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Abstract

We discuss infinite zero-sum perfect-information games with more than two players.
They are not determined in the traditional sense, but as soon as you fix a preference
function for the players and assume common knowledge of rationality and this
preference function among the players, you get determinacy for open and closed
payoff sets.
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1 Introduction

The theory of infinite two-player games is connected to the foundations of
mathematics. Statements like

“Every infinite two-player game with payoff set in the complexity class I is
determined, i.e., one of the two players has a winning strategy”

1 The author was partially financed by NWO Grant B 62-584 in the project Verza-
melingstheoretische Modelvorming voor Oneindige Spelen van Imperfecte Infor-
matie and by DFG Travel Grant KON 192/2003 LO 834/4-1. He would like to ex-
tend his gratitude towards Johan van Benthem (Amsterdam), Boudewijn de Bruin
(Amsterdam), Balder ten Cate (Amsterdam), Derrick DuBose (Las Vegas NV),
Philipp Rohde (Aachen), and Merlijn Sevenster (Amsterdam) for discussions on
many-player games.



are called determinacy axioms (for two-player games). When we sup-
plement the standard (Zermelo-Fraenkel) axiom system for mathematics with
determinacy axioms, we get a surprisingly fine calibration of very interesting
logical systems. Research in set theory from the 1960es to this day has shown
that many if not most of the interesting features of Higher Set Theory are con-
nected to determinacy axioms for two-player games: they have connections to
infinitary combinatorics of large sets, to topology, to the theory of the real
numbers, and to many other areas of interest in foundations of mathematics.

In general, determinacy axioms provide a rich theory of interesting features.
(Cf. [Ka94, §§27-32].)

A natural but naive approach would be to assume that if you increase the
number of players and look at “determinacy axioms for three-player games”,
the number of interesting features for set theory should also increase. It is well-
known that the opposite is true: determinacy axioms of the above form for
n-player games are only interesting if n = 2. In all other cases, they are trivial:
If n = 1 they are all true, regardless of I, if n > 2 they are all false for almost
all I' (cf. Proposition 1). It turns out that if we want to give solution concepts
for infinite many-player games, determinacy in the classical sense is not the
right concept. Solutions that have been offered in the literature include giving
up the notion of a pure strategy and moving to mixed strategies (cf. [Gab3]
and [Br00]), and understanding many-player games as coalitional games. In
this paper, we want to work with pure strategies and stay within the realm of
non-cooperative perfect information games

In addition to common knowledge of rationality of all players involved, we
need to add fixed preferences of the players and common knowledge of these
preferences. Then we are able to give solution concepts for many-player infinite
games (for payoffs of very restricted complexity, though).

The results of this paper are (for definitions, cf. Sections 2 and 3):

Let I be an arbitrary set of players, X an arbitrary set of moves, p an arbitrary
moving function, II an arbitrary total preference.

e If P is an open or closed payoff, then there is a rational labelling ¢£* such
that one of the players has an Sjl-winning strategy. (Theorems 8 and 9)

o If (P, II) is a exceptional least evil situation, then there is a rational labelling
¢* such that one of the players has an S}!-winning strategy. (Theorem 13)

e If P is a payoff such that a finite set of players has a closed payoff set and the
rest of the players have an open payoff set, then there is a rational labelling
¢* such that one of the players has an S}l-winning strategy. (Theorem 19)!

I Theorem 13 is a special case of Theorem 19, but uses a different technique, and
is thus interesting in its own right.



2 Definitions & Motivation

In this paper, we will look at a very general form of infinite zero-sum non-
cooperative perfect information games. We have an arbitrary set I of players
for this game. Our games will be games of length w with a set X of possible
moves. 2 We denote the set of finite sequences of elements of X by X<¢. The
length of a finite sequence p € X<¥ will be denoted by lh(p), and we write
(xom12y . .. 1,) for a finite sequence of length n + 1. Note that X <“ is a tree
ordered by inclusion. Runs of the game are infinite sequences of elements from
X, and we denote that set by X“. If v = (xy; k € w) € X¥, we denote by
xIm = (xoxy ... Ty,_1) its restriction to m.

We have a function p : X<“ — [ called the moving function determining
which player has to move in some position p € X<“. The set M; := {p €
X<“; u(p) =i} is the set of positions where player i has to move.

The branches through X<“| i.e., the elements of X“ will be partitioned by a
payoff function

P:XY—1
into the payoff sets for the players. For each ¢ € I, we interpret P; :=
{z; p(x) = i} to be the set of all those w-sequences of moves that result
in a win for player i.

Since we are dealing with perfect information games, all functions o; := M; —
X will be called i-strategies (that means a player has access to the entire
game played so far when making his decision about what to play in a position
p). We call a sequence of strategies ¢ = (0;; i € I) a u-frame (or just frame
if p is implicitly determined) if for each i € I, o; is an i-strategy. Clearly, a
p-frame determines a unique element of X by letting the strategies in ¢ play
against each other, and we call it "¢

Our choice of payoff functions of the type P : X“ — I affects our language:
if a p-frame & is a Nash equilibrium in the usual sense, and P &) = i, this
means that while all players locally optimize their outcome, for all players
j with 7 # ¢ this optimal outcome is still a loss. Consequently, the game-
theoretically central notion of a Nash equilibrium becomes a bit stale, and we
choose the notion of a winning strategy over the notion of an equilibrium
to be central for this paper. We shall briefly discuss the translation of our
determinacy theorems into the language of equilibria after Theorem 8.

2 We are basically working in set theory without the Axiom of Choice, so we would
like X to be well-orderable (the standard example would be either a finite set X or
X = w), or at least ACx(X), i.e., the existence of choice functions for X-indexed
families of subsets of X. The choice of the exact set theory is not of any importance
for this paper.



A proper analysis of a class C of games would be something like the following
theorem scheme:

For each payoff P € C there is some player i € I and an i-strategy o such
that for all relevant u-frames 7 with 7, = o, we have P(M{T) = i.

The meaning of “relevant” has to be determined by the game analysis. In the
classical two-player case of set theory mentioned above, we have the degenerate
case where all strategies are relevant. This yields winning strategies: o is
winning in the game with payoff P if for every u-frame 7 with 7; = o, we have
P(XT) = i. As usual, we call a payoff P determined if there is a winning
i-strategy for some ¢ € [. For games with more than two players, winning
strategies might not always exist (Proposition 1).

For our classes I' of payoffs we use the usual complexity classes of descriptive
set theory: X* is endowed with a natural topology (the product topology of
the discrete topology on X), and if X is finite or countable, this is a Polish
space. We have the usual pointclasses of open, closed, Borel, projective sets
on X%, and for a pointclass I', we say that the payoff P : X“ — [ is a ['-payoff
if for all 4, P, € I".3

Proposition 1 There is an open three-player game that is not determined.
Proof. Let X :={0,1}, I =3 ={0,1,2}, pu(p) := lh(p) mod 3 and
Py :={x; (010) C z or (011) C z},

Py :={x; (101) C z or (100) C z or (110) C z or (111) C z}, and
Py :={x; (000) C z or (001) C x},
as depicted in Figure 1 or (simplified) in Figure 2.

Clearly, the payoff sets are all open. Figure 2 shows that none of the three
players can have a winning strategy. qg.e.d.

Consequently, for games with more than two players, we have to specify a
smaller class of strategies as “relevant” in the sense of the above theorem
scheme. This is well-known in game theory and led to studying many-player
games in terms of coalitions.

As mentioned, we shall stay within the non-cooperative paradigm, but add
information about the preferences of the players and their rationality to the

3 Note that this usage is slightly different from the usage in the two-player case. A
two-player game is normally called closed if the payoff for player I is a closed subset
of X¥ (with no conditions on the payoff for player II).
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Fig. 1. The game graph of the game from Proposition 1. Round nodes with an ¢
represent opportunities for player ¢ to move, square nodes denote the winner of a
given game path.
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Fig. 2. Simplified version of Figure 1 with all irrelevant moves removed.

analysis. We shall presuppose full rationality of all players and common knowl-
edge of that fact. This allows us to use the usual backwards induction tech-
niques known from perfect information game analysis.* Assuming common
knowledge of rationality, we can restrict the set of relevant strategies; this will
be done when we define the notion of a (II, /)-strategy in Section 3.

As an example, consider the game defined in Figure 1 and imagine that we
have the three players Jill (0), her husband Jeff (1), and an invited friend John
(2). If Jill knows for sure that Jeff prefers her over John, she can exclude his
strategy “play 0” from her considerations as irrelevant, and win by playing 0
herself.

Note that this is not a coalition: there is no agreement between Jill and Jeff,
there isn’t even a benefit for Jeff. It is just calculation of Jill, taking into ac-
count predictions about the behaviour of her husband. Also note that playing
0 can only guarantee Jill to win if she can be sure of both Jeft’s preference for

4 Cf. [Au95], [Bi88], [St96]. For a discussion of the rdle of common knowledge of
rationality for the backwards induction technique in terms of modal logic, cf. [dBoo].
Note that the usual Gale-Stewart analysis for two players doesn’t need any rational-
ity assumptions: the winning strategy constructed in the proof of the Gale-Stewart
Theorem will win against all players, including irrational ones. This is not true for
our games anymore; we briefly discuss this at the end of this section.



her and Jeff’s rationality. If Jeff prefers Jill over John, but doesn’t properly
understand what’s going on in the game, he might play 0 and thus let John
win. (This type of the game will show up later in Section 7 as Evening at a
Couple.)

3 Games with a preference

We call a function II a partial preference if its domain is the set 7, and I1(7)
is a well-founded partial order on the set I — we also write <} for this partial
order; the intended interpretation of jo <} j; is: “player i prefers a win of jg
over a win of j;”. We call a partial preference II a (total) preference if for
each i € I, II(7) is a wellordering. In the following, we shall always assume
that players want to win, i.e., that

min [ =1
<n

for all ¢ € I.

Let us define I, as follows:
i <fp, 11 = Qg =1i& i1 #1i.

Then Il is a partial preference that corresponds to the classical zero-sum
situation: all players prefer to win, but if they don’t, they have no prefer-
ences about the actual winner. Note that Proposition 1 shows that there is no
solution for games with the partial preference Il.

In the following, we will offer a backwards induction solution concept for
infinite many-player games based on a (total) preference that is commonly
known. As in the usual situation for infinite perfect information games, we
assume that all players are fully rational, and their rationality is common
knowledge.

Let I be an arbitrary set of players, 1 a move function, and II a total prefer-
ence. We call any partial function ¢ : X< — I an (partial) labelling.

For each partial labelling ¢ and a total preference II, we can define its Gale-
Stewart procedure in a transfinite recursion as follows:

Start of the recursion and the successor step. We let GS{(¢) := .
Suppose that GSI(¢) is already defined, we then define GS! ;(¢) as follows:
for each s € X<, we check whether one of the cases (s+) or (s—) holds. If
so, we follow the instructions described below.



o (s+) If u(s) =i and there is an immediate successor ¢ of s such that
GS, (O)(t) =1,

then we let GSL, | (¢)(s) == i.
o (s—) If u(s) =i and all immediate successors of s are already labelled, let

GS1(0)(s) == min{j € I; 3¢ € X (GSF(O)(s7(€)) = 7)}-

If none of the conditions (s+) or (s—) hold, we let GS}, (£)(s) :== GS} (¢)(s)
(which might be undefined).

In words: We interpret a label ¢(s) = j as “at s it is determined that player
j will win”. If player ¢ has to play at s, the case (s+) means that there is an
immediate successor node t of s such that “at t it is determined that player ¢
will win”. Assuming rationality of player i, and assuming that player ¢ wants
to win (note that we demanded that of our preferences), this means that “at
s it is determined that player ¢ will win”, since player ¢ will play into such a
successor node. The case (s—) means that in all of the successor nodes, the
game is determined. In that case, player ¢ can look at the possible labels of the
successor nodes, pick the one that he likes best (according to his preference
relation <%), and play a successor with such a label. Again, assuming the
rationality of player ¢ and knowledge of the preference II, the outcome of the
game is determined at s.

Note that in general, the Gale-Stewart procedure is non-monotonic: both (s+)
and (s—) are able to change labels of GS!(¢), and so there needn’t be a fixed
point. The key idea of Gale and Stewart was that for nice labellings ¢, the
Gale-Stewart procedure is monotonic, and we have a fixed point. In Section 5,
we shall see an example where we can do a game analysis even if the procedure
isn’t fully monotonic.

The limit step of the recursion. The possibility of non-monotonicity also
causes potential trouble with the limit case. In the spirit of Herzberger’s limit
rule for the Revision Theory of Truth® we define

GST(0)(s) = GST(0)(s) if VBla < B <A — GSI(0)(s) = GSJ(0)(s)),

undefined otherwise.

Of course, if the procedure is monotonic below A, this is the same as the usual
definition GSY () := Un<r GSE(Y).

5 Cf. [GuBe93].



If 1 is a fixed point of the Gale-Stewart construction, i.e., GSE(E) = GSEH(E),
we call GS;I(E) the Gale-Stewart closure of ¢ relative to II and denote
it by GSCY(¢). Regardless of whether the Gale-Stewart procedure has a fixed
point or not, we call the least o such that GSL(¢)(s) is defined the index of
s.

Special properties of labellings. Let ¢ be a partial labelling, IT a total
preference, and
(GSH(0); a € Ord)

be the Gale-Stewart procedure starting from ¢.

We say that ¢ has the antichain property if for each infinite sequence
(Sn;n € N) with s, 2 sp there is some n such that s, € dom(¢). Note
that this implies that dom(¢) is a maximal antichain in X<“ (and for the
labellings ¢ discussed in this paper, it is actually equivalent).

We say that ¢ has the [I-fixed point property if the Gale-Stewart procedure
starting from ¢ relative to II has a fixed point, i.e., for some «, GSB(E) =

GSIL L (0).

We say that ¢ has the II-monotonicity property if for all a € Ord, if
s € dom(GSY(¢)), then

GSqa (0)(s) = GSapa (0)(s).

Obviously, this implies that the Gale-Stewart procedure is monotonic in the
usual sense®, and we get a fixed point by the standard fixed point theorem
for monotonic operators:

Lemma 2 If ¢ has the II-monotonicity property, it also has the I1-fixed point
property.

For some ¢ that has the Il-fixed point property, we say that it has the II-
totality property, if GSC"(¢) is a total function. We say that it has the
II-root property if @ € dom(GSC"(¢)).

Lemma 3 (Totality Lemma) If ¢ has the antichain property and the II-
monotonicity property, then it has the Il-totality property.

Proof. Suppose that s is not labelled by GSCY(¢). By (s—), all positions
that have only labelled immediate successors are labelled in the Gale-Stewart

6 Le., for all @ < B, we have dom(GSI(¢)) C dom(GS%(f)) and for s €
dom(GS{}(£)), we have GSp (€)(s) = GS (£)(s).



closure. Consequently, we can define an infinite sequence (s, ; n € w) with
$n G Snt1 starting from s such that for all n € w, s, ¢ dom(GSC™(¢)).

By the antichain property, there is some m such that s,, € dom(¢). But the
monotonicity property of ¢ implies that dom(¢) € dom(GSC"(¢)) which is a
contradiction. g.e.d.

Special properties of strategies. Let § be some class of strategies, and ¢
be some labelling. We call a frame 7 = (7;; j € I) an S-frame if for all j € I,
we have 7; € S.

We call an i-strategy o (-S-consequent if for every S-frame 7 such that
7; = 0, we have that

0RTIn) =1
for all n € w. We call an i-strategy S-winning if for all S-frames 7and x := "4 T,
we have P(x) = i.

We call a strategy o a (I1, £)-strategy if for all p with p(p) = 4, if £(p~ (o (p))) =
k, then k is the <}-least element of

{7 € 1; 3 (€(p™(x)) = 5)}-
We denote the set of (IT, £)-strategies by S}

Heuristics: We again assume that ¢(s) = j is interpreted as “at s it is deter-
mined that player j wins”. Suppose p(p) = ¢; using his knowledge about ¢,
player ¢ will be able to check his options at p by looking at the set

{t(p™(€)); & € X}

Given the above interpretation of ¢, the only rational choice for player ¢ is
to choose one of the successors that rank highest in his preference. A (II, ¢)-
strategy is one in which the player is required to behave rational in this way.

Lemma 4 Let { be a labelling with the Il-totality property. Then there is a
GSCH(E)-SSSCH(Z)-consequent strateqy.

Proof. We write £* := GSC" (/). By the II-totality property, we have ¢*(@) = i
for some i € I. We define the following i-strategy o: if u(p) = 4, play some
¢ such that p~(¢) has the <}-least label among the immediate successors of
p. The labelling ¢* is a total function and a fixed point of the Gale-Stewart
procedure, so for each node s, £*(s) must also be the label of at least one
immediate successor of s.

Fix any S}'-frame 7 such that 7, = o, and let z := "M 7. We shall show that
*(z[n) = i for every n € w: Suppose it’s not, and let n + 1 be the least



counterexample (thus ¢*(x[n) =i and £*(z[n+ 1) # i). By the above remark,
we know that there is some immediate successor p of z[n such that £*(p) = i.

Thus, by the choice of o, we know that u(z[n) = j # i because player i would
have chosen to play p instead of x[n + 1. But now by (z[n—), we have

i = n<1§_n{k €1;3 € X (*(s7() =k)},

II

yet 7;(x[n) = x(n) with i <}, £*(x[n + 1). Thus 7; is not a (IT, *)-strategy.
Contradiction. g.e.d.

4 Open and Closed Preference Games
4.1 Open Payoffs

Now let I be an arbitrary set of players, ;1 a move function, II a total preference,
and P an open payoff.

We define
S;:={p e X=¥;Va(pC ximplies P(z) =1)}
to be the set of positions at which player ¢ has won, and set
l(p):=i: <= peS,.
We call a labelling ¢ an open labelling if there is an open payoff P as above.
Lemma 5 FEvery open labelling has the antichain property.

Proof. Obvious. g.e.d.

Lemma 6 FEvery open labelling has the II-monotonicity property (for arbi-
trary preferences 11).

Proof. Let (GS/'(a); a € Ord) be the Gale-Stewart procedure derived from
¢. We prove the claim by induction on the index of s. Suppose s is a coun-
terexample of minimal index, so GSI(¢)(s) =i # j = GSL,,(£)(s). Take a to
be minimal among those as well.

Case 1. The index is § 4 1, and s was labelled by (s+). Then there is some
immediate successor ¢ with strictly lower index such that GSj(¢)(¢) = i. By

minimality, GSY (¢)(t) = 4, so (s+) is applied in the construction of GSL,;(¢),
hence GSL, ; (¢)(s) = i. Contradiction.

10



Case 2. The index is # + 1, and s was labelled by (s—). Then all immediate
successors t have strictly lower index, and thus by minimality, their labels are
fixed. So (s—) is applied in the construction of GSL,  (£), hence GSL.; (¢)(s) =
1. Contradiction.

Case 3. Suppose that the index of s is 0. In that case, all successors (not
only immediate) are i-labelled with index 0, so by induction GSL;(¢)(s) = i.
Contradiction. q.ed.

Corollary 7 Every open labelling has the 11-totality property (for arbitrary
preferences 11).

Proof. From Lemmas 5 and 6 via the Totality Lemma 3. g.e.d.

Theorem 8 Let I be an arbitrary set of players, . an arbitrary move function,
P an open payoff, ¢ the open labelling derived from P, (* its Gale-Stewart
closure, and 11 a (total) preference. Then there is an i € I and a S}-winning
strateqy o for player i.

Proof. By Corollary 7, GSC™(¢) is total, so let GSC"(¢)(2) = 4. Using (the
proof of) Lemma 4, we get a GSC'"(¢)-S}!-consequent strategy o for player i.
Let 7 be an arbitrary S)i-frame with 7; = o, and let  := 4 7. We have that
for every n € w, GSC"(¢)(z|n) = i.

Lemma 5 gives us some m such that z[m € dom(¢), and Lemma 6 yields that
{(xIm) = GSC™ () (xIm) =1, i.e., x € S;, and thus P(z) = 1. g.ed.

In terms of determinacy axioms, the analysis of this section yields a many-
player determinacy statement:

For open payoffs and arbitrary sets of players, if we fix a (total) preference
IT, then there is a II-winning strategy for one of the players.

Let us rephrase this in terms of equilibria: If we restrict the class of relevant
strategies to the strategies in S}t, then Theorem 8 gives us a large set of very
strong equilibria: Each frame 7 such that 7; = ¢ is an equilibrium since none of
the players can increase his payoff while playing a strategy in Sii; the players
j # i necessarily lose against o.

4.2 Closed Payoffs

If I is finite and P is closed, then all sets P; are also open, and Theorem 8 can
be applied. If I is infinite, it could be that the payoff sets are closed but not

11



clopen. However, a slight modification of the above argument (using closed
labellings instead of open labellings) yields the same result:

Let I be an arbitrary set of players, u a move function, I a total preference,
and P a closed payoff.

We define
Ci:={pe X~¥;Va(pCximplies P(z) #1)}

to be the set of positions where player i has irrevocably lost, and define the
labelling

l(s)=i:<= Vjel(j#i—se()).
We call such a labelling an closed labelling.

Now it’s easy to see closed labellings also have the antichain and the mono-
tonicity property. So by the Totality Lemma 3, £* = GSC™ () is a total func-
tion. Lemma 4 gives an S}f-consequent strategy, which then by definition of ¢
yields a S/l-winning strategy:

Theorem 9 Let I be an arbitrary set of players, p an arbitrary move function,
P a closed payoff, ¢ the derived closed labelling, {* its Gale-Stewart closure,
and 11 a (total) preference. Then there is an i € I and a SE-winning strategy
o for player 1.

4.8  Ezxceptional Least Fuvil

We shall now briefly discuss a special situation which occurs rather frequently
and can be solved with (a variant of) the methods of this section.

If IT is a preference, we say that iy € I is a least evil in II, if for all ¢ # 7,
we have

i <iio < j
for all j & {4,40}.

We call a pair (P, IT) an exceptional least evil situation if i is a least evil,
and P is a payoff such that P, is open for all ¢ # 4. Clearly, P;, is then closed.

For i # ig, we define
S;:={pe€ X=¥;Vz(p C x implies P(x) =1i)}

and
lp)=i:<= peS,

as before, and call these labellings exceptional least evil labellings.

12



We get analogues of Lemmas 5 and 6:

Lemma 10 If (P,II) is an exceptional least evil situation and ¢ the derived
labelling, then for every x € X%, we have

e cither there is some n such that z[n € dom({),
e or P(z) =ip.

Lemma 11 If (P,II) is an exceptional least evil situation, then its derived
labelling has the II-monotonicity property.

Consequently, exceptional least evil labellings have the II-fixed point property.
However, the Gale-Stewart closure needn’t be total this time as they do not
have the antichain property. We define

(s) GSCJ(s) if s € dom(GSC™(¢)), and
S) =

10 otherwise.

If s ¢ dom(GSCU"(¢)), we say that the index of s is 0.

Lemma 12 If (P,II) is an exceptional least evil situation, ¢ the derived la-
belling and (* defined as above, then there is an (*-Spi-consequent strategy.

Proof. Suppose that ¢*(&) = i. As in the proof of Lemma 4, we define a
strategy o for player i: if u(p) = i, let if;, := min_, {*(p7(€)); £ € X}. Look
at the set =P := {£ € X; (*(p™(§)) = it} Pick & from this set such that
the index of p~(&p) is minimal. Note that if the index of p is not zero, there is
some &, € =P such that the index of p~(&) is strictly lower than the index of

p.
We claim that this strategy is £*-Sii-consequent.

If 0*(@) = i # 1o, this proof is essentially the same as the proof of Lemma 4.
Suppose that ¢*(&) = ig. Observe that the only way s can be labelled i is
if s has an immediate successor that is labelled iy (otherwise, all immediate
successors have are labelled by GSC"(¢), and hence also s itself). Let 7 be an
arbitrary Si-frame with 7;, = o and z := & 7. Take n such that £*(zn) = ig
and (*(xIn + 1) = j # ip. Obviously, u(z[n) = k # io. If 7 = k, then
¢*(xIn) = GSCJH(x[n) = j by (x[n+). Consequently, j # k. But now we can
use that iy is the least evil, so in particular, k <% ig <¥ j. But

U (zn) m(x[n)) = J,
so 7 is not a (II, £*)-strategy. Contradiction. q.ed.

Theorem 13 Let I be an arbitrary set of players, p an arbitrary move func-

13



tion, (P,II) an exceptional least evil situation, ¢ the derived labelling, and (*
as defined above. There is ani € I and an S} -winning strategy o for player .

Proof. The strategy o as defined in the proof of Lemma 12 will be the Si-
winning strategy. Remember that o always plays into positions of strictly lower
index (unless the index is 0). Let 7 be a S}'-frame with 7; = ¢ and z := K 7.
Then by Lemma 12, £*(z[n) =i for all n € w.

We are left to show that P(z) = i. By Lemma 10, we know that this is the
case if i = 7p. So let i # iy.

Note that if p(z[n) = j # i, then it was either already i-labelled in ¢ or it
was i-labelled by (z[n—), so all immediate successors have strictly lower index
than x[n. This together with the choice of o says that the sequence of indices
of z[n is a decreasing sequence of ordinals. Hence it must eventually reach 0,
which means that x[n € S; for some n € w. q.e.d.

The fact that the index function needs to be used in order to define a winning
strategy in this case is no coincidence: as opposed to games in which all payoffs
are open or all payoffs are closed, the games with an exceptional least evil
contain for example all so-called combinatorial games (games with counters
on graphs; the last player to move the counter wins, if the counter is moved
infinitely many times, it’s a draw). That labelling functions for combinatorial
games need transfinite ordinal values to describe winning strategies has been
discussed in [FrRa01].

5 Mixed Labels

The analysis of Section 4, in particular Section 4.3 covers quite a lot: The
usual open and closed two-player games (i.e., Py open and P; closed, or vice
versa) are an instance of an exceptional least evil (the closed player is the
exception); also all games with open payoffs and a draw are instances of an
exceptional least evil (as mentioned, the combinatorial games on graphs are
examples of these).

But there are other situations that the analysis of Section 4.3 cannot deal
with, for example a closed player who is not a least evil, or two closed and one
open players.

For these situation we need to mix open and closed labellings, and give up
monotonicity.

Let I be a set of players, i a move function and P be a payoff such that P,
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is either open or closed for all # € I. We shall call such a payoff function a
mixed payoff. Let I,,en U Leiosea be a disjoint partition of I such that for all
i € Iopen, P is open and for all ¢ € Igosed, F; is closed. Assume in addition
that Iqeseq is finite (this is used in the proof of Lemma 14).

We are now joining the ideas of open and closed labellings. For each ¢ € [ ogseq,
let

Ci:={pe X~¥;Va(pCximplies P(z) #1)}
be the set of positions where player i has irrevocably lost, and for each ¢ € Iopen,

let
i i={pe X=¥;Vz(p C z implies P(z) =1i)}

be the set of positions at which player 7 has won.

We define the following mixed labelling;:

1 € Lopen if s €5,
j € Iclosed if S ¢ U{Sza 1€ ]open} U U{Cka k S Iclosed: k 7é j}

l(s) =
Labellings derived from a mixed payoff function in this way are called mixed
labellings.

Lemma 14 Fvery mized labelling has the antichain property.

Proof. Let x € X%, and let P(z) = i. If i € Iypen, then there is some n such
that a:[n S Sl

If i € Ioseq, then for each j € I.oseq such that j # ¢ there is some natural
number n; with x[n; € C;. Let n := max{n;; j € Iiosed,J # ¢} (note that
this exists because Iqoseq is finite). Then ¢(z[n) = i. q.e.d.

Ifnow (GSY(¢); a € Ord) is the Gale-Stewart procedure starting from a mixed
labelling /, it is not necessarily monotonic anymore:

For example, if I = X = {0,1}, (@) =0, Py := {z; 2(0) = 0}, then (@) =1
and £((0)) = 0. Then (@+) gives GSI'(£)(@) = 0 # 1 = GSy(£)(2). We call

such a situation, i.e., a pair (s, «) such that
GSL(O)(s) =i #j = GSL,,(0)(s)

an overwriting instance (for /).

Lemma 15 If( is a mized labelling and (s, «) is an overwriting instance with
GSL(0)(s) =i # j = GSua(0)(s),

then i € ILoosed; J € Iopen, and GSS(E)(S) ={(s).
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Proof. We prove this by induction on the index of s. Suppose s is a coun-
terexample of minimal index. Take a to be minimal among those as well.

Case 1., Case 2. and Case 3. from the proof of Lemma 6, show that the
index of s must be 0, and that ¢ cannot be an open label, so 7 € [ oseq- By
definition of ¢, we know that

]closed N {é(t>7 t2 S} = {Z}

So by induction, GSL (£)(t) € Iopen U{i} for all successors ¢ 2 s. Consequently,
if GSIL, 1 (€)(s) = j # i, then j € Iopen. But now the minimal choice of « gives
{(s) = GS(¢)(s) by induction, so s was no counterexample. g.ed.

Corollary 16 If ¢ is a mized labelling and s € X<, then there is at most
one o such that GSL(£)(s) # GSL, 1 (€)(s).

Proof. By Lemma 15, if GS (£)(s) # GSh1(£)(s), then GSL(£)(s) € Iaosed
and GSI 1 (£)(s) € Iopen. But now again by Lemma 15 this means that for no
B> «a, we can have GSj (€)(s) # GSj,,(£)(s). q.e.d.

Lemma 17 FEvery mized labelling has the I1-fized point property (for arbitrary
I1).

Proof. By Corollary 16, there is only a set of overwriting instances (in fact,
the cardinality of the set is at most x := Card(X <¥). Let

Y :=sup{a+ 1; (s, ) is an overwriting instance for some s € X <“}.

Then after ¥, the Gale-Stewart procedure is fully monotonic, and hence has
a fixed point by the usual fixed point theorem. g.e.d.

Lemma 18 Fuvery mized labelling has the T-totality property (for arbitrary
I1).

Proof. We know by Lemma 14 that ¢ has the antichain property. Note that
the proof of the Totality Lemma 3 doesn’t really need the full II-monotonicity
property but only

s € dom(f) — s € dom(GSC"(¢)) (1)
which is a consequence of Corollary 16. g.e.d.

Theorem 19 Let I = Ipen U Liosea be an arbitrary set of players where Icioseq
s finite, u an arbitrary move function, P a payoff such that P; is open for
1 € Iopen and P; is closed for @ € Icgsed, £ the derived mized labelling, and (*
its Gale-Stewart closure (which exists by Lemma 17). Then there is an i € I
and an SH-winning strategy o for player i.

16



Proof. By Lemma 18, ¢* is total, so by (the proof of) Lemma 4, we have a
0*-S}t-consequent strategy o for player i such that ¢*(@) = i.

To prove the theorem, it is enough to show the following:

We show that if x € X* such that for all n, £*(z[n) = i, then P(x) = i.

Case 1. Let i € Ipen. By Lemma 14, we get some n such that ¢(z[n) = i, so
x € S;, 80 P(x) =1.

Case 2. Let i € Losea- If @ € U{Pj; j € Iopen}, then there is some n such
that ¢(z[n) € Iopen. But then by Lemma 15, ¢*(x[n) = {(z[n) € Iypen. Con-
tradiction.

So, we have that © € U{F;; J € luosea} and by Lemma 14 that for some
n, {(x|n) = i. By definition of the closed labels in ¢, this means that = ¢

U{Pj 3 j € ]closedaj 7é Z}, S0 P(ZL’) =1. qed

6 Temporal Game Logic

In his [vB03, §8.2], van Benthem discusses the Gale-Stewart theorem in terms
of a branching time logic with additional game operators. We think of X*“ as
the set of branches in a model for a Prior-style branching time logic with the
usual operators G (“for all future times”) and H (“for all past times”), and
the derived operator Ap = Gy AHp.” Motivated by looking at finite games
[vB03, §5.3], van Benthem adds game modalities W, for each of the players
1 € I with the intended meaning “player ¢ can force”.

If z € X¥ and s € X<, then the semantics for W, is (z,s) E W, ¢ if and
only if there is a strategy for player ¢ such that every run of the game y 2O s
consistent with y (beyond s), we get (y,t) = ¢ for all s C ¢ C y.

Considering a two-player situation with an open payoff P, and a closed payoft
P, where membership in F is described by ¢, the key step of the Gale-Stewart
argument transforms into the modal formula

WogO\/WlA_\WogOZ

" For a thorough account of Prior’s tense logics, cf. [Mii02]; for the original devel-
opment of the modern technicalities, cf. [Th70] and [BAMaPn83]. Branching Time
Logic has been connected to games and Backward Induction phenomena by Bo-
nanno [Bo0O1] who proves in the framework of temporal logic that each internally
consistent prediction or recommendation for the players must come from a back-
wards induction solution.
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either player 0 can force the outcome into P, or player 1 can make sure that
player 0 can never force the outcome into P. 3

This is exactly the claim of Lemma 12, and if we are in the case of the second
alternative (W1 A =Wy ), we use the fact that P is closed to show that this
is enough to prove that the outcome is in P;.

Of course, when we move to more general formulas ¢ of temporal logic, the
Weak Determinacy formula might not be enough to prove determinacy any-
more, and also the provability of the Weak Determinacy formula might depend
on the system we’re working in.

In the cases of open payoffs, closed payoffs and mixed payoffs with the non-
monotone analysis of Section 5, the explication in a temporal game logic term
becomes even simpler and is identical with the statement of determinacy:

\/Wi i

el

where ¢; is a formula describing membership in P;.° The case of the Excep-
tional Least Evil reverts to the Gale-Stewart situation and gives

\/ Wl Vi V WioA /\ _'Wi ©i-
i#ig iio

7 Games with three players

We now give some examples of games solved by the solution concepts by open
labellings and mixed labellings given in Sections 4 and 5.

For this let’s look a bit more closely at three-player games with preferences.
Up to renaming of the players, there are only two different three-player games
with total preferences, we call them Evening at a Married Ex and Love Triangle
(depicted in Figure 3). In our pictures of the preferences, an arrow from i to
J means “i prefers j over k” (where {i,7,k} = {0, 1,2}).

Of course, the solution concept presented in Theorem 19 gives us optimal
strategies for some player in these games if the payoffs are open and/or closed.

8 This is called Weak Determinacy by van Benthem [vB03].
9 If I is infinite, we either need to interpret the disjunction \/ as a quantifier with
the obvious semantics or move to an infinitary logic.
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0 1
\_/

0o— 1
< ..
Fig. 3. Evening at a Married Ex and Love Triangle

For three players, if I1(i) is not a wellordering, it is necessarily of the form
i <% j,k where j and k are in no particular ordering. So if II is not a total
preference, then either one, two, or all three of the relations <} are of this
form. There are (up to renaming) three cases with two wellorderings, and one
case each with one and zero wellorderings. They are depicted in Figures 4 and
5.

0— =1 0 1 0 1
2/ 2 \2/

Fig. 4. Beatrice's Revenge, Evening at a Couple, and Least Evil

In general, there are no solution concepts for partial preferences. Of course,
Hobbes is just the case of full non-cooperation and as mentioned in Proposition
1, there is no solution for this situation. A notable exception is Least Evil: In the
case where the least evil itself doesn’t move (i.e., My = &), the “Exceptional
Least Evil” analysis of Section 4.3 is a solution.

Let us briefly describe the different situations by examples:

Love Triangle. This situation is truly pseudo-Shakespearean: Beatrice (0) is the
fiancée of the poor but handsome Captain Antonio (1). She recently started
to question her fiancé’s character. Faking a family emergency, she pretends
to go to the countryside while dressing as a rich wine merchant to check on
Antonio’s behaviour. Alas, her suspicions prove to be correct: as soon as she
apparently leaves town, Antonio starts a liaison with the beautiful Cressida
(2). Beatrice in the role the wine merchant is intent on confronting Antonio
with his deeds and invites Antonio and Cressida to play an infinite three-
player game. Now the treacherous heart of Cressida abandons poor Antonio
for the rich wine merchant (0 <% 1) while the good-hearted Beatrice is full
of pity for Antonio seeing him so deceived by Cressida (1 <% 2). Antonio, of
course, doesn’t evaluate the situation correctly: he doesn’t recognize Beatrice,
and although he realizes that Cressida has abandoned him, he tries to win her
back by preferring her in the game (2 <1, 0).

Beatrice’s Revenge. In the situation of Love Triangle, Beatrice realizes that
Antonio is an idiot. Even though Cressida shamelessly flirts with the rich wine
merchant, Antonio gazes in benumbed infatuation at her. Suddenly, Beatrice
realizes that this buffoon of a Captain doesn’t deserve her compassion, and
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she gives up favouring Antonio over Cressida.

Evening at a Couple. John (2) visits his friends, the married couple Jeff (1) and
Jill (0) at home. They decide to kill some time by playing an infinite three-
player game. Although Jeff and Jill are good sports and try to play the game
without prejudice, subconsciously, they prefer their marital partner over John
(0 <} 2, 1 <% 2). John knows that pretty well, and realizes that it makes no
difference whether Jeff or Jill wins.

Evening at a Married Ex. We are in the situation of Evening at a Couple but
with an added twist: Jill was the girlfriend of John for a long time while they
were in graduate school, and (not unbeknownst to Jill) John is still in love
with her (0 <% 1).

Least Evil. We are in a Mathematics Department with Professors Smith (0),
Johnson (1) and Williams (2) eligible to become the new Chair.'® Smith and
Miller are ambitious administrators and know that the only way to become
Dean of the Faculty of Sciences is to become Department Chair. Of course,
they also know that if the other one becomes Chair, he will probably use
his chance to become Dean, and the position of the Dean will be blocked for
at least five if not ten years. Williams is not ambitious at all — both Smith
and Miller realize that if Williams were to become Chair, he would never aim
at the office of Dean (2 <% 1, 2 <} 0). As laid out in the bylaws of the
Mathematics Department, Smith, Johnson and Williams have to engage in an
infinite three-player game to determine the next Chair.

Of course, Least Evil is a very common situation. As mentioned, if My = &,
we end up with a two-player game with draw.

0o— =1 0 1

2 2
Fig. 5. Sidekick and Hobbes

Sidekick. Luigi (1) and Paolo (2), two mafia bosses meet to deal with each
other, and Luigi brought his faithful follower Giacomo (0). They play an infi-
nite game, and whoever wins the game will become Overlord of Crime. Each of
them is given a chance of winning that title, but what about the consequences
of losing? Clearly, if Paolo wins, he will most probably kill both Luigi and

10 To stifle any discussions about the choice of these surnames: According to at least
one poll, the most common surnames in the United States in the year 2000 were (in
that order): Smith, Johnson, Williams, Jones, Brown, Davis, Miller, Wilson, Moore,
Taylor.
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Giacomo to thwart any opposition forming around them; similarly, he can be
sure to be killed for the same reason by either of the others if they win. Luigi
has humiliated Giacomo over many years, so Luigi can’t be sure of his future
if Giacomo wins. The only one who has a preference is Giacomo: if Luigi wins,
he will stay alive —and continue to be humiliated by Luigi—; if Paolo wins, he’ll
die (1 <% 2).

Hobbes. In this three-player game there are no preferences except that all
players wish to win, and if they don’t, they don’t care who does. This type of
game is played in the Hobbesian Natural Condition of Mankind:

If any two men desire the same thing, which nevertheless they cannot both
enjoy, they become enemies; and in the way to their end (which is principally
their own conservation, and sometimes their delectation only) endeavour to
destroy or subdue one another. ... Men have no pleasure (but on the contrary
a great deal of grief) in keeping company where there is no power able to
overawe them all. ... It is manifest that during the time men live without a
common power to keep them all in awe, they are in that condition which is
called war; and such a war as is of every man against every man (Hobbes,
Leviathan XIII).

As pointed out, this situation is the fully non-cooperative situation described
in Proposition 1, and thus Il-preference determinacy cannot offer a solution
concept for these games.

8 Conclusion

We gave solution concepts for infinite multi-player games with the strongest
common knowledge assumptions and for very simple payoffs. Of course, there
are many directions to discuss variations of these themes:

More complicated payoffs. As can be made explicit, AY payoffs still allow
combinatorial labellings, thus it is possible to give a version of backwards
induction. That suggests that the arguments from this paper could possibly
be extended to A payoffs.

Furthermore, almost all determinacy proofs in set theory go back to open
determinacy. The key notion here is the tree representation of more compli-
cated sets by k-homogeneous trees (cf. [Ka94, §32]). Winning a game on the
closed payoff set given by the tree can be transformed into winning the origi-
nal game. Can we give homogeneous tree version for many-players games with
more complicated payoffs (e.g., assuming that the players have agreed to be
playing according to one fixed homogeneous tree before the game)?
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Other knowledge assumptions. Consider the following version of Love
Triangle where Antonio is even less observant: He doesn’t recognize Beatrice,
but moreover he also doesn’t realize that Cressida has abandoned him, so in
evaluating the game tree, he will evaluate the positions as if 1 <% 0 instead of
(the correct) 0 <% 1. Assuming that Beatrice and Cressida know about this
error in judgement of Antonio’s, can we give a solution of the game? What
if we allow Antonio to change his mind (and thus the labelling of the game
tree in his mind) as soon as he sees that Cressida has betrayed him? ! This
necessarily leads to dynamic models of these games similar to dynamic models
for epistemic solutions of finite games (cf. [vB01]).

Proof-theoretic analysis & more non-monotonicity. The existence of
winning strategies has been analyzed proof-theoretically in terms of weak sys-
tems of second-order arithmetic. !2

Deleting and overwriting of labels for games as in the analysis of mixed la-
bellings occurs in some proof-theoretic analyses of subsystems of second-order
number theory [M603], and in full generality might be connected to games
corresponding to the proof-theoretic strength of Gupta-Belnap revision the-
ory. ' Thus extending the ideas of Section 5 to labellings with the antichain
property but with truly non-monotonic Gale-Stewart procedures that need to
be analysed as revision sequences is an interesting approach to game-theoretic
analyses of Revision Theory.
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