency
expressed should now be one-to-one. Keenan takes the latter to be a genuine
binary generalized quantifier.

Still, one might prefer to treat "different" here as a higher-order operator on
an ordinary unary iteration - reflecting our intuitive ideas about the compositional
structure of this sentence, as being a '‘connected’ (or 'frozen') iteration.

Further examples of this phenomenon arise through
e [teration with anaphoric links

Unary iterations can be 'tied together' by anaphoric links. Again, one might
prefer to analyze such cases as (higher-order results of transformations applied
to) instances of the basic unary pattern. This will work, e.g., with

"every boy loves a girl-friend of his ";

using the unary predicates 'boy' and 'love a girl-friend of oneself'. But it will not
work, apparently, with the Bach-Peters type sentences considered by May:

"a boy who loved her left the girl who despised him ".
As May argues, we seem to need quantification over couples of individuals here

to get the correct reading.
A related perspective is found in Fenstad et al. 1985:

e Parametrized unary quantifiers
The donkey sentence
"every farmer who owns a donkey, beats it”

can be analyzed as a parametrized unary case 'every A B' with a parameter x:
(every farmer who owns a donkey x)yey beats (x).

What should this ‘parametrization' mean? One idea is to say that every actual
value supplied for x turns this into an ordinary unary case, i.e.,

Vx:Vy((farmer(y) & owns(y,x) & donkey(x))—beats(y,x)).
But, this fails with a sentence like
"most farmers who own a donkey, beat it ":

which does not mean 'for all donkeys, for most farmers...". The better strategy
seems to consist in using couples again, and hence polyadic quantifiers:

'every xye...." 'most xye...".
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Digression. Of course, problems remain on the latter reading too - as the
'most'-sentences now need not imply (the unary reading of)

"most farmers who own a donkey, beat a donkey":

which does seem to be a logical consequence of the former sentence, whatever its
construal. But, this is not our main concern here. [
As a final example, consider another case studied by May:

® Resumptive quantifiers
The sentence "no one liked no one" has a reading of the form

No xyeo (x,y)

expressing that no couple (x,y) belonged to [¢]. Now, since neither of the two
iterated unary readings for the 'mo'-quantifiers has this meaning, the binary
approach seems necessary here.

Note, however, that there are unary reductions here in a broader sense.
Thus,

No xyed (x,y) < No xedyed (x,y)

One xye0 (x,y) < One xedyed (x,y) & One yedxed (x,y).
We shall return to this phenomenon below.

Summing up, the claim seems justified that
(1) there is a good case to be made for the necessity of higher (non-unary) types
of generalized quantifier in natural language;
(2) but, many of these cases are still similar to the standard ones, in that they
amount to treating tuples of individuals like individuals themselves.
To get yet higher cases, one should look at genuine branching quantification (if
that exists), or perhaps at Keenan's type of example, which does not reduce to
ordinary quantification over tuples (see below).

Logical properties

The preceding discussion at least motivates taking a look at the logical
properties of polyadic quantifiers. For convenience, and practical importance, we
restrict attention to the binary case .

I11.1 General constraints

Already on a universe with n individuals, the class of potential binary
generalized quantifiers is quite large. Categorially, the type of Q in the schema
Qxye¢ (x,y) is

((e,(e,0)).0)
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and the size of the corresponding denotional domain is 22(n ) . But, there are
some plausible constraints: as was already the raison d'étre for the theory of the
unary case (see the survey Westerstdhl 1986).

e Logicality

The general concept of Logicality applies here too (cf. van Benthem 1986,
chapter 3): as invariance of Q under permutations of binary relations induced by
permutations of the individuals . For such permutations 7, one requires

ReQiff t[R]eQ,
for all binary relations R.

(Thus, one retains the 'arrow pattern’ of the relation, while disregarding the
specific individuals occurring at their ends.) To see the effect of this requirement,
one must determine the relation

R=S,

defined as 'S=n[R] for some individual permutation 7'.

For unary relations R,S, this just amounts to equicardinality. For binary R,S, the
behaviour of = is more complex:

Example . With n=2, = has 10 equivalence classes.
Digression . There is a logical characterization of =:

Proposition . The following are equivalent on a finite universe M:
i) R=S
i) MR =0oX)iff M,S = o(X), for all first-order formulas ¢ in one
binary predicate letter X and identity
iii)  ii) only for universal positive first-order G.

Proof . By elementary model theory. I
But this result still does not give one single numerical invariant matching =. [

To continue, a logical quantifier Q can now be fully specified as a set
of =-equivalence classes accepted by it. Examples of such logical binary
quantifiers are
1) all iterations of logical unary quantifiers,
2) all resumptive quantifiers reducing to logical unary quantifiers over couples,
but also
3) such cases as the earlier-mentioned collection of all transitive binary
relations.

Behind all these cases lies a general result (see van Benthem 1986, chapter 7.5):



Proposition . Any predicate over binary relations which can be defined by means
of some formula of Type Theory (being a full lambda language with
equality) using logical parameters only, is itself logical.

A converse holds too. Every logical polyadic quantifier on some fixed finite
universe is definable in the above Type Theory. (See van Benthem 1987 for a
general connection between logical invariance and type-theoretic definability.)

e Special Invariance Properties

There are also stronger forms of permutation invariance. One of them can
be used to delineate the earlier important subclass of quantifiers over tuples (but
otherwise 'first-order'). Here, one requires invariance for permutations of
couples of individuals. Thus, essentially, one can only express conditions on the
cardinality of the set [ ¢]. As every permutation of individuals induces a unique
permutation of couples (though not conversely!), this indeed strengthens the
earlier kind of logicality.

For a non-example, consider the earlier-mentioned Keenan quantifier
‘every A R a different B'. It holds in the left-most situation depicted below, but
not in its companion (arising from a permutation of couples):

® —md @ Co —) ®
A B A B

L X o °

Other, intermediate types of permutation on couples may be used as well to
describe important special classes of polyadic quantifiers. Examples can be found
in Higginbotham and May 1981, and De Mey 1987 (on reciprocals ). Here is an
illustration from the former paper. Permutations of couples may be introduced by
individual permutations, as in the definition of Logicality:

7(a,b) = (n(a), n(b)).

But also, independent permutations might be allowed for the two argument
positions:

n(a,b) = (mq(a),my(b)).

Invariance under such duplex permutations defines a new class of quantifiers, in
between the logical ones and the resumptive cases.

Example . A R.3 xRxx is logical, but not duplex-invariant.
A R.3 xVyRxy is duplex-invariant, but not resumptive.
A more complex example of this kind would be:



A R.Y xVy3z(Rxz A Ryz): which is not a 'unary iteration' in the sense of the
following Section. [

The example also suggests a more formal way of registering the effects of
special invariance properties; in terms of their behaviour on standard first-order
statements about the relation R. As was noted above, all such statements are
logical. But beyond that, restrictions appeared. For instance, is there a
perspicuous syntactic characterization of those first-order formulas which define
duplex-invariant polyadic quantifiers?

e Conservativity

Eventually, the above discussion will have to be generalized to restricted
settings: for reasons analogous to those governing unary quantifiers (where the
basic pattern is (QA)B or Q(A,B)), as well as some new ones, witness the
examples in Section IL.

For instance, resumptives such as

"no A likes no B"
call for a representation somewhat like this:

AB
No * L(x,y)
Xy

And, the earlier-mentioned donkey sentences are even explicitly of the form
All xSyeR(x,y).

So, in general, the restriction itself can be a relation on the tuple of relevant
variables (cf. Higginbotham and May 1981).

Remark . Keenan 1987a shows that the restriction in the first type of example
(being technically of type (1,1,2)) cannot be naturally reduced to that in the
second (which is of type (2,2)). The obvious move: replacing A,B by the binary
relation AxB, has certain pitfalls. 0

There is room here for a generalization of such 'unary' topics as
conservativity (see Keenan and Stavi 1986), and the interplay of restricting and
predicative argument positions generally. Van Eyck 1987 presents a first attempt.
For instance, in the last-mentioned case of restricted binary forms Q (S,R),
Conservativity becomes

Q(S.R) iff Q(S,RNS) ;
and Logicality likewise



Q(S.R) iff Q(n[S],x[R])

for all individual permutations 7.

And similar definitions are possible for the case with two unary restrictions;
where, e.g., Conservativity assumes the form

Q(AB,R) iff Q(A,B,RN(AxB)).

Nevertheless, for reasons of technical convenience, we shall stay with the
simpler unrestricted forms in the following Section.

II1.2 Unary Definability

Given the interest in the border-line between unary iterations and essentially
polyadic quantifiers (compare various reductions discussed in May 1987), the
following question arises:

Is there also some kind of invariance characterizing the subclass of binary
quantifiers definable by unary compounds?

Indeed, there is.

We start with a

Definition . A quantifier Qxyed(x,y) is a unary complex if it can be defined as a
Boolean combination of forms

Q;xeQ,y*d(x.y),
with Q,, Q, logical unary quantifiers.
First, we isolate an invariance property of such complexes.
Definition . Set R~S if, for all individuals x,
IR I=1s,|.
Here, Ry stands for {y | x,y)eR}.
A quantifier Q is right-oriented if it is closed under the relation ~.
Proposition . Unary complexes are right-oriented.
Proof . For all individuals x, Q,y®Rxy holds iff R € Q,, iff (by the definition of
R~§, and permutation invariance for Q,) S .€ Q,, i.., Q,y® Sxy. But then,
Q,x*Q,y*Rxy if and only if Q1X°Qz}3:°SXY- a0

As an application, note that the earlier Transitivity is not monadically
definable - witness the following counter-example (where R~S):



G [ J ] O [ ] [ ]
h
R S
(transitive) (non-transitive)

Remark. This result can be extended to include converse forms of definition
(B x0Q2y0Ryx by using an additional requirement concerning predecessors:

]R | '= (E g., Transitivity will still remain undefinable, as the above R,S
also satlsfg(/ this additional requirement.) The relevance of this extension is shown
by the earlier unary definition given for the binary quantifier 'One xyed(x,y)'".

Is the above condition also sufficient for unary definability? One illustration

is provided by the earlier resumptives. ’The e are all right-oriented. (The reason is

this. If r | for all x, then |R S1.) And in fact, they are all
definable by unary complexcs - at least locally in each finite universe.

Example . l R I =2, in a universe with 3 individuals.
A defining form is this (with 'Pi' for 'exactly i'):

(P1xeP2yeRxy & P2xe—dyeRxy) Vv
(P2xePlyeRxy & Plxe—dyeRxy).
This observation inspires the following general result.

Theorem. On a finite universe, a binary quantifier Q is definable by some unary
complex if and only if
i) Qis logical (i.e., permutation-invariant), and
ii) Q is right-oriented.

Proof . 'Only if'. This follows from the preceding observations.
'If'. Suppose that Q satisfies i) and ii). Let there be n individuals. The
following unary complex defines the quantifier Q:

WPniXOPiyOny ,

ReQ

where the conjuncts enumerate all sizes |R |occurrmg in R with their exact
multiplicity.

To show that this works, it suffices to check that, if a relation S satisfies
this formula, then it must belong to Q. Now, S will satisfy some disjunct, and
hence it has the same 'R -distribution’ as some Re Q. Let T be any permutation
of the individuals sendmg the n, x having exactly i S-successors to those having
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exactly i R-successors. Then we have
S=n[S]~R.
And so, by i) and ii), S must be in Q too. i

The preceding definability result is only local, in some specific universe.
But it can probably be extended to provide a characterization of unary definability
uniformly in all finite universes.

On the other hand, refutations by this method are strong: in that they even
refute unary definability within one specific model. Another illustration of this
phenomenon is the Keenan quantifier, read technically as

'Vx3dy Rxy & R contains a 1-1 function with the same domain'.

The latter statement is true in the following situation (take the identity function):

Q

b

Gi——D

a C

But it fails in the next situation; although the three points there have the same
numbers of successors and predecessors (i.e., ~ holds):

G0

No one-to-one function can be selected, as there would be a clash in the
values for b,c.

Incidentally, the Keenan quantifier is not first-order definable in general -
and it is not even first-order definable on the finite universes (as may be proved
by a Fraissé-type game argument).

Remark . Keenan himself (personal communication) doubts the above
higher-order reading for his 'different’ sentence. But the pictorial argument also
seems to go through for a whole range of other meanings for this quantifier
combination.

Keenan 1987 also studies the question of unary reducibility. His notions
and results seem somewhat different, however, from those presented here;
involving various technicalities.
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Addendum. In the meantime, Sjaak de Mey has suggested that the analysis given
here is reminiscent of a certain type of permutation invariance found in
Higginbotham and May 1981. Call a permutation of couples dependent duplex if
it can be written in the following form, allowing movement of the second
argument in depence on the first:

m(a,b) = (p(a),q,(b)), o
where p is a permutation of the individuals,
and all g, are injections defined on R, .

The exact correspondence is as follows.

Proposition . A binary quantifier is definable by some unary complex if and only
if it is invariant for dependent duplex permutations.

Proof. It suffices to show that dependent duplex invariance is equivalent to
logicality plus right-orientation. From left to right, logicality is the special case
where all g, equal p. Also, right-orientation follows by letting p be the identity
map. From right to left, note that

R ~{(a,p 0 q,(b)) | (a,b)eR} (=R*)

and

TR*)= ((p(2),4a(v) | (a.b)eR).
Then apply right-orientation and logicality. i

Ordering and scope

Although unary iterations are not essentially polyadic, they do raise some
interesting questions of their own, beyond the standard unary framework. For
instance, several authors have studied scope and order of operators in this
setting. Many expressions show a certain freedom of behaviour here, which has
intrigued linguists. A few examples will illustrate this emerging trend.

e Proper names

Zwarts 1986 considers generalized quantifiers which lack scope with
respect to Boolean connectives . Notably, proper names show a collapse of
sentence negation and predicate negation:

"Mary (doesn't complain)" <> "Not (Mary complains)".
This property is called 'self-duality' in Lobner 1987: Q = —Q—. It seems already

so strong that it might completely determine the proper names. But, this is not
quite true.
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Example . Consider a universe {1,2,3} with a quantifier Q={{1},{2},{1.,2},
{1,2,3}}. Then Q is self-dual without even being a filter - and hence it cannot be
the denotation of any proper name. I

But then, proper names also satisfy distribution over conjunction or
disjunction:

"Mary (complains or worries)"<"(Mary complains) or (Mary worries)".
Using a standard characterization of principal ultrafilters, Zwarts concludes that

Proposition . The proper names are precisely those generalized quantifiers
lacking scope with respect to Boolean connectives.

e Scopeless quantifiers

Another notion of scopelessness arises with iterated unary quantifiers in
Zimmermann 1987, who considers interchangeability of a quantifier Q with all
generalized quantifiers Q', in the schema (with either pure or restricted
occurrences of Q,Q":

QxeQ'yeRxy iff Q'yeQxeRxy.

Again, proper names are the prime example here - and Zimmermann proves a
converse too:

Proposition . The scopeless quantifiers are precisely the proper names.

To illustrate the kind of reasoning involved, we give a simplified version of
his proof. We derive scopelessness with respect to Boolean operations - which
reduces the proposition to the preceding result.

Negation . The following semi-syntactic calculation suffices:

-XeQ iff Qye—Xy iff Qyedz(z=z & —Xy) iff
Qy3z—e(z#z vXy) iff(!) Jz—eQye(z#z vXy) iff Fz—eXeQ
(as Aye(z#z v Xy) = AyeXy) iff XeQ.

Disjunction . Let {X; lie I} be a family of subsets of the universe. Using
the Axiom of Choice, select a subfamily {X | jeJ}, together with a set Y of
representatives y.(jeJ) such that i) the union of &16: X equals that of the X, and ii)
each y. belongs to a unique X (for jeJ). Then, define a binary relation 23 among
individuals as follows:

Ryx if y=y; for some je J such that xe X;.

Note that xe U{X, | ie I} iff xe U(X; | j J} iff Jye YoRyx.
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Now calculate as follows:

U(X,lieT}e Q iff Qxedye YeRyx iff(!) Jye YoQxoRyx iff
Eije YOXje Q(as XXORij defines Xj) iff Jjel OXje Q iff JieleX,eQ.

As to the latter equivalence, one half is obvious, since JCI. Conversely, starting
from any given i€, the selected family {Xj rje J} can be chosen so as to contain
X

io

Remark . In a sense, proper names are not genuine generalized quantifiers,
having been raised from type e to type ((e,t), t) (cf. van Benthem 1986, chapter
7). Thus, their freedom of movement in the latter category may be really a sign of
'low status'. It would be of interest to know if something similar holds in
general.

Type raising has other uses in this setting too. For instance, in Keenan
1987a, the question is studied which polyadic quantifiers can be viewed as
natural lifted versions of monadic counterparts. Notably, Noun Phrases in direct
object position have a type ((e,(e,t)),(e,t)), which is derived from that of their
occurrences in subject position, being ((e,t),t). A short survey of possible
lambda-normal-forms for this transition yields only two possible outcomes:

AX (e, (e,1)*Me*((e,1),n X3 ,
AX(e (e.)"Me*S((e.0),5) Mg X))

These two formulas represent the usual analysis (with small scope for the direct
object Noun Phrase), as well as a passive variant thereof. Of course, there may

also be further 'emergent' readings, not obtainable via this mechanism of
generalization.

o Self-commuting quantifiers

Finally, a special case of scopelessness in the above sense is displayed by
the self- commuting quantifiers of van Benthem 1984:

QxeQye*Rxy <> Qy*QxeRxy.

Prime examples are the existential and universal quantifiers. E.g., "everyone
loves everyone" is equivalent to "everyone is loved by everyone". (So, for these
quantifiers, Passivization is a meaning-preserving transformation. Another
linguistic aspect of these quantifiers seems to be that they do not allow genuine
branching with respect to themselves.) Non-examples are already such first-order
quantifiers as exactly one , at least two. The matter is studied further in
Westerstdhl 1986a, who proves this

Proposition . The only (upward) monotone self-commuting quantifiers are all ,
some, true and false.

Proofs of such results have a more combinatorial flavour than those in the
standard unary theory. This is already shown in the following

Example. On a universe with 2 elements, exactly one is still a self-commuting
quantifier. 0
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By a somewhat laborious calculation, Westerstahl's result can be improved
to the following

Proposition. All, some, true and false are the only self-commuting continuous
quantifiers.

Instead of a proof, here is an
Example. The downward monotone ('persistent’) quantifier Q = at most k is not

self-commuting.To see this, consider the following picture of a universe with n
indivuals (n>k):

1 k k+1 n
1 k k+1 n

Here, 1...., k have no R-successors; while, for i>k, (i,i),...., (i,i-k) € R (i.e.,

k+1 R-successors each). It is easy to check that i) QxeQyeRxy, while ii) not

QyeQxeRxy. (Ad ii: 1,......k have at most k R-predecessors - e.g., k is

preceded by k+1,...., k+k -, but so does n, which has only one predecessor). il
Finally, self-commuting quantifier pairs form a special case of what may be

called converting binary quantifiers, satisfying the condition

v
QR) iff Q(R) (with R the converse relation of R)

This notion has agajn interesting connections with earlier ones from Section II.
For instance, since R satisfies the same numerical conditions on its set of pairs as
R, we have:

If a binary quantifier is invariant for permutations of pairs, then it is
converting.

The converse does not hold in general; witness the case of

QxyeRxy := Vxy(Rxy—Ryx).
But, for self-commuting iterations QxeQy, the two notions may actually be
equivalent.

Here is where one can ask for a full-scale extension of the standard theory
of unary generalized quantifiers to iterated, and eventually to all polyadic cases.
Here is also where we stop.

A Generalized Perspective

Quantifiers form only one special type of expression. Nevertheless, their
study often brings to light semantic phenomena of wider significance across
natural language. One way of formulating these is in a Categorial Grammar, with
an associated Type Theory (see van Benthem 1986, chapters 3 and 7).
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For instance, does the iterative versus complex distinction drawn in the
above also make sense with other categorial types of expression? The transitive
verb pattern studied earlier involve the following types:

(u,v) (3,x) (y.2)
NP1 TV NP2

Here, the functors NP1, NP2 should be able to combine with the TV argument in
any order, with the same type of outcome. Therefore, they must have identical
types. Moreover, assuming that the final step will be an ordinary application, and
the first step a composition (‘parametrized application'), there can be only general
pattern which fits:

((s,y),y) (s,(s,y)) ((s,y),y).

Unfortunately, no other contexts of this kind seem to occur in natural language.

But then, we may also consider more general contexts, where operators
interact which are quantificational in some way. For instance, we consider the
two adverbial modifiers in the complex verb

"often walk a mile"
((e,1),(e,t)) (e, ((e,),(e,1))

There are two readings here which arise by iteration: often (walking a mile)
versus (often walking) a certain mile. Is there also a truly complex one: say, like
the cumulative reading of "many hands lifted eleven players", where all those
hands together lifted the winning team of the Soccer League? The answer appears
to be negative. And similar negative, or at least inconclusive outcomes arise in
combinations such as

"write five letters to-day"

(e.(e,t) ((e,0),0) ((e,0),(e,0)

Here, the cumulative reading actually con-incides with one of the iterated ones.
And, replacing "to-day" by a more quantificational expression will actually force
us to make any intended cumulation morphologically visible:

write five letters in three hours".

Thus, the question as to linguistic generalizations of our initial situation remains
open. An alternative remains, of course, to study the more general role of
compounding particles, such as "in". Indeed, this would already be relevant for
quantifiers themselves - since there too, non-iterative readings often involve such
particles:

"three boys fogether ate all plums".

There are also more general mathematical questions raised by the earlier
account of quantifiers. Quite generally,

Which items in some type of expression are already definable using only
items from lower types?
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As it stands, this question is still rather vague. But, it can be made more precise
using suitable notions of 'definable' and 'lower'. (See van Benthem 1985,
chapter XIX, for one particular general version.) Notably, it makes sense to think
of definability as usual, by means of applications and lambdas.

Example: Reducible Noun Phrases.
Which items in type ((e,t),t) are definable using only items from the lower types
(e,t), e and t? Consider any definition for such an item, possibly with parameters.
Without loss of generality, the definition can be brought into a
lambda-normal-form, leaving no more lambda-conversions to be performed.
Moreover, types of variables occurring in the normal form must all be subtypes
of ((e,0), t). Then, the following facts may be deduced:
it starts with Ax,_ .., followed by an application with types (e,t) and e, or
some constant o% type t
Thus, the only candidates are:

lx(e 07 x(e NCH (the 'lifted individual' a,)
AX Xee, t) (e t)( a,) (the empty and
X (e.1)*C the universal cases)

And, even adding identity to the defining language will add no new reducible
items here. [

In this general perspective, we can also return to the earlier issue of
reducible polyadic quantifiers. By a simple calculation, the latter form a
dwindling minority in the type ((e,(e,t)),t):

2
n n n+1 n

x2% (=22 ) versus 2°

But, what if we allow the two parameters in type ((e t), t) (i.e., the unary
quantifiers involved in the reduction) to combine, not just via apphcatlon but
with full lambda abstraction, as above? Then, in principle, there are infinitely
many possibilities for schemes of definition. Still, there is a collapse to a fixed
finite number of combination modes:

Proposmon Let a, b be two items in the type ((e,t),t) of some model. The items
in the type ((e,(e,1)),t) which are lambda/application definable from these
reduce to forms AR e followed by a matrix in the following list:

i (A (XX *(—) R (x)(x))
i (=) A (Ax;(—) A ((—) R (x)))
iii (—) A (Ax;8(=) A (Ay, *(—) R (5)®)).

Here, 'A’ indicates either a or b, and '(—)' denotes an optional negation.



17

Proof. The argument again consists in an analysis of possible lambda normal
forms. These may be described in the following finite state machine:

)\R A 7\’ X A R(X) X
_. ‘e,(e,t))’ . ((e,),0) > € o (0,0 > o o —p

((ea(e7t))7t) t (e,t) t (C,t)

For further reference, we consider one particular example:

b(Akea(Ayeb(Asea(Axeb(Auea(AzeR (x)(y))..)

There may be infinitely many of these forms; and so, we must establish a
reduction to one of the cases listed above. The following sequence of steps
illustrates the algorithm which effects this:
1. a( Az ¢ R (x) (y)) is equivalent to
RE)(y) A a( {z o¢TRUE)) v (—=R(x)(y) A a( Az eFALSE)
Since both a ( Az #TRUE) and a ( Az ¢FALSE) have fixed truth values in our
model, the above disjunction reduces to one of the following, uniformly in R:

Rx)(y) , -R®x)(y), TRUE or FALSE.
Let us say R(x)(y).
2. b (Au eR(x)(y)) again reduces to one of the forms
R(x)(y), —-Rx)(y), TRUE or FALSE;

by a similar argument.
« 3. Then the Axe can attach to the first two terms, yielding Ax ® R(x)(y)
(=R(y)) or Ax e=R(x)(y) (=—R(y)), or again two constant cases.
4. Ingerted into a, this giyes one of
a(R(y)), a(—=R(y)), TRUE or FALSE. o
Now, apply similar reductions as above, distinguishing cases for a(R(y)),
etcetera, to arrive at one of the forms mentioned in the theorem. i

Thus, even with full lambda-definability, few polyadic quantifiers will be
reducible.

There are obvious generalizations of this kind of analysis to other types.
Even though these will not be undertaken here, the present Section may have
shown the importance of a more general type-theoretical view of polyadic
quantification, and the basic semantic issues raised by it.
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