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0. Introduction

In this paper I shall show that Barwise’s [1981] analysis of neutral per-
ception verbs and Barwise & Perry’s [1983] treatment of the propositional
attitudes can be formalized within Montague Grammar. To this end I shall
give a new, partialized, modeltheoretic semantics to the fragment of natural
language defined in Montague [1973] (PTQ henceforth). The result will
clearly fall within the limits of Montague Semantics but can also be seen as
a version of Barwise and Perry’s system, Situation Semantics, provided
that a liberal definition of the latter is employed.

Present-day Montague Grammar is poorly equipped to treat proposi-
tional attitudes or naked infinitive constructions well. The reason for this
seems to be that while our beliefs, desires and hopes and the things that we
see, feel and hear are evidently partial in nature (since our powers are
limited and the world is large), Montague Semantics is fotal. It treats the
objects of the attitudes as total sets of total worlds and since e.g. the sen-
tences

) John walks
) John walks and Bill talks or doesn’t talk

are true in exactly the same total worlds, the sentences

3) Mary believes that John walks
4) Mary believes that John walks and Bill talks or doesn’t talk

are treated as equivalent too. But Mary may believe (1) without believing
anything about Bill at all and so, in particular, without believing (2). Sim-
ilarly, and perhaps more convincingly, since (1) and (2) are equivalent, by
Compositionality

()] Mary sees John walk
(6) Mary sees John walk and Bill talk or not talk

must be too. But (6) involves that Mary sees Bill, while (5) clearly does
not.

Situation Semantics solves these problems in a fundamental way. In
this new framework for the semantic analysis of natural languages the
meaning of a sentence, a proposition, is no longer equated with a set of
total worlds. Instead, partial structures—situations—are offered, in which,
for example, (1) may be true but (2) undefined. So these sentences are no
longer (‘strongly’) equivalent and the equivalences between (3) and (4)
and between (5) and (6) do no longer follow. In this way Situation
Semantics obtains a treatment of the psychological verbs that is at once
more real to nature and empirically more adequate than Montague’s analy-
sis is. This is an important reason why the new framework offers an inter-
esting alternative to the older one.

Can Montague Grammarians meet the challenge? The question arises
whether the basic idea behind Barwise & Perry’s analysis—partiality—is



necessarily tied up to Situation Semantics. Cannot this idea be transplanted
to the older system?

Although it is nowadays usual to think about possible worlds as total
entities deciding every proposition, there is nothing essentially total to the
idea of a possible world. The early pioneers of possible world semantics
certainly did not think so, as Van Benthem [] has pointed out, nor did all
semanticists of a more recent past share the ‘totalitarian’ perspective:
Humberstone [1981], for example, defines a simple and elegant semantics
for propositional modal logic based on what he calls possibilities—partial
possible worlds, entities he associates with regions rather than with points
in logical space.

But if we want partiality in Montague Semantics, it will clearly not do to
have a partial semantics for propositional modal logic like Humberstone’s.
We must have a partialized model theory for the full theory of types. It
seems hard to find one. The following remarks made by Barwise can be
found in Barwise & Perry [1985]:

It is true that some writers have augmented the theory of possible worlds to add
partial possible worlds. However, no one, as far as I know, [...] has worked out
the higher-order Montague-like analogue of this theory. I thought about it
once. The idea would be to have a part-of relation between partial worlds and
look at those higher-type functions that were hereditarily consistent with
respect to this part-of relation. However, I found that it became terribly
complex once you went beyond the first couple of levels in the type hierarchy,
much more complicated than the analogous problem in the theory of partial
functions of higher type recursion theory.

Why does it seem so difficult to partialize type theory? I think it is because
people try to generalize a version of it that is not very well suited to any
generalization at all since it is formulated in a rather unnatural way. Once
this unnaturalness is removed, and it can be removed at no cost, general-
ization to a partial theory of types is completely straightforward.

The standard formulation of type theory, given in Church [1940], is
based on unary functions only. Of course, in applications one generally
needs functions and relations in more than one argument, but these, we are
told, can be coded by unary functions. Two steps are needed to code a
multi-argument relation. The first is to identify it with its characteristic
function, a multi-argument function. This identification is very simple and
unobjectionable. The second step—I submit—is highly tricked. It is based
on Schonfinkel’s observation that there is a one-to-one correspondence
between multi-argument functions and certain unary functions of higher
type. So, an crdinary three-place relation on individuals like the relation ‘to
give’ is equated with its characteristic function, which, in its turn, is
identified with a function from entities to functions from entities to func-
tions from entities to truth-values.

Now, if we consider type hierarchies consisting of partial rather than
total functions, Schonfinkel’s one-to-one correspondence between multi-
argument functions and unary ones breaks down, as the following exam-
ple, adapted from Tichy [1982], suggests: Let a be some object of type e.
Consider two partial functions F; and F,, both of type (e(ee)), defined as
follows: F(x) = F5(x) = the identity function, if x # a. F(a) is undefined;



F(a) is defined as the (ee) function that is undefined for all its arguments.
Clearly, F'| # F,. The function F, codes the two-place partial function F
such that F(a,y) is undefined and F(x,y) =y if x # a. But if F; codes
anything at all, it must code F too.

In general, I think it is not a very good idea to put intricate codifica-
tions! like Schonfinkel’s into your logic if they are not absolutely neces-
sary: they complicate the theory. If you confine yourself to applications of
the logic you may get used to the complications; but if you are trying to
prove things about the logic and try to generalize it, you will find them a
hindrance to any real progression. Lambek & Scott [1981] even blame
some of type theory’s bad reception among mathematicians on the em-
ployment of Schonfinkel’s Trick:

Type theory for the foundations of mathematics was used by Russell and
Whitehead in ‘Principia Mathematica’. However, it did not catch on among
mathematicians, who preferred to use ad hoc methods for circumnavigating the
paradoxes, as in the systems of Zermelo-Frinkel and Godel-Bernays, even
though very elegant formulations of type theory became available in the work
of Church and Henkin.

One reason for this failure to catch on was an unwise application of Ockham’s
razor, which got rid of product types with the help of special tricks in one way
or another. The resulting system of types, although extremely economical, was
awkward to handle.

The general idea, then, is that we should first give a formulation of type
theory that is not based on Schonfinkel’s identification before we can gen-
eralize it to a partial theory of types. This will be done in the next section.
In section 2, we’ll use the result to obtain a new, but still total, semantics
for the PTQ fragment. It will give a consequence relation on the fragment
that is provably the same as the one defined in Dowty, Wall & Peters
[1981] (DWP henceforth). At that point we’ll be ready to generalize. The
logic that is defined in section 3 will be a partial type theory in the sense
that its models will have partial objects in all their non-basic domains.

The system will be a higher order generalization of existing partial log-
ics (see e.g. Dunn [1976], Belnap [1977], Woodruff [1984], Blamey
[1986] and Langholm [1987]). In section 4 we’ll show that the logic gives
a strong consequence relation on the fragment that cuts out the
exceptionable irrclevant entailments. Sentences (1) and (2) will no longer
be equivalent (but they will be ‘weakly equivalent’). Some of the crucial
concepts of classical Situation Semantics will be seen to be available within
a generalized version of Montague Grammar and it will turn out to be
possible to give an analysis of the psychological verbs within the latter
theory along iines suggested by the former.

1The question whether the Schonfinkel encoding is intricate or not is of course a matter
of taste and opinion. Note kcwever that a double recursion is needed if one wants to
define the correspondence in any precise way. See the definition of the functions S in
the proof of Thecrem 1. in the Appendix below.



1. Relational type theory

If you want to formalize the theory of types without making use of Schon-
finkel’s Trick three options are open: First, you can consider type
hierarchies consisting of both multi-argument functions and multi-argu-
ment relations. This is the most general solution, but we will not need this
generality here. Second, you may consider only multi-argument functions.
Relations can then be coded by their characteristic functions. Third, you
can take only relations. This is the course we shall in fact follow, since it is
somewhat simpler than the first and slightly better suited to our present
purposes than the second.

At first glance it might seem that the last solution is not liberal enough.
In natural language semantics it is often useful to take a functional per-
spective on things. For example, the intension of an expression can fruit-
fully be seen as a function from possible worlds to extensions. Another
example is that functional application seems to be the correct semantic cor-
relate of many, indeed of most, syntactic constructions.

But the obvious fact that functions are indispensable needn’t prevent us
from using only relations in setting up our logic. It is possible to view any
relation as a function. Moreover, it is possible to do this in at least as many
ways as the relation has argument places. The following pictures illustrate
this phenomenon geometrically:

Y Y

Let R be some binary relation on the reals, or, equivalently, a set of points

in the Euclidean plane. With any point d on the X-axis a set of points

{y 1{d,y) e R} on the Y-axis corresponds. This is illustrated in the left

picture. Conversely, any d’ on the Y-axis gives a set {x | (x,d") R} on

the X-axis, as is illustrated in the right picture. So there are two natural

ways to see R as a function from the reals to the power set of the reals.
The procedure is of course entirely general:

DEFINITION 1 (Slice Functions). Let R be an rn-ary relation and let
0 k< k < n. Define the k-th slice function F; of R by:
FR(d) = {<d1"'"dk-]’dk+1""’dn> | <d]!""dk—l’d:dk+]""’dn) € R)}

So Fz(d) is the n-I-ary relation that is obtained from R by fixing its k-th
argument place by d. We shall often want to see relations as functions in
this way. Note that by the usual set-theoretic definitions (remember that (a)
=a,{)=&, D=0 and {J} = 1), if R is a one-place relation, then FIIQ is
its characteristic function.

An example: Let love be a ternary relation, love xyi meaning ‘y loves x
atindex i’. This is a relation-in-intension. Relations-in-intension are nor-



mally thought of as functions from possible worlds to extensions; F; ove 1S
this function for love. On the other hand, it is natural to see the relation as
the function that, when applied to an entity ‘Mary’ gives the property ‘y
loves Mary at index i’; this is the function F,_,,.

A relational formulation of higher-order logic was given in Orey [1959]
(See also Gallin [1975] and Van Benthem & Doets [1983].) The following
two definitions give a two-sorted version of Orey’s type hierarchies:

DEFINITION 2. The set of types is to be the smallest set of strings2 such
that:

i e and s are types,

ii. if a,...,¢, are types (n 2 0), then <..r,> is a type.

DEFINITION 3. A (standard) frame is a family of sets {D, | & is a type}
such that D, # &, Dg# Jand D g, o, =P(Dg XX Dg,).

The domains D, and D are thought to consist of (possible) individuals
and possible worlds respectively. Domains D, o , consist of all n-ary
relations having D, as their i-th domain. Note that by definition 2 the
string « is a type, and that D, = P({J}) = {0,1}, the set of truth-values.

Orey used these frames to mterpret the formulae of higher-order predi-
cate logic on. These formulae have a syntax that is essentially that of ordi-
nary predicate logic, be it that quantification over objects of arbitrary type
is allowed. There is no A-abstraction and the syntax allows only one type
(type ¢, the type of formulae) of complex expressions, while Montague
Grammar assigns many different types to linguistic phrases. It is therefore
clear that the higher-order predicate logic as it stands does not fit our pur-
poses. On the other hand, the syntax of ordinary functional type logic does
satisfy our needs. So let’s keep Church’s syntax but attach Orey’s models
to it. This can be done and the result, a logic I have dubbed TT (for ‘type
theory’), TT, in the two-sorted case, is described in Muskens [1986]. I'll
give a brief exposition of it in this section.

We start with the syntax. Assume for each type the existence of a de-
numerable infinity of variables of that type; also assume for each type a
countably infinite set of constants, ordered in the way of the natural num-
bers. From these we can build up terms by the following clauses, virtually
the usual ones.

DEFINITION 4. Define, for each «, the set of terms of that type by the
following inductive definition:

i. Every constant or variable of any type is a term of that type;

ii. If ¢ and y are terms of type o (formulae) then —¢ and (¢ A Y) aze
formulae;

iii. If ¢ is a formula and x is a variable of any type, then Vx¢ is a
formu!lza;

2A technical subtlety: types are strings of symbols over the alphabet {e, s, <, >}, the
angled brackets do not form part of the usual notation for ordered tuples. This is
imperian: since e.g. we don’t want to equate the type <e> with e, while we do equate the
ordered 1-tuple {a) with a.



iv. If A isa term of type <fo;...cr,> and B is a term of type f3, then
(AB) is a term of type «<q;...ct,;

v. If A is aterm of type «¢;...q,» and x is a variable of type f then
Ax(A) is a term of type <fBa;...q,>;
vi. If A and B are terms of the same type, then (A = B) is a formula.

Logical operators that are not mentioned here will have their usual defini-
tions. Parentheses will be omitted where this can be done without creating
confusion, on the understanding that association is to the left. So instead
of writing (...(AB))...B,) I'll write AB,...B,,.

We define models to be tuples (F, I), consisting of a frame F = {D,},
and an interpretation function I, having the set of constants as its domain,
such that I(c) € D, for each constant ¢ of type a. An assignment a for a
model {({D},, I) is a function from the set of all variables such that
a(x) € D for each variable x of type o. The assignment a[d/x] is just like
a but with the possible exception that a[d/x](x) = d.

To evaluate our terms on these relational models we can use the slice
functions defined above. We simply let the value of a term AB be the result
of applying (the first slice function of) the value of A to the value of B.
Terms of the form AxA we evaluate by an inverse procedure.

DEFINITION 5. The value llAlIM.a of a term A on a model M under an as-
signment a is defined in the following way (To improve readability I shall
sometimes write lIAll for llAlIM.a);

i. llcll = I{c) if cis a constant; Ixll = a(x) if x is a variable;

i Il =1\ llgl; lp A il = llgll A llydl;

i IVxgpMa= Oy p_llp IMaldx;

iv.  IIABI =F,, (IBI);

v. IAxpAlIM.a = the unique relation R such that for all d € Dg: Flle(d)
= ||A||M,a[d/x];

vi. lIA = Bll = 1 iff llAll = lIBII.

For reasons that will become clear in section 3, I have taken care to couch
clauses ii. and iii. completely in terms of Boolean operations, but clearly
the clauses are equivalent to any of the more usual ones. Note that the
following two identities hold.

IABI= {{d},....d,) | (BlLd,,...d,) e lAIl}
IAxpAlMa = ((dd},...d,) | d € Dgand (d;,...d,) € IAIM.aldx},

The notion of logical consequence is again expressed in terms of Boolean
operations. It is defined for terms of arbitrary relational type, not only for
formulae.

DEFINITION 6. Let I'and A be sets of terms of some type o = <o;...0>.
Centails A, I'|= A, if My pllAIMa c Up, 4 IIBIM.a for all models M
and assignments a to M.



What is the relation between this logic and the more standard formulations
of type theory? Let’s compare the logic with Gallin’s system TY, (which
is just a two-sorted version of Church’s original theory). First note that we
may associate TY, types with our relational ones (I write the functional
types with round parentheses).

DEFINITION 7. Define the function X (¥ is for Schonfinkel) taking types
to TY, types by the following double recursion:
I 2e)=e, Xs)=5
II i. Xo)=t
il. 2(«og...op) = (o) Z(<0y...a,p)) ifn21.

It is not difficult to see that, if we stipulate that all constants (variables) of
any type « are constants (variables) of TY, type () as well, then all
terms of any type ¢ are TY, terms of TY, type 2(c). So our syntax is just
a part of the TY, syntax. Of course not all TY, terms are TT, terms by this
identification since X'is not onto: only those functional types in which no e
or s immediately precedes a right bracket are values of 2. However, on
TT, sentences both logics give the same entailment relation.

THEOREM 1. Let I"U { ¢} be a set of (TT,) sentences then
I'= ¢in TT,iff I'l= ¢ in TY,.

All proofs will be given in the Appendix below.

2. A relational semantics for PTQ

Is it possible to do Montague semantics using the relational logic intro-
duced in the previous section? To this question we shall address ourselves
now and the answer will turn out to be positive: there is a simple way to
translate the PTQ fragment3 of English—that paradigm of Montague
grammar—into the logic TT,. Moreover, the relation of entailment that is
induced on the fragment by the new translation is provably orthodox: it
equals the entailment relation given in the text book DWP45,

3For reasons of exposition I omit Montague’s ‘rules of tense’. They can however be
included without difficulty.

4 Although it is equivalent to the DWP version of Montague Grammar, my
formalization of PTQ will be considerably simpler. Montague Grammar is often
considered to be a difficult and perhaps even somewhat esoteric subject, but much of the
apparent complexity is really a consequence of certain infelicitous choices in its
formalization. We shall remove some of these infelicitics.

5The main difference between Montague’s own semantics for the PTQ fragment and that
given in DWP concerns the use of ‘individual concepts’ (type (se) functions). Montague
employed these in order to circumvent certain difficulties with sentences like Partee’s
The temperature is ninety but it is rising, but DWP skip the use of individual concepts
alltogether, following Beininett [1974], who saw that these did not only complicate the
theory considerably, but moreover created as many problems as they were supposed to
solve. For a careful discussion sec DWP; for a contrary opinion Janssen [1984]. Those
who do not wish to accept Bennett’s Simplification should note that we could easily
reintroduce individual concepts in the present relational setting: simply treat them as <se>
type relations that happen to be functionzl.



In order to be able to prove the last statement (which I’ll do in the Ap-
pendix), we must give a somewhat altered (but equivalent) definition of the
PTQ syntax. Let’s start with redefining the categories:

DEFINITION 8 (Categories).

i. e is a category; ¢ is a category;
ii. If A and B are categories and A # e, then A/B and A//B are cate-
gories.

This is of course very close to Montague’s definition, but we don’t allow
categories to end in e. The reason will become apparent below. Next, us-
ing the familiar abbreviations for category notations, we define the sets B,
of basic expressions of category A:

DEFINITION 9 (Basic Expressions).

By = {run, walk, talk}
Br = {John, Mary, Bill, hey, hey, he,,...}
Bry = {find, lose, eat, love, date, be, seek, conceive}

{rapidly, slowly, voluntarily, allegedly}
Bcey = {man, woman, park, fish, pen, unicorn}

e

=

=
I

Bper = {every, the, a}

By, = {necessarily}

By = {in, about}

By, = {believe that, assert that}

By = {tryto, wish to}

By = Jif A is any category other than those mentioned above.

As is well known, in the PTQ paper Montague deviated slightly from the
general program he had set out in ‘Universal Grammar’ (Montague
[1970]). Meanings in PTQ are not attached to an intermediate
‘disambiguated language’ but are assigned to the ambiguous expressions
of English. From a formal point of view this is unfortunate, if only be-
cause it robs us of an important method of definition—definition by in-
duction on the complexity of syntactic objects. We can have no such in-
duction without unique readability.

Montague himself remarks that this situation can be remedied by taking
the analysis trees rather than the phrases of the fragment as the elements of
the syntactic algebra. But while this solves the problem theoretically it
hardly solves it in any practical sense. Since meaningful expressions of
English can be directly read from the nodes of Montague’s analysis trees,
the syntactical peculiarities of that language must be encoded in the latter’s
definition. A complete and reasonably precise definition of these trees
consequently turns out to be rather formidable®.

We therefore follow Dowty [1982] in separating the grammatical rulcs
of the language from its syntactical operations. We let the grammatical
rules generate the analysis trees of the fragment, analysis trees that are now
stripped of much syntactical information.

6See DWP, Chapter 8, where two clauses in the definition—out of the seventeen that
would be needed—take up half a printed page.
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DEFINITION 10 (Analysis Trees). For each category A the set AT, of anal-
ysis trees of category A is defined recursively with the help of the
grammatical rules G1 — G17 below:

Gl. B, c AT, for every category A.

G2. Ifée ATy and ¥ € AT, then [E9]27 € ATy (for each n).
G3. If 5 € ATDET and ¥ e ATCN then [519]3 € ATT.

G4. If £e ATy and ¥ € ATy then [ED]4 € AT,

GS5. If Ee ATy and © € ATy then [ED]° € ATyy.

G6. If Ee ATy and ¥ e ATrthen [ED9]0 € AT py.

G7. If £Ee ATy, and O € AT, then [EY]7 € ATyy.

G8. IfEe ATy and © € ATy then [EB]8 € ATy

G9. Ifée ATy and ¥ € AT, then [EW]9 € AT,

G10. If Ee ATy and ¥ € ATy then [E9]10 € ATyy.

G11. If & ¥ e AT, then [EV]112, [E9]llb e AT,

G12. IfE B e ATy then [£5]122, [£9]12b € ATyy.

G13. If & e ATy then [E9]13 € ATy,

G14. If £ e ATy and ¥ € AT then [£D9]14 € AT, (for each n).
G15. If Ee ATy and ¥ e ATcythen [ED9]15: € ATy (for each n).
G16. If £e ATrand ¥ € ATy, then [E09]16 € ATy (for each n).
G17. If Ee ATy and ¥ € ATy then [E09])7 € AT,

This definition produces numbered bracketings like [[every man]3[love
[a woman]3]5]4 and [[a woman]3[[every man]3[love he,]3]4]14.0
(both elements of AT}), dully keeping track of the basic expressions that
were used and the rules by which these were combined. The results are
just ordinary analysis trees with all meaningful expressions taken from the
non-terminal nodes. In a more tree-like representation the two analysis
trees just mentioned would look like this:

14,0

every man love a woman a woman every man love heg

To obtain phrases of English, Montague’s syntactic operations F3 — F;
_(given in PTQ) can be used.

DEFINITION 11 (Phrases). For each analysis tree &, define a phrase o(&) by
induction on the complexity of analysis trees:

S1.  o(§)=¢if&e By S2. o([E1%") = F;3 ,((&),0(8)
S3.  O([EI) = Fe(a(8),0(8) S4. S[ENY) = Fo(o(),0()
S5.  o([EP) = Fs((5),0(9)) S6. A([E515) = Fs(o(),0()

$7.  o((ENT) =Fe(o(&),0(8) S8. A([ED18) = Fe(a(8),0()
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S9.  o([ESP) = Fe(o(E),0() S10. o([E910) = F5(o(H),0()
S11.  o(fE1M12) = Fy(o(6).0(8) S12. o([E91122) = Fy(o(6),0(8))
S([EN1IP) = Fy(o(8),0(1) o([E0112) = Fo(o(8),0(19)
S13.  o([£5113) = Fy(o(6),0(8) S14. SENA) = Fyq,(0(6),0(8))
S15.  o([EAI5M) = Fyg,(o(E),0(8)) S16. o([E)16) = F 5 ,(o(6),0(89)

$17.  o(IEANT) = Fyy(0(§),0(8)

The function o ambiguates, it is not one-to-one: By repeated applications
of these rules we may see that o([[every man]3[love [a woman]3]5]4)
= o([[a woman]3[[every man]3[love hey]3]4]14.0) = every man
loves a woman.

The advantage of the little detour is not only technical. Disconnecting
the syntactical operations of the language from its grammatical rules, an
idea Dowty traces back to Curry, makes a rather clean distinction between
those parts of the grammar that are language-independent (the
‘tectogrammatics’) and those that are not (the ‘phenogrammatics’). While
definition 10 could be used in setting up a fragment of any language, be it
English, Dutch or Swahili, definitions 9 and 11 are of course highly par-
ticular to the English language. For more motivation along these lines see
Dowty’s work.

This ends our discussion of the PTQ syntax and we now turn to the
semantics of the fragment. Wishing to formalize the way meanings are at-
tached to expressions of English, we shall give a translation function °
sending analysis trees to terms of our relational logic TT, (the latter
standing proxy for meanings). In this way each phrase @ will be associat-
ed with a set of meanings {&° | o(§) = ®}.

Analysis trees of a category A will be sent to terms of a fixed type that
can be obtained from A using the following rule:

DEFINITION 12 (Category-to-type Rule)?.
i. T(e)=¢; T(t) = «;
ii.  T(A/B)=1(AIB) =1 (B)*1(A),
where B*<q;...a,» = <Boy...a, for all Bay,...,q,.

The idea is that the meaning of a sentence is a proposition (a type <s> ob-
ject, a set of indices), that the meaning of an e-type name (not actually oc-
curring in the fragment) is a possible individual and that the meaning of an
expression of any category expecting a B to form an A has a type that ex-
pects a T (B) to form a 7(A). Note that, contrary to what is usual®, the
translation of an expression will be its meaning, its intension, not its ex-

TLewis [1974] gives the following category-to-type rule (using functional types of
course):

i. t(e)=(se); T, ()= (s1);

il. 7.(A/B)=1,(AlIB)=(1,(B)T,(A))

Adopting Bennett’s Simplification one obtains the following rule:

i. tie)=e 1) =(s1);

ii. T'(A/B)=1'(A//B)=(1'(B)T (A))

Our rule is equivalent to this last one in the sense that 7 (A) = 2(7(A)), where the
function X is as in the previous section.

8See however Lewis [1974] and Thomason’s Introduction to Montague {1974].

Wy
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tension. Of course, the extension of an expression at any index can always
be obtained from its intension.

TABLE 1.
Category A T(A) fA)
t <S> t
tle IV or VP) es» (ed)
thle (CN) es» (er)
t/t «HS» (D)
111V (T or NP) «es»s> ((s(en)))
IV/t «s>es> ((st)(eD)
v (IAV) «es»es» ((s(en)(er))
v i «es»es> ((s(en)(er))
/T (TV) wessres: ((s((s(en)D)(er))
T/CN (DET) «es esHs» ((s(e))((s(e))))
IAVIT e s esres» ((s((s(eD)n)((s(en))(er)))

In Table 1. above the values of the function 7 are written out for those cat-
egories that are actually used in the PTQ fragment. In the third column we
give the IL types that are assigned to these categories in DWP for com-
parison.

To see that objects of type 7 (A) are indeed the kind of objects one
would like to assign to expressions of category A we may use the slice
functions discussed in the previous section. For example, one would like
the intension of a CN or an IV to be a property (of individuals), a function
from possible worlds to sets of entities. The second slice function of any
type <es> object is just this kind of thing. In a similar way we see that the
meaning of a term is a property of properties (a quantifier), the meaning of
an JAV a function from properties to properties etcetera. The intension of a
determiner can either be seen as a function from properties to quantifiers
(use the first slice function) or as a relation-in-intension between properties
(use the third). Both perspectives have been advocated in the literature.

We are now ready to give our translation function.

DEFINITION 13 (Translation). Let 4 be some one-to-one function having
the set of basic expressions other than those mentioned explicitly in rule T1
below as its domain, such that () is a constant of type T (A) if £ is of
category A. Let john,, find,,.,, etc. be constants of the types indicated,
mutually distinct and distinct from all the values of A. For each analysis
tree £ define its translation & by induction on the complexity of analysis
trees:

T1. If £ is in the Goinain of & then & = h(&);
John® = AP(P john,), Mary* = AP(P mary,), Bill* = AP(P bill,),
he,’ = AP(Px,);
find® = AQAy(QAx(find . xy)), lose® = AQAy(QAx(lose, ., xy)),
eat’ = AQAy(QAx{eat,,,xy)), love® = A0Ay(QAx(love,,,,,xy)),
date® = AQAy(QAx(date,, X)),
be® = A0 Ay(QAxAi(x=y)),
$€€K® = AQ(1Y, s5.65, ANQA(find, ., ¥)));
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every° = AP]ZPZJJ' Vx(Pxi —Pyx),
a’.= AP; AP, i x(P xi APxi),
the’ = AP;AP,Ai Ix(Vy(P;yi x=y)APyxi);
necessarily® = ApAi Vj(pj);
in® = AQAPAY(QAx(in,, 5., XPY));
T2.  ([E012") = A A6 x,d A O°D);
T3-TI10. ([E91F)°=E&W if3<k<10;
T11.  ([E01112)° = Ai(&i A i), T12.  ([ED1122) = AxAi(E°xi A i),
((ESIBY = 2i(&% v %), ((E8112)° = Axdi(Exi v O°xi);
T13.  ([EN3) = APA(EPiv Pi); T4,  ([EON4M) = E Ax,(D):
T1S.  (IES11M)° = Ap(E A, (B'Y)); T16.  ([EB116M)° = Ay(E Ax,(FY));
T17.  ((ES1Y7)° = Ai-E0;

Some notational conventions. In the above definition as well as in the se-
quel of this paper we let x, y and z range over individuals, i and j over in-
dices, p and g over propositions (type <s> objects), P over properties (type
<es> objects, type (s(ez)) objects in IL and TY,) and Q over quantifiers
(type «es»>s> or type (s((s(er))t)) objects). I write run, love etc. for the val-
ues of A. If = is a set of analysis trees I denote {£°l £ E} by & and use
similar conventions in similar cases.

It is now a simple exercise in lambda-conversion to see for example that
the translation of the tree [[every man]3[love[a woman]3]5]4 is
equivalent to the term AiVx(man xi — Jy(woman yi A love xyi)) while
([[a woman]3[[every man]3[love hey]5]4]14.0)° is equivalent to
Aidy(woman yi A ¥Yx(man xi — love xyi)).

Using the somewhat generalized form of the definition of entailment
given in the previous section, we say that an analysis tree ¥} of any catego-
ry follows from a set of trees = of the same category if and only if =° |=
1. For analysis trees of the sentence category ¢ this amounts to stipulating
that at each world at which all propositions expressed by the premises are
true the proposition expressed by the conclusion is true.

This entailment relation is equivalent to the one given in DWP. The
reader may verify this either by working out some of his favourite exam-
ples or by reading the proof of the following theorem in the Appendix.

THEOREM 2. For each analysis tree £ let & be the translation it is given in
IDWP. Let A be the following set of IL-sentences (all meaning postulates in
DWP):

2«d[x =¢], where cis any constant of type e;

38 (s(eeny VXV CO[6(x,Q) <> Q{ y[S{x,y}1}], where Jis find', love',
lose’, eat' or date';

3G (seqsizn)enyy Y LY PYA[IN'(Q)(P)(x) & Q{AI["GIX)(P)(0)]}];
VxV Q[ [seek'(x,Q) & try'(x, Afind'(Q)D].

Let £ U {7}} be a set of analysis trees, then:
E =¥ inThLiff & uA|=9 inlL.
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3. Partial type theory

Let’s go partial. One of the most basic assumptions of classical logic is the
assumption that a sentence is false if and only if it is not true. Most authors
of logic texts simply let the word ‘false’ be an abbreviation of ‘not true’,
thus excluding two possibilities: (a) that a sentence is neither true nor false,
and (b) that a sentence is both true and false. Partial logics are logics in
which this central assumption has been dropped and in which at least one
of (a) and (b) is allowed.

Should we allow both (a) and (b) or will it do to allow just (a) or just
(b)? Between the last two possibilities there is not much to choose since
under certain reasonable assumptions a logic that allows sentences to be
both true and false but does not allow them to be neither will be isomor-
phic to a logic that does the reverse. But the choice between a logic that
allows all four possible combinations of truth-values (true and not false,
false and not true, neither true nor false and both true and false) and one
that allows only three of these is real. It is a choice that must be made in
any paper on partial logic and that has been made in a different way by
different authors.

I shall allow both overdefinedness and underdefinedness of sentences
here. The same choice has been made in Situation Semantics (see Perry
[1984]) and is perhaps preferable from a purely formal, esthetic point of
view. However, readers who would prefer to go the other way will have
no difficulty in making the minimal adaptations to the logic presented be-
low that are needed to make it three-valued. They will also find that most
of the applications of the four-valued logic in the next section will carry
over to their three-valued variant without any problems.

If there are four combinations of truth-values, then how do the truth and
falsity of a complex sentence depend on the truth and falsity of its parts? A
stunningly simple answer to this question for the case of propositional
logic was given by Dunn [1976]. Truth and falsity can be computed just as
it is done in classical logic, but one has to separate truth conditions and
falsity conditions:

i. —¢@is true if and only if ¢ is false,
—¢ 1is false if and only if @ is true;
ii. ¢ A yis true if and only if @ is true and yis true,

® A yis false if and only if @ is false or yis false;
1ii. @ v yis true if and only if @ is true or yis true,
@ v yis false if and only if ¢ is false and y is false.

These evaluation rules lead to the following truth-tables, known as the
Extended Strong Kleene truth-tables for obvious reasons (see Anderson &
Belnap [1975], Belnap [1977] for these tables). I write T for the combi-
nation of values ‘true and not false’, F for ‘false and not true’, N for
‘neither true nor false’ and B for ‘both true and false’.
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A T F NB v T F NB -

T T F NB T TTTT T F
F F F FF F TF NB F T
N NFNF N T NNT N N
B B FF B B T BTB B B

It is easy to see that A and v, or rather the operations associated with these
symbols by the truth-tables given above, now form a distributive lattice on
the set {T,F,N,B}. This lattice is depicted as L4 below.

N SN
NN N

Logical lattice Approxzmatzon lattice

L4 is discussed extensively in Belnap [1977], who also discusses a second
important distributive lattice, borrowed from Scott and shown as A4
above. It can be obtained if we order the truth-combinations T,F,N and B
by the relation ‘approximates the information in’. Meet and join in this lat-
tice give rise to the following truth-tables:

® T F NB @ TF NB
T T NNT T TBTSB
F N F NF F B FF B
N N NNN N T F NB
B T F NB B B B BB

The connective ® is Blamey’s [1986] so-called interjunction. It has the
truth-conditions of A but the falsity-conditions of v, while its dual has the
truth-conditions of v and the falsity-conditions of A.

If we add negation to L4, we obtain a structure that conforms to almost
all the customary axioms of the theory of Boolean algebras. In fact the
following list of axioms can then be seen to hold:

i. The axioms for distributive lattices;

ii. O+a=a, 1-a=a; (zero and one)
iii. a’=a (double negation)
iv. (@a-b) =a +b, (a+b)=a b, (De Morgan)

V. 0'=1, 1'=0.
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There are two axioms that do not hold and that, of course, we don’t want
tohold: a+a’=1anda-a’=0. If we would add them, we would get a
full set of axioms for Boolean algebras.

Adding negation to A4 on the other hand gives a structure that, although
it obeys i. — iil., does not satisfy any of the axioms in iv. and v. (for
example (T - F)" =N but T’ + F’ = B). However, it does conform to the
following closely related axioms:

iv'. (a+b)Y=a +b, (@a-b) =a b,
v'. 0'=0, 1'=1.

I shall call any structure that obeys axioms i. — v. above a Kleene algebra,
while structures that satisfy i. —iii., iv'. and v'. will be called approxima-
tion algebras.

Now let us revise the logic given in section 1 keeping the preceding
discussion in mind. The most basic notion that was used in that section
was the notion of a relation; here is a partialized version of it.

DEFINITION 14 (Partial relations). An n-ary partial relation R on domains
D,,....D, is a tuple (R*, R-) of relations R*, R—c D x---xD,. The rela-
tion R* is called R’s denotation; R-is called R’s antidenotation; D ;x--xD,,
/(R* L R-) its gap; and Rt N R-its glut. A partial relation is coherent if its
glut is empty, fotal if its gap is empty, incoherent if it is not coherent and
classical if it is both coherent and total. A unary partial relation is called a
partial set.

If D is some set then the partial power set of D, PP(D), is the set
{{R*, R-) | R*, R~< D} (or, equivalently, P(D) x P(D)) of all partial sets
over D.

The idea is that it is true of a tuple of objects that they stand in a partial re-
lation R if they are in R’s denotation and that it is false that they stand in R
if they are in its anti-denotation. This of course leaves open the possibility
that it is neither true nor false that a given tuple stand in R or that it is both
true and false that they do.

The natural structures on the set of truth-combinations {T,F,N,B} de-
scribed above can be extended to the class of partial relations. The Extend-
ed Strong Kleene valuation scheme for example leads to a generalization of
the usual Boolean operations on ordinary relations.

DEFINITION 15.

Let R; =(R;*, R;~) and R, =(R,*, R,~) be partial relations. Define:
-R; = (R~ R;*) (partial complementaticn)
R; Ry, := R*O R R;-UR,) (partial intersection)

R] v R2 = <R1+ U R2+, Rl_ N R2_> (partial union)
R, cR, iff Rj*cR,*and R, R,~ (partial inclusion)
Let A be some set of partial relations. Define:

M A {M{R+*IReA},\U{R-|ReA})

U A ((JU{R+*IReA}, M{R-IReA})
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Consider that it is true of a tuple of objects that they stand in the partial re-
lation — R iff it is false that they stand in R, false that they stand in — R iff it
is true that they stand in R. It is true of a tuple of objects that they stand in
R; N R, iff it is both true that they stand in R; and that they stand in R,;
false that they stand in R; N R, iff it is false that they stand in R; or false
that they stand in R, etcetera. Note that by elementary reasoning a set of
partial relations on domains D;,...,D,, that is closed under the operations
N, U and — and that contains the partial relations (&, D ;x---xD,) and
(D x-+xD,,, &) forms a Kleene algebra. We shall call any Kleene algebra
that has this particular form a natural Kleene algebra on a set of partial
relations.

In a similar way the operations in the approximation lattice A4 lead to
the definition of some more operations on partial relations.

DEFINITION 16.

Let R; =(R;*, R;~) and R, = (R,*, Ry™) be partial relations. Define:
Ry;MRy, = (R;*NR,R-NRy)

R]I_IRZ = <R1+UR2+,R1_UR2_>

R,= R, iff Rj*cR*andR;-c R, (R, approximates R;)
Let A be some set of partial relations. Define:

MA = (M{R*IReA}, N{R-IReA})

LJA = ((U{RtIRecA}, U{R-1ReA})

This time we see that a set of partial relations on domains Dy,...,D,, that is
closed under the operations M, Lt and — and that contains the partial rela-
tions (&, &) and (D ;x---xD,, D ;x--xD,) forms an approximation alge-
bra. Any approximation algebra of this form I’ll call a natural approxima-
tion algebra on a set of partial relations.

By a trivial adaptation of the proof of the Stone Representation Theorem
converses to the two statements given above can be seen to hold.

THEOREM 3 (Representation Theorems).

I. Every Kleene algebra is isomorphic to a natural Kleene algebra on
a set of partial relations.
11. Every approximation algebra is isomorphic to a natural approxi-

mation algebra on a set of partial relations.

Now that we have partial relations and some structure on them let’s build
up our frames again.

DEFINITION 17 (Frares). A frame is a set {D | o isatype} such that
D,20,Dg#Jand D, o, < PPy, XX D ). A frame is standard
1fD<a1 a>—PP(Da > ><D ) for all 0.

In a (standard) frarae each domain D g, g, consists of (all the) part.al re-
lations on domains D, ,....D,, . Note that since the relational domains of a
frame are defined as arbitrary subsets of the relevant partial power sei they

need not be closed under the operations N, U, —, M and 11. However we
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shall shortly restrict our attention to a class of frames in which each rela-
tional domain is thus closed.

Checking the set PP({J}) we see the truth-combinations T,F,N and B
reappear. The set’s four elements are (1,0), (0,1), (0,0) and (I,1), which
we’ll interpret as ‘true and not false’, ‘false and not true’, ‘true nor false’
and ‘both true and false’ respectively. (If a value’s first element is /, it gets
the interpretation ‘true’; if its second element is /, it gets the interpretation
‘false’.) The operations N and U give the lattice L4 on the set and that
and L1 give A4; partial complementation gives the Extended Strong Kleene
negation.

In section 1. we have seen that there is a converse to Schonfinkel’s
way of identifying relations with certain unary functions. Instead of trad-
ing relations for functions, we have decided to keep the relations and do
away with the functions there. But the possibility of doing this rested of
course completely on the existence of the slice functions we defined. And
s0, since we now want to base the logic on partial instead of classical re-
lations, the definition of slice functions must be extended to the former.

DEFINITION 18 (Slice Functions). Let R be an n-ary partial relation and let
0 < k < n. The k-th slice function Fk of R is defined by FR(d) =

(Fpa(d), Fp(d).
A picture may again help to see what is going on.

Y

A binary partial relation on the reals can this time be identified with a pair
of sets (a partial set) in the Euclidian plane. This pair of sets can be viewed
as a (total) function that sends any point on the Y-axis to a pair of sets of
points on the X-axis. So it is a function from points on the Y-axis to partial
sets of points on the X-axis.

We are ready to give a Tarski truth definition evaluating the syntax of
ordinary type theory on partial frames. To the language of TT, we add two
logical constants, # and *, both of formula type <, that will denote the top
and bottom elements of the approximation lattice on D ,. A very general
model is a tuple (F, I) where F = {D,},is a partial frame and / is an
interpretation function for F. A very general model is called standard if its
frame is standard®.

9The name standard model is conventional, it should not be taken to imply any prefer-
ence on our part. On the contrary, it is well known that a restriction to standard models
introduces all kinds of inconstructivities into the theory. One gains expressive power
and as a consequence one loses the recursive axiomatizability of entailment on the one
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When we gave the semantics for TT; in section 1, we only made use of
Boolean eperations, slice functions and identity. We now have partial
analogues of the first two of these. So, letting identity be the completely
two-valued relation such that A = B is true and not false if the values of A
and B are equal and false and not true if they are not, we can define the
semantics for our partial type theory PT,, using virtually the same clauses
as in definition 5 above.

DEFINITION 19 (Tarski truth definition). The value lIAIIM-@ of a term A on a
very general model M under an assignment a is defined in the following

way:
i. llcll = I(c) if cis a constant;
Ixll = a(x) if x is a variable;
i gl =—ligl;
lp A il = g Ayl
Il =(1,1);
111 = {0,0);
i IVxgpIMa= M, p i IMald);
iv.  llABI = Fy, (IBIl);
V. IIA.xﬂAIIM'“ = the R such that for all d € Dg: Flle(d) = |lAliM.ald/x],
Vi. 1IA=BlIl = {1,0) if llAll = 1Bl

= (0,1)  iflAll=BI;

Note that in general there is no guarantee that the value of a term will be an
element of the appropriate domain. Still the notion is well-defined. We are
however mainly interested in very general models M such that llA JIM.a e
D, for all terms A and all assignments a; we’ll call these general models or
just models.

The definition makes the universal quantifier behave Extended Strong
Kleene, just like it makes conjunction and negation do: A formula Vx¢
will be true under an assignment a if and only if ¢ is true under a[d/x] for
all objects d in the appropriate domain; Vx¢ is false under a if and only if
¢ is false under a[d/x] for some d.

Note that relational domains of general models are closed under the op-
erations M, U, —, r and u. For example if the variables R and R’ denote
partial relations of some n—ary type, then the term Ax;...x,(Rx;...x, v
R’x;...x,) will denote their partial disjunction. The other cases go similar
be it that for the cases of M and L1 we need the connectives ® and @ dis-
cussed above. These we define thus.

POy = (@AY V(v Y A¥)
IR (evyya#)vipay

I

—

hand and the Lowenheim-Skolem theorem on the other. In view of this we prefer not to
make such a restriction at all in the present context. (See Van Benthem&Doets [1983]
for a discussion of this point.) Allowing domains to be only a part of the full power set
of the relevant Cartesian product seems to fit in nicely with the general spirit of partial
semantics.
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We define the notion of entailment again in a way that is completely analo-
gous to the way we defined the notion for the total logic, using the partial
analogues of the Boolean operations instead of these operations
themselves.

DEFINITION 20. Let I"and A be sets of terms of some type o = <¢;...0,».
['(s-) entails A, T'|=A ([|=; A), if My plAIMa c \Up 4 1IBIM.a for
all (standard) models M and assignments a to M.

The resulting notions of logical consequence are ‘double-barrelled’ in the
sense of Blamey [1986], who discusses a similar entailment relation for
first-order partial logic. In the case of sentences a set of premises entails a
set of conclusions if and only if two conditions hold. The first of these is
that in each model in which all premises are true some conclusion is true
and the second is that in each model in which all conclusions are false
some premise is. This coincides with the definition given in Belnap
[1977], who lets entailment go up hill in the logical lattice L4.

Readers familiar with relevance logic and the notion of ‘tautological
entailment’ defined in Anderson & Belnap [1975] will note that there is a
close similarity between that relation of logical consequence and the one
given here. Let ¢ —» y be an abbreviation of (¢ A ¥) = ¢ (I reserve the
singleheaded arrow for its ordinary purpose, ¢ — Y is an abbreviation for
—¢ v y), then the first of the following matrices lists all answers to the
question “does ¢ entail y?” for all possible combinations of values of ¢
and y and the second is a truth-table for —».

l= TF NB —> T F NB
T yes no no no T TF F F
F yes yes yes yes F TTTT
N yes no yes no N TFTF
B yes no no yes B TFFT

Anderson & Belnap do not wish to distinguish between the meta-language
|= and the object-language —», we do. But clearly the behaviour of —»
mirrors that of |=. Moreover, our truth-tables for conjunction, disjunction,
negation and —» are just the characteristic matrices for the logic Egy, of
tautological entailment (see Anderson & Belnap [1975, pp. 161 — 162]).

How wild is the notion [=? Not very. We'll characterize its restriction to
formulae with the help of a rather familiar-looking calculus of sequents.
(In these rules the notation [A/x]B will presuppose that A is substitutable
for x in B. I write T for * = * and L for —T.)

R
¢=9

Cut
Ie=A I'sq¢ A

I'=>A
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Thinning
r=4 I'sA
I =4 ‘ I's A
Negation Rules
{mylyel}l=4 I'={=6168 € A}
(w616 A>T A ={-ylyel}
Conjunction Rules
En T,oy =A IA QY DPOAY
Noary = A
Truth value Rules
=>¢=T,¢=_L,q)=#,(p=* = k= —%
(Excluded Fifth) =S #=—#
= #, *

Quantifier Rules
v I'= [cix]o, A EV  Vx¢ = [Alx]lp

I'=Vxp, A
provided ¢ doesn’t occur in I"or A.

Identity Rules
=>A=A
A =B, [A/x]9 = [B/x]¢ (Leibniz’ Law)
=>A=B,~(A=B)

Lambda Conversion
= Ax(A)B = [B/x]A

Extensionality
Vx(Ax = Bx) = A =B, provided xis not free in A or B

By inspection it is seen that the rules of this calculus preserve entailment.
Thatis, if I'; = A,.... I, = A,/ TI,,; = A, is arule (n possibly be-
ing equal to 0) and if I'; |= A,,....TI,, |= 4, hold, then I', . ; |=4,,;
holds as well. To see this one must in some cases use the following theo-

rem, which is proved by a straightforward induction on term complexity:

THEOREM 4 (Substitution Theorem). If A is substitutable for x in B then
li[A/x]BiiM.a = ||BIIM.ald/x] where d = llAlIM.a,

We say that a sequent is provable if it belongs to the smallest set of se-
queits that is closed under the rules above. Note that if I'= A is prov-
able, then I and A are both finite. Write IT |- X if there are I, and X,
such that Iy c II, Xy < X and Il = %, is provable. Clearly, if IT|- X
then IT|= X (and hence IT|=; X).
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In the case of |= the converse also holds.

THEOREM 5 (Generalized Completeness Theorem). Let ITand X be sets of

formulae then:
nNi-2s II1|=2.

4. Situations, persistence and the attitudes

In this section we shall see how some of the basic concepts of Situation
Semantics can be formalized within our system and how this formalization
can be used to obtain analyses of the propositional attitudes and the neutral
perception verbs.

4.1 Situations and the part-of relation

Note that there is now a close correspondence between (abstract) situations
and indices. While in the total theory every proposition was either true or
false at an index (and never both), propositions may now be neither true
nor false or both true and false at a given index.

More formally, we can identify indices with certain partial models. In or-
der to see this, define the extension of a term A of type <a;...0,s> at index
i in a partial model M = ({D,} 4, I) under an assignment a as the partial
relation FZ”(:’) of type «@j...,»>, where R = llAlIM.a, With each i € D,
we associate a partial model M; =({D,} 4, I;), defining the interpretation
function /; thus:

I(c) = I(c), if c is a constant of type e or type §
I(c) = the extension of ¢’ at index i, if ¢ is the m-th constant of type
«ay...0,>, where ¢’ is the m-th constant of type ««;...0t,s>

The idea is that we want interpretation functions /; to link the constants
used in the translation of our PTQ fragment (find ., man ,g,,
ITY esresr---) 1O their extensions at index i. Since this cannot be done in a
direct way for the obvious reason that a constant and its extension will
have different types, we let the constants correspond to constarits of the
right type (say: FIND,,,,, MAN,,,, TRY . 4,¢,,--.) iN @ One-to-one fashion and
send the latter to the extensions of the former.

The partial models M; are possible worlds, but they are not necessarily
fully specified or coherent worlds, extensions at any index need not be
classical. Hence they are partial possible worlds, or, as I shall call them,
(possible) situations. Since each M; is completely given by its index i
(given a partial model M), we can identify indices with possible situations
as well. )

Once we have identified indices with situations, our category-to-type
assignment automatically associates categories of expressions in natural
language with certain kinds of partial objects that are constructed out of
situations and pessible individuais. For example, sentences are now asso-
ciated with partial sets of situations (type «s> objects, propositions); com-
mon nouns and intransirive verb phrases with functions from situations to
partial sets of individuals (properties, type <es> objects); noun phrases with
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quantifiers, functions from situations to partial sets of properties (type
«es>s> objects) and so on. The translation function ° defined in section 2
will assign a partial relation of some kind to each analysis tree in each
partial model.

There is a natural structure on situations. We say that a partial model
M; = {{Dy} o I is part of a partial model M; ={{Dg} o I)), or that M;
extends M, if I;,(c) =1 j(c) for all constants ¢ of types e or s and
I(o)el1 j(c) for all constants ¢ of a relational type. Intuitively, M f extends
M;if M is at least as defined as M; is.

The part-of relation is a relation between models, but since we have
identified the indices in a model with certain models, the type s domain of
any model inherits the structure and is ordered by a part-of relation too. In
order to be able to express things about this relation in the object language,
we introduce a non-logical constant < of type «ss> and want to make it be-
have like the part-of relation. First let’s adopt the following abbreviatory
definitions:

To = (p=Tve=# (pis true)
Fo = (p=Lveo=4# (pis false)
o v = Teo->TYyA(Fo—Fy)  (@isan approximation of )

The formula Vx;...x,(cx;...x,i © ¢x;...x,j) expresses that the extension
of the constant ¢ at index i approximates its extension at index j. Define ¥
as the conjunction of all formulae Vx;...x,(cx;..x,i C ¢x;...x,j) where
¢ is an element of the finite set L.C defined below, which consists of all
those constants of relational type that were used in translating the basic
expressions of the PTQ fragment plus some extra ones that we shall need
in the sequel.

LC := {rungg, walk,, talk ,,, find ., l0S€ 45, €aL 4pgs LOVE pps,»
’ date(BZS)’ conceive(«eS)S)ES” rapidly«es)esv SIOWIY«eswsw vOI-
URLATILY ooy ps,» GllEgedLy  pg,osrs MAN g, WwOman g, park ,,,
fiSh<es>’ pen<es>’ unicorn@sv in<e<es>es>’ about<<<es>s><es>es>’ be-
lieve«s»es» assert«esws» try((éS>€S>’ WiSh«emesv Bo<ess>’ K0<ess>’

AO(ES.S')’ see<ess>}

So ¥ is defined as the finite conjunction of Vxy(find xyi = find xyj),
Vx(man xi © man xj), VPV x(try Pxi © try Pxj) etcetera. The following
axiom makes < behave the way we want it to.

AX1 Viji<j=%

Clearly, in any model satisfying AX1 the value of < is a reflexive and
transitive classical relation.

4.2 Persistence

Let AX be the set of axioms and meaning postulates AX1 — AX6 (AX2 —
AX6 will be defined below). A term A is said to be truth persistent if
AX |=Viji £j = Vx;.x,(T Ax;..x,i > T Ax;..x,))); A is falsity
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persistent if AX |=Viji <j— Vx;.x,(F Axj..x,i > F Ax;..x,)));
and A is simply called persistent if it is both truth persistent and falsity
persistent, or, in other words, if the extension of A at any index i ap-
proximates its extension at j, if i is part of j. By definition, all constants in
the fragment persist, but the property also holds for translations of sen-
tences.

THEOREM 6 (Persistency Theorem). If ¥ is an analysis tree of category ¢
and ° is defined as it is in section 2, then the translation ¥ persists:
AX1 |=Viji<j > (Fig 9))).

So if a sentence is true (or false) at a certain situation it will remain so at all
situations that extend that situation. Truth and falsity of sentences are re-
tained under increase of definedness.

This might however not be exactly the result we want. There are sen-
tences in our fragment, sentences formed with the help of the determiners
every, a and the, that are usually thought not to persist. While sentence
(7), once it is false in some situation, will always remain false if that situ-
ation is enlarged, it could be true at an index that is part of a situation at
which it is no longer true. Conversely, sentence (8) could be false in some
situation, but no longer so in an extension of it, while, once true, it will
always remain true. Sentence (9) behaves even worse, it may lose its truth
if the situation at which it is evaluated is extended, but in similar cases it
may lose falsity too.

) Every man loves Mary
®) Some woman talks
) The woman doesn’t talk

The explanation is perhaps that the range of quantification at any situation
is not the whole domain D, of all possible individuals but only a classical
subset of this set consisting of those individuals that are actual at the given
situation. If a situation i extends a situation j then the set of individuals that
are actual at i includes those that are actual at j, but there may be individu-
als that are actual at i but not actual at j. In order to formalize this, we in-
troduce an existence predicate E, a non-logical constant of type <es> and
stipulate that it is classical and that its denotation may not decrease under
growth of information by adopting the following as axioms.

AX2  Vxi(Exi=TvExi=1)
AX3  Vxij(i <j — (Exi — Ex)j)

So E is truth persistent but not falsity persistent. Quantification at any in-
dex can now be restricted to the denotation of E at that index by redefining
the translations of the determiners every, a and the as follows.

every’ AP AP i Yx(Exi — (P xi —P2xi))
a’ = AP AP Ai Ax(Exi A P 1xi AP2xi)
the® AP AP, i 3x(Vy((Eyi A P jyi) <>x=y)AFxi)
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The result is that the translation of (7) is falsity persistent but not truth per-
sistent, the translation of (8) is truth persistent but not falsity persistent and
that the translation of (9) is neither.

In fact our notion of persistence is a combination of two notions that
can be distinguished: persistence under growth of information and
persistence under growth of domain. Theorem 6 says that all sentences of
the fragment persist under growth of information, provided that domains
remain fixed. Of course in general quantified sentences will not persist
under growth of domain.

4.3 Strong consequence and weak consequence

The first thing to note when we look at the logic that the verb believe re-
ceives in our new system is that we have achieved what we have set out to
achieve: the inference from sentence (3) to sentence (4) is blocked. (For
ease of reference sentences (1) ~ (4) are repeated below.) We can now
easily find a partial model such that the translation of (1), walk john, is
true at some index while the translation of (2), Ai(walk john i A (talk bill i
v —talk bill i)), is undefined at that index. The inference from (1) to (2) is
blocked for the reason that it is irrelevant. As a consequence the unwanted
inference from (3) to (4) is invalid too.

(1) John walks

)] John walks and Bill talks or Bill doesn’t talk

3 Mary believes that John walks

(Y] Mary believes that John walks and Bill talks or Bill doesn't talk

Now some readers may find that the price that was paid for blocking the
unwanted entailments has been somewhat high. Did we really want to cut
out the inference from (1) to (2) as well as the one from (3) to (4)? It may
be true that in a strong sense of the word (2) does not follow from (1)
since the converse inference is valid and the sentences are not synony-
mous, but certainly there is a weaker sense in which the entailment, al-
though irrelevant, nevertheless seems unobjectionable: If (1) is true, true in
the real world, then (2) is true as well and if (2) is actually false then (1) is
actually false too. So it seems that there are two natural conceptions of the
notion of logical consequence here, a weak, classical notion and a strong,
relevant one. Sentence (2) follows from sentence (1) in the weak but not in
the strong sense.

Both notions can be formalized within our system. We say that a model
is an intended model if it satisfies all the axioms in AX. If I"and A are sets
of terms of type «<o;...c,>, then we write I'|[=px A for
T, {Axal...lxan(p | € AX]} |= A. Since we shall take care to have only
bivalent sentences (sentences that are either true and not false or false and
not true in any model) as axioms, this gives a notion of logical conse-
quence that takes only intended models into account: I [=5x A if and only
if in each intended model the partial intersection of the values of the terms
in I"is partially included in the partial union of the values of the terms in A.
An analysis tree 9} of any category is said to follow (strongly) from a set of
trees = of that category if Z° |=5x 1. Analysis trees £ and ¥ are called
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(strongly) synonymous if & strongly follows from @ and ¥ strongly
follows from &.

Note that if I'and A consist of terms of some type ending in s we can
alternatively describe I'|=5x 4 as: in each intended model and at each situ-
ation i in that model the partial intersection of the extensions of the terms in
I'"at i is partially included in the partial union of the extensions of the terms
in A at i. This suggests that we can weaken the notion of entailment by
imposing constraints on the kind of situations at which evaluation can take
place. The constraint that we shall impose in order to get the second notion
of consequence is that these situations are worlds, total and coherent
situations.

To this end, let world be some constant of type «s> and let £2 be the
conjunction of all formulae of the form Vx;...x,(cx;..x,i =T v ¢xp..x,i
= 1) where ¢ € LC and i is some fixed type s variable. We stipulate that
the constant world will denote the set of situations that are total and
coherent by adopting the following axiom.

AX4 Viworldi= )

Now we say that an analysis tree 1 of any category A such that T (A) =
<0...0,8> weakly follows from a set of trees = of that category if
E°, Mxg,...Axq world |=5x ©°. That is, a tree ¥ weakly follows from a
tree £ if and only if in each intended model, at each world i in that model,
the extension of &° at i is partially included in the extension of ¥ at i.
Analysis trees & and ¥ are called weakly synonymous if & weakly follows
from 1 and ©¥ weakly follows from &.

Note that while (2) weakly follows from (1) under this definition, still
(4) does not even weakly follow from (3). The extra premise, the constant
world, whose meaning we can informally describe as ‘“The present index is
total and coherent’, has a purely local effect. It will give a coarse-grained
semantics to sentences that have no intensional expressions occurring in
them, but it will have no effect on the logic of those expressions that occur
within the scope of an intensional operator.

4.4 Belief, doubt, knowledge and assertion

But the above treatment of the verb believe is still not adequate. While we
have been able to get rid of certain entailments that we did not want there
are others that we do want but that are treated as invalid by our analysis
thus far. For example, (3) and (11) should both follow from (10), but on
the account given they do not. Similarly, (12) should follow from (3) as
well as from (11); (10) should follow from the conjunction of (3) and (11);
and (11) plus (13) should have (14) as a consequence.

(10) Mary believes that John walks and Bill talks
an Mary believes that Bill talks

(12) Mary believes that John walks or Bill talks
(13) Mary believes that Bill is a man

(14) Mary believes that a man talks

We can get a theory of belief sentences that predicts this behaviour by
foliowing classical Situation Semantics very closely and treating the ex-
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pression believe that in Hintikka’s way. To this end we have introduced
a constant BO of type <ess» into our set LC of lexical constants. The in-
formal interpretation of a formula of the form BOxji is that in situation i
situation j is classified as compatible with x’s beliefs. Since BO is a partial
relation like any other, the classification need not be total: there may be
situations j that are neither classified as compatible nor as incompatible
with x’s beliefs at i. Nor need the relation be coherent: some indices may
be counted both as compatible and as incompatible with x’s beliefs at some
incoherent situation. We call a situation j a doxastic option of x in i if
BOxij is true in the model under consideration and we call it a doxastic al-
ternative of x in i if BOxij is not false.
Now redefine the translation of believe that as follows:

believe that® = ApAxAiVj(BOxji — pj)

The resulting analysis of belief sentences is roughly equivalent to the anal-
yses of these expressions given in B & P. For example, the translation of
sentence (11), LiVj(BOmary ji — walk bill j), will be true at some index i
just if Bill walks at all Mary’s doxastic alternatives in ; it will be false at
index i just if Bill doesn’t walk at some of Mary’s doxastic options there.

Belief is no longer merely closed under substitution of strong syn-
onyms but is closed under strong consequence now as well: if a person
believes that A;, believes that A,,..., and believes that A,, and if B fol-
lows strongly from Aj,...,A,,, then it follows that the person in question
believes that B too. Hence the entailments cited above come out valid: the
conjunction of (3) and (11) follows from (10) (Conjunction Distribution),
(12) follows from (3) as well as from (11), (10) follows from (3) plus
(11) and (14) from the conjunction of (11) and (13).

The treatment will work for other propositional attitudes too, provided
that we make the necessary modifications in each individual case. Here are
some extra translations:

assert that® = ApAxAiVj(AOxji — pj)
doubt that* = ApAxAiFj(BOxji A —pj)
know that® = ApAxAiVj(KOxji — pj)

The expression assert that is treated just like believe that, except that in
its translation the relation B0 is replaced by a relation AO of the same type.
The denotation of Aj AOxji consists of those situations j at which that
what is asserted by x at i is not false; its antidenotation is formed by those
indices at which that what is asserted by x at i is not true. Clearly, assert
that and believe that will have the same logic. The translation of doubt
that is chosen in a way that will assure that e.g. sentences (15) and (16)
are equivalent. Conjunction Distribution fails under this analysis: Neither
(16) nor (17) follows from (18). The conjunction of (16) and (17) can on
the other hand be inferred from sentence (19). (Compare the discussion in
B&P, pages 215 and 216; see also the table on page 195.)

15) Mary doesn't believe that John walks
(16) Mary doubts that John walks
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17) Mary doubts that Bill talks

(18) Mary doubts that John walks and Bill takks
(19) ' Mary doubts that John walks or Bill talks
(20) Mary knows that John walks

21 Mary knows that John doesn’t walk

(22) Mary doesn’t know that John walks

To get the facts about the expression know that right, we translate it in a
way that is analogous to the translations of believe that and assert that
but we let AXS5 be a meaning postulate. Any agent in any situation will
find that situation itself among his epistemic options as well as among his
epistemic alternatives. This will assure for example that sentence (1) fol-
lows weakly from sentence (20) (Veridicality) and that (22) is weakly en-
tailed by (21) (Negation). The axiom AX6, in which the double-headed
arrow of the previous section is put to use, stipulates that an agents dox-
astic options are among his epistemic options and that any of his doxastic
alternatives is one of his epistemic alternatives. We use it to derive that
knowledge involves belief, that is that sentences like (20) entail sentences
like (3).

AX5  VaViKOxii =T)
AX6  VaViVj(BOxji — KOxji)

4.5 Neutral perception

Lastly I turn to the treatment of the neutral perception verb see. Although
I shall treat this expression as a verb that takes sentential complements and
that forms intransitive verb phrases with these, I shall not assign it to the
same category IV / ¢ that the other attitude verbs are assigned to. Instead,
we list it as an expression of category IV // t . To the definition of analysis
tree we add an extra clause which runs as follows.

G18. If e ATy, and © e AT, then [ED]18 € ATy

The definition of the translation function ° must also get an extra clause;
treating G18 as an ordinary application rule, we define:

T18. (60118 =&

Following B&P again we shall say that a sentence of the form a sees ¢
(where a is a noun phrase and ¢ is an embedded uninflected sentence) is
true at a situation i just in case it is true that a sees some part of i at which ¢
is true; a sees ¢ is false if at none of a’s visual scenes the embedded
sentence @ is true. In other words, we choose the following translation for
the new lexical element See (where see xji is to be read as: “x sees j at i”’):

see® = ApAxAidj(seexjinj<iapj =T)

This analysis works well enough, as long as the embedded sentences do
not contain ary determiners (for that case see below). First note that cur
treatment of the irrelevant entailiments in the case of the epistemic and dox-
astic  attitudes carries over to the attitudes of perception withcut any
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difficulty: Sentences (5) and (6) are not synonymous, not even weakly so.
Second, our theory predicts roughly the same entailment phenomena as the
B&P theory does. For example, from the fact that all determiner-free
sentences persist we see that sentence (5) weakly entails its embedded
sentence (1) (Veridicality). In a similar way we see that (24) follows
weakly from (23) (Negation). We also have logical principles like Con-
junction Reduction and Disjunction Distribution: for example (25) entails
(26) and (28) follows from (27).

®) Mary sees John walk

©) Mary sees John walk and Bill talk or Bill not talk
23) Mary sees John not walk

(2] Mary doesn’'t see John walk

25) Mary sees John walk and Bill talk

(26) Mary sees John walk and Mary sees Bill talk
27 Mary sees John walk or Bill talk

(28) Mary sees John walk or Mary sees Bill talk

To make the treatment work for arbitrary sentences of the fragment, in-
cluding those that have a determiner occurring in the complement of a
neutral perception verb, some extra care must be taken. Consider sentence
(29). According to our analysis thus far, but contrary to intuition, this
sentence is ambiguous. It has a de re reading, given in (292), in which the
noun phrase & man takes scope over the perception verb see, as well as a
de dicto reading, given in (299), in which see has scope over a man. A
similar remark can be made about sentences (30) - (32): each has a reading
(given in (303), (312) and (322) respectively) obtained by ‘quantifying-in’
as well as a reading (given in (30P), (31P) and (32b)), that can be got by
more direct means.

(29) Mary sees a man walk
(29% [[a man]? [Mary [see [he, walk]*]!5]4]4.0

AxX(Exi ~ inan xi A Jj(see mary jinj<iAwalkxj =T)
(29%)  “[Mary [see [[a man]? walk}]'#)

Aidj(see mary ji A j <i A Ax(Exj A man xj awalk xj) =T)

30) Mary sees the man walk
30%) jiihe man}® [Mary [see [he, walk]*}!8}4]14-©

AiTx(Vy(Eyi A man yi) <>x=y)A Jj(see mary jinj<i Awalkxj =T)
(30%)  “[Mary [see [[the man]? walk]*]!8}*

Aidj(see mary ji A j <i A 3x(VY(Eyj A man yj) &x=y) awalk xj) = T)

(31) Mary sees every man walk
(31%) {levery man]® [Mary [see [he, walk]*]!8]4]14.0

AVx(Exi A man xi) — Jj(see mary ji Aj<inwalkxj =T))
(31%)  ‘[Mary [see [[every man]® walk]*]!$}4

Aidj(see mary ji A j<i A Vx((Exj A man xj)— walk xj) =T)

32) Mary sees no man walk
(323 [[no man}? [Mary [see [he, walk]*]!8]4]!4.

Ai—3x(Exi A man xi A Jj(see mary jinj<iAwalkxj =T)
(32b)  “[Mary [see [[no man]® walk]‘]!s}*

Aidj(see mary ji A j <i A Ix(Exj A man xj awalk xj) = 1)
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Looking at the semantics of these sentences we see that in each case the de
re but not the de dicto readings give the right truth conditions. Consider a
case in which Mary sees Bill walk. Bill is a man, but he is too far away to
enable Mary to see this. Then (29) is true, but (29%) could be false since
Bill is not in the positive extension of the predicate ‘man’ at Mary’s visual
scene. Similarly, we can easily imagine situations in which the truth values
of (30b), (31Y) and (32Y) differ from the intuitive semantics of sentences
(30), (31) and (32), the expressions they are supposed to formalize
respectively.

Note that we cannot characterize the correct readings by simply stipu-
lating that neutral perception verbs may not take scope over determiners. In
(332) for example, a perfectly acceptable non-specific reading of sentence
(33), the verb see has scope over the determiner a. Sentence (33) has a
correct specific reading (33b), in which a pen takes scope over both see
and seek, as well. But the intermediate reading (33¢), that has a pen
taking scope over seek, but itself being in the scope of see, is out: There
is no natural reading of (33) that implies the existence of a pen in Mary’s
visual field.

33) Mary sees Bill seek a pen
(339 [Mary [see [Bill [seek [a pen]*]*]]18)*

Aidj(see mary ji A j<i A try AyAi3x(Exi A pen xi A find xyi) bill j =T)
(33b)  [[a pen]® [Mary [see [Bill [seek he,J5}4]!8}4]*4.©

Ai3x(Exi A pen xi A Jj(see mary ji Aj<intry (find x) bill j =T)
(33 "[Mary [see [[a pen]? [Bill [seek he, J5 1] 08}

Aidj(see mary ji A j<iA Ix(Exj A pen xj atry (find x) bill j) =T)

Then what is it that the bad readings (30b), (31b), (32b) and (33¢) have in
common but that distinguishes them from the good guys (302), (3123),
(323), (332) and (33Y)? It is a semantical property: in the translation of each
of the bad trees a quantification occurs over the domain of individuals
occurring in somebody’s visual scene. We must conclude with Asher &
Bonevac [1985, 1987] that no such quantification is allowed. Quantifiers
are not interpreted in scenes. In normal situations the domain of objects
associated with a person’s field of vision changes rapidly over time; even
the tiniest movement of the eye can cause objects to be introduced into
ones domain of vision and can cause other objects to be expelled from it. It
seems that language users are therefore extremely reluctant to interpret
non-persistent expressions in their visual fields.

Mathematically we can characterize the good readings by adopting the
following definition.

DEFINITION 21. An analysis tree is called admissible if for all its subtrees
of the form [£19]18 the term © is persistent.

Meanings are now associated with admissible readings only. For example
(33¢) is now ruled inadmissible and is not associated with a meaning be-
cause it has [see [[a pen]? [Bill [seek heg]5]4]14: 9]18 as a subtree and the
translation of [[a pen]? [Bill [seek heg]5]4]14. 0]18, Aidx(Exi A pen xi
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Atry (find x) bill i) is not persistent. On the other hand, (332) and (33b) are
admissible since both ry AyAidx(Exi A pen xi A find xyi) bill and the
open term try (find x) bill persist. Similarly, the a-readings in (29) — (32)
can be seen to be admissible but the b-readings are out; the verb see takes
non-persistent complements in them.

(G4 A man walks
(35) The man walks
(36) Every man walks
37 No man walks
(38) Bill seeks a pen
(39) John is the man
(40) Johnis a man

If we restrict the set of readings thus, the basic facts about entailments in-
volving neutral perception sentences can be predicted. The theory gets the
Veridicality phenomena right: (34), (35) and (36) follow weakly from
(29), (30) and (31) respectively. But of course (37) is not weakly entailed
by (32), nor should it be. Notice that (38) follows weakly from (33), or,
to be more precise, its de dicto reading follows weakly from (33)’s de
dicto reading (332) and its de re reading is weakly entailed by (33)’s de re
reading (33Y). Substitutivity also holds: for example from (5) and (39)
sentence (30) follows. Relatedly, we may see that (29) follows from sen-
tences (5) and (40). Lastly, note that the theory predicts the facts about
Exportation in a trivial way. As was noted in Barwise [1981], the noun
phrase @ man in (29) can be ‘exported’ to give it widest possible scope
without change of meaning. Our theory predicts this, since we claim that
the NP already has wide scope in the sentence’s unique (up to equivalence)
legal reading and so there is nothing to export in the first place. Of course
by a similar reasoning we predict that al// noun phrases show this
behaviour, which conforms to an observation made in Higginbotham
[1983].

Appendix

Proof of Theorem 1.
THEOREM 1 (repeated). Let I"U {9} be a set of (TT,) sentences then
I'=¢in TT,iff I'l= ¢ in TY,.

Let F = {D, | ot is atype} be a frame and F' = {D’;, | v is a TY type}
the TY, frame such that D, = D', and D, = D’;. For each type o define a
function §4: Dy - D’y ) by the following double recursion:

I S,(d)=d,ifde D,; S(d)=d,ifde Dg
II i. S,(d)=d,ifde D_;
ii. Ifn>0, a=«w.ap and R € D,, then S,(R) is the
function G of type (Z(a;)Z(<;...0)) such that G(f) =
S.ct...cp(FR(Se,(f)) for each f& D'yq).

It is easy to prove that the functions S, are bijections and that hence the
defin'tion i correct. I’ll suppress subscripts on S in the rest of the proof.
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Let I be an interpretation function for the frame F and let I’ be an inter-
pretation function for F’ such that I'(c) = S(/(¢)) for all TT, constants c.
Let M = (F,I) and let M’ = {F’, I'). Write IAIN:? for the value of a term A
in a TY, model N under an assignment b. Then, for all TT, terms A and
all assignments a for M and a’ for M’ such that a’(x) = S(a(x)) for all TT,
variables x, we have |AIM.a" = S(llAIIM.a), as can be seen by an induction
on the complexity of A (I’ll sometimes write |Al for A" just as I write
ILAll for llAlIM.a, to avoid too much mathematical clutter).

i. S(licll)y = SU(c)) =TI’ (c) if ¢ is a constant;
S(kxll) = S(a(x)) = a’ (x) if x is a variable;

ii. Since S, is the identity function on {0,/} it holds that S(ll—¢ll) =
1 -S(llgll) = 1 — ¢l = |—¢l and that S(llp A yil) = S(llgll) N Syl
=lplNlyl=lp A yi;

iii. S(IVx @Ma)y =M, . p S(lg IM.aldix]y = (M, p, 19 IM",a'1S(d)/x]
=Nygep. lo M aTd’x] — |vx?|M',a’;

iv. S(IIABII) =Z§?FIIIA”(IIBII)) = S(F (S (1BIM’a))) = S(IAIN(IBI) =
|AI(IBl) = |ABI;

v. Since Ilﬂprlera is the relation R such that for alld € Dg: Flle(d) =
lAIIM.ald/x], we see that S(IlAxpAlIM.4) is the function G such that
foralld’'e D'gp: G(d) = S(F,]e(S—I d")) = S(IAIIM.aldix]) where
d = S-1(d’). So for each d’ e D’yp), G(d') = AIIM'a’ld'lx] and
hence S(lIAxAlM.a) = lIAxAlIM 2,

vi. S(IA = Bll) = 1 iff IAll = IBIliff S(IIAl) = S(IIBII) iff Al = IBI iff
IA =Bl=1.

Now let M be a TT, model such that all e I"are true in M but @ is false
in M. Then all y e I'are true in M ' as constructed above but ¢ is false in
M’'. So if I'|= ¢ in TY, then I'|= ¢ in TT,. Conversely, let M’ =
({D’y} o I') be a TY, model such that all y e I'are true in M’ but ¢ is
false in M'. Let M = ({Dy} 4 I), where D, =D’,, D, =D’ and I is de-
fined as the interpretation function such that I(c) = S-/(I’ (¢)) for all con-
stants ¢. Then all we I'are true in M but ¢ is false in M. So if I'|= ¢ in
TT2 then I'|= Q in TY2

Proof of Theorem 2. : )
THEOREM 2 (repeated). For each analysis tree £ let & be the translation it

is given in DWP. Let A be the following set of IL-sentences (ail meaning
postulates in DWP):

3xd[x =c], where cis any constant of type e;
EIS(s(e(et)))VxVQD[é(x,Q) & Q{My[S{x,y}1}1, where éis find', love',
lose', eat’ or date’;

3G (s(eq(stenenyy Y QY PYANIN(Q)(P)() < Q{A I GI»)P)W1};
VxV QL [seek'(x,Q) ¢ try'(x, A[find'(Q)])].

Let £ U {19} be a set of analysis trees, then:
‘ E° = inThiff 7 vuA|=9 inlL.
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For the sake of definiteness and ease of reference, we give a definition of
the translation function ' as it is employed in DWP.

DEFINITION (DWP Translations). Let g be some fixed one-to-one function
having the set of basic expressions other than those mentioned explicitly in
rule T1' below as its domain, such that g() is an IL constant of type f(A)
(defined in Table 1) if &is of category A. For each analysis tree £ define its
DWEP translation &' by induction on the complexity of analysis trees:

T1'.  If §is in the domain of g then &' = g(&);
John'= AP["P john,), Mary' = AP["P mary ], Bill' = AP["P bill ],
he, = AP["Px,];
be'= AQAy["QM x[x=y]I];
every' = AP;AP,Vx["P1x —"Pyx],
as= APIAPZ EIx["P,x /\'sz],
the' = AP AP, 3x[Vy["P;y <>x=y]A"Px];
necessarily' = Ap0[*pl;
T2,  ([E012") = A [E' () A D T;
T3' - T10'. ([519]")' =E'M)if3<k<10;
TIl.  ([(E8111ay = ¢ A B T12.  ([EO1128) = Ax[&'(x) A ¥ '(W)];
((Eoby =& v 9 ([E112b) = Ax[€ '(x) v ' (0)];
T13. (€3 =AP[E'P)vO'P)); T4, ([E0147) = E'(Mx, D'
T15. (€115 = HIE ' Ax,[0'O)D];  Ti6.  ((ENERY = AY[E '(Ax, [0 ' DD
T17. (&MY ==&'("9Y).

It is well known that the intensional logic IL is in fact a part of the much
simpler logic TY,. Gallin [1975] gives an embedding. The following
translation is essentially his, but for the way individual constants are dealt
with:

DEFINITION (Gallin’s Embedding). Let i be some TY, variable of type s.
The function +, sending IL terms to TY, terms, is defined with the help of

the following clauses:
i. x* =x, if x is a variable
ii. c* = ¢, if ¢ is a constant of type e.

c* = ki, where k is the n-th constant of type (s¢) in some fixed or-
dering, if c is the n-th constant of type o # e.

ii. ((0/\ Y*r=QsAy* (—l(p"=—|(p“

iv. Vxp)* = Vxop*

v. (AB)* = A*B*

vi. {AxA)* = AxA*

vii. (A=B)*=A*=B*

viil.  (MA)* = LA+

ix. (CA)* = A%

X. @)+ =Vip+

It is not difficult to prove that the translation *is an embedding of IL plus
some rigid designator meaning postulates into TY,:
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THEOREM (Gallin). Let I" U {¢} be a set of IL formulae, let I'* be the set
{y*1ye I} and let O be the set of IL formulae {Ix1[x =¢] | ¢ is a con-
stant of type e}. Then:

I',®lzpinIL & I'* |= ¢*in TY,.

By an easy induction on the complexity of analysis trees we verify that for
each tree & the TY, term & '* is in fact a TT, term: none of its subterms
will have a type in which an e or an s immediately precedes a right paren-
thesis. So in virtue of Theorem 1. we have that '+ |= 9"+ in TT, iff ",
©|=¢'"in IL.

But in general &'+ will not be equivalent to &°; the types will not match.
The main reason for this is that our category-to-type rule places ss imme-
diately before right brackets, while in the type of any Ai(£ '#) these ss oc-
cupy a place immediately following the corresponding left brackets. So we
have to permute types.

DEFINITION. Define, for each ¢, the type ¢ by:

1 et=e; st =3,
I i. Ot=0

11. <a1...anan+1>’= <an+1a1...an>
And we embed TT, in itself.

DEFINITION. Define for each TT, term A of type oca TT, term A¥ of type

a* by the following induction.

i. c¥ =k, where k is the n-th constant of type «* in some fixed or-
dering, if c is the n-th constant of type og
x* =y, where y is the n-th variable of type o* in some fixed or-
dering, if x is the n-th variable of type o

ii. (=Q)* =",
(@A) =@ Ay,

iii. (Vx@)* = Vxrp;

iv. (A<ﬁ,Bp)' =A"Bv,
(Apa,...a,, Bp)" = Ax(A*xB*), where x is the first variable of type
o, ;* that does not occur free in A¥ or BY;

V. (Ax@,,)* = (Ax* @v),
(AxpA.q,...q,, »)* = AyAx"(A"y), where y is the first variable of
type «,,;* that does not occur free in A*;

vi. (A=B)*=A"=Br.

We prove that ¥ preserves entailment. Let M = ({D 4} ., I) be a model and
let a be an assignment for it. Define n(d) =difde D,,d€ Dsorde D,
and define n(R) = {{n(d,,;),7(d}),...,7(d,)) 1 {d],....d,dps1) € R} If R
€ D, .a,a,, Itis easily seen that the restriction of 7 to D, is a bijection
between D, and D .. Let I’ be an interpretation function such that I'(c*) =
n(I(c)) for all constants c. Define M’ := ({D,} 4, I). Then by an induction
on term complexity that we leave to the reader: IlA*IIM'a" = (IIAlIM.) if @’ is
an assignment such that a’(x*) = n(a(x)) for all variables x. It readily -
follows that I" |= Aif and only if I'¥ |= A°.



35

Note that if A is an n+I-ary term then (AB,...B,B,,, ;)" is equivalent to
A*B,.;*B;*...B,*. Also note that (Ax;...Ax,Ax, ;@) is equivalent to
Mn+1'M1'...Mn' Q.

Let ¢ be a function from analysis trees to TT, terms that is defined just
as ° with the exception that finds, loves, lose+, eat+, date+, in* and
seek* are all constants (of the appropriate type) instead of complex logical
expressions. Let £2 be the following set of terms:

A3S e, VXV Q(30x = QAy(Syx)), where 6 is find+, loves+, loses,
eat* or date+;

MG 55V VPV X(iN*QPx = QAy(GyPx));

AV O(seek+*Q = try+(find+Q)).

Clearly, Z° |=0° & Z+, Q=9

Without loss of generality we may assume that if §is any basic expres-
sion of category A other than the ones mentioned explicitly in clause T1' of
the definition of ' above, then &' is the n-th IL constant of type f(A) if and
only if 6* is the n-th TT, constant of type 7 (A). We can now bridge the
gap between the DWP translation and ours.

LEMMA. Ai(&'+) (where i is the variable in Gallin’s Embedding) is equiv-
alent to &+ for all analysis trees &.

The proof is a straightforward but tedious induction on the complexity of
analysis trees which I leave to the reader.

Combining our findings thus far, we see that Z', @|=9'in IL &
E+ =9 {1 Ee E}=Ai(D'+) o B+ [= 04y & B+ |= V-,
Since it can easily be verified that for each ¢ € 2 there is an A € A\® such
that Ai(¢*) is equivalent to A¥ and vice versa, we see that ', A |= ¢ in
IL & 5+, Q=0+ < E° |=9°, which proves the theorem. H

Proof of Theorem 3
THEOREM 3 (repeated).

I. Every Kleene algebra is isomorphic to a natural Kleene algebra on
a set of partial relations.
II. Every approximation algebra is isomorphic to a natural approxi-

mation algebra on a set of partial relations.

In distributive lattices with zero and one a prime filter can be defined as a
set V such that the following hold:

a+beV @ aeVorbe V,
a-be Vo aeVandbe V;
Oz V, leV.

In the sequel we let V range over prime filters.

To prove L., let K be a Kleene algebra. We’ll show that there is a
natural Kleene algebra, with partial sets of prime filters on K as its
elements, that is isomorphic with K. Define a function f with the domain
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of K as its domain by: fla) =({Vlae V}, {Vla' e V}) for each a. Then
by Stone’s Theorem fis 1-1. Using the properties of prime filters cited
above and the axioms of Kleene algebras it is easily verified that moreover
fis an isomorphism:

fa)={{Via'e V},{Via"e V})=({VIa’'e V}, {Viae V})=
—({Vlae V},{Vla' e V})=-HAa),

fla+b)={Via+be V},{Vi(@+b)e V})=

{Via+be V},{Via'-b' e V})=

({Vliae Vorbe V},{Via’e Vand b’ e V}) =

{Vlae V},{Via'e V})u ({VIibe V},{VIb' e V})=
fla) v f(b);

fla - b) = fla) N f(b) by dual reasoning;

f0)={{VI0e V},{VIle V})=(J, {VIV is an prime filter on K});
fA)={{VI1e V}{VI0oe V})={{VIV is an prime filter on K}, &).

Proposition II. is proved in a very similar way. |

1

Proof of Theorem 5
THEOREM 5 (repeated). Let ITand X be sets of formulae then:
- I1|=2%.

Before we can give the proof we must first state two lemmas about the
syntactical consequence relation |-. The first lemma says that certain for-
mulae behave in a classical way. Its proof is an easy induction.

LEMMA. Define a 2-formula to be a formula that is built up from formulae
of the form A = B and the logical operators —, A and V solely. If ¢ is a 2-
formuia then |- ¢, —¢.

The second lemma lists some provable sequents that we shall either need
below or need in the proof of the lemma itself.

LEMMA. The following sequents are provable.

I = =T (use the negation rules)
I =—T=T (use I and the Truth-Value rules)
I = —l=1 (use II and the definition of 1)
v = ——k =¥ (use the Truth-Value rules)
\'% = —#=# (use the Truth-Value rules)
VI = Q=09 (use IT, IIL, IV, V)
VI ¢=T=9¢
VI ¢p=#=¢,* (use the Truth-Value rules)
- IX Q=#= 0 * (use VI and VIII)
X p=* ¢ =*
XI Q=% @ = * (use VI and X)
XII e¢=1¢ = (use the definition of 1)

Xl ¢=T,-¢p =
XIV p=1 =59
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XV ¢ =>0=T 0=#¢p=* (use X1I)
XVI ¢ =0¢=T, o=# * (use X and XV)

XVIL = @, =@, p=*, * (use VIIL, VIII and XIV)
XVII ¢, —~p = @=4#,* (use XIII and X VI)
XIX ¢ =-¢,p=T,% (use IX and XVI)

XX —¢p=>¢,0=1,% (use XIX)

We now come to the main part of the proof, which is a generalization of
the standard Henkin generalized completeness proof for type theory. A tset
of formulae I'is called *—consistent if it does not hold that I" |- *.

THEOREM (Star-Consistency Theorem). If a set of formulae is *—consis-
tent then it has a general model.

PROOF. Let I"be a *—consistent set of formulae. We construct a general
model for I". Add denumerably many constants of each type to the lan-
guage of I"and let ¢y,...,0,,... be some enumeration of all formulae in the
extended language. For each natural number n, define a set of formulae I,
by the following induction.

FO = F
I, = I, if I,, ¢, |- * and ¢, is not of the form
Vxy,
= I,v{e,} if not I',, ¢, |- * and ¢, is not of the
form —Vxy,

I,u {=T[c/x]y}, where c is the first constant of type «
(in some fixed enumeration) that does
not occur in any of the sentences in
r,u (v}, ifr, ¢,-* and
Pn = VxoY;

I,u {¢,, [c/x]-y}, where c is the first constant of type «
that does not occur in any of the sen-
tences in I, U {y}if not I, ¢, |- * and

Op = VXY

We show by induction that each I, is *-consistent. By assumption I is *-
consistent. The first two cases in the proof of the induction step are trivial,
solet I,, Vx,y |- * and suppose that I, —=T[c/x]y |- *. Then since
T[c/xly is a 2-formula we have that I', |- T[c/x]y, *, from which it
follows that I, |- [c/x]y, *. Since ¢ doesn’t occur in I',, ory we see that
I, |- Vxy, * by IV. By the Cut rule I, |- *, which contradicts the induc-
tion hypothesis. To prove the last step, use IV and the negation rules to
see that I, U {=Vxy, [c/x]—y]} is *-consistent if I, U {—Vxy]} is.

Define A ;=\, T,,. Then, since all I',, are *-consistent, A is. More-
over, A is maximal in the sense thatif ¢ ¢ A then 4, ¢ |- *. From A’s
maximal *-consistency it follows that if A |- y,...,y,, * then y; € A for
some y;. SoTpe Ailf pe A, since ¢ |-Tep,* and Te |- ¢, *. In a
similar way the fcllowing equivalences are seen to hold:
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p=#e A (use VIII, IX, XVIII)
p=*e A (use X, XI, XVII)
p=Te A (use VII, XIII, XIX)
p=1le A (useX, XIV, XX)

i. o€ Aand ~pe A
ii. p¢ Aand —pe A
iii. pe Aand —pe A
iv. p¢ Aand —pe A

g§g¢¢

As a consequence ¢ = y € Aif it both holds that o€ A & ye Aand
—pe A —ye A

The maximal *-consistent set of formulae A satisfies the following form
of the Henkin property: if [c/x]y € A for all constants ¢, then Vx,ye A
and if —=Vx e A then —[c/x]y e A for some constant c,. To prove the
first of these statements, assume that Vxy ¢ A. Then —T[c/x]y e A for
some ¢, whence, since T[c/x]y is a 2-formula, T[c/x]y ¢ A and [c/x]y ¢
A . The proof of the second statement is straightforward.

Define the relation ~ between terms by A ~ B := A =B € A. Using the
identity axioms we see that this is an equivalence relation. The equivalence
class {B | A ~ B} of a term A under this relation we denote with [A]. Note
that by the Henkin property and the fact that |- 3x(x = A), for each term A
there is a constant ¢ such that [A] = [c]. Now, by induction on type com-
plexity define for each « a function @, having the set of equivalence
classes {[A] | A is of type &} as its domain:

D, ([A]D) =[A;  DL([AD =[A];

D.q,..q,,([AD) = (R, R-), where
R* = (@ ([c1)yerrs By (6,1 1 Acy..Cpe A}
R== {(Dg,([c/Ds-... Py ([c,D) | mAcy...c,€ A}

This is well-defined; the identity axioms assure that D ([A]) = D([A]) if
[A] = [A’]. To prove the converse (the injectivity of @,) assume that
Dy, ...0p([AD = Dy, g ,([A]). Then for all suitable constants c;,...,c,:
Acj..c,e A iff A'c;..c,e A and —Ac;...c,e A iff =A'c;...c,e A.
Hence Ac;j...c, =A’c;...cp,€ A for all cy,...,c,. Suppose n > 0. By the
Henkin property Vx,(Ac;...c,.;x, =A’c;...c,_;x,) € A, whence
Acy...c,_;=A’c;...c,_; € A by Extensionality. Repeating this procedure
as long as is necessary we find that A = A’ e A.

We can now construct the canonical model from the equivalence classes
of constants. Define D, to be { @,([c]) | c is a constant of type &} and de-
fine I(c) = @,([c]) for each constant ¢ of type a. Then M ={{D,},, I) is a
very general model. Let a be an assignment for M such that a(x) = @,([x])
for each variable x of type «. We prove by term induction that @,([A]) =
llAIIM.a for each term A and so that M is a general model of I'.

i. licM:a = [(c) = dX[c]) if cis a constant;
IxliMa = a(x) = d([x]) if x is a variable;

i lngliMa = lipiMa = ({() | =pe A}, ()| pe A})=
{O1=pe A}, {(} | ——pe A}) = D([—¢]);
llpA yiiMa = llpliMa lhydiM.a =
({Q1pe Aand ywe A}, {()| ~pe Aor—ye A})=
{Olopaye AL{O (@A y)e A})=D(pA yD);
#IMa = (1,1} ={{() | # € A}, () | #e A}) = D([#]);



39

I+lM.a = (0,0) = ({() | * € A}, {( | ~*e A}) = D([*]).

iii. Since all elements of any D, can be written as /(c) for some con-
stant ¢ of type ¢, we have !I‘v’x a® Ma= (M, p llpIMaldx] =
M, NlpiLalli] = N, lifcix]plita = M, ([[c/x]g]) =
(ﬂ O eixlpe A} l() O [c/x]—l(pe A}) = (by the Henkin
property)l({() I an(pe A} {() | =Vx,pe A}) = D([Vx,0)).

iv.  IABI=FL (IBl)=F. . (&(B]) = (R*, R-), where
R* = (djmdy (DA ) € BUAD)

= {{d}r0rd,) | (O([B]),d;,..d,) € D([A])-)
We see that
R+= {D([c;D,....D([c, D) | ABc;...c,e A}
= {{(@(c;D,....2([c, 1)) | =ABc;...c,€ A}
and so that lIABIl = &([AB]).

v. IAxpAlM.a = the R such that foralld e Dg: Fl (@) = llAIMaldix] =
the R such that for all cg: . Fl rU(0)) = IAIM “U(C)/x] = ll[c/x]AlIM.a
=d([[c/x]A]). Hence IliprAllM @ =(R*, R-), where:

R = {(@(c]), D([c)D),....0(0c, D) | [c/x](A)c;...c,e A)
R-= {{D([c]), D Ds.... D[c, D) | m[c/x](A)c;...c,e A}.
By Lambda Conversion [c/x]A = Axg(A)c € A and so:

R+ = ((&([c]), D([c D). D([c,])) | AxgA)C c)...cp€ A)
R-= {{&(c]),D(c;D,....Dc, D) | = p(A)c c;..c, € A},
from which it follows that IllxﬂAllM'a = Q([AxAD).

Vi. Since A =B is a 2-formula it holds that -(A =B)e Aiff A=B¢
A So H[A=B])={{()1A=Be A}, ()| ~(4 =B)e A}) =
({O1[A1=[B1}, {O I [A] = [B]}) = ({O | ©([A]) = ©([B])},
{O 1 D(A)]) # @B} = ({O AN =1BI}, {O 1Al =1BII}) =
IIA = BIl. |

We are now ready to prove Theorem 5. Suppose I7|= X. Then each gen-
eral model of ITis a general model of some ¢ € X, and so the set of sen-
tences ITU {—To| o€ X} has no general model. By the star-consistency
theorem it is seen that I1, {—To i o€ X} |- *. Hence II,, {—Toloe
2y} = * is a provable sequent for some finite I, %, such that Iy c IT
and X, c X. Using and we find that IT, = {To | o€ X}, * and IT) =
2, * are provable sequents as well.

FromlI |= X it also follows that each general model of {—~ocl o€ X} isa
general model of the negation of some 7 € I1. By an argument analogous
to the one above we find that there are finite II; ¢ ITand Z; ¢ X such that
{—woloe %} = {—r |l me II;}, * is a provable sequent and hence that
I1;, * = X; is. Now use the Cut Rule to see that IT, 1i; = X, X, is
provable, whence [T |- Z. |

Proof of Theorem 6
THEOREM 6 (repeated). If 1} is an analysis tree of category ¢ and ° is de-
fined as it 1s is1 section 2, then the translation 1% persists:

AX1 [=Viji <j - (Fic §))).

I’ll give a skcteh of the proof, leaving details to the reader. For each term
A such that in A’s type every right bracket is immediately preceded by an s
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define a formula QP(A, i, j), saying that A quasi-persists from i to j, by
the following induction:

i. QP@A, i,j) =T, if A is of type e or type s;

ii. QP@A,i,)) = anl Vx, ((QP(xaI, L) AA QP(xan, L)) >
(Axa] al E AXxg,..Xg J))
if A is of type <a;...a,s>.

By an easy but long induction on the complexity of analysis trees we can
prove that AX1 |= Vij(i <j— QP(1, i, j)) for every analysis tree 2.
From this the theorem follows immediately. |
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