Institute for Language, Logic and Information

TYPE CHANGE IN SEMANTICS:
THE SCOPE OF QUANTIFICATION AND COORDINATION

Herman Hendriks

ITLI Prepublication Series 87-09

5438338

University of Amsterdam

Institute for Language, Logic and Information
Instituut voor Taal, Logica en Informatie

TYPE CHANGE IN SEMANTICS:
THE SCOPE OF QUANTIFICATION AND COORDINATION

Herman Hendriks
Department of Philosophy
University of Amsterdam

Received December 1987 To be published in
E. Klein and J. van Benthem (eds.),
Research sponsored by Z.W.O. Categories, Polymorphism and Unification

Edinburgh/Amsterdam 1987

Correspondence to:

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) or (Department of Philosophy)
Roetersstraat 15 Grimburgwal 10

1018WB Amsterdam 1012GA Amsterdam

0. Introduction

In this paper we will try to integrate two distinct views on the relationship between
syntax and semantics, viz., ‘type-driven translation’ and ‘type ambiguity’, into a
single theory of flexible Montague grammar.

The integration of both views is a desirable matter, since type-driven translation
is an indispensable part of Generalized Phrase Structure Grammar, a highly
interesting universal theory of generative grammar, while type ambiguity has shown
its merits in the treatment of several phenomena within the field of model-theoretic
semantics. Moreover, we claim that the combination of type-driven translation and
type ambiguity enables us to account for quantifier scope and de dicto/de re
ambiguities in a way which allows us to dispense with syntactic rules of
quantifying-in (see Montague (1974)) and with Cooper stores (see Cooper (1983)),
which have been exposed to syntactic and semantic criticism, respectively.

Type-driven translation was introduced in Gazdar, Klein, Pullum, and Sag
(1985), and Klein and Sag (1985). It boils down to the introduction of a general
translation procedure instead of the stipulation of a separate semantic rule for each
syntactic rule in the grammar.

Type ambiguity has been argued for by Partee and Rooth (1983), Groenendijk
and Stokhof (1984, 1987), among others. Within this approach, the expressions of
a category are assigned meanings of (infinitely many) different types.

A brief sketch of the ideas involved in these two views will be given in section 1
and 2 of this paper.

In its original formulation, type-driven translation seems to rely on a rigid
category-to-type assignment by the grammar (witness the epithet ‘type-driven’), a
requirement which is definitely undermined by the flexible view on type assignment
held by the authors on type ambiguity. So it might be unclear how these approaches
could ever be put to use together in a single grammar. In section 3, however, we
will see that this incompatibility is only apparent. An outline of a framework
unifying both approaches, ‘Flexible Montague grammar’, will be given there.

Section 4 is concerned with a first attempt to fill in the details of this outline. A
non-directional Lambek calculus, together with the semantics given for it by van
Benthem (in, e.g., 1986), will be examined with respect to its usefulness as a
candidate supplier of derived types and meanings in a flexible Montague grammar.
It will appear that the system, in its initial (directional) version devised for syntactic
purposes, does not pass the test. The reason for this is that directional subtleties of
the calculus are lost as soon as it is applied to logical types, which are non-
directional.

3

That is why section 5 contains an alternative calculus, ‘The quantification calculus’.
This simple calculus avoids the problems that arise in applying the Lambek-van
Benthem calculus in semantics. Nevertheless, it is strong enough to account for
scope ambiguities without syntactic quantification rules or Cooper stores.
Moreover, it is able to solve problems that remained unsolved in earlier proposals.
This will become clear in the sixth section, ‘Applications’.

1. Type-driven translation

When Gazdar, Klein, Pullum and Sag (1985, henceforth: GKPS) introduced the
idea of type-driven translation, it was in fact necessity made a virtue. In Generalized
Phrase Structure Grammar (GPSG), the syntactic rules have been radically
impoverished in order to be able to capture interesting syntactic generalizations. As
a consequence, a lot of semantically significant properties of trees are absent from
the syntactic rules, and only get introduced in the transition from rules to trees.

Within formal approaches to the semantic analysis of natural language,
however, it had been commonplace to accept the strategy that for every syntactic
rule within the grammar, a corresponding semantic rule must be stated which
specifies how structures of the sort analyzed by that rule are to be interpreted. Given
the organization of the GPSG framework, this position is no longer tenable.

Therefore, GKPS replaced this ‘rule-to-rule hypothesis’ by ‘shake ’n bake
semantics’1, also known as type-driven translation.

Instead of stipulating a corresponding semantic rule for every syntactic rule, the
grammar contains a general translation procedure. The syntax defines a set of trees,
and following the procedure from the bottom upward, each tree is compositionally
interpreted. Let us consider a simple example: we assume that (i) for every lexical
item o of category C, the grammar will admit a local tree? consisting of a daughter
o, and a mother C plus its translation o', and (ii) every syntactic category is
associated with a (single) semantic type. For example: TYP(S) = t, TYP(NP) =
((e,1),t) =T, TYP(VP) = (T,¢), etc.

We interpret a non-lexical tree in the following way: given a partly interpreted
local tree t with mother C(and translated daughters (C1, 1), ..., (Cn, 00",
it is our task to determine the translation o' of the mother node. The procedure is
as follows:

1 Terms due to Emmon Bach.
2 A local tree is a tree of depth one.

4

@ if one of the daughter nodes, C;, say, immediately dominates and/or, then
apply generalized conjunction/disjunction to {a1',...,0n'} - {@i'} in order
to obtain a translation o' of type TYP(Cp),

(II) else, apply functional application in order to obtain a translation oy’ of type
TYP(Cy).

Generalized conjunction and disjunction are defined for expressions of a so-called
‘conjoinable’ or ‘relational type', i.e., a type (c1,(...,(cn,t)...)): suppose A =
{X1,....Xm} is a finite set of expressions of type (c1,(...,(cn,t),...)), then
GC(A), the generalized conjunction of that set, is

(1) chl...lxcn.[Xl(xcl)...(xcn) &.. & Xm(Xcl)---(ch)]
and GD(A), the generalized disjunction, is
(2) kxcl...}.xcn.[Xl(xcl)...(xcn) V..V Xm(xcl)...(xcn)].

In the case of functional application, (II), the daughter translations cannot simply be
considered to form a set. Sometimes, the order of application is relevant: the ‘flat’
VP give Fido Sandy ([vplv...][Np1...J[NpP2...]]) cannot translate as both GIVE(f)(s)
and GIVE(s)(f). We shall assume that the input of the translation procedure is an n-
tuple rather than a set here, the order of the functional applications being determined
by additional syntactic or morphological information (case, or word order, say).
Suppose V applies first to NP1 and then to NP2, then the application 3-tuple is V,
NP1, NP2. The functional application of an n-tuple a1',...,0tn"' (n > 1),
FA(a1',...,aapn"), 1is defined inductively for o 1 of type
(TYP(ag),(...,(TYP(an),b)...)):

(3) FA(o1,02) =a1(02)
FA(a1,...,0n+1) = FA(a1,...,0n)(0n+1)-

Of course, there is more to the semantics of the grammar than just generalized
conjunction/disjunction and functional application3, but for expository purposes we
shall restrict ourselves to these clauses in the remainder of the present paper.

3 Cf., for a more sophisticated example, GKPS (1985), pp.230-231.

2. Type ambiguity

Orthodox Montague grammar requires that every syntactic category be assigned one
single semantic type, and every expression only translations of the type assigned to
the category the expression belongs to. Partee and Rooth (1983), Groenendijk and
Stokhof (1984, 1987), Keenan and Faltz (1984), van Benthem (1986) and Partee
(1984) argue that this state of affairs calls for a change and urge the necessity of a
more flexible way of type assignment. In this literature on type ambiguity, one can
find several interrelated motivations for the introduction of multiple types and
translations for expressions. A brief survey will be given below. In this survey
(and in the sequel), the type theory will be kept extensional: i.e., s’s will be
omitted.

(A) Minimal type assignment..

Montague grammarians have the habit of generalizing to the ‘worst case’: if a
category contains some expressions that necessitate the assignment of a complex
semantic type, the other expressions of that category will have to join them. The
category will be assigned the most complex type, and the extensionality of the other
expressions is accounted for by means of meaning postulates.

For instance, John is assigned the translation AP.P(j) of type ((e,t),t), and not
simply j of type e, because the category it belongs to also contains expressions like
a policeman, and we are able to conjoin them: John and a policeman.

Likewise, an extensional expression like find, for instance, is not translated as
FIND of type (e,(e,t)), but (in effect) as ATAx.T(Ay.FIND(y)(x)) of type
(((e,1),1),(e,t)), because there are also transitive verbs like seek, which do not
denote two-place relations between individuals.

The type ambiguity approach suggests that we translate John as j and find as
FIND, and that the more complex translations be derived from the basic translations
by rule. Partee and Rooth (1983) show that this reverse strategy (derivation from
basic types instead of type-simplification by means of meaning postulates) is not
just a nice alternative, but a necessity (cf. example (5), below). There is not always
a ‘worst case’ to generalize to. Groenendijk and Stokhof (1984, 1987) add to this
that certain intuitive entailment relations are lost on the ‘worst case’ level — even if
there would be such a level.

(B) Flexible type assignment.
Expressions like and, or and not can occur in a great number of syntactic
environments. Not, for instance, can occur as sentence negation (it does not rain),

6

but also as predicate negation (everybody does not smoke). In orthodox Montague
grammar this entails that such expressions will have to be considered either as
syncategorematic expressions occurring in various syntactic rules, or as multiply
ambiguous expressions (each interpretation, moreover, occurring in its own
syntactic rule). This predicament can be avoided by defining the semantic operation
of generalized negation: if o is of type (c1,(...,(cn,t),...)), then GN(a), the
generalized negation of «, is kxc1...kxcnm[a(xc1)...(xcn)]. Thus we can
distinguish, so to speak, a meaning of type (t,t): — (used for sentence negation),
and other meanings, e.g.: AP.—(P) (predicate negation) of type ((e,t),(e,t)).

(C) Ambiguous type assignment.

This motivation is dependent on the other two. If we have ambiguous type
assignment to lexical expressions, as sketched above, why not exploit this situation
for an account of structural ambiguities? Ambiguities that come to mind are, first
and foremost, the quantifier scope and de dicto/de re ambiguities. In earlier work,
these called for the introduction of special rules of quantifying-in, which are
objectionable from the viewpoint of syntax, since they are purely semantically
motivated syntactic rules. The Cooper stores (Cooper 1983) that were meant to
replace them, in their turn met with criticism from a semantic point of view (Janssen
(1983), Landman and Moerdijk (1983)). So it would be very useful if type
ambiguity could help to account for them. For instance, if an expression like seek
were to have ATAx.T(Ly.SEEK(AP.P(y)(x)) of type (((e,t),t),(e,t)) among its
derived translations, we would be able to account for the de re reading of (4)
without quantification rules or Cooper stores:

4) John seeks a unicorn

But there are also structural ambiguities involving the scope of coordination, which
could be treated with the help of type ambiguity. Partee and Rooth (1983) note that
it is possible to obtain the de dicto ‘wide scope or’-reading (the reading suggested
by the continuation (“...but I don’t know which’) of (5), once you allow terms like
a fish, which have as their basic translation A(FISH) of type ((e,t),t), to have a
derived translation AP.P(A(FISH)) of type ((((e,t),t),t),t).

(5) Johnislooking for a fish or a bike

In the sequel we will concentrate on (A) and (C). The flexibility required in (B) is
restricted to specific lexical items, and can be supplied by adopting generalized

7

conjunction and disjunction and generalized negation among the semantic
operations R (cf. section 3) in the grammar.

3. Flexible Montague grammar

As announced in the introductory section, we wish to integrate type-driven
translation and type ambiguity into a theory of ‘flexible Montague grammar’.
Before we start to work out details, however, we will have to tell something about
the general organization of the framework (cf. Groenendijk and Stokhof (1984)):

(a) First, each syntactic category C is associated with not just one type, but a set
of types: its type-set T(C). The type-set consists of a basic type, tg(C), together
with types which are predictable from the basic type by general procedures. An
expression o of a category C can be assigned any of the types which belong to the
type-set associated with C.

(b) Similarly, every lexical expression o of category C will be associated with a
translation-set Tr(o), i.e., a set of semantic translations. One of these will be a basic
translation trg(o) (which need not be of the basic type) and the other members of
the translation-set will again be predictable from the basic translation by general
procedures. For every a'e Tr(o) it will hold that for some type ac T(C), o' is of
type a.

(c) Finally, the translation-set of a compound expression ¢ of category Cg,
Tr(og), is to be determined from the translation-sets of its parts ot1,...,0n:
Tr(a),..., Tr(0p). So there will need to be a semantic operation R which yields a
member of Trg(c) (the basic translation set of &), R(a1',...,0n"), whenever it is
applicable to a1'e Tr(a1),..., and op'e Tr(oy). Moreover, the general procedures
mentioned in (b) will also apply to the members of Trg, yielding the other,
predictable, members of Tr(cy).

The general procedures hinted at above constitute a theory of type ambiguity,
whereas the semantic operations R form a (type-driven) translation procedure.

Let us add some characters to this highly abstract story.
(a) As for the basic types associated with syntactic categories, we will be
content with the following assignment:

8
C 13:(O)] C tg(C)
NP: e VP: (e,p)
S: t TV: (e,(e,b)
CN: (e,t) DTV (e,(e,(e,1))
Det: ((e,t),(Ce,t),1)) PV: (t,(e,1)

For the time being (i.e., up to section 5), we will assume that the predictable types
of the type-sets are supplied by the Lambek calculus. Le., T(C) = { a : tg(C) = a is
a Lambek theorem}.

(b) Some examples of basic translations:

Q category tre(o) type

John NP j e

a Det AQAP.IX[Q(x) & P(x)] ((e,1),((e,t),1))
man CN MAN (e,t)

find TV FIND (e,(e,t))

seek TV SEEK (((e,1),1),(e,1)
claim PV CLAIM (t,(e,t))

Note that the basic translation of seek is not of the basic type assigned to TV, and
that the application of the basic translation of a to the basic translation of man yields
an expression of category NP which is not of the basic type associated with that
category.

We will assume (up to section 5) that the predictable translations will be
supplied by the van Benthem semantics for the Lambek calculus. Le., Tr(c) =
{tc[xa:=trg(0V)] : trg() is of type a and a = c is a Lambek theorem with semantics
Te<Xz>},
where Tc<x,> is a A-term of type ¢ with a free variable, x, of type a.

(c) With respect to the semantic operations, we would like to restrict ourselves
to the operations of generalized conjunction/disjunction and functional application of
the type-driven translation procedure given in section 1. However, the simplified
picture we sketched there has one feature which makes it hard to integrate it into a
framework with type ambiguity. The clauses there ran:

@ if (...), then apply generalized conjunction/disjunction (...) in order to
obtain a translation o' of type TYP(Cp),

(II) else, apply functional application in order to obtain a translation oy’ of type
TYP(Cy).

9

This feature is, of course, the restriction to a single type, TYP(C(). Our solution to
this problem is straightforward: we simply omit the italicized part of the clauses.
More formally:

(IIT) if one of the daughter nodes, Ci, say, immediately dominates and/or, then
the set of basic translations of o, Trg(clp) =
{GC/GD({a1,...,0n'} - {i'}D) : a1'e Tr(ax1),...,0n'e Tr(ap)}.

(V) else, the syntactically or morphologically determined application n-tuple is
o1,...,0n, and then Trg(0p) =
{FA(a1',...,00") : 0t1'e Tr(o1),...,0n'e Tr(op)}.

Note that the semantic operations GC, GD and FA have become partial, in a sense,
with respect to Tr(o1),...,Tr(op). Not for every oq'e Tr(o1),...,0n'e Tr(otp),
GC/GD/FA(a1',...,0n") is defined. For example, Trg(John and Mary) does not
contain the generalized conjunction of jo and me, since type e fails to be a
conjoinable type; neither does Trg(seek John) contain the functional application of
SEEK (type (((e,t),t),(e,t))) and je, for such a thing does not exist: the functor
SEEK is not of the required type (TYP(j),b). But this is not a problem: since we
will also have the translations AP.P(j) and AP.P(m) at our disposal, we can be
confident that Trg(John and Mary) as well as Trg(seek John) will be nonempty:
GC({AP.P(j),AP.P(m)}) = AP.[P(j)&P(m)]e Trg(John and Mary), and
FA(SEEK,AP.P(j)) = SEEK(AP.P(j))e Trp(seek John).

Finally, Tr(op), the set of translations of o, is the following set: Tr(cg) =
{tc[xa:=03"1 : a = c is a Lambek theorem with semantics To<x;> and

oa'e Trp(p)).

4. The Lambek-van Benthem calculus

Conceived of as a semantic system, the Lambek calculus is a system that gives rules
for rewriting sequences of types to types. In its original version (cf. Lambek
(1958)), it is a theory of syntactic categories which have a function/argument
structure (like semantic types), but a special one. Function categories are
directional: they are left- or right-searching. This is a property semantic types lack.

That there is, nevertheless, a strong semantic appeal to the Lambek system, has
repeatedly been stressed by Johan van Benthem (cf., e.g., 1986), who has focused
on several non-directional versions of the calculus, and provided them with a type-
theoretical semantics.

10

In this section, we shall present yet another version of the non-directional calculus,
which has the nice property that its rules correspond neatly with the operations
application, abstraction and substitution in the semantics. The exact correspondence
of this version (which is equivalent to the calculus given in van Benthem (1987))
enables us to present the van Benthem semantics (which is somewhat implicit in his
(1986)) in a completely explicit way.

(6) A non-directional Lambek-van Benthem calculus:
(a) axioms: a = a
(b) modus ponens: X = b Y = (b.o) Y=((be) X=b

XY=c YX=c¢
(c) conditionalization: XaY = b
XY= (a,b)
(dcut: XaZ=b Y=a

XYZ=b
(In the above sequents, a, b, and ¢ stand for types, and X, Y, and Z for
sequences of types: aj,...,ap, where n 2 0).

@) Semantics: assign a term Tp<Xx> to every sequent X = b:

(a) axioms: assign xatoa=>a

(b) modus ponens: if X = b and Y = (b,c) have been assigned
Tp<Xx> and T(b,c)<S’.Y>, assign Tgp,c)(Th) to XY = ¢

(c) conditionalization: if XaY = b has been assigned
Th<XxXY,Xa>, assign Ax,.Tp to XY= (a,b)

(d) cut: if XaZ = b and Y=> a have been assigned T,<Xxz,Xa> and
Ta<Yy>, assign Tp[Xa:=Ta] to XYZ = b

(th<¥x> is a term of type b with free variables ¥ = x1,...,xp of type X =

al,...,an.)

The Lambek-van Benthem calculus is a very rich (i.e., flexible) calculus. Its
rewriting sequences of types to types is already an abundance from our semantic
point of view. We would be satisfied with a calculus which rewrites (single) types
to types. It is therefore sufficient for our purposes to concentrate on some important
theorems together with their semantics:

®)

)

(10)

(11

(12)

13)

(14)

(15)

(16)

a7)

11

commutativity: (a,(b,c)) = (b,(a,c)) / AXpAya.Z(a,b.c)¥)(X)

Geach: (b,c) = ((a,b),(a,c)) / Ax(ap)AYa-Z(b.c)X(ap)¥))

composition: (a,b) (b,c) = (a,c) / Aya.zpbc)(X@b)(y)

Montague: a = ((a,b),b) / Ay(ap).y(xa)

if a = b (Tp<xp>), then €,a) = (&,b) / AF.p[xa:=2¢)]

(if & is a sequence of types: C1,...,Cn, then (§,3) = (c1,(...,(Cp,a)...)); if Yz is
a sequence of variables y1,...,yn of type ¢ = C1,...,C, then AY2.T stands for
AY1c1.--A¥ncn.T, and T(¥) abbreviates ©(y1c1)...(Yncn)-)

value raising: @,b) = (&,((b,c),c)) / Haly(b,c).y(z(a”b)(i))

argument raising: (a,@,b)) = (((a,b),b),E,b)) /
AV((a,b) b%e-V(AZa.Y (a, (%)) (@) X))

generalized argument raising: @,(b,€,d))) = @&,(((b,d),d),&,d))) /
AREAV(b,d))ATEV(Azb.Y &, (b,E,) &) @))

if a = b (Th<x,>), then (b,c) = (a,c) / AXa.Y(b,c)(Th)

generalized argument lowering: @,(((b,c),c),d)) = (&,(b,d)) /
AXEAYb-Z(& (((b.0).).0) AV (b,0)-V(¥))

Notwithstanding its usefulness as a tool for syntactic category-‘change’, if this

calculus is used as a system for semantic type- and translation- ‘change’ in the way

indicated in section 3, it will appear that the application of some theorems leads to

dubious results. From a semantic point of view, the calculus simply is too flexible.

Here are some examples.

(a) Commutativity.
Consider sentence (18).

(18)

[s[npJohn][vp[Tvloves][npParis]]]

12

If we functionally apply the basic translations of loves, Paris, and John,
LOVE(e,(e.t))» Pes and je in that (syntactically determined) order, the result is
LOVE(p)()-

It is also possible to apply commutativity to LOVE first, which yields
AxAy.LOVE(y)(x), also of type (e,(e,t)). If this is applied to pe and je, the result is
LOVE(j)(p). One of the two must be wrong.

(b) Geach.
Van Benthem (1986, p. 125) notes that a sentence like

(19) Every crook fears some detectives

“may be evaluated as follows:

Every crook fears some detective[s]
(CAIRY (e.(e,) ((e.t).0)
((e,),0) e.(e.t e.(e.)).(e.t [Geach]
(e.).) (e.t) [FA]
t [FA]

Also, additional readings appear.” What readings? For example, (iv), which can be
derived through (i), (ii), and (iii).

@) AP.3x[DETECTIVE(X)&P(x)]

(i) ARAy.(AP.3x[DETECTIVE(x)&P(x)](R(¥)))

(i) ARAy.Ix[DETECTIVE(X)&R(y)(x)]

(iv) Vz[CROOK(z)—Jx[DETECTIVE(X)&FEAR(z)(X)]]

After Geach, the basic translation of some detectives, (i) becomes (ii), which
reduces to (iii), and after two applications we will obtain (iv), meaning that for
every crook there are some detectives who fear him/her, which is wrong.

(c) Composition.
On the basis of the same sentence we can show that composition yields undesirable
meanings as well:

Every crook fears some detectives

((e,t),t) (e.fe)) ((et)t)

((e.).) (e.t) [composition]
t [FA]

13

(v) Ay.(AP.3x[DETECTIVE(X)&P(x)](FEAR(Y)))
(vi) Ay.Jx[DETECTIVE(X)&FEAR(Y)(x)]
(vil) Vz[CROOK(z)—3JX[DETECTIVE(X)&FEAR(z)(x)]] (=iii).

(v), which reduces to (vi), is the result of composition applied to the basic
translations of fears and some detectives. After functional application, the whole
sentence gets translation (vii) = (iv) again.

Note that the bad results of applying commutativity in (18) and Geach and
composition in (19) are due to the non-directionality of the calculus, which might
suggest we could fare better using a directional version of the Lambek calculus. In a
directional version one would have:

Every crook fears some detectives

t/(e\t) (e\/e (el
t/(e\t) (et (e\t/e))\e) [Geach]
t/(e\) e\(t/e) (e\t/e))et) [commutativity]
t/(e\D) (e\t) [application]
t [application]

Here the necessary application of commutativity to fears gets the ‘0-roles’ right,
whereas the scope of the quantifiers remains V3, yielding (vii).

(viii) Vz[CROOK(z)—>3IX[DETECTIVE(X)&FEAR(X)(z)]]
(ix) IX[DETECTIVE(x)&Vz[CROOK(z)—FEAR(x)(z)]]

Likewise, the 3V-reading (ix) can be obtained in the directional calculus (though in
a way that does not respect the constituent structure):

Every crook fears some detectives
t/(e\t) (e\t/e (t/e)
t/e (t/e) [composition]

t [application]]

Therefore, the question might arise: why not account for scope ambiguities by
using directional semantic types and the directional Lambek calculus?

Gosse Bouma has studied this question, and his conclusion is that “[i]t seems
then, that the Lambek calculus will only be able to predict quantifier-scope
ambiguities in a restricted number of cases’ (p.9).

And even when it is able to do so —(19) is a case in point—, it is dependent on
word order. As Bouma observes, in accounting for scope ambiguities in the

14

directional calculus a crucial role appears to be played by commutativity, a rule that
can only be used if we have SVO (or OVS) order. Already in the case of (20), for
example, we are able to derive only the V3-reading, unless we encode the ‘wide
scope-object’ 3V-reading in the lexical translation of vreest (fears):
AT1AT2 T1(AXx.T2(Ay.FEAR(X)(y)) (type: TYP(NP)(TYP(NP))\t)). (For the
intensional reading of (20), a second lexical translation of vreest will be needed.)

(20) Het is waar dat elke schurk enkele detectives vreest
It is true that every crook some detectives fears
‘It is true that every crook fears some detectives’

The conclusion, then, must be that if we want to account for scope ambiguities, we
will have to use a calculus which operates on non-directional types and does not
contain commutativity, Geach, and composition as theorems.

5. The quantification calculus

Given the undesirability of commutativity (8), Geach (9) and composition (10),
you could try and build a calculus# for type change on the basis of the Lambek
calculus, e.g.,

(21) axioms:

M a=(@b),b)/Ay@ap).y(xa) (=11)

@M @Eb) = ((a,b),0),Eb) / Av((ab)pyie-v(rizay(a @Epy@®) (=14)
rules:

() if a = b/ Tp<xa>, then €,a) = (E,b) / AVg.wp[Xa:=z¢ 2)F)] (= 12),

V) ifa = b/ 1p<xa>, then (b,c) = (a,c) / AXa.y(b,c)(Tb) (= 16), and

(V) ifa=b/1p<xz> and b = ¢/ Tc<yp>, then a = c / Tc[xp:=Tp]
(cf. 6(d) and 7(d))

It is easy to see that (21) preserves the theorems (11), (14) (viz., as axioms), (12),
(16) (as rules), (13), (15) and (17). (21) is a calculus which rewrites types to types,
and thus significantly poorer than the full Lambek-van Benthem calculus.
Nonetheless, it is not a very perspicuous calculus: e.g., it is far from obvious
whether we have really got rid of (8), (9) and (10). Besides, it is ‘slow’: if we want
to lower, say, the third argument of a type, we must apply (I) and (IV) first, then
shortcut (I) and (IV) with the help of (V), then apply (III), and finally (V) again.
In both respects, (22), though weaker than (21), is an improvement on it:

4 (21) is the calculus I presented in my talk at the Amsterdam workshop.

15

(22) axioms:

O @&b) = E.((b,0).0) / AgAy(p.c)-¥(Z@ p)&)) (=13)

) @& (b,Ed)) = E.((b,d),d),Ed))/
ARV ((0,d),0M58-V(A2p.Y R 0,E) X @) F)) (=15)

@D @& ((b,c),0),d) = (&,(b,d)) / AxZAYb-2(3,(((b.£).0),d) D AV(p,c)-V(Y))
(=17)
rule:

dv) ifa=b/tpH<xgz> and b = c/T.<yp>, then a = ¢ / Tc[Xp:=Tp]

But from a semantic point of view, (22) still contains anomalous superfluities. For
instance, there are more possibilities for argument-raising the n-th argument of a
type, than for argument-raising its (n+1)-th argument. We can (e,t)-argument-raise
the first e-argument of (e,(e,t)): (e,(e,t)) = (((e,(e,1)),(e,t)),(e,t)), whereas this is
impossible for the second e-argument: (e,(e,t)) = (e,(((e,1),(e,t)),(e,t)),t) is not a
theorem. This extra freedom of the first argument appears to serve no useful
semantic purpose.

Instead of trying to devise a calculus which preserves as many theorems from
the Lambek calculus as possible (while avoiding the harmful (8), (9) and (10)), itis
maybe better to develop one which is just strong enough to perform the tasks set in
section 2, viz. (A) provide a general framework for the minimal type assignment-
approach, and (C) account for structural ambiguities which can be explicated in
terms of scope. We claim that the type-changing calculus needed for that purpose

only contains t-argument-raisings and t-argument-lowerings:

(23) The quantification calculus:

axioms:
)] value raising
@b) = G.((0:0).0)) / AZdhy (b.0)-¥ (2@ 1y ®)
(II) argument raising
@, (b,E1)) = &, (((b,1),1),E1)) /
AKEAV((b,1),0A52.-VAzb.y (& (0,E,0) P @)
(IIT) argument lowering
@(((b,),1),d)) = @,(b,d)) / AXgAYb-2(&,(((0.0.0,0) D AV(b1)-V(Y)
rule:
Iv) cut
if a = b/ Tp<xy>, and b = ¢ / T.<yp>, then a = ¢ / T¢[Xp:=Tp]

16

This calculus does not have the argument-permuting effects of the Lambek calculus.

Each of its axioms performs some specific semantic task(s).

Value raising can be used to raise (meanings of) argument expressions as a
whole: it predicts AP.P(j)((e 1) 1) from je as a translation for John, for example. But it
will also be shown to be extremely valuable in the derivation of complex structural
ambiguities.

Argument raising and argument lowering provide (meanings of) functor
expressions with an amount of flexibility: you can, e.g., raise the first argument of
FIND (g (e,t))» and obtain ATAy.T(Ax.FIND(x)(y)), an expression which can be
functionally applied to ((e,t),t)-type translations of quantified NPs. On the other
hand, you can argument-lower SEEK(((e,1),t),(e,t))» and obtain Ax.SEEK(AP.P(x)), an
expression which can be functionally applied to the basic translations of proper
names.

6. Applications

In this section we will show that the quantification calculus has a number of useful
applications. 6.1 deals with the scope of quantification. We will see that the
calculus is capable of handling quantifier scope ambiguities, not only in ‘flat’
functional application structures (6.1.1), but also in embedded functional
application structures (6.1.2). In 6.2, we will consider ambiguities involving the
scope of coordination.

6.1 The scope of quantification

6.1.1 Flat structures
Consider sentence (24).

(24) John finds Sandy

Let us make the uncontroversial assumptions that the semantic operations to be used
in (24) are all functional applications; that the application 2-tuple for the VP is
TV,NP; and that the application 2-tuple for the whole sentence is VP,NP. If we
functionally apply the basic translations of the lexical expressions, the sentence
translates as FA(FA(FIND,s),j) = FIND(s)(j). It can be proven that this is the only

17

reading of type t (henceforth: ‘reading’) we obtain using the quantification calculus:
if arbitrary non-basic translations had been used instead, the result would have been
equivalent. (The proof, and proofs of similar claims in the remainder of this paper,
can be found in my (in preparation (i))).

If a higher order, ‘intensional’ TV occurs with two proper names, the
quantification calculus also predicts one reading, whatever the translations used. Cf.
(25):

(25) John seeks Sandy

We can get this reading, SEEK(AP.P(s))(j), in two ways. By applying value raising
t0 Se: AP.P(S)((e,1),1)> and taking the basic translation of both seek, SEEK(((e.1).1),(e.1)),
and John, je; but also by taking the basic translations of Sandy and John, and
lowering the first argument of SEEK: Ax.SEEK(AP.P(x)).

However, if the arguments are quantified NPs, SEEK and FIND behave
differently with respect to the number of readings predicted by the calculus.

(26) Every boy finds some girl
() Vy[BOY(y)—-3Ix[GIRL(x)&FIND(x)(y)]]
(i) Ix[GIRL(x)&Vy[BOY(y)>FIND(x)(y)]]

(27) Every boy seeks some girl
i) Vy[BOY(y)—3x[GIRL(X)&SEEK(AP.P(x))(y)]]
() Ix[GIRL(X)&Vy[BOY(y)—SEEK(AP.P(x))(y)]]
(i) Vy[BOY(y)—SEEK(AP.Ix[GIRL(X)&P(x)])(y)]

For (26), the calculus has no more than two readings in petto, whereas (27) is
assigned three readings: FIND is of type (e,(e,t)), and there are two nonequivalent
ways of raising it to type (((e,t),t),((e,t),1),1)) = (T,(T,t)):

() (e,(e,)) = (T,(e,1)) / AT1'Ay" . T1'(AX.FIND(x)(y")) = @,

(T,(e,1)) = (T,(T,1) / AT1AT2. To(hy.a(T1)(y)) &
AT1AT2.To(Ay.T1(Ax FIND(x)(y)))

(b) (e,(e,1)) = (e,(T,)) / Ax'AT2 . T2'(Ay.FIND(x')(y)) = «,

(e,(T,1)) = (T,(T,t)) / AT1AT2. T1(Ax.0(x)(T2)) &
AT{AT2.T1(Ax.To(Ay . FIND(x)(y)))

If (a) is used, (i) is obtained. (ii) results from using (b). Additional type change
provably does not increase the number of readings. In the case of (27), we can let
the lowered translation of seek, Ax.SEEK(AP.P(x)), undergo (a) and (b) as well,
obtaining (27) (i) and (ii), respectively. But in addition, it is possible to use the

18

basic translation SEEK, and raise its second argument:AT1ATo.To(Ay.SEEK(T1)(y)),
which yields the ‘intensional’ reading (ii).

In general, an n-place extensional relation R of type (e1,(...(€p,t)...)) plus n
quantified (i.e., ((e.t),t)-type) arguments has maximally n! readings of type t (notice
that n! is a maximum: the quantified arguments which are raised e-type
expressions, for example, do not multiply the number of readings), which is exactly
what we need.

6.1.2 Embedded structures

The quantification calculus, poor though it may seem in comparison with the full
Lambek-van Benthem calculus, is nonetheless capable of accounting for scope
ambiguities in arbitrarily complex functional application structures as well: consider
the parse tree of some man claims that every boy knew that John kissed one girl:

(28) [s[Nnpsome man][yp[pyclaims that][s[npevery boy][vp[pvknew that]
[s[npJohn] [velTvkissed][Npone girl]]]1]]]

Assuming the following basic translations:

some man AP Ix[M(x)&P(x)] of type ((e,t),t),
every boy AP.Vy[B(y)—P(x)] of type ((e,t),t),
one girl AP.3!1z[G(z)&P(z)] of type ((e,t),t),
kissed KISS of type (e,(e,t))

claims that CLAIM of type (t,(e,t)),

knew that KNOW of type (t,(e,t)), and

John jof typee,

the quantification calculus assigns (28) exactly the 13 readings we might wish to
assign to it:

19

29) (a) Ix[M(x)&CLAIM(x, Vy[B(y) >KNOW (y,3!z[G(z) &KIS S (j,z)])])]
(b)) Ix[M(x)&Vy[B(y)>CLAIM(x,KNOW(y,3!z[G(z)&KISS(j,z)])]1]
(© Vy[B(y)—=3x[M(x)&CLAIM(x,KNOW (y,3!z[G(z) &KISS(,z)]))]]
(d Ix[ME)&CLAIM(,Vy[B(y)—3!z[G(z)&KNOW(y,KISS(,z))1D)]
(e) Ix[M(x)&CLAIM(x,3!z[G(z)& Vy[B(y)>KNOW(y,KISS(,z))1D]
63) Ix[M(x)&Vy[B(y)>CLAIM(x,3!z[G(z)&KNOW(y,KISS(,2))]]
() Vy[B(y)»3Ix[Mx)&CLAIM(x,3!z[G(z)&KNOW (y,KISS(,2))]]
(h) IIx[M(x)&Vy[B(y)—3!z[G(z) &CLAIM(x,KNOW (y,KISS(j,z)))11]
)] Vy[B(y)—=3x[M(x)&3!z[G(z) & CLAIM (x, KNOW(y,KISS(j,z)))11]
(k) IxM(x)&I!z[G(z)&Vy[B(y)>CLAIM(x,KNOW(y,KISS(,z)))11]
@ Vy[B(y)—3!z[G(z)&IXx[M(x) & CLAIM (x, KNOW(y,KISS (j,z)))11]
(m) F'z[G(Zz)&Ix[M(x)&Vy[B(y)=>CLAIM(x,KNOW (y,KISS(,2)))]]]
(m) 3'z[G(z)&Vy[B(y)—>Ix[M(x)&CLAIM(x,KNOW(y,KISS(j,z)))11]

In order to get a feel for what the calculus does, let us take reading (k) as an
example and work it out in full, be it perhaps somewhat complex, detail:

(30) Ix[MAN(x)&3!z[GIRL(z)&Vy[BOY(y)—> CLAIM(X,KNOW(y,KISS(j,z)))]1]

Some man must have the widest scope, therefore we postpone its ‘treatment’ to the
last moment. We start with the quantifier which gets the narrowest scope: every
boy. The NP every boy must have wide scope with respect to claims that, so we
change the type (t,(e,t)) of knew that, its ‘own’ functor, to (t,(e,((t,(e,t)),(e,t)))
with the help of value raising. Translation:

i) MAXAG (¢ (e 1)) G(KNOW(X,1))

We then apply argument raising to the second argument, e, of (i):
(t,(T,((t,(e,1)),(e,t)))) and get the reduced translation (ii):

() AMATAG(,(e,0)Ave. T(Au.G(v,(KNOW(u,t)))

That is essentially enough. The NP one girl must have wider scope than claims that
and knew that. We can effectuate this by applying value raising to kissed, its ‘own’
functor, making use of the type (t,(T,((t,(e,t)),(e,t)))) knew that has been raised to
in (ii): (e,(e,((t,(T,((t,(e,1)),(e,D))),(T,((t,(e,1)),(e,1)))))) Translation:

(i) AXAYAQ(e(T.(t(e.0).(e.0))))-QUKISS(Y,X))

20

(T, (e, ((t,(T,((t,(e,0), (e,))N).(T,((t,(e,0),(e,1)))))) s, finally, the result of applying
argument raising to the first argument. The translation reduces to (iv):

(v) AT1AYAQq(T,((t(e.t) (e.)))A T2AGAX. T1(Aw.Q(KISS (y,W))(T2)(G) (%))

This completes the ‘treatment’ of one girl. Apply (iv) to AP.3!z[GIRL(z)&P(z)] and
j» respectively, and reduce:

V) AQ(T,((t(e.0).(e.0))AT2AGAX. 3! Z[GIRL(2) & Q(KISS(§,2))(T2) (G) (x)]

This is of type ((t,(T,((t,(e,t)),(e,t)))),(T,((t,(e,1)),(e,t)))). Now, we could apply
(v) to (ii), our derived translation of knew that, but since the syntactically
determined 2-tuple is PV,S, PV has to be the functor. Therefore, we raise (ii) as a
whole to the type ((TYP(V),(T,((t,(e.1)),(e,1)))),(T,((t,(e,1)),(e,t)))), obtaining (vi):

(Vi) AW(TYPW),(T,(L(e.0).(en)) WALATAGAVe. T(Au.G(v,KNOW(u,t))))

(vi) applied to (v) yields (vii) (slightly reduced), which reduces further to (viii):

(vil)) AQATAGAX.3!z[GIRL(z)&Q(KISS (§,2))(T2)(G)(x)]
(MATAGAV.T(Au.G(v,KNOW(u,t))))

(viii) AToAGAx.3!z[GIRL(z)& To(Au.G(x,KNOW (u,KISS(,2))))]
(viii) applied to AP.Vy[BOY(y)—P(y)] reduces to (ix):

(ix) AGAx.3!z[GIRL(z)&Vy[BOY(y)—>G(x,KNOW(y,KISS(j,2)))]]

(ix) is of type ((t,(e.t)),(e,t)), so if CLAIM of type (t,(e,t)) is to apply to it, it has to
be blown up to functor-size:

x) AB((1,(e.1),(c.t))- B(CLAIM)

Functional application of (x) to (ix) reduces to (xi):

(xi) Ax.3!z[GIRL(z)&Vy[BOY(y)—>CLAIM(X,KNOW(y,KISS(j,z)))]]

(xi) is of type (e.t). We blow it up to (xii) of type (((e,t),t),t), and apply this to
AP.3x[MAN(x)&P(x)] of type ((e,t),t), with the reduced result (xiii):

(xii) AT.T(Ax.3!z[GIRL(z)&Vy[BOY(y)—>CLAIM(x,KNOW(y,KNOW(z)(j)))1])

21

(xiii) Ix[MAN(x)&3!z[GIRL(z)& Vy[BOY(y)—>CLAIM(x,KNOW (y,KISS(z)()))]1]

This completes our derivation of reading (k).

6.2 The scope of coordination

The structural ambiguities involving the scope of coordination that were studied in
Partee and Rooth (1983) can also be accounted for with the quantification calculus.
For instance, cf. (31):

(31) [s[npJohn][vp[Tvcaught and ate][npa fish]]]
@) Ix[FISH(X) &CATCH(j,x)&EAT(,x)]
(i) Ix[FISH(X)&CATCH(j.x)]&IxX[FISH(X) &EAT(X)]

The calculus assigns two readings to (31). We can apply generalized conjunction to
CATCH and EAT: AyAx.[CATCH(X,y)&EAT(X,y)](e,(e.t))» and then raise the first
argument of the conjunction: ATAX. T(Ay.[CATCH(X,y)&EAT(xX,y)]). This leads to
(i). But we are also able to start with raising the first argument of both verbs
separately, ATAX.T(Ay.CATCH(x,y)) and ATAx.T(Ay.EAT(X,y)), and apply
generalized conjunction afterwards: in that event, the result reduces to the formula
ATAx.[T(Ay.CATCH(X,y))&T(Ay.EAT(X,y))], and combination with a fish and
John yields (ii).

Partee and Rooth in fact only accept (i), “unless the sentence(...) [is] given a
very marked intonation or the context is heavily loaded” (p.365), but this is
something which I fail to be able to agree with, considering the completely natural
continuation in (32):

(32) John caught and ate a fish. The fish he caught was inedible, and the fish he
ate caught his eye.

Be this as it may, less probable but possible readings should be predicted by the
grammar too, preferably together with an explanation of their lesser probability.
The explanation of this case will be given in footnote 5, below.

The de dicto ‘wide scope or’-reading of (5), repeated below as (33), can be
obtained in the quantification calculus:

(33) John is looking for a fish or a bike

22

We can apply (e,t)-value raising to AP.Ix[FISH(x)&P(x)] and
AP.3x[BIKE(x)&P(x)]: which results in AQ(((e,1),1),(e,t))- QAP.Ix[FISH(x)&P(x)])
and AQ.Q(AP.Ix[BIKE(x)&P(x)]), and subsequently take the (reduced) generalized
disjunction of the raised translations:

(34) AQAy.[QAP.Ix[FISH(x)&P(x)])(y)vQ(AP IX[BIKE(X)&P(x)])(¥)]

The functional application of the raised AW (((e,1),0).(e.0)).(e,t)) W(LOOKF) to (34)
reduces to (35):

(35) Ay.[LOOKF(AP.3x[FISH(x)&P(x)])(y)v LOOKF(AP.3x[BIKE(x)&P(x)])(y)]
And (35) applied to j yields (36),
(36) LOOKF(j,AP.3X[FISH(x)&P(x)])VLOOKF(j,AP.3x[BIKE(x)&P(x)])

which is what we are looking for.

More interestingly, the calculus also supplies a desired reading, viz., (38), for (37),
a problematic case for which Partee and Rooth, quite surprisingly, suggest “a rule
quantifying in terms of a higher type” (p.376):

(37) John believes that a fish or a bike swam in the canal
(38) BELIEVE(],3x[FISH(x)&SWIM(x)])VBELIEVE(j,3x[BIKE(x) &SWIM(x)])

To get (38), we must first raise the NPs to o = ((e,t),((t,(e,t)),(e,t)), and then apply
generalized disjunction:

(39) APAGAy.[G@Ex[FISH(x)&P(x)])(y)vGEx[BIKE(X)&P(x)])(y)]

We also raise SWIM(e 1), to (0L, ((t,(e,t)),(e,1)): AY . Y(SWIM), and apply this to
(39):

(40) AGAy.[G@Ex[FISH(x)&SWIM(x)])(y)VG(ExX[BIKE(X)&SWIM(x)])(y)]

Finally, raise BELIEVE to (((t,(e,t)),(e,t)),(e,t)), and apply the result to (40) and j.

In our system we get all possible coordination scopes. For example, (41) is
assigned the readings (i), (ii) and (iii):

23

(41) Mary said that every student lost or won
i) SAY(m,VX[STUD(x)—[LOOSE(X)VWIN(x)]])
(ii) SAY(m,VX[STUD(x) >LOOSE(X)]VVX[STUD(X)>WIN(X)])
(iii)) SAY(m,VX[STUD(X)—LOOSE(X)])V SAY(m,VX[STUD(X)—>WIN(x)])

“While intuitions are far from clear” (p.376), only (i) and (iii) are considered okay
by Partee and Rooth. A similar case is (42):

(42) Every student failed or gota D

This sentence does not seem to have the reading ‘every student failed or every
student got a D’, a reading that is predicted by all available theories of type
ambiguity, including ours: apply t-raising and generalized disjunction to the verbs,
and the result is AT.[T(FAIL)VT(GET-D)], which after application to
AP.VX[STUDENT(x)—P(x)] gets us the undesirable reading.

Groenendijk and Stokhof (1987) suggest that we exclude this reading by
requiring that only argument raisings be applied to FAIL and GET-D (motivating this
by stipulating that the syntactic function/argument structure should be respected).
But this does not work, since in the situation we are considering, argument raising
and value raising yield equivalent translations: AT.T(Ax.FAIL(x)) (argument
raising), and AT.T(FAIL) (value raising).

However, it is obvious that the data are far from clear. Consider sentence (43):

(43) Every player of our team is wearing a red shirt or a green shirt

That this sentence does have the reading ‘every player of our team is wearing a red
shirt or every player of our team is wearing a green shirt’, can be supported by the
possibility (if we add a ‘heavily loaded’ context: the speaker is colour-blind) of the
continuation ‘...but I can’t tell you what the exact colour is’.

That the context must be heavily loaded is what we should expect. For, under
normal circumstances the Gricean maxim ‘avoid ambiguity’ requires us not to utter
(41), (42) or (43) to convey the information expressed by the ‘every ... or every

...’-readings: there are unambiguous sentences that express them> :

(44) Mary said that every student lost or every student won

5 The same pragmatic explanation applies to (31) (ii): there is an unambiguous sentence
available for expressing this reading: John caught a fish and ate a fish

24

(45) Every student failed or every student got a D

(46) Every player of our team is wearing a red shirt or every player of our team is
wearing a green shirt

Only a colour-blind person entangled in the cumbersomeness of his or her
disjunctive world-view may be expected to let being short prevail over being
unambiguous in cases like these.

7. Conclusion

We have seen that the combination of a (type-driven) translation procedure and a
theory of type ambiguity based on the quantification calculus yields an adequate
semantic theory of quantification and coordination.

Moreover, the quantification calculus is a perspicuous system. As a
consequence, it is not difficult to prove that it is not only complete with respect to
the wished-for scope ambiguities in the examples we have been considering, but
also correct: it can be shown that these readings are the only ones given by the
calculus. This is done in my (in preparation (i)). Besides, from the proofs given
there, it emerges that within the quantification calculus, one of the disastrous aspects
of type-shifting —the chaotic ensemble of possible ways to obtain a reading— seems
to be open to systematization by means of an orderly procedure which yields the
required reading with a predictable amount of effort.

Finally, we have kept the type theory extensional for practical reasons. First, it
was done for expository purposes: extensionality helped to prevent the presentation
from being more complicated than necessary. Second, omitting s’s facilitated
comparison with the Lambek calculus. Van Benthem (1986, pp.147-150) has
discussed the options available for intensionalizing this calculus, and in view of the
extremely tentative nature of this discussion, a straightforward introduction of
intensional types into the calculus seems to be a problematic matter. However, this
does not necessarily hold for the quantification calculus. Since the axioms of this
calculus each perform some specific semantic task(s), it is quite obvious what a
quantification calculus for intensional type change should look like (cf. my (in
preparation (ii))).

25

Acknowledgements

I would like to thank Renate Bartsch, Johan van Benthem, Gosse Bouma, Wojciech Buszkowski,
Jeroen Groenendijk and Martin Stokhof for corrections, stimulation, discussion, comment,
criticism and elucidation, respectively. The research for this paper was supported by the
Netherlands Organization for the Advancement of Pure Research (Z.W.0.).

References

Benthem, J. van: 1986, Essays on logical semantics, Dordrecht: Reidel.

Benthem, J. van: 1987, ‘Semantic type change and syntactic recognition’, University of
Amsterdam: Department of Mathematics report 87-05.

Bouma, G.: 1986, ‘Lambek semantics’, ms.

Cooper, R.: 1983, Quantification and syntactic theory, Dordrecht: Reidel.

Gazdar, G.: 1980, A cross-categorial semantics for coordination’, Linguistics and Philosophy 3,
407-410.

Gazdar, G., E. Klein, G. Pullum, and 1. Sag: 1985, Generalized phrase structure grammar, Oxford
Basil Blackwell.

Groenendijk, J., and M. Stokhof: 1984, Studies on the semantics of questions and the pragmatics
of answers, University of Amsterdam disssertation.

Groenendijk, J., and M. Stokhof: 1987, ‘Type-shifting principles and the semantics of
interrogatives’, University of Amsterdam: ITLI Prepublication Series 87-01.

Hendriks, H.: in preparation, ‘Flexibilization, so far so good? (i) Semantic properties of the
quantification calculus; (ii) A calculus for intensional type change’ (working title).

Janssen, T.: 1983, Foundations and applications of Montague grammar, University of Amsterdam
dissertation.

Keenan, E., and L. Faltz: 1985, Boolean semantics for natural language, Dordrecht: Reidel.

Klein, E., and I. Sag: 1984, ‘Type-driven translation’, Linguistics and Philosophy 8, 163-202.

Lambek, J.: 1958, ‘The mathematics of sentence structure’, American Mathematical Monthly 65,
154-169.

Landman, F., and 1. Moerdijk: 1983, ‘Compositionality and the analysis of anaphora’, Linguistics
and Philosophy 6, 89-114.

Montague, R.: 1974, ‘The proper treatment of quantification in ordinary English’, in R.
Thomason (ed.), Formal philosophy. New Haven: Yale University Press.

Partee, B.: 1986, ‘Noun phrase interpretation and type-shifting principles’, in J. Groenendijk, D.
de Jongh, and M. Stokhof (eds.), Studies in discourse representation theory and the theory
of generalized quantifiers, Dordrecht: Foris.

Partee, B., and M. Rooth: 1983, ‘Generalized conjunction and type ambiguity’, in R. Béuerle, C.
Schwarze, and A. von Stechow (eds.), Meaning, use and interpretation of language,
Berlin: de Gruyter.

