Institute for Language, Logic and Information

LOGICAL CONSTANTS
ACROSS VARYING TYPES

Johan van Benthem
ITLI Prepublication Series

for Logic and Philosophy of Language LP-88-05

University of Amsterdam

X
(]
%

1. THE RANGE OF LOGICALITY

Philosophical discussions of the nature of logical constants often concentrate
on the connectives and quantifiers of standard predicate logic, trying to find out
what makes them so special. In this paper, we take logicality in a much broader
sense, including special predicates among individuals such as identity ("be") or
higher operations on predicates such as reflexivization ("self™).

One convenient setting for achieving the desired generality is that of a
standard Type Theory, having primitive types e for entities and t for truth values,
while forming functional compounds (a,b) out of already available types a and
b. Thus, e.g., a one-place predicate of individuals has type (e,t) (assigning truth
values to individual entities), whereas a two-place predicate has type (e,(e,t)).
Higher types occur, amongst others, with quantifiers, when regarded in the
Fregean style as denoting properties of properties: ((e,t),t). For later reference,
here are some types, with categories of expression taking a corresponding
denotation:

e entities proper names

t truth values sentences

(X)) unary connectives sentence operators

(t,(t,1) binary connectives sentence connectors

(e,t) imary individual predicates intransitive verbs

(e,(e,t) binary individual predicates transitive verbs

((e,t),1) properties of predicates noun phrases ("a man")

((e,1),((e,t),t)) relations between predicates determiners ("every")
“((e,t),(e,t) unary predicate operators adjectives / adverbs

((e,(e,t)),(e,t)) argument reducers "self", 'passive’

Many of these types (and their corresponding categories of expression) can
contain logical items. For instance, identity lives in (e.(e,t)), reflexivization in
((es(e,1)),(e,)). But also, type ((e,t),(e,t)) contains such logical items as the
operation of complement, or identity, whereas ((e,),((e,),(e,1))) would add such
operations as infersection or union. Conversely, existing logical' items may be
fitted into this scheme. For instance, in his well-known set-up of predicate logic
without variables, Quine introduced the following operators in addition to the usual
connectives and quantifiers: reflexivization (as mentioned above) as well as various
forms of permutation on predicates. One notable instance is the operation of

fact, the standard examples have so many nice properties together, of quite diverse
sorts, that it may not even be reasonable to think of their conjunction as defining
one single 'natural kind'

2. GENERAL INVARIANCE

The traditional idea that logical constants are not concerned with real content
may be interpreted as saying that they should be preserved under those operations
on models which change content, while leaving general structure intact. This is
actually not one intuition, but a family: as there are various ways of implementing
such ideas. We shall consider several here, starting with perhaps the most natural
one.

Related to the preceding aspect of logicality is the feeling that logical
denotations should be uniform, in the sense that they should not have one type of
behaviour on certain arguments and a vastly different one on arguments only
slightly different. Perhaps, in this day and age, it is even natural to localize this
uniformity in the existence of some computational procedure recognizing the
relevant logical connection. Such further traits will be encountered in what follows
too.

2.1. Individuall Neutrality

Logical constants should not be sensitive to the particular individuals present
in a base domain D,. This idea can be made precise using permutations, or more ‘
generally bijections defined on that domain, which shuffle individuals. For
instance, the logicality of the quantifier “all" (i.e. inclusion among unary predicates,
or sets of individuals) expresses itself at least as follows, for all X,Y ¢ D,

all XY if and only if all n[X] =[Y],

for all permutations & of D,.

But likewise, say, a Boolean operation like complement on sets will show a similar
‘commutation with permutations'. For all X ¢ D,,

© [not (X)] = not n[X].

And finally, of course, the relation of identity will be unaffected by such
permutations. For all x,y € D,,
x =y if and only if ®(x) = n(y).

Finally, we consider one case where permutation invariance by itself already
comes close to singling out the usual logical constants (cf. van Benthem 1986b,
chapter 3).

Proposition: Among the n-ary operations on sets, the only permutation-invariant
ones are those defined at each tuple of arguments by some
Boolean combination.

We sketch the proof, in order to show how the present kind of invariance enforces
a certain uniformity of behaviour. Consider binary operations, for convenience:

De

Let f be permutation-invariant. What could f(X,Y) be ? The relevant Venn
Diagram has four natural 'zones', and we can see that f(X,Y) must either contain
or avoid these in their entirety. E.g., if f(X,Y) were to contain u € X-Y, while
missing ve X-Y, then we could define a permutation & of individuals interchanging
only u and v, while leaving everything else undisturbed. But then, ©t (X) =X,
n(Y) =Y, and yet n(f(X,Y)) # f(rn(X), n(Y)). So, f must choose some union
of regions: which is described by a Boolean combination of this arguments. &

Thus, we see that permutation invariance already captures a lot of logicality".

Moreover, the notion just defined raises several questions of its own. To
begin with, which categories possess invariant items at all ? Here, it is useful to
distinguish types into two main varieties. Every type can be written in one of the
forms

(ar,(az,...,(ap,t)...)) or

(a1,(az,....(an,e)...))
The first, with 'final t', shall be called Boolean types, since they carry a natural
Boolean structure (cf. Keenan & Faltz 1985). The second may be called individual

types.

Proposition: All types contain permutation-invariant items, except those individual
types all of whose arguments a; contain permutation-invariant items.

Proof: By induction on types. Note first that every Boolean type has at least one
invariant item, being the function giving the constant value 1 throughout (for all
tuples of arguments). Moreover, € had no invariants (provided that there be more
that one individual object). Now, consider any complex individual type of the
above form. :

Case 1: all a; have invariant items, say Xi,...,.Xp. Let f be any item in our
type considered. Its value

f(x1)(x2)...(xn)
will be some individual object in D.. Let ® be any permutation shifting that
object. Then, ®(f)(x1)(x2) ...(Xn) = TEY(F(x1))(M(x2))...(7(x,)) [by the invariance
of the xj] = m(f(x;)(x2)...(xp)) [by the definition of w(f)] # f(x1)(x2)...(xy) [by
the choice of w]. Thus, n(f) #f. Le., our type has no invariant items f.

Case 2: atleast one a; has no invariant item; say a;. By the inductive
hypothesis, a; itself must be of the form

(a11,(a12,...,(a1x,€)-..)),
where all a;; have invariant items. (Or, a; may be the type e itself.) Now, we
define an invariant item in our original type as follows:

- if a; was e, then take the function f defined by f(x;)(x2)...(Xp) = X;.

- otherwise, if the a;; have invariant items y;,...,yk, say, then take the
function defined by f(x1)(x2)...(xp) = x1(y1)...(¥%).
That both these functions are permutation-invariant may be seen by direct
calculation, or by an appeal to the more general results of Section 4 below. &

As an application, we note that, e.g., the category of ‘choice functions' from
sets to objects: type ((e,t),e), has no logical items.

Digression. It may be-useful, here and elsewhere, to also admit product types
a‘b, whose meaning is fixed by the stipulation that

Dj.b = Dy x Dy,
For instance, we can then move back and forth, as convenience dictates, between
such types as (aj,(az,b)) and (aj-az,b). Moreover, we obtain new cases of
interest, such as (e, e-¢). The earlier permutations, and the corresponding notion
of invariance, are easily extended to this case. For instance, it may be checked that
the type (e, e-€) has just one invariant item, being the 'duplicator’

x b (x,x).
We shall use this particular observation below.

As a refinement of the above result, one might ask for a general counting
formula telling us, for each type a, how many invariant items it contains. For
several types, the answer is known (cf. van Benthem 1986b; in general, the
number will depend on the size of the individual base domain). No general result
is available, however, enumerating the phenomenon in all types.

Instead, we turn to some further issues concerning permutation invariance.

One is the location of the border-line with non-invariant items. Many
expressions are not strictly invariant, but they still only refer to some specific
structure on the universe, in the sense that they will be invariant for all
automorphisms, i.e., all permutations of individuals which also respect this
additional structure. For instance, as opposed to "all", the expression "all blonde"
is not permutation-invariant. (Suppose there are as many sailors as soldiers, so that
we can permute individuals by some ® which maps sailors onto soldiers. Yet, "all
blonde sailors are brave" might be true, whereas "all blonde soldiers are nt(brave)"
might still be false: the blonde soldiers could be located anywhere.) Nevertheless,
this complex determiner is invariant for permutations which have the additional
property of respecting blondeness (only): as may easily be seen. Thus, in a sense,
permutation invariance is only one extreme in a spectrum of invariances, involving
various kinds of automorphisms on the individual domain. In particular, there are
certain forms of automorphism invariance which still resemble logicality quite
closely (see Section S below).

On the other hand, one could also consider stronger notions of invariance
than the one with respect to arbitrary permutations. Permutations at least respect
distinctness among individuals: they are, so to speak, 'identity automorphisms'.
What about demanding invariance for arbitrary functions on individuals, whether
one-to-one or not? We have not adopted this, because many standard logical
constants would not survive this test: e.g., "no X are Y" does not imply that
"no F[X] are F[Y]" for arbitrary functions F on D..

There is another line of possible strengthening, however. For, in higher
types, there are many further kinds of permutation that could be considered, with
their corresponding notions of invariance. An example is found in van Benthem
1987c¢, which discusses dyadic quantification in natural language, i.e., quantifier
complexes operating directly on binary relations, rather than on unary properties.
The simplest relevant type here is ((e,(e,t)),t), as opposed to the original Fregan
((e,1),t). Examples of dyadic quantification are provided by iterated unary cases
such as "every boy R some girl", but also by more genuinely polyadic
constructions such as "every boy R some different girl". Now, thcse‘ various

'degrees' of polyadicity can be measured by accompanying forms of invariance for
smaller or larger classes of permutations on ordered pairs of individuals. Of
course, the earlier individual permutations induce permutations of pairs of
individuals. But, there are also many permutations of pairs which do not arise in
this way. And yet, there certainly are dyadic quantifiers which are also invariant
with respect to such larger classes of changes. For present purposes, it will suffice
to mention one example. So-called 'resumptive’ constructions in natural language
essentially express dyadic quantification over pairs, as in

"someone hates someone": Ixy-Hxy

"noone hates noone": —3xy-Hxy (1)
These particular dyadic quantifiers define predicates of binary relations which are
even invariant for all permutations of ordered pairs of individuals. It remains an
open question as yet, however, what stronger notions of permutation invariance
would be appropriate for arbitrary logical' items in the type of dyadic quantifiers.

Even so, the potential of the permutations / invariance aspect of logical
constants may have been sufficiently established by now.

2.2 Context Neutrality, and Other Uniformities

The invariances considered up till now take place within one type-theoretic
structure, with a fixed base domain of individuals. But, logical constants are also
indifferent to certain changes of such a context, or environment. For instance,
already the earlier account of permutation invariance would not change at all, if we
replaced permutations by arbitrary bijections between D, and some other base set.

Another type of neutrality may be observed with generalized quantifiers
again. In general, a quantifier may be viewed as assigning; to each universe D,
some binary relation among its unary predicates, such as inclusion ("all"), overlap
("some"), disjointness ("no"), etcetera. But in principle, this relation might depend
on the surrounding individual domain. For instance, there is a claimed reading for
the determiner "many" where "many XY" would express that the proportion of
Ys in X is higher than that of the Ys in the whole universe D.. In that sense,
“many" is indeed context-dependent. Nevertheless, for truly logical quantifiers,
one usually adopts the following principle of context-neutrality:

For all X,Y ¢ D, gD,

QX,Y)-in-D, if and only if Q(X,Y)-in-D,'.

The general intuition here is that a logical constant should only depend on the
‘individual content' of its arguments.

We can give a general formulation of this principle, to make it applicable to
all types. For technical reasons, however, this is more easily done in a relational
than in a functional Type Theory (see van Benthem & Doets 1983). In this set-up,
types are formed from one basic type e by (possibly iterated) formation of finite
sequences, with the central stipulation that

Dq,,....a;) = Da;X ...X Da,.

That is, (a,,...,ap) is the type of n-ary relations with arguments of the types
indicated. There are mutual translations with our earlier functional Type Theory
here. Let us merely observe that the empty sequence encodes the truth value type t,
so that, e.g., the relational type ((e),e,()) might correspond to the previous
functional type ((e,t),(e,(t,t))) (being the characteristic function of the
corresponding 3-place relation). Now, given two base sets D, C D', we can
define an obvious restriction of objects in the hierarchy built on D,' to those in the
hierarchy on De:

o XIDe= { X ,if xe D for individuals
undefined , otherwise x in D,

e RIDe={(ry,..tn) €R | ;1D =13, for relations R of
foreach i (1<i<n)} type (aj,...,ap).

[In a functional hierarchy, there would be no guarantee that restrictions of functions
remain total functions: but, with relations, this is not necessary.]

Now, we may demand that a logical constant be context-neutral in the sense
that its denotation in one type hierarchy based on some individual domain D,
always be equal to the restriction of its denotations in type hierarchies based on
larger individual domains.

This requirement does have some bite. For instance, it rules out an
expression like "everything”, which is crucially dependent on D.. But of course,
"every" as the binary inclusion relation between unary predicates does pass this
test. Another problematic case is negation. The value of "not X" is context-
dependent, in that it is a complement taken with respect to the current individual
domain. Note however, that the corresponding relation of type ((e),e), being
'y ¢ X', is in fact context-neutral.

Finally, there is a related phenomenon to be observed more generally in
natural language. Context Neutrality also expresses a certain locality: to evaluate a
logical item on certain arguments, it suffices to restrict attention to the smallest
universe containing all individuals occurring (hereditarily) 'in' those arguments.
Now, various constructions in natural language also carry a certain restriction to

10

specific subdomains. One well-known example is the phenomenon of
conservativity with generalized quantifiers:

QX,Y) if and only if Q(X, YNX).
I.e., the first argument sets the scene of evaluation for the second. This
phenomenon has a wider scope. Already C.S. Peirce observed how predicate logic
obeys the following 'Copying Rule' (provided some conditions are observed on
freedom and bondage of variables):

WO A YL e

we O A OAY L)
So, there are general mechanisms operative which restrict evaluation to certain
subdomains. In that sense, locality and context-neutrality for logical constants are
merely (extreme) instances of tendencies to be observed for all kinds of linguistic
expression.

Finally, even with permutation invariance and context-neutrality combined,
some very curious customers will pass the test. For instance, behaviour of
predicate operators might still be as erratic as this:

fX,Y)=X if IXI=6
Y Lif 1Y1=7
XnY , otherwise .

One might try to exclude such cases by means of stronger general postulates in the
above spirit. (Compare the use of "Restriction" in van Benthem 1983.)
Nevertheless, these attempts have not been overly succesful. No generally
reasonable notion of uniformity or 'smoothness' has emerged ruling out these
cases. What we shall do instead is pass on to the study of some special types of
condition, which may not be reasonable as general constraints on all logical
constants, but which certainly do determine some very natural classes among them.

3. FINE-STRUCTURE

There are various aspects to the behaviour of the standard logical constants
which should be brought out, if not as general desiderata on logicality, then at least
as a means of creating finer divisions among the logical constants themselves. The
examples selected here are largely derived from one particular area where this theme
has been developed in detail, namely that of determiners and quantifiers. But as we
shall see, there is always a possibility for type-theoretic generalization.

11

3.1 Monotonicity

The standard predicate-logical quantifiers are monotone, in the sense of being
unaffected by certain changes in their arguments. For instance, "every XY" is
right-upward monotone:

every XY, YC Y' imply every XY';
but left-downward:

every XY, X' X imply every X'Y.

In all, there are four types of monotonicity here, as displayed in the following table,
following the Square of Opposition:

levery T Inod

>

T some T T not every J«

The interest of this observation shows e.g., in van Benthem (1986b, chapter 1),
where it is proved that (modulo some further conditions) this double monotonicity
uniquely determines the standard quantifiers.

But, monotonicity is a much more general phenomenon in natural language,
which other kinds of expression can share to some degree. Notably, a non-
standard quantifier like "most" is still upward monotone inits right-hand argument:

most XY, YCY' imply most XY'.

(It lacks either kind of monotonicity in its left-hand argument, however.) But,
monotonicity also makes sense in other categories. E.g., a preposition like "with"
is monotone in the sense that, if you fall in love with an iron lady, and iron ladies
are ladies, then you fall in love with a lady.

The proper general formulation of the phenomenon again involves the earlier
'‘Boolean' t-structure in our Type Theory. First, here is a general notion of
inclusion, or implication, & on all types, defined via the following induction:

on D;,gis <

on D.,E is =

on Dgy), feg if, forall x € D,, f(x)=g(x).

In specific cases, such as the type (e,t), this comes out to just our intuitive
expectations (being set inclusion for (e,t)).

12

Now, a function f in type (a,b) may be called monotone if the following
'direct correlation' holds: ‘

for all x,y € D,, xy onlyif f(x)=1(y).

This generalizes the earlier 'upward' form of monotonicity. The 'downward'
variant would rather correspond to an ‘inverse correlation' (anti-tone):

for all x,y € Dy, x&y onlyif f(y)Ef(x).

For instance, now, an adjective like "blonde" is monotone:

if all X are Y, then blonde X are blonde Y,
whereas Boolean negation is anti-tone:

ifall X are Y, then non-Y are non-X.

Should all logical items be monotone or antitone? The problem is that this
would rule out many reasonable candidates. For instance, the quantifier one thing
(3!x) is not monotone, either way. (Even though it has some related substitutes:
see van Benthem 1984b.) Therefore, we do not commit ourselves to this general
requirement. ‘

Nevertheless, there is an interest to studying monotone logical items. And in
fact, even stronger notions may be formulated, inspired by the 'double
monotonicity' of the standard quantifiers. Recall that all types could be written in
the form

(a1,(az,...,(apy)...)) , with y some primitive type.

Letus call an item f in this type fotally monotone if
XIE Y1, o s Xa Eya imply £(x)...(x) S £(y1)...(yn).
And similar notions are possible with combinations of monotone and antitone
behaviour in all arguments. It would be of interest to classify all permutation-
- invariant totally monotone items in all types, thus generalizing the earlier
characterization of the standard quantifiers. By way of example, the special case of
binary operations on predicates may be taken. Here, the totally monotone items are

essentially the expected ones:
fiX,Y) =X
f2(X,Y) =Y
f1(X,)Y) =XnY
f4(X,Y) =XUY.

Remark. The preceding discussion of monotonicity has been ambivalent between
two points of view. On the one hand, language-independent items can be
monotone, according to the definition presented. On the other hand, linguistic
expressions can occur monotonely in other expressions, in an obvious derived

13

sense, via the corresponding denotations. There are some questions here, as to
syntactic criteria enabling us to recognize when a given occurrence is monotone
(with respect to all interpretations.) This is actually a more general issue. Even
with an adequate set of semantic criteria for logicality, it might still be a difficult,
perhaps even an undecidable matter to show that any given linguistic expression
satisfies them. An example will be found in the Appendix at the end of this Section.

Boolean Homomorphisms

There is an interest to even strengthening monotonicity towards preservation
of further Boolean structure. Notably, Keenan & Faltz 1985 stress the importance
of Boolean homomorphisms, respecting the natural Boolean structure which is
present on all domains corresponding to the earlier Boolean types (ending in t):

f(xMy) = fCONE(y)

f(xlty) = fOUE(y)

f(—x) =-f(x).

[Monotonicity is then a derived property.] Examples of homomorphic behaviour
may be found, e.g., with proper names:

Judith (jokes and juggles) <> (Judith jokes) and (Judith juggles),

Judith (jokes or juggles) <> (Judith jokes) or (Judith juggles),

Judith (does not jive) > not (Judith jives).

But, it occurs also e. g. with prepositions, and other types of linguistic expression.

In particular, there are some interesting logical homomorphisms. '

Here is one example. The earlier relation reducer "self" is a homomorphism in its
category, witness such equivalences as

(hate and despise) oneself <> (hate oneself) and (despise oneself),

(not trust) oneself ¢ not (trust oneself).

In fact, this observation explains the special position of this item:

Proposition: Reflexivization is the only permutation-invariant
Boolean homomorphism in type ((e,(e,t)).(e,t)).

Proof: We assume an individual domain with a sufficiently large number of
element to avoid trivialities. The argument presented here shows a typical form of
determining the constraints induced by these conditions. So, let f be any
permutation-invariant Boolean homomorphism in type ((e,(e,0)),(e,0).

14

1. As homomorphisms preserve disjunction, the following reduction is possible,
for any relation R,

f(R) = U(x,y)eR f({(x)).
2. Now, for these singleton relations, there are two cases: being I 'x #y' and II

'x =y'. In both of them, the value of f is severely restricted by permutation

invariance. In fact, the possibilities are as follows:
L @, {x}, {y}, {xy}, De-{xy}, De-{x}, De-{y}, De
. @, (x), De- {x}, De.
3. Homomorphisms have another preservation property too: they preserve

disjointness of arguments. Together with permutation invariance, this already rules
out all possibilities for I except @.

Example: If f({x,y)}) = {x}, then, by a suitable permutation leaving x fixed and
sending y tosome y'#y, y' #Xx, it also holds that f({(x,y")}) = {x}: whereas
{(x,y)} and {(x,y)} are disjoint relations. If f({fk,y)}) = (x,y}, then, by a
suitable permutation, f({(y,x)}) = {x,y} too: again contradicting preservation of
disjointness. Etcetera. By similar arguments, one can rule out the third and fourth
possibilities in case IL.

4. Finally, since homomorphisms cannot give value 0 everywhere, the value @
cannot be chosen in Case II. So we have value @ in Case I and value {x} in
Case II. But, the resulting formula is precisely the description of reflexivization.
‘ _

On the other hand, logical homomorphisms are absent in other important
types. For instance, they are not found in the determiner type ((e,t),((e,t),t)): no
plausible quantifiers are Boolean homomorphisms.

The reason behind both observations may be found in van Benthem (1986b,
chapter 3), which presents the following reduction:

Boolean homomorphisms in type ((a,t),(b,t)) correspond one-to-one in a

natural fashion with arbitrary functions in the lower type (b,a).

In fact, given some function f in type (b,a), the corresponding homomorphism F
in ((a,t),(b,t)) is described by the formula

KX(a'l)°XZb'3ya€ x+ f(z)=Y,.

Now, some calculation will show that, in this correspondence F will be
permutation-invariant if and only if f is. So, to find logical homomorphisms in
((e,(e,)),(e,t)), or equivalently, in ((e-e,t),(e,t)), we have to find permutation-
invariant functions in type (e,e-e). And, as was observed before, of those, there

15

was only one, being the ‘duplicator’: which indeed induces reflexivization via the
above formula. Likewise, homomorphic logical determiners would have to
correspond to permutation-invariant (choice) functions in type ((e,t),e). But, as we
said before, of the latter, there are none.

Continuity

One feature of homomorphisms in fact suggests a notion of wider
applicability. Call a function continuous if it respects arbmary unions / disjunctions:

f(Lix;) = LAif(x;).

As in the proof of the preceding Proposition, this expresses a certain locality, or
‘pointwise’ calculation of f: it is enough to collect values computed at singleton
arguments.

Continuity, while still stronger than Monotonicity, is valid for quite a few
important logical constants. For instance, together with permutation invariance, it
is used in van Benthem 19864, to analyze the earlier-mentioned Quine operations
reducing binary to unary predicates. Essentially, in addition to the earlier-mentioned
reflexivization, one obtains projection:

proji(R) = (x|3y- (x,y)eR) (= domain (R))

_ projaR) = (x|3y- (y.x)eR} (=range R)) .
To obtain the broader case of non-reducing operations on binary relations, one
needs a result from van Benthem (1986b, p.22): ‘

The continuous permutation-invariant items in type ((c,(e,t)) (e,(e,t))) are

precisely those definable in the following format:

AR (e,(e.0))'AXe'Aye'Tue-Ive<Boolean combination of

identities in x,y,u,v>
This includes such prominent examples as Identity, Converse, or Diagonal.

Continuity may also be used to bring some order into the possibilities for
logical operations in a Relational Calculus, being an algebraic counterpart to
predicate logic. (See Section 5 below for more on this.)

3.2 Inverse Logic

In certain ways, the preceding discussion has also introduced a viewpoint
whereby logical constants are approached through their role in validating patterns of

16

inference. After all, the various notions having to do with interaction with general
inclusion & may be thought of as inference patterns, involving the particular logical

"noon

constant under consideration as well as Boolean "and", "or", "not", etcetera.

In this light, for instance, the earlier characterization of reflexivization may be
viewed as a piece of 'inverse logic'. Usually, one starts from a logical item, and
determines the inferences validated by it. Here, conversely, we gave the
inferences, and found that only one logical constant in type ((e,(e,t),(e,t)) would
validate the set of patterns

fXNY) & fX)NL(Y)

f(XUY) & fX)Uf(Y)

f-X) o (X).

Actually, these questions have been considered more in detail for the special
case of generalized quantifiers (see van Benthem 1984b). Here, one can study
various sets of syllogistic patterns, and see if they determine some particular logical
constant. Several outcomes are relevant for our general picture:

* the basic patterns here are not Boolean but purely algebraic, as in the forms

XY (Conversion) XY QYZ (Transitivity)
YX X7

¢ outcomes may indeed be unique, as in the result that Conversion and
Reflexivity characterize essentially the quantifier "some" (modulo some additional
assumptions).

* But, without any further limiting assumptions, inferences may also

underdetermine logical constants, in that different candidates would qualify. (In
terms of pure syllogisms, for instance, "at least two" validates the same patterns as
"some".) In fact, there is also a positive side to such under-determination:
different 'solutions’ to a set of inferential patterns may exhibit a useful duality. The
latter happens, for instance, with the algebraic inferences governing the Boolean
operations on sets (cf. van Benthem 1986a): conjunction and disjunction cannot be
told apart.

. Finally, there are also prima facie plausible inferential patterns which admit of
no logical realization. For instance, there are no non-trivial permutation-invariant

quantifiers validating the syllogistic pattern of Circularity:
QXY QYZ
QZX
Inverse logic is also possible in other types, however. One instance is

provided by the above reference to operations on predicates. We shall return to

such further examples in Section 5 below.

17

3.3 Computability

Yet another perspective upon logical constants is provided, not by their
semantic meaning, or their syntactic deductive power, but by the complexity of the
computations needed to establish their truth. For instance, would a certain
simplicity be one of their distinguishing traits?

Again, there may be no general argument for this view, but it can still serve as
an interesting principle of classification. For instance, there is a natural hierarchy of
* computability for generalized quantifiers (see van Benthem (1986b, chapter 8), on
'semantic automata’). Such quantifiers may be computed by automata which
survey all individuals in the domain, marked for (non-)membership of the relevant
two predicates to which the quantifier applies, and then, after this inspection,
produce a truth value YES or NO. In this way, the well-known Automata
Hierarchy comes into play. Notably, the lowest level of finite state machines turns
out to suffice for computing all first-order quantifiers definable in standard predicate
logic. Non-standard higher-order quantifiers, such as "most", will in general
require computation by means of push-down store automata. Thus, the distinction
between more traditional and other logical constants also turns out to have a
computational basis.

In line with the general spirit of this paper, the question becomes if such a
computational perspective can be generalized to all semantic types. And indeed,
there are unmistakable computational aspects to other types of linguistic expression.
For instance, assigning adjectives like "tall" to individuals seems to presuppose
systematic location in some comparative order of being-taller-than. And a modifier
like "very" again prescribes an almost numerical 'intensification’ in order to assign
a predicate like ';very tall". (See van Benthem 1987d for some broader
development of the automata perspective in other types). Nevertheless, noo totally
convincing generalization has emerged yet. Whatever the precise outcome, we
would expect the basic logical constants to occur at some moderate computational
level.

Appendix: Decidability of Semantic Properties

In general, questions about the fit between linguistic expressions and certain
semantical properties need not be decidable. This may be illustrated already for the

18

simple case of standard predicate logic itself, with respect to our notion of
invariance from Section 1. We first give some background.

Every formula of predicate logic ¢ = ¢(P) may be viewed as expressing a

condition on the predicates P occurring in it. Moreover, this condition is
permutation-invariant, as may be seen by a simple induction on the construction of
¢. Suppose that we keep those predicates fixed, however, then ¢ will in general
only be invariant for those permutations which are P -automorphisms.
Example. AP-AR-Vx(Px—3y(RxyAPy)) defines a permutation-invariant relation
between unary P and binary R. But, the formula AR-Vx(Px—3y(RxyAPy))
describes a property of binary relations R which depends on the denotation of P
in any model under consideration. Now, formulas can also contain vocabulary on
which they do not really depend, as in the further example of

AR-Vx3y(RxyA(Pyv—Py)).

The latter formula is in fact invariant for arbitrary permutations of individuals,
whether they respect P or not. Thus, it makes sense to ask, for any predicate-
logical formula, which part of its vocabulary it really depends on — or semantically,
which degree of automorphism invariance it exhibits.

Thus, the basic question becomes what is the complexity of determining, for
any predicate-logical formula ¢(A,B), whether it is invariant for A-
automorphisms already. First, there are 'local' and 'global' versions of the
problem. Locally, a model is given, and the question is whether ¢ is invariant for
A-automorphisms in that model. With finite base domains, an effective inspection
will solve this. With infinite base domains, the problem may already be hard.
Often, a more natural version of the problem is a global one however:

_ Whenis ¢ A-invariant on all models?

First, there is an upper bound on complexity here. By Svenonius' Theorem,
global A-invariance for ¢ is equivalent to explicit definability of the remaining B
up to disjunction. Le., there exist formulas yj ,...,\, in the vocabulary A only
such that

OEVXBX & y) V... v VX(BX &).

The complexity of the latter notion is clearly E? (recursively enumerable),
and hence so is that of A-invariance.

To establish a lower bound, we reduce the following undecidable notion
effectively to a question of invariance:

o holds in all models of size greater than 1
(for predicate-logical sentences o).

19

Proposition: Let o be any predicate-logical formula, in vocabulary L.
Let Q be some unary predicate letter not occurring in L.
Then the following two assertions are equivalent:
1. o holds in all models with more than one individual,
2. Vx(o — Qx) is invariant with respect to permutations

(i.e., = -automorphisms).

Proof: From 1to2: Let D be any model for Vx(a—Qx).

Casel: o holdsin D.
Then so does VxQx. But then, any permutation will leave a model for VxQx,
and hence for Vx(0—Qx).

Case 2: o failsin D.
Then there is only one individual. So, the only permutation is the identity, and
invariance is automatical.

From 2 to 1: By Svenonius' Theorem, the assumed invariance implies the
existence of some finite number of pure identity-formulas y,...,\fp such that

Vx(0—Qx) E Vx(Qx > yi(X)) V ... v Vx(Qx € yn(x)).
Hence, in particular, —o implies the latter disjunction. Now, pure identity-
formulas, being permutation-invariant, can only define either the empty set or the
whole universe, in any model. Therefore, we must have

-0 k= VxQx v Vx—Qx.
Since Q does not occur in —a, this rules out the possibility of —a's having
models with more than one individual: otherwise Q might be chosen so as falsity
both disjuncts while leaving —a. true. Thus, condition 1 obtains for o

It may be noted, to conclude, that similar tricks will establish non-decidability
for a wide range of other natural semantic notions, including the monotonicity of
Section 3. On the other hand, in practice, we can usually make do with a variety of
explicit syntactic formats guaranteeing the presence of the desired semantic
behaviour. This will be seen, e.g., in the discussion of 'positive occurrences' and
monotonicity in Section 4.

20

4. DEFINABILITY

There is a standard logical language used for interpretation in the type-
theoretic models employed up till now. Its major, well-known syntactic operations
are application, lambda abstraction (and perhaps identity). One natural question is
how far this language can serve as a uniform medium for defining logical constants.
We shall look into this matter in Section 4.1.

But also, there is a more 'auxiliary’ use of this language. As has been
observed repeatedly, it seems as if 'the same' logical constant can occur in different
guises. This polymorphism of, e.g., Boolean operators, but also quantifiers or
identity, may be described systematically using such a type-theoretic language.
Section 4.2 contains an elaboration of this second theme.

4.1 Type-Theoretic Definitions

Let us consider a language with variables for each type a, and the following
- rules of term construction for a typed lambda calculus:

+ if T isatermoftype (a,b) and G one of type a,
then 1(0) is a term of type b.
o if T isatermoftype b and x a variable of type a,
then Ax-t is a term of type (a,b).
Sometimes we shall also use a third rule, to obtain a full theory of types:
¢ if 1,0 are terms of the same type,
then T=0 isatermof type t.
~ All these terms have standard interpretations in our earlier type hierarchies.

One immediate connection between terms in this language and logical
constants is the following:

all closed terms in the theory of types define

permutation-invariant objects in their type.
This follows from an observation about arbitrary terms, which is easily proved by
induction:

21

Proposition: For every term T with the free variables xy,...,xp, every permutation

7 (lifted to higher types as usual), and every interpretation function [[]] in a

X1...X
hierarchy of type domains, ® ([[ﬂ]g:;:) =[]l ﬂ(dll) nn(d)
‘.o “ee n

The converse does not hold generally; as e.g. infinite models will have uncountably
many permutation invariants, outrunning the countable supply of type-theoretic
terms. Nevertheless, the correspondence is one-to-one in an important special case
(see van Benthem 1987b):

Proposition: In a type hierarchy starting from a finite domain of individuals,
every permutation invariant item in any type is definable by some closed

type-theoretic term of that type.

Thus, in a sense, studying further restrictions on logicality may be
translated into searching for reasonable fragments of the full type-theoretic
language.

One obvious fragment is that of the typed lambda calculus, which has much
independent interest. This language does not suffice by itself for defining all
permutation invariants. Even so, it has a remarkable power of definition. One
illustration concerns functional completeness of Boolean operators. As all
beginners learn, the standard logical constants "not", "and", "or" suffice for
defining all truth-functional connectives. In our type-theoretic perspective, this
means that all ‘first-order' pure t-types have their items defined using only three
particular constants from the types (t,t) and (t,(t,t)). But what about higher
Boolean types, such as ((t,t),t) (‘properties of unary connectives'), etcetera?
Perhaps surprisingly, the above few constants still suffice, in the following sense
(van Benthem 1987a): |

Proposition: Every item in the pure t-hierarchy is definable by some closed term
of the typed lambda calculus involving only the constants —, A (V).

Moreover, it is not hard to extend this result to cover the case of an
arbitrary finite domain D, ('many truth values’), with respect to some suitably
enlarged set of basic connectives.

22

One interesting interpretation of this result for logical constants is the
following. We only have to supply a few hard-core logical items at an elementary
level: the lambda calculus machinery will take care of the rest.

Of course, within this broad general scheme, one can also consider much
more detailed questions of functional completeness. For instance, it has often been
observed that there is no predicate-logical analogue of the above functional
completeness result for Boolean connectives. In which sense could one say that the
standard first-order quantifiers are 'expressively complete'? Here, already our
earlier results provide an answer: the standard first-order formalism is certainly
expressively complete for doubly monotone quantification (and indeed, for some
wider forms too: see van Benthem 1984b).

Next, we consider the effect of another general desideratum on logical
constants, viz. the context-neutrality of Section 1.2. Here, it turned out convenient
to shift to a relational perspective. Moreover, it will also be useful to change over
to another type-theoretic language, having the usual quantifiers 3,V (over all
types). [The lambda-operator then becomes redundant, in a sense.] We shall say
that a t-type formula ¢ = ¢(x,) defines an item f of type a in some model if f is
the only object satisfying the statement ¢ .

When is such a definition ¢ context-neutral, in the sense of the following
relativization?

Let ¢ define f in a model constructed on D,

and f* in the model constructed on D.* 2 D,.

Then f*IDe =f.

The following gives at least a sufficient condition:

Proposition: Let ¢ define a unique object in every model. Let ¢ have every
quantifier occurring relativized, i.e., in the form 3x <y, Vx <y
(where 'x <y' stands for 'x is a member of some tuple in y").

Then ¢ defines a context-neutral denotation.

Example: The universal quantifier is defined by the restricted formula
Vy<x Vz<x(x(y,z) <> Vu<y : u<z).

23

The above condition is not necessary, however. In fact, it only produces
predicative examples, referring to 'subobjects’ of the argument x. In order to also
obtain context-neutral items like the quantifier "most", one has to allow
impredicative definitions ¢ too, referring to higher types; provided that they stay
within the sub-hierarchy upward generated by the (transitive € -closure of the)
argument x. [Incidentally, this predicative / impredicative distinction itself
provides another suggestive classification of logical constants.]

We conclude with a question (cf. Smirnova 1986). The extensive use of
type-theoretical languages itself raises a new issue of logicality. What is the logical
status of transcendental operations, like application, lambda abstraction (or definite
description, etcetera) themselves?

4.2 Changing Types

Some logical constants seem to cross boundaries between types, living in
different guises. For instance, we saw in Section 3 how "self" in type
((e,(e,1)),(e,t)) could be derived from duplication in type (e,e-e). Likewise, the
basic identity between individuals in type (e,(e,t)), can also occur in type
(((e.1),0),(e,1)), operating on complex noun phrases (as in "be an man"). Again,
there occurs a ‘canonical' transfer of meaning, as was obseved already by
Montague: '

Ax (e Ayex(Aze BE (e (e.))(2)(y))

('y isaman' if 'a man' holds for 'being y").

And finally, Boolean operations in higher types cn be derives from their base
meaning in the truth tables. A case in point is the metamorphosis from sentence
negation to predicate negation:

)vx(e.t)' lYe'NOT(t.t)(x(y).

There is a system to such changes, as will be seen now.

In fact, type changing is a general phenomenon in natural language, which
shows many systematic traits (see van Benthem (1986b, chapter 7), 1987b). We
shall outline a few points, in as far as necessary for further application to logical
constants.

Generally speaking, expressions occurring in one type a can also move to

another type b, provided that the latter type is derivable from the former in a
logical calculus of implication (and perhaps conjunction). The basic analogy

24

operative here is one discovered in the fifties: functional types (a,b) behave very
much like implications a—b. Then, transitions as mentioned above correspond to

derivations of valid consequences in implicational logic.

Example: [Derivations are displayed in Natural Deduction Trees]
© (G = (e en):

1 2
e (et)

t (t,t)
—t _ withdraw 1

_n withdraw 2
((e,0),(et)

o (e,(e.t) = (((e,t),1),(e,t)) is quite analogous: .

)
(e) ((est),n)
—t _ withdraw 1

(e,)t) .
@00, Gy “ithdraw2

o (ece) = ((e,(e,)), (e,t)) becomes analogous again,

if we rewrite to (e,e-e) = ((e-e,t),(e,t)).

Thus, the derivational analysis shows a common pattern to all three previous
examples, being a form of Transitivity:

xy) = ((¥,2).(x,2).

In general, again, admissible type changes in natural language correspond to
valid derivations in a constructive implicational logic, given by the usual natural
deduction rules of Modus Ponens and Conditionalization. Particularly frequent are,
in addition to the above inference of Transitivity (often called 'Geach's Rule' in this
context), so-called rules of Raising (also called 'Montague's Rule'):

x = ((x,y).y). |
For instance, the latter pattern is exhibited by proper names (type e€) which start
behaving like complex noun phrases, or semantically as 'bundles of properties":

e = ((e,n),0).

25

Moreover, these derivations are not purely syntactic. For, they correspond
one-to-one with terms from the typed lambda caluclus, explaining how denotations
in the original type are changed into denotations in the new type. Here is an
illustration for Boolean negation:

Example:
proof tree lambda terms
2
e @Y mp Te Ty
t &0 Mp yx) NOTwy
e NOT(y(x))
Tt e A
) C Axs NOT (y(x))
((e’t))(th)) chocO‘S‘ cavee
- A ey A NOT(y(x))

Note how application encodes Modus Ponens, and lambda abstraction
Conditionalization.

Thus, we see how logical constants can move from one category to another,
provided that the corresponding change of meaning can be expressed using some
‘wrappings' of typed lambda calculus.

Indeed, any object can undergo such type changes, as was observed above.
And in the process, it may become 'embellished’, acquiring some logical traits it did
not have before. (For instance, plain individuals in type e become Boolean
homomorphisms in type ((e,t),t) : cf. Keenan & Faltz 1985).

The type changing perspective raises many new questions in connection with
the analysis of logicality in Sections 1 and 2. Suppose that some logical item in a
category has the properties discussed earlier. Will it retain them after its change of
type / meaning? In more technical logical terms, which of the earlier semantic
properties are preserved (or acquired) under type change?

To begin with, we have seen already that permutation invariance is indeed
preserved. It follows directly from the earlier results that, if f is invariant , any
term 1(f) will also define a permutation-invariant item. (We shall not inquire here
into a possible converse of this, and later results.)

26

Matters are already more complex with monotonicity. Some type changes
preserve it: the earlier Geach Rule is an example. Others do not: the Montague
Rule is a counterexample. What is required in general for such preservation is that
the parameter x, for the item being changed occur only positively in the defining
term. (For a fuller discussion, see van Benthem 1987a.)

And finally, little is known yet concerning preservation or creation of such
properties as continuity or being a Boolean homomorphism.

What this analysis stresses, in any case, is a perhaps unexpected aspect of
logicality: it can be gained or lost to some extent in the process of type change.

Thus, our world is much more dynamic than may have been apparent at the outset.

Remark: The preceding account does not exhaust the story of polymorphism in
natural language. On the one hand, the constructive logic system may be too rich,
in that admissible type changes (mostly) fall within weaker calculi, and associated
fragments of the typed lambda calculus. For instance, there is an important
subsystem, due to Lambek, which may be closer to the mark, and which also
possesses a logical theory with some nicer features than the full lambda calculus.
(See van Benthem (1986, chapter 7) and 1987a,b: on the topic of preserving
monotonicity in this setting.)

On the other hand, the type changes studied up until now may be too poor, in
that certain important phenomena are not represented. For instance, the system as it
stands does not account for the similarity of, say, the existential quantifiers in

3xeY(e,0)(X) (type ((e,1).1))

(et Y((e,t))(X) (type (((e.),0).1))
A proper treatment here may require genuine variable polymorphism, assigning the
following type to quantifiers:

((x,1),1).
Compare the discussion of generalized permutation invariance in Section 1 for a
possible semantic background to this move.

Appendix: Lambda Definability

From the point of view of the ‘receiving type', the above raises the question
how many items in it can be defined using parameters from other ones, via typed

27

lambda calculus (or full type theory). We consider some examples here, to show
the variety of semantic questions raised by the present perspective.

For instance, which items in ((e,t),t) are lambda-definable using parameters
in the individual domain D, ? This question reduces to surveying terms T in the
typed lambda calculus of type ((e,t),t), in which only free variables of type e
occur. In such an investigation, we may always restrict attention to terms in lambda
normal form, containing no more ‘'redexes’ of the form (Ax-a)(B). Also, in
normal forms, the types of all variables must be subtypes of the resulting type or of
types of the parameters. With these restrictions, we see that the only candidates
which qualify are the earlier Montague liftings:

7‘rx(e,t)' x(Ye)

The situation can be much more complex, however. For instance, van
Benthem 1987c¢ has a discussion of the polyadic quantifiers in type ((e,(e,1)),t),
mentioned in Section 1. As was observed before, one case of such quantification
arises by merely iterating two unary quantifiers (in combination with a transitive
verb):

Q TV Q.

On the analysis of the preceding Section, the resulting meaning (corresponding to a
valid implicational derivation again) will be

AX (e, e.) QL (e.))AYer Q2 (e.ty.y (X (¥))).

But, what are all the polyadic quantifiers definable from two unary ones? As it
turns out, there is only a finite number of candidates: the remaining polyadics must
fend for themselves.

We add one illustration here, concerning the central type ((e,t),((e,t),t)) of
determiners. As was observed before, at least homomorphic determiners could be
derived from objects in type ((e,t),€). And in fact, there is a valid Geach transition

of the form ((e,t),e) = ((e,1),((e,1).1)). So, there is a general rule for defining
determiners from choice functions

AX(e.) MY ety Y (U((e,0),e) (X)),
according to the earlier prescription. (This formula is reminiscent of the use of
Hilbert's e-symbol: Ax-Ay-y('e(x)').)

We can compare this outcome with the representation formula presented in
Section 3.1. The latter would work out here to

AX e,y Ay (e,t) TZe€ X U((e,t),e)(¥)=2,
or equivalently,

28

AX(et) MY ety X (U((e,t).e)(¥))-

Thus, again, we see that there are different possibilities.

Instead of enumerating all possible lambda-derivations of determiners from
choice functions, we consider a more general sort of question. Given a type, we
may be interested in all those of its items which are lambda-definable from
parameters in its proper subtypes. In general, many things can happen here: there
may be many or few of those. For instance, one function x in (e,e) generates
infinitely many others via its successive powers under composition. On the other
hand, the type structure may be such that no genuine ‘cycles' appear. This is in fact
the case with determiners, as we shall see.

In this case, the relevant subtypes are as follows:

e, t (et) and ((e,t)0).

[Incidentally, on an alternative analysis, we would have ((e,t)-(e,t),t), without the
‘higher-order' subtype ((e,t),t).] Now, we can describe possible lambda normal
forms for determiners with parameters from these types using a kind of context-free
grammar, having symbols (at most) X,, X,*, C,, V, for each of the relevant types
a. Here, V, stands for a variable of type a, C, for a constant (parameter), X
for any term of type a, X,* for such a term which does not start with a lambda.
The point of this division will become clear from the rules for terms in normal form
to be presented now:

X. = X' , al a
X = C, , all a~
X' =V, ,al a

Next, rules for application or lambda abstraction depend on the actual types prescnt
(recall the earlier-mentioned restrictions on normal forms!)

Xenieny = AVienXenn

X((enn = AV(eyX:

X = X(e,t)‘(xe)

X, = Xen.n Xey)
Xee.t) = AV X,

The description of possible readings is much facilitated, however, because we can
make this grammar regular. This may be visualized in the following finite state
machine for producing terms:

[Here Dy’ stands for C,, or V, where applicable.]

29

o De
Cienrn \

AV, o\’
De,ty

4

This scheme produces determiner denotations of forms such as the following:

Lo AX(eyC((en)
2. AX(t)AYen'T, AX(e)AY(ey L [in fact, this may be viewed
as a subcase of 1]
30 Ax(en) MYy x(Ce)y AX(e,tyAY(e.t)yC((e.n.n)(X)
4. Ax(etyhY (e)C(en).)(AZe C'((e.t),ny(Auex(2)))
Especially, the latter kind is ‘iterative’, in a modest way.

Nevertheless, it may be shown that all these forms are equivalent, in any
model, to only a finite number of cases. We shall merely provide some evidence
for this claim, by showing how one particular longer iteration may be reduced
uniformly:

AX (e MY ety C((et).y (A ZeC' ((e.ty,0)(AUeC" (e,0),0)(Y (2))))-

The idea is to consider the crucial binding at the end (if there is one) and move it
forward, using the fact that closed complex definitions for items in some relevant
parameter type may be replaced by a single constant for a parameter of that type:

+ replace the subterm beginning with Az, by

Az [y(z) A ¢'Qu-c"(T)] v [—y(2) A ¢'(u-c"(L))],

and then by

Aze[y(2) Acd v [—y(2) A c'd.

This again reduces to one of

Azec,, Az'y(z) or Az-—y(z).

* but then, we can reduce the whole term still further, to one of the forms

AX ey AY(e.) €t OF AX(en)AY (enty Ctent).n)(¥)s

which both reduce to XX(e.t)'C((e't)'t),

In fact, the general result is this: terms of the first three kinds always suffice.

30

Of the general questions suggested by this example, we mention only a few:
* When is the receiving type not filled by its items definable from lower ones?
[Note that this was indeed the case with determiners: since none of the above
terms can define a genuine interaction of the initial x and y arguments.]
Can one prove general Hierarchy Theorems to such an effect ?
* When can a finite set of parameters only define a finite set of items in some
higher type, even allowing all possible lambda terms for this purpose ?

S. EXTENSIONS

The treatment so far may have given the impression that the type-theoretic
analysis of logicality is restricted to handling extensional items in an {e,t}-based
framework. This is far from being the truth, however. There is no problem
whatsoever in adding further primitive types; in particular, a type s for possible
worlds or situations. In this final Section, we shall survey some illustrations of
how the earlier themes re-emerge in intensional settings.

5.1 Intensional Logic

The logical constants of traditional intensional logic exhibit a natural type
structure, when viewed in the pioper light. Thus, with propositions identified as
usual with functions from possible worlds to truth values (i.e, in type (s,t)), modal
operators have type ((s,1),(s,t)), while conditionals will have the binary type
((5,0,((s,1),(s,1))).

It is quite feasible to subject such types to denotational analysis, much as we
did in previous Sections. In fact, there are strong formal analogies between the
case of {e,t} and ({s,t} - as might be expected. There are also differences,
however, between intensional operators and the earlier logical constants. For
instance, the permutation-invariant items in the above types will be just the Boolean
operations, as was established in Section 2. And since Section 4 we know that
these are not 'genuine’ inhabitants of ((s,t),(s,t)) (etcetera), but rather transmuted
versions of items in the simpler, s-less types (t,t) and (t,(t,t)). So, genuine
intensional operators cannot be permutation-invariant. In the terms of Section 1,
they have to be sensitive to some further structure on the Ds-domain (being
invariant only with respect to automorphisms of that structure). But this is
reasonable, of course, reflecting precisely the usual approaches in Intensional

31

Logic, which assume some structure like "accessibility" between poss.iblc worlds or
"extension" among situations. Of course, the systematic question then becomes
how to motivate (a minimum of) such additional structure independently.

More detailed studies of the above genesis of intensional operators may be
found in van Benthem 1984a, 1985a. Here, it may suffice to remark that all earlier
concerns of Monotonicity, Boolean structure, or Type change still make sense in
this setting. For instance, we can also classify possible modal operators or
conditionals by their patterns of inference. A particularly concrete example of all
this occurs with temporal operators, where D; represents points in time carrying
an obvious ordering of temporal precedence. (Cf. van Benthem 1986¢.) Tenses and
temporal adverbs may be viewed as operators on propositions here which are
invariant for automorphisms of the temporal order. For instance, the basic
Priorean tenses on the real numbers (viewed as a time axis) are exactly those <-
automorphism-invariant ones which are continuous in the sense of Section 3.
Relaxing this restriction to mere monotonicity will then bring in the other tenses
studied in the literature.

Of course, the presence of additional structure will give many of the earlier
topics a new flavour. For instance, what is invariant for temporal automorphisms
may vary considerably from one picture of Time to another, since different
orderings may have quite different sets of automorphisms. Changing from the reals
to the integers, therefore, already affects the class of tenses in the above-mentioned
result, because the latter structure is so much poorer in automorphisms. (As a
consequence, many more operators qualify as 'tenses’ on the integers, including
such items as "yesterday" or "to-morrrow".) Another interesting new aspect is the
possible action of semantic automata on time lines (cf. Lbner 1987).

5.2 Dynamic Logic

A similar extension is possible to currently popular 'dynamic' logics,
originally developed in the semantics of programming languages, but now also
serving as models for the more dynamic, sequential aspects of interpreting natural
language.

The basic domain D, will now represent states of some computer, or
knowledge states of a person. Propositions may then be viewed as state changers,
(in the simplest case) adding information to obtain a new state from the current one.
This will give them the type (s,s), when viewed as functions, or (s,(s,t)), when
merely viewed as relations (‘'many-valued functions'). Logical constants will now

32

be the basic operations combining such functions or relations into complex ones.
Obvious examples are the analogues of the earlier Booleans, but also typically
‘dynamic’ operators, such as sequential composition.

One obvious question here is what would be a reasonable choice of basic
logical items, given the broader options available now. What one finds in practice
is often some variant of the operations in the usual Relational Calculus on binary
relations. Is there some more basic justification for this ? In any case, our earlier
notions can be brought to be bear. As is easily checked, all operations in the
Relational Calculus are permutation-invariant (with respect to permutations of Dj,
that is) precisely in the earlier sense, and also continuous. And the set of all
possibilities within this class can be enumerated just as in Section 3.1, using a
suitable 'lambda schema'. We forego spelling out all technical details here - but the
general outcome is that the basic items are indeed those found in the usual literature,
witness the following illustration.

Example: Here are a few outcomes of simple denotational analysis in this setting,
with programs considered as transition relations between states,
that is, in type (s,(s,t)).
(1) Logical continuous binary operations on programs must have the form
AR.AS.Axy.3zu.Rzu A Ivw.Svw A
< some Boolean condition on identities in x,y,z,u,v,w >.
Typical cases are as follows:

Union: '(x=z A y=u) v (Xx=v A y=w)'

Intersection: 'x=z=v A y=u=w'

Composition: 'x=z A u=v A w=y'

(2) Some operators take ordinary propositions, in type (s,t), to more program-like
counterparts, in type (s,(s,t)). One example of such a dynamic propositional mode
is the ordinary test operator ? . Its definition again satisfies the relevant schema for
logical continuity:

AP y-Axy.3u.(Pu A y=x=u).

Stronger requirements on preservation of propositional structure will lead to a
collapse in options here. For instance, logical homomorphisms in this type

((s,1), (5,(s,))) must correspond with logical functions in the type (s.s,s), by the
analysis given in Section 3.1. But, of the latter, there are only two, namely left- and
right-projection, generating only the following marginal cases

APAxyPx and AP.Axy.Py .

(3) Eventually, as in Section 5.1, this setting too requires contemplation of
additional primitive structure between states - such as 'growth of informational

33

content'. Then, a more refined analysis of the preceding operations becomes
possible, in particular, one allowing for more interesting dynamic modes (see van
Benthem 1988).

Another topic of some interest here is the matter of inverse logic. In how far
are particular logical operations in the above characterized by their algebraic
inference patterns ? [For unary operators, such as converse, one has to think now
of properties such as the following:

FFR)=R or FF(R)=FR).

For binary operators, one has the usual commutativity, associativity, as well as
several 'interaction principles'; as exemplified by

®; 8)"=(S" R").]

Is there a unique 'solution' in this case - or ar there some interesting dualities still to
be discovered ?

It should be added that the full picture may be richer yet. Some propositions
in natural language may be used to change a state, others rather serve to fest a state
for some given property. And such testing of course is also essential in
programming languages (compare the control instruction IF...THEN...ELSE...).
Then, our type structure will also involve propositions in type (s,t) after all. For
some type-theoretic exploration of this richer structure, see van Benthem 1987b,
1988.

6. EPILOGUE

The stated purpose of this paper has been to analyse various strands in the
intuitive notion of logicality, and then to show these at work in the widest possible
setting. ,

Perhaps it is only fair to add explicitly that this is an expression of a view
opposed to the traditional idea of regarding Logic as being primarily concerned with
a study of 'logical constants' (whatever these may be). Logic, in our view, is
concerned with the study of logical phemomena: and these occur all across
language, not just with any distinguished group of actors.

This view is more in line with that of Bernard Bolzano, who saw the task of
Logic as providing a liberal study of various mechanisms of consequence (cf. van
Benthem 1985b). With some adaptations to the Twentieth Century, this is still an
appropriate banner to follow.

10.

11.

12.

13.

34

REFERENCES

J. van BENTHEM, 1983, Determiners and Logic,
Linguistics and Philosophy 6, 447-478.

J. van BENTHEM, 1984a, Foundations of Conditional Logic,
Journal of Philiosophical Logic 13, 303-349.

J. van BENTHEM, 1984b, Questions about Quantifiers,
Journal of Symbolic Logic 49, 443-466.

J. van BENTHEM, 1985a, A Manual of Intensional Logic,

CSLI Lecture Notes 1, Center for the Study of Language and Information,
Stanford University. [Second revised edition, 1988 ,

Chicago University Press.]

J. van BENTHEM, 1985b, The Variety of Consequence,
According to Bolzano,
Studia Logica 44, 389-403.

J. van BENTHEM, 1986a, A Linguistic Tum: New Directions in Logic,

in R. Marcus et al,, eds., Proceedings 7th International Congress of Logic,
Methodology and Philosophy of Science. Salzburg 1983,

North-Holland, Amsterdam, 205-240.

J.van BENTHEM, 1986b, Essays in Logical Semantics,
Reidel, Dordrecht, (Studies in Linguistics and Pholosophy, vol. 29).

J. van BENTHEM, 1986¢, Tenses in Real Time, :
Zeitschrift fir mathematische Logik und Grundlagen der Mathematik 32,
61-72.

J. van BENTHEM, 1987a, Categorial Grammar and Lambda Calculus,
in D. Skordev, ed., Druzhba Summer School in Applied Logic. 1986,
Plenum Press, New York.

J. van BENTHEM, 1987b, Categorial Grammar and Type Theory,
report 87-07, Institute for Language, Logic and Information,
University of Amsterdam. [To appear in Linguistic and Philosophy.)

J. van BENTHEM, 1987¢c, Polyadic Quantifiers,
report 87-04, Institute for Language, Logic and Information,
University of Amsterdam. [To appear in Linguistics and Philosophy.]

J. van BENTHEM, 1987d, Towards a Computational Semantics,
in P. Gérdenfors, ed., Generalized Quantifiers:

Linguistic and Logical Approaches,

Reidel, Dordrecht, (Studies in Linguistics and Philosophy, vol. 31),
31-71.

J. van BENTHEM, 1988, Semantic Parallels in Natural Languages and
Programming Languages,
Institute for Language, Logic and Information, University of Amsterdam.

14,

15.

16.

17.

18.

35

J. van BENTHEM and K. DOETS, 1983, 'Higher-Order Logic',
in D. Gabbay and F. Guenthner, eds.,

Handbook of Philosophical Logic, vol I,

Reidel, Dordrecht, 275-329,

E. KEENAN and L. FALTZ, 1985, Boolean Semantics for
Natural Language,
Reidel, Dordrecht, (Studies in Linguistics and Philosophy, vol. 23).

S. LOEBNER, 1987, Quantification as a Major Module
of Natural Language Semantics,

in J. Groenendijk, D. de Jongh and M. Stokhof, eds.,
Studies in Discourse Representation Theory and
the Theory of Generalized Quantifiers,
Foris, Dordrecht, (GRASS series, vol. 8), 53-85.

W.V.0. QUINE, 1966, Variables Explained Away,
in Selected Logic Papers, Random House, New York.

E.D. SMIRNOVA, 1986, Logical Semantics and
the Philosophical Foundation of Logic,
Publishing House of Moscow State University.

