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of the discipline as studying the variety of modes of inference which human beings
have available for various intellectual tasks. With Bolzano, this led to the logical
study of several notions of valid consequence, differing in their formal properties,
without a pious commitment to any particular calculus. And that is certainly also the
proper spirit to approach the recent developments to be discussed here.

The paper also makes a number of technical contributions to the topics
discussed. The first group of these concerns minimal models. We provide a
mathematical analysis of the minimization operator on classes of models (Section
2.2.3), while also investigating several special systems in which minimal models
play a central role. Many such systems are found in the areas of Logic
Programming and Abstract Data Types (Section 2.3). Here, we develop an analogy
with earlier work in the Philosophy of Science on so-called Ramsey eliminability of
theoretical terms in scientific theories (Section 2.3.2), showing how the latter can
incorporate minimal models (Section 2.3.3). The central example, however, is the
notion of circumscription, recently developed in Artificial Intelligence: which may
be viewed as a semantic generalization of minimal Herbrand modelling for Horn
clause formalisms. A technical connection is found between the general inferential
properties of circumscription and more traditional conditional logic (Section 2.2.2).
We also consider possible reductions of circumscriptive inference to standard firsz-
order logic, establishing a high complexity for the question just when this is
possible (Section 2.2.4).

Then, there is also a number of results on dynamical semantics. We provide
several reductions of proposed dynamic systems to, again, standard (‘static') firsz-
order logic (Sections 3.1.2, 3.2.1). Also, various proposals are made for
connecting up what may be called 'abstract information structures' with already
existing types of models, notably in relational algebra (Section 3.2.3) and
propositional dynamic logic (Section 3.2.4). Especially, the latter system seems to
provide a promising tool for investigating dynamic modes of handling propositions.



2. MINIMALITY
2.1 Non-Standard Inference

Logically valid inference in the standard sense allows us to draw those
conclusions from a set of premises which are true in all models for those premises.
This is an important, and safe procedure. But, conclusions drawn in this way may
be few in number, when we have to act upon a small amount of explicit
information. Accordingly, we may observe the presence of additional mechanisms
in cognitive activity, allowing us some further 'contextual' inferences. One
pervasive mechanism of this kind is the assumption of a certain completeness: the
premises as stated give us 'the whole truth' about the matter [and of course, to
continue the juridical analogy, hopefully also 'mothing but the truth']. In the
Philosophy of Language, this phenomenon was observed by Paul Grice, whose
"Maxim of Quantity" expresses that what we say should state our complete
information (as far as relevant to the matter at hand). Here is a concrete example of
how this convention works. If my partner in a conversation tells me that Basra lies
either in Iran or in Iraq, I can take it that she does not know anything more definite
about its location than that. So, I can conclude that she does not know that it lies in
Iraq - even though this does not logically follow. (She might be just pretending
ignorance, of course: but, this is not assumed in normal conversation.) A less
epistemically oriented example would be this. If I am told that event A happened
because of event B, I will tend to assume that, as far as the speaker is concerned, B
is the only cause of A. Again, there is no logical necessity here: but rather the
assumption that I have been supplied with the complete relevant information.

These examples are still rather vague - and indeed, one recurrent complaint
about pragmatic principles like Grice's Maxims has been that they can be twisted to
suit too many a purpose. Nevertheless, there are already two interesting features of
non-standard inference to be observed here. First, we increase the number of
available inferences, by making some general assumptions about the 'status' of our
premises. Next, as a price to be paid for this, we have to be vigilant, since the
additional conclusions are defeasible, and may have to be given up after all, in the
light of further evidence. (I may learn subsequently of another possible reason for
event A.) The latter phenomenon is often called non-monotonicity, in contrast to the
'monotonicity', or cumulativity, of inferences in standard logic.

One way of making these procedures more precise consists in the following
modification of the standard semantic picture. A piece of text (story, proof or



program) is often concerned with, not all its models in the usual logical sense, but
rather with one intended, or at least a severely restricted class of intended models.
One reason for this seems to lie in the operation of a general principle allowing us to
exploit absence as well as presence of explicit information:

the world is the smallest,

or at least a minimal situation verifying our data.
And then, of course, more conclusions will be valid (generally speaking) in just the
minimal models of our data than in all of its conceivable models. This perspective
turns out to admit of precise mathematical treatment, and indeed, it runs through a
number of technical proposals for implementing reasoning in a computational
setting. We shall look at a few examples, while pointing at a more general
background in the philosophy of language, and also the philosophy of science.

The above idea is prominent in Logic Programming. Notably, PROLOG
programs are supposed to describe a so-called 'minimal Herbrand model' for their
assertions (see Lloyd 1985). In fact, such models already exhibit two aspects to
minimality. First, they contain no individuals / objects except for those which are
explicitly named in the language of the program. But also, they contain no facts
about these objects except for those explicitly enforced by the program ('Negation
as Failure'). Both aspects are of independent interest. Individual minimality gives a
minimal delineation of our objects; which can be cashed in, so to speak, as a
principle of 'induction":

If a property holds of all objects nameable in our language,

then it is universally true.

In fact, this is close to ordinary mathematical senses of induction. The defeasibility
here shows in that addition of further operations forming objects may actually
weaken the method of induction (one has to prove more 'inductive steps'). This is
also true in ordinary mathematics. Next, predicate minimality is actually closer to
the original examples given above. In PROLOG terms, its inferential value lies in
reading a program as standing for its own 'completion’, where a condition P is not
only implied by all possible antecedents available for it, but also itself implies their
disjunction. (There are no other reasons for P than those explicitly stated.)

Again, it is worth-while to think of similar phenomena in natural language.
For instance, many implications function like the above conditions. When the
doctor says that you will recover if you do as he says, he does not just utter a
promise, but also a threat (‘only if'): 'if you don't ..., you won't ...".



[Similar conventions may be observed, incidentally, in the juridical argument called
'a contrario’, which looks like the formal fallacy of deriving —~A——B from A—B:
but which in fact resembles the preceding pattern.] But individual minimality
occurs too. For instance, answers to questions are often taken 'exhaustively' (see
Groenendijk &Stokhof 1985). In the dialogue
"Who are crying?” "John and Mary" ,

the answer will normally be interpreted as a complete list, even though the direct
logical information is only that "John cries and Mary cries". And this phenomenon
persists to more complex answers, such as "a girl", which suggests that exactly
one person is crying, and that a girl. In other words, we are invited to form a
minimal model in which the answer is true.

Another area of Computer Science where explicit formal models of
minimality have emerged is in Artificial Intelligence. Here again, action by
intelligent agents, whether alive or mechanical, presupposes inference on the basis
of incomplete information. In particular, many practical rules which guide us in
action involve a 'ceteris paribus' clause: other things being equal, doing this or that
will produce such and such effect (cf. Shoham 1988). Making certain that no 'other
things' have changed will in general require an infinite amount of information about
the state of the world: something that we cannot obtain. Instead, we tend to assume
the absence of disturbing circumstances, as long as they do not appear explicitly.
Put differently, until forced to the contrary, we will assume that the case at hand is
not an exceptional, but rather a 'normal' one. This strategy, though obviously
defeasible, is clearly sound: the odds being in its favour (by the definition of normal
versus exceptional cases).

Ceteris paribus rules are quite common in juridical procedures, in ethics (cf.
Aqvist 1984), but also in the philosophy of science, in connection with
counterfactual statements or dispositional terms (‘soluble’, '‘inflammable'): see Sosa
1975. So, the strategies we are considering are not just little short-cuts for self-
deception, but rather necessities, even of scientific life.

Some familiar examples from Artificial Intelligence motivated one basic
semantic way of extending the earlier notion of minimality, which is due to
McCarthy 1980. All birds can fly, barring some exceptional cases like penguins.
Tweety is a bird: now, can Tweety fly? Logically speaking, nothing can be
concluded here. But practically, we will want to conclude that Tweety can fly. One
solution here is to assume the following formalization:



Vx((BxA—abx)—Fx)

Bt
That is, 'not abnormal’ birds can fly. Now, reading this as describing models with
a minimal extension for the abnormality predicate, Tweety will not be abnormal,
and hence she can fly. In general, however, there may be more abnormality
predicates involved, corresponding to different defeasible rules. Then, there may be
a genuine ambiguity , as in another well-known example:

Quakers are pacifists : Vx(QxA—abix )—Px)
Republicans are non-pacifists : Vx(Rxa—abyx)——Px)
Nixon is a Quaker :Qn

Nixon is a Republican :Rn

Now, will Nixon be a pacifist, or not? There are two incomparable minimal models
here: one with 'ab;' empty and 'ab,' consisting of Nixon only, the other with the
situation reversed. And this may reflect a genuine intuitive uncertainty here. On the
other hand, there may also be cases where we have clear priorities as to which
abnormality predicate should be minimalized first, so that we should have to break
the tie by prioritizing rules.

There is a general technical notion of minimal model for these cases, which
makes sense for arbitrary predicate-logical formulas (not just the Horn clauses of
the PROLOG formalism), and which allows for the above multiplicity of minimal
models. This is the so-called circumscription of McCarthy 1980, which will be
considered in greater detail below. We can view it as a generalization of the minimal
model semantics for logic programs, in which we now consider all those models
for a set of premises whose proper submodels (in some suitable sense) no longer
verify those premises.

Again, it is of interest to observe that there were earlier, similar attempts in
the Philosophy of Science. Philosophers had already studied such weaker notions
of consequence as confirmation of a hypothesis by certain evidence. For instance, a
universal generalization VxPx is, if not implied, at least confirmed by observing
instances of it: Pa, Pb, ... . Interestingly, Hempel 1965 suggests the following
explanation for this. When observing the evidence, we tend to form a minimal
model in which it holds: and that is one in which the universal generalization is
valid. (Again, of course, there is non-monotonicity: a well-confirmed regularity can
be refuted after all, by new evidence.) This particular analogy is well in line with
the earlier reference to Bolzano, whose logical main work was in fact called
'Wissenschaftslehre'. It was especially in scientific thinking that Bolzano found
diverse forms of rational argument, with varying logical properties. Confirmation



itself is just one example of this. Another one would be explanation of some fact
from certain scientific assumptions. Here, for instance, we would want another
kind of minimality, namely the use of only some minimal set of relevant premises
deriving the conclusion. In this case too, there will be non-monotonicity: as adding
irrelevant premises will disturb the explanatory character of an inference. This
observation emphasizes the many possible sources of non-monotonic behaviour:
which is a symptom, rather than the essence of non-standard inference.

More generally, in this perspective, the choice of a particular mode of
reasoning, monotonic or non-monotonic, will be dictated by the specific kind of
application intended.What is suitable in one context, need not be suitable in another.
(For instance, in faculty politics, many people would be in much better health if
they did not jump non-monotonically to ill-informed conclusions all the time.)
Thus, human rationality becomes 'parametrized': we have to select some sensible
mode of reasoning, prior to performing rationally within that mode. This attitude
also fits well with two main aspects to current theories in Artificial Intelligence (of
which the above-mentioned circumscription is an example). They are sometimes
meant to describe intellectual activity, but sometimes also to design intelligent
systems. And at least the latter purpose requires conscious selection of intellectual
tools.

In the following parts of this Section, we shall now consider some technical
implementations of minimal modelling in more detail, pointing at various
interrelations, open questions, etcetera.

2.2 The Logic of Circumscription
2.2.1 Minimal Models

Individual-minimal models for a set X of predicate-logical (or indeed, any
kind of) formulas may be defined as those M such that
1) MEXZ
2) fornoM&EM , MEZ
Likewise, predicate-minimal models are those models M for £ whose predicate
extensions cannot be decreased without losing the truth of X. (The latter notion is

b

somewhat like 'Pareto Optimality' in economics.) More generally, we can also
consider models only some of whose predicates are minimized in this fashion.



One test of the adequacy of this notion is an application to the earlier topic of
exhaustive answers to questions. It is natural to assume that, in such a case, the
answer is read as describing a Q-minimal model, where Q is the predicate that the
query is about. Thus, the C-minimal models of CjACm are precisely those in which
only John and Mary cry. And likewise, the C-minimal models of 3x(GxACx) are
those in which exactly one girl forms the whole extension of 'crying'. (This simple
analysis obviates the need for the complex 'minimalized generalized quantifier'
analysis found in Groenendijk and Stokhof 1985. The point is, so to speak, that the
complexity does not reside in the answer, but in the query.) Incidentally, the claim
here is not that answers are invariably taken in this minimal sense. For instance, on
the present account, the two answers 'no girl' and 'no boy' to the previous question
would both state that no one is crying. And that is certainly unreasonable: these
answers mean no more than they say in standard terms, being —3x(GxACx),
—3Ix(BxACx), respectively. More generally, in applications of circumscription,
whether more linguistic or more computational, there is always a decision to be
made, not prescribed by the formal theory, as to which predicates are to be
minimalized.

Minimal models form an interesting object of mathematical study by
themselves. In fact, their behaviour is full of surprises, once infinite structures are
taken into account. For instance, the integers are a predicate-minimal model for their
own first-order theory, being that of unbounded discrete linear orders. (Any
removal of a pair in the order relation would destroy linearity.) But, they are not an
individual-minimal model for it: the proper substructure of the even integers would
serve just as well. In fact, this ordering theory has no individual-minimal model at
all. On the other hand, what are classically small changes in the presentation of a
theory may have telling effects now. If one adds two Skolem functions, witnessing
immediate successors and predecessors, then, viewed as a structure for the
expanded similarity type, the integers will become a minimal model for their
ordering theory (expanded with the two relevant definitions). This reflects a general
phenomenon. With function symbols around, submodels will have to be closed
under the corresponding operations: which increases the chances of a model's being
minimal. We shall not pursue this mathematical direction here, which would call for
comparison with other notions of minimal model in the literature (such as 'prime
models": cf. Chang and Keisler 1973).



As for semantic consequence, there are several options now, summed up in
the following definition:

2 Ena@  if @ is true in all individual-minimal models of =

LlEpq®  if @istrue in all predicate-minimal models of X

ZE«Q if @ is true in all structures which are both individual- and

predicate-minimal models of X .

Of the major properties of classical consequence, these new notions preserve some,
while losing others. We shall illustrate this for the case of =+,

o ZEx@ = Zl=rovy
I.e., one may 'weaken consequents'. But, one may not 'strengthen antecedents:

. XExQ #} Z, 0k (0]
This is the earlier-mentioned non-monotonicity: the minimal models for X plus o.
may have shifted from those of X by itself.
Likewise we lose the classically valid 'transmission of truth'":

J ZExQ, Okxy B Zksx vy
A counter-example is: X = IxPxA Ix—Px, ¢ = IxPx, y = VxPx.
On the other hand, we keep such classically admissible operations on premises as
Permutation, or Contraction of identicals.

Actually, could there be any gain in general properties for k&« too, as
compared to classical consequence = ? As we shall see later on, the answer is
negative.

Before continuing with the general logic of circumscription, it may be useful
to emphasize a new aspect of reasoning in this situation. Even if a certain pattern of
inference is invalid in general, it may still be admissible for certain types of
statement. For instance, monotonicity will in fact be valid for those additional
premises which are preserved under the model relations employed in the definitition
of minimality. Thus,

for universal formulas o,

2@ = Z,0kEpg@.

For , if M is an individual-minimal model for £ + o, and M'is a submodel of M
verifying Z, then it also verifies o (by preservation of universal statements under
submodels), and so M'=M. This proves that M is also an individual-minimal model
for X itself, and hence that M =@, by the assumption. &
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By a similar argument, Fyeq is monotone for added negative formulas,
constructed from negations of atoms ( as well as identities) using A, v, V, 3.
Thus, minimal reasoning may require closer attention to syntactic 'fine-structure’'
of premises.

2.2.2  Conditional Logic

As a notion of predicate-logical consequence, circumscription is highly
complex. For instance, as the only minimal model of the usual Peano Axioms (even
minus Induction) consists of the standard natural numbers, minimal consequence
from these premises coincides with actual arithmetical truth: hence, non-
axiomatizability (and worse) follows by Tarski's Theorem.

On the other hand, there is also a general logic of circumscription, not
referring to specific predicate-logical forms, but only to simple (at most) Boolean
Structure. Examples of these inferences were such earlier patterns as Transitivity or
Weakening Consequents. This raises the issue of what might be called the
propositional logic of circumscription. The latter system is not trivial: especially,
since the break-down of classical principles can often be compensated for by more
refined substitutes. For instance, the following form of Transitivity is in fact valid:

ZExQ, X, okxy = ZkE«y.

And, thinking of progressive stages in an argument, this makes sense.

In fact, a further study of valid patterns for notions of minimal consequence
brings to light a striking analogy with systems of reasoning developed earlier in
Conditional Logic (cf. Lewis 1973), which started out as a study of so-called
counterfactual assertions 'if A had been the case, then B would have been the case'.
[Again, this (non-monotone) notion has strong connections with the philosophy of
science: cf. Harper et al., eds., 1981.] For instance, the basic axioms of
Conditional Logic are as follows (Burgess 1981, Veltman 1986):

i =0

ii o =V, ¢ =Y imply ¢ = YAy
i ¢ =, X =V imply ovVY = ¥
iv o>V implies ¢ =>VyYvy

v ? =V, ¢ =Y imply PAY =)

Of these five, all except the last are valid with respect to all three notions of minimal
consequence. For the validity of the last, one has to assume a universe of models in



11

which the submodel relation is well-founded for any set of premises. For instance,
the universe of all finite models would do. (Compare Shoham 1988 on the
plausibility of this requirement.) Further principles which are valid turn out to be
derivable from these.

Example: Refined Transitivity derived:
PA—Y = oAy (i)

PASY = =Y (iv) PAY = X (assumption)
PA—Y = —yvy  (iv) oAy = —yvy @iv)
(PA-YIV(PAY) = —yvy, (iii)
ie, o = —yvy
also, ¢ = vy (assumption)
so ¢ = yAl-yvy) (i)
whence ¢ = ¥ @{v).

Note the use of Boolean equivalences throughout.

Digression: Incidentally, here is one other computational way of viewing the
minimal conditional logic. The inferences displayed above present a mixture of the
usual Boolean rules for classical implication — and a non-classical implication =>.
For instance, axiom iv may be regarded as

=V, y—-x imply ¢ =%;
and other rules concern suprema and infima in the - ordering combined with =>.
This interaction between simple rules for classical entailments and non-monotone
default rules is reminiscent of the situation in so-called semantic networks. In the
latter area, one of the key issues is the creation of sound and computationally
tractable inferential algorithms. Perhaps, Conditional Logic can also serve as a
useful model for the latter activity.

On the other hand, principles not derivable in the minimal conditional logic
turn out to be typically invalid for circumscription too. In a more general
perspective, this correspondence is not surprising. There has been a tendency in the
literature on circumscription to minimize over other ordering relations between
models than just the above notions involving submodels. (Compare the above
reference to prioritized circumscription, cf. Lifschitz 1985, or also Shoham 1988).
And in fact, only some general properties of such orderings seem relevant to
evaluating validity of propositional circumscriptive patterns. But then, we are
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precisely back with the original possible worlds semantics for conditional
statements, due to David Lewis and Robert Stalnaker:

Models are structures (W,R,w), where w is the actual world, from whose
perspective we are viewing the other worlds in W, and R orders the latter as to
greater or lesser similarity to w. (Technically , R is a strict partial order.) Then, at
least on finite models (the infinite case is somewhat more subtle), conditionals are
evaluated as follows:

¢ = WV is true at w if all R-closest worlds verifying the antecedent ¢

also verify the consequent y.

This explains the general analogy between Circumscription and Conditional
Logic. What remains is a number of more specialized questions. For instance, can
minimality as defined above serve as an adequate concrete model for Lewis
Semantics; e.g., in the sense of the following conjecture:

A conditional inference ¢ =  is derivable in the minimal conditional logic

if and only if it is valid as a circumscriptive consequence @ kEx\

in a language whose proposition letters stand for formulas of

monadic predicate logic ?

What would be needed here is a representation of abstract Lewis models in terms
of finite models with the above submodel relation, under a suitable translation of
proposition letters into monadic sentences.

Another question in this perspective would concern special logics for special
relations to be minimized over. From Conditional Logic, we know that additional
conditions on strict partial orders may produce additional validities. For instance,
making the relation R linear will validate so-called ‘conditional excluded middle":

=V Vv o=y
So, variants of circumscription may also induce weaker or stronger general logics.

Toward a proof of the above conjecture, at least one suggestive result may
be cited [ for convenience, attention will be restricted to individual-minimality 1

Proposition: The following two assertions are equivalent,
for any propositional inference from A;=B,, ... ,A,=B, to C=D:
(1) C=D is derivable from A;=B; (1<i<n) in the minimal conditional logic,
(2) for every substitution ¢ replacing proposition letters
by sentences of a monadic predicate logic with identity,
and every sentence ¢ of such a language,

if ¢,06(A)) k=g o(Byforalli (1<i<n), then ¢,06(C) l=pq (D).
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Proof: From (1) to (2). This is a straightforward induction on the length of
derivations in the minimal conditional logic. The additional premise ¢ does not
affect the earlier soundness argument. (Note here tﬁat, for a monadic predicate logic
with identity, attention may be restricted to finite models, without any changes in
semantic satisfiability.)

From (2) to (1). Suppose that C=D is not derivable from the A;=B;.
Then there exists some finite possible worlds model W containing a world w from
whose perspective all formulas A;=B; are true, whereas C=D is false. Passing on
to the relevant binary order < on worlds ('greater similarity to w'), we can view this
counter-model as some finite ordered set of propositional valuations (sitting on
worlds), with conditional statements evaluated as in the Stalnaker-Lewis semantics.
Now, take distinct unary predicates P x for each world v, and set

o, (x) = Pyxa AueW,u;fzv —Px.
Let there be exactly u, ... ,u,<v. Set

By = Ixp..3xp(0n (XA ACL(XDAVY(Y=X;V...vy=X_)).
Moreover, let

¢ 3=erw B, .
Finally, let o be the substitution which assigns to each proposition letter p the
formula

ve [ip11Bv -

Claim: Let M be a structure for monadic predicate logic which verifies B,
for some world v. Then, for each purely propositional formula o,
M k& o(o) if and only if o is true in v.

Proof: For proposition letters o, 'if' follows by the definition of the substitution ©.
Conversely, suppose that o=p is false in v. So, 6(p) is a disjunction of formulas 3,
with uv. It suffices to observe that such 3, exclude B, , by their definition.

The remainder of the argument is a routine induction on Boolean operators. &

The desired conclusion then follows from the next assertion:

Claim: (i) ¢, 6(A;) kng 6(B;).for all i (1<i<n),
(ii) not ¢,06(C) kpg o(D).

Proof: (i). Let M be a minimal model for pAG(A,). As ¢ is true, M verifies some
B,. So, by the first claim, the truth of 6(A;) implies that A; holds in the world v.



14

Moreover, v is a <-minimal world where A;holds. For, if A; were true at some
u<v, then an obvious proper submodel of M could be extracted which verifies B,
and (hence) o(A;) , contradicting the minimality of M itself. So, by the truth of
A;=B; in the original possible worlds model W, B; holds in v, whence 6(B;)
holds in M.

(i1). Since C=D fails in the possible worlds model W, there must be some
<-minimal world v where C holds, while D does not. Now, take the obvious
minimal model M for B,. As before, M verifies 6(C), while falsifying (D). It
suffices to show then that M is a minimal model for pAG(C). So, suppose that
some proper submodel M' also verified pAG(C): say, B, holds, as well as o(C).
Then, by the definition of the formulas 3, u must be a proper <-predecessor of v,
where C is true. But, this would contradict the C-minimality of vin W. @&

Remark: The above characterization essentially describes a more general form of
circumscription, where the universe of models being compared can be restricted by
some prior condition @.

The proof presented here derives from an argument by Frank Veltman,
produced in response to an earlier version of this paper.

Finally, we return to the earlier question why circumscription should not
also validate new inference patterns, not found in classical logic. Here, by
‘inference patterns' we mean schemata of the form

PLD VY, s Oy DY, imply @ = Y.

Here, the @'s and y's are Boolean forms - as was the case in all earlier examples,
and '=' stands for the particular notion of consequence being considered. (Thus,
in a sense, we are concerned with the Horn clause logic of valid consequence.)

Now, if such a schema is not classically valid, then the following single
consequence cannot be valid either:

@12V A oo A (@n>VYn) E 9.

Otherwise, the schema would be derivable. So, there exists some valuation V
making all @;—Vj true (1 <i<n), but g— false. Now, consider the following
substitution ¢ of formulas for variables in the above schema:

op)= T ,if V(p)=1

1 ,if V(p)=0
It is easy to check that, then, all @;=>y; (1<i<n) are valid consequences, whereas

¢@=V is not. But, for Boolean combinations of T and L, circumscriptive
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consequence and classical consequence coincide. Hence, the above schema is not
valid for circumscriptive consequence either.
We have proved the following

Proposition: All valid Horn clause principles of circumscriptive consequence are
also valid for classical logic.

Remark: In this connection, note that at the level of meta-properties of logical
systems, non-monotonicity can indeed occur, and has even been well-known for a
long time. A notable example is Intuitionistic Logic, which satisfies the so-called
Disjunction Property:

if F1evy, then HH@or Fry .
The stronger system of Classical Logic, however, has lost this property:

k¢ pv—p, but neither + -pnor k-—p .

2.2.3 Dynamics of Minimality

We now turn to another aspect of circumscription. As was remarked before,
what we are dealing with in general are various modes of taking propositions, as
they come in. For instance, answers to questions could be taken 'at face value', but
also 'exhaustively'. And likewise, ordinary statements can be taken routinely, so to
speak, or 'minimally’. (In fact, the latter mode itself turned out to have at least three
varieties.) Here are a few comments on this situation, preparatory to the discussion
of 'dynamics’ in Section 3 below.

A class of models may be regarded as a state of information, localizing 'the
real world' within its range. The ordinary way of taking propositions ¢ amounts to
the following transformation of such states:

X = X N MOD(9).

In general, thus, each successive new premise decreases our ignorance, or
equivalently, increases our knowledge. Various logical operators then acquire new
overtones in this setting. One example is 'conjunction as composition':

XN MOD(pAy) = X N (MOD(9) N (MOD(y))

= (X N MOD(¢)) " MOD (y).

Here, we are only interested in the general properties of what may be called a
classical transformation <, given by

AX.XNF ,for some fixed class of models F.

The following two properties are easily seen to be necessary:
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1 X)X (Introversion)
2 Tt {X;liel}) =v{t X)) liel} (Continuity)
They are also sufficient:

Any introvert continuous operator on sets can be represented by an
intersection with some fixed ('information’) set .

The argument is this. Define F as {x | T ({x}) ={x} }.

Then 1(X) =1 (U{{x} | xeX}) = U{t({x})|xeX} = X NF. &

Of course, such operators, when defined by formulas of some specific
language , may have many additional structural properties. But, the present analysis
provides a convenient comparison with our second non-classical mode of
transformation. What happens with circumscription may be described as follows.
The universe of models now carries some comparative order R. Starting from a
certain information state X, one again restricts attention first to X N MOD(¢), as
before, but next only to all R-minimal items in here. Thus, another basic
transformation on knowledge states is the following minimization:

UX) = {xeX|—-3JyeX Ryx}.

Can we also determine the basic properties of this new process?

Here are again some obvious features:

1 pLX)c X (Introversion)
Of the earlier Continuity, however, only one half remains:

3 pUXliel}) ¢ v{uXypliel)
(The side which is lost here is actually equivalent to monotonicity .)
To compensate, we do have a new property, namely,

4 NMuXy liel} < p(U{Xjliel}).
Again, these three conditions are sufficient:

Any operation on sets satisfying 1,3,4 may be represented as

a minimization operator for some suitable model relation R.

To see this, define the following relation among models:

Rxy iff yep({xy}).
Then we have, for all X, u(X) = {xe X |—-3ye X Ryx]}.

From left to right. Let xe u(X), ye X. Then xe u({x,y} U (X-{x,y})) <
m({x,y}) U uX-{x,y}) (by 3). By 1 then, xe u({x,y}), and hence —Ryx
(by definition).

From right to left. Let xe X with -3ye X Ryx. So for all ye X,
xe W({x,y}), ie., x en{pn ({x,y}) | ye X}. By 4 then, xe p(U{{x,y} | ye X)),
ie, xe w(X). &
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Minimization has several other interesting properties, derivable from the
above. One convenient way to proceed here is by organizing the necessary
calculations in a modal logic, with the following axioms:

1 Mp —p
2 HW(pvq) — Upvuq
3 HPALG — W(pVvq)

Formal deduction in this modal logic brings out various useful theorems.

Example:i pApq — H(pAQ) :
Hq — H(PAQV(=PAQ)) —(by 3) W(PAQVI(—PAG) , SO
(PAHG) — (PAK(PAQ))V(PAI(—PAQ)) ; but
H(=pAq) —(by 1) =pAq — —p , SO
PAUG = PAL(PAQ) — L(PAQ).
i pp — ppp :
HpAUP — U(UpAp) (by parti) , and
HpAp &> Up (by 1) » SO
up — pup. &

We can derive an obvious possible worlds semantics for this modal
operator L. But perhaps the easiest observation is just this:

U is completely described by the following definition

inside the minimal modal logic K.

Hp = PA —p .

We conclude by mentioning a few facts about the interplay of a classical
transformation T with minimization 1. Most iterations collapse, via the following

equations:
7tX) = 1X)
HUX) = WX)
THEX) = X)) N IEX)

THTU(X) = pT(X)
HX) = TU(X)
Proofs can again be given in the above modal logic.

Example: The last identity can be transcribed as the equivalence
H(UPAQ) €> LPAG.
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Here, — follows by axiom 1, and « from the preceding example:
HPAQ = HHPAQ — K(HpAq). @

Thus, the only non-equivalent modes of transforming knowledge states
generated by the present perspective are precisely as expected:
T, L and UT.

2.2.4 First-Order Reduction

Circumscriptive inference was already quite complex for predicate-logical
sentences, as we have seen. The reason for this lies in its second-order nature.
Using the minimal models of a set of premises 2 amounts to using all models in the
standard sense for an associated second-order formula. For individual
circumscription, that formula is

VX (@yXyrXX) & VyXy)
where XX is the relativization of X to the subdomain X. [In the presence of function
symbols in the language, some more care will actually be needed here.]

For predicate circumscription, the corresponding formula is this [written up, for
convenience, for some X involving only one unary predicate letter P]:

VX (Vy(Xy—Py) = (Z(X) < Vy(Py - Xy)) ,
where X(X) is obtained by substituting X for P in X.

Both of these second-order formulas are relatively simple, so-called monadic
IT1;-sentences - but still, their standard notion of consequence is already quite
complex.

Now, Vladimir Lifschitz has pointed out that this complexity need not worry
us, if we can show that all, or most natural applications employ premises falling
within some narrower syntactic class of formulas, for which these circumscription
formulas are in fact equivalent to first-order ones. For then, we can employ
standard reasoning systems to simulate circumscription after all. And, he does
manage to isolate large such classes in Lifschitz 1985a, 1985b, with respect to
predicate circumscription. One useful general result is, e.g., that circumscription
with respect to P on Z will define a first-order class of minimal models, in case P
occurs only positively in Z. This covers such cases as the following:

Vx(Qx—Px), circumscribed to: Vx(Qx«>Px) ,

Ix(—=QxAPx), circumscribed to: Ix(—QxAVy(Py <> y=x)).

Similar questions arise for individual-minimality.

Put in general logical terms:
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e What is the complexity of 'first-order definability' for circumscriptive
monadic IT!;-sentences?

e What are large syntactic classes of premises £ which guarantee
the existence of a(n effectively obtainable) first-order equivalent?

As it happens, there is a connection here with earlier work in Modal Logic.
Modal axioms on possible worlds structures may be viewed in general as monadic
IT!;-sentences, and their possible first-orderness has been studied extensively (see
van Benthem 1984, 1985a). For instance, we know that the general question if an
arbitrary monadic IT!;-sentence has a first-order equivalent is of hyper-arithmetical
complexity. Even so, there are indeed large classes of first-order cases with an
effective syntactic description. And, this analogy can be exploited to prove such
results as the following.

Proposition: Individual circumscription is first-order for all first-order formulas X

which are of the syntactic shape
3xy ..3xp Vyi ...Vyn <quantifier-free matrix >.

Proof: By the obvious preservation properties of such a formula, its minimal
models can be enumerated as a finite set of finite models whose size does not
exceedm. @

Simple though it is, this proposition has a useful consequence for a large
class of cases where circumscription is actually used:

Corollary: Individual circumscription is first-order for all X formulated in
monadic predicate logic with identity.

Proof: All formulas in this language have a normal form of the above syntactic
shape. @

First-orderness is no longer guaranteed with other quantifier prefixes, such
as V3. Then, first-order cases have to be located by more sensitive analysis.

Remark: There is an interesting boundary case of first-order definability for
circumscription. For certain first-order formulas Z, ordinary models and minimal
models already coincide. For instance, Vx(Qx¢>Px) has only P-predicate-minimal

models: and so do all explicit definitions for minimized predicates in terms of the
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remaining vocabulary. But, there are further instances of the phenomenon too,
witness the following X:

' < is a discrete unbounded strict linear order with immediate successors
and predecessors, and VxVy((x<y A —=3z(x<z A z<y)) = (Qx<>—Py)) '.
Models of X are linear orders of copies of the integers, with P interpreted as either
the odd or the even integers in each copy. These models are all P-minimal;
but even so, P is not definable in terms of just < on the basis of X. [ E.g., the odd
numbers are not explicitly definable in the pure ordering theory of the integers.]
Is there a good characterization of those first-order formulas X(P) which
automatically enforce P-predicate-minimality?

Although the general complexity of detecting first-orderness in modal logic
may be high, there is a natural specialization. In many cases, the first-order
equivalent of a monadic IT!;-sentence VX@(X) comes in the form of a conjunction
of first-order substitution instances @(y). Now, the class of second-order formulas
having such a first-order equivalent is recursively enumerable. For, it suffices to
enumerate all possible finite conjunctions of first-order instances, checking in each
case if

PWDA ... oY) E VX(X).

(Note that the other direction is automatic.) As the predicate variable X does not
occur on the left-hand side of the turn-stile here, the latter consequence is equivalent
to the (recursively enumerable) standard first-order consequence

P A . A O(Yn) EoX). &

Quite probably, however, this property is not decidable.

Again, these considerations may be transferred to the case of
circumscription.

This time, we shall consider the case with minimal predicates.
Proposition: Having a first-order predicate circumscription is not a decidable,

in fact not even an arithmetical property of first-order formulas.

Proof: We give an effective reduction of arithmetical truth to first-orderness of

predicate circumscriptions. The proposition then follows by Tarski's Theorem.
Consider a finite relational formulation PA™ for Peano Arithmetic minus the

Induction Axiom, including the first-order theory of <. Let ¢ be an arbitrary
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arithmetical sentence in this format. Moreover, let N be a new unary predicate letter
not occurring in PA™.

Claim: The next two assertions are equivalent:
1 INE ¢ (.e., ¢is arithmetically true)
2 the following sentence @ has a first-order predicate circumscription:
<PA™ A =@ A" N contains 0, and is S-closed and cofinal in <'>.
Proof: 1 = 2. Let N I=¢. Suppose that D is any model for ®. Because D |= PA™,
it consists of some initial copy of N followed by a tail of copies of the integers Z.
(As D ==, this tail must be non-empty.) Now, the extension of N in D must
intersect at least one copy of Z (by cofinality). Then, removing one N-point
together with all its predecessors in that copy of Z from the extension of N will
leave @ true. It follows that @ has no predicate-minimal models at all; whence its
predicate circumscription is defined by the first-order sentence FALSE.

2 = 1. Let ® have a first-order predicate circumscription, say o.
Suppose that N |£ ¢ . We derive a contradiction. The model D consisting of N
itself, with N interpreted as the set of all natural numbers, is a model for .
Moreover, it is even a predicate-minimal model: any decrease in some predicate
extension would disturb either the first or the last conjunct of ®. So, D k=o.. Now
take any proper elementary extension D* of D. Still, D* k= o, but D* can no longer
be a predicate-minimal model for @ (which is the desired contradiction), for the
same reason as above. @

Remark: The idea of this argument is that @ can only have predicate-minimal
models on N (if it has them at all). Note that the proof works equally well for
general predicate-minimality and for minimality only with respect to the special
predicate N.

Corollary: There exist formulas having first-order predicate circumscriptions
without the latter being obtainable through first-order
substitution instances.

Proof: The first class of formulas contains the second, obviously. Moreover, it is

not arithmetical, whereas the second is (being recursively enumerable). Hence, the
inclusion must be proper. ®
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2.3 Data Types and Theories
2.3.1 Logic Programs

Next, we shall briefly consider another tradition of studying minimal models
in Computer Science. First, there is an extensive literature on semantic properties of
logic programming (see Lloyd 1985, Apt 1987). Usually, this area carries a
restriction to a fragment of first-order logic, namely universal Horn clauses. This
restriction leads to some better logical (and computational) behaviour, such as the
existence of unique minimal (Herbrand) models. The special status of the Horn
Clause formalism has been investigated from various angles. For instance, by an
early result of Malcev's, as a fragment of first-order predicate logic, Horn clauses
are characterized by two model-theoretic preservation properties: they are preserved
under the formation of submodels and direct products of models. There is also a
theorem in Mahr & Makowsky 1983, however, which characterizes the Horn
clause framework as the maximal one in which every specification is guaranteed to
have an initial model. We shall return to the latter notion below.

One of the attractions in having unique minimal models for specifications,
from an intuitive point of view, is that it corresponds with a natural tendency which
many people have. When reading a piece of text, they assume that some unique
world is being built up - and it always takes some time to persuade students in a
logic class to shift to the standard technical perspective of huge classes of different
models for sentences. (See also van Benthem and van Eyck 1982 on such issues.)

Semantic consequence =t for logic programs X may be defined either in the
standard fashion, or via the corresponding minimal Herbrand Model py:

T=te if  pzko.
For atomic formulas ¢, this choice is irrelevant, as £ = ¢ will be equivalent to
Uz I= ¢. This well-known observation implies correctness and completeness for
answers to the usual types of question ¢ computed in logic programming. But, for
general conclusions @, truth in uy will be a stronger notion than standard
consequence from X - and characteristically, it is the latter notion being referred to,
when we prove certain correctness statements about the behaviour of PROLOG
programs. Additional principles, over and above classical consequence, which are
available for reasoning in the latter setting reflect the earlier two aspects of
minimality: individual minimality sanctions certain forms of induction, predicate



23

minimality rather the use of the so-called completion of the relevant program (cf.
Lloyd 1985).

The connection with our earlier notion of circumscriptive consequence is
found in the following simple observation:

Zl=¢ onlyif XZkx@ onlyif pzke.

Again, this is because minimal Herbrand models combine individual and predicate

minimality. None of these implications can be reversed, however, for arbitrary
formulas ¢. For instance, £ = { ROS(0) } will imply —RS(0)0 in its minimal
Herbrand model, whereas it does have a trivial one-point minimal model refuting
—RS(0)0. This difference reflects the decision, when working with Herbrand
models, not to identify any more terms than is absolutely necessary given the
premises. [Similar proposals have been made for circumscription too (‘uniqueness
of names') - but we will not go into the latter variant here.]

Another point of comparison between the two approaches to semantic
consequence concerns the earlier completion comp(Z) of a logic program X. It is
easy to show that, for all Horn programs X, X k= xcompl(X) . But, in a way,
circumscription provides a more stable semantic account here, untroubled by some
of the more curious syntactic details of forming completions. This may be seen in
the following comparative list:

Z: {p—q} compl(Z): {qep} g-minimal models: q<p,
Z: {p—q.,9—>q} compl(Z): {q>(pvq)} (i.e..p—q!) gq-minimal models: q<>p.

Digression: This example may be viewed as illustrating the superiority of a semantic
notion like circumscription over a syntactic one like completion: in line with current
public opinion. Nevertheless, from a different angle, there is also a good deal of
interest to the more syntactic reaction of PROLOG to adding 'harmless' rules.like
q—q. As is well-known, such rules can trick the inference engine into entering a
vicious loop, unsettling earlier proofs - and that is analogous to a phenomenon to be
observed in ordinary argumentation. Someone who commits the informal fallacy of
Begging the Question , by offering q itself as a reason for q, vitiates whatever else
she might have advanced already in favour of q. Various logical commentators have
found it hard to explain why this should be so, since the new statement is logically
true. But again, the explanation lies in the procedural aspects of argumentation and
discourse.

We conclude with another observation about circumscription suggested by
logic programming. It follows from an earlier remark that, at least for Horn clause
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premises and atomic conclusions, classical consequence and circumscriptive
consequence coincide. One interesting question then becomes if this collapse can be
generalized to larger fragments of predicate logic. For instance, standard
consequence and circumscriptive consequence also coincide for all universal X,
with positive quantifier-free conclusions @, at least, in languages without function
symbols. [For, if X |£ ¢, then there exists a finite model for £ where ¢ fails - and
we can obtain a minimal model for £ with that same failure by stepwise decreasing
domain and interpretation. It is crucial here that ¢ be positive quantifier-free, so that
the truth value of its negation cannot change in this process.]

In fact, the universal fragment of predicate logic has many things to

recommend it (see also below). It would therefore be of interest to determine the
precise complexity of the notion X k= @ as restricted to universal statements.

2.3.2 Abstract Data Types ...

The theory of logic programs is hard to distinguish from that of so-called

abstract data types. Here again, the emphasis is on special models for specifications
2, namely those which are initial in MOD(Z). That is, such a model must have a

unique homomorphic embedding into every other model for . Part of the
motivation for this notion again amounts to various forms of minimality (be it now
with different slogans; such as 'no junk' or 'no confusion': cf. Goguen and
Meseguer 1983). But, there is also the interesting idea that 'minimality’ should
consist in some homomorphic relation to other models of the specification. This
might be worth pursuing for the case of circumscription too. In particular, the
approach in the theory of abstract data types characterizes its distinguished objects
only up to isomorphism. But, from that viewpoint, it would be natural to weaken
the notion of, say, individual minimality as follows:

D is a model for X and it has no proper non-isomorphic submodels

verifying .

In the latter case, e.g., the integers as they stand would be a minimal model for their
own ordering theory - which is certainly reasonable.

Another interesting aspect to the theory of abstract data types is the greater
attention paid to further syntactic fine-structure of premises. For instance, in
specifications, it often makes sense to distinguish between 'visible variables',
standing for features of the system which are accessible to, or at least observable
by, the user, and hidden variables, helping to structure the specification, without
becoming public. Such a division at once introduces a new range of interesting
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logical questions. For instance, given the full specification Z(Ly, Ly), what would
be a good independent description of its 'observable content'? The literature
contains both syntactical proposals here, such as

Z(Lv=(¢eLy | Sto) ,
and semantical ones, such as

MOD) ILy = { (DILy)| DEX }
The latter class consists of all Ly-reducts of models for . (Or equivalently, it
consists of all structures for the observable language which can be expanded to
models of the full specification Z.) And accordingly, questions concerning minimal
models become more complex too. Notably, how are minimal models for the full =

related to minimal models for its observable part ?
2.3.3 ... and Scientific Theories

Before going into these questions, this is the proper place to point out yet
another wider analogy. Within an entirely different tradition, similar questions have
come up in the Philosophy of Science. There too, it is customary to analyze
scientific theories as being formulated in a two-tier language L. + L,. There is an
empirical , or observational vocabulary corresponding to what we can observe or
measure, on top of which one finds a theoretical vocabulary corrresponding to
postulated theoretical entities. For instance, in mechanics, observables would
include predicates of position, velocity, etcetera, whereas, e.g., forces would be
theoretical constructs. In general, the statements of a theory will then fall into three
kinds:

purely within L, : empirical facts and regularities ,

purely within L; : theoretical axioms

mixed L., L; : 'bridge principles' .
For empirical theories, this view goes back to Frank Ramsey and Rudolf Carnap:

but, it may even be observed for mathematical theories with David Hilbert (where
L. would be the finitistically' computable part).

k4

Many logical questions have been studied in this perspective, often
concerning the status of the theoretical terms. (See Przelecki 1969, van Benthem
1982). The practical value of introducing such terms is not in question, but one
would like to know how far this procedure is necessary in principle. The latter
question brings us back to the issue of adequate independent definitions of the

empirical content of a theory, which was already mentioned above. Both the above
possibilities have been considered in the literature. In particular, MOD(Z) | Ly has a



26

vivid interpretation now. When applying, say, mechanics to some empirical system
which we have measured, we have to stipulate suitable mass and force functions so
as to satisfy Newton's Laws: in order to start mechanical calculations, which can
then be used again to explain, or predict, further empirical facts.

Here is one question which has received a good deal of attention. When are
the theoretical terms eliminable from a theory X, in the sense that MOD(Z) | L, has
a first-order definition purely inside Le? The answer is that this happens if and only
if the operators MOD and restriction commute:

MOD() L, = MOD( (L.).

Such commutation does not always occur (in fact, it is an undecidable matter when
it happens). What we always have is one inclusion:

MOD(Z) L, < MOD(Z(L,).

The converse, however, will only be guaranteed to hold for certain special syntactic
classes of theories X. In particular, we always have it for universal theories.

The latter restriction even has some further motivation on the above analysis
of theories. As soon as we allow quantifier combinations such as V3 inside the
‘observational' language , we are really smuggling in theoretical terms through
logical complexity. This may be seen explicitly using Skolem forms:

VxdyRxy ¢ JFHVxRxf(x).

So, it is quite natural to consider only Skolemized theories, keeping the axioms
universal, while making our ontological commitments explicit in the function
symbols.

This move will make theories more algebraic than has been suggested in our
discussion of circumscription. Nevertheless, that would be quite in line with
research into logic programs and abstract data types, which is usually confined to
almost algebraic formalisms.

Now let us return to the issue of minimal models. This has not been very
prominent in the philosophical literature (with the earlier-mentioned exception of
Hempel 1965). In fact, there might be an interesting new research line into
elimination of theoretical terms on minimal models. Here, we shall only consider
some special cases - while also slightly changing course.

Let Z be a universal theory in a language Le+L; with identity, where each
language contains at least one individual constant. What kind of connection can we
expect between minimal models for X itself and those for its restriction )2( L. (only
with respect to universal formulas)? We define a new, and perhaps more
appropriate, notion of model-theoretic restriction:
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For any Le+Li-structure D, D Il L, is the L_-structure whose domain consists
of all closed Le-term interpretations in D, with the inherited interpretation for
L.-functions and predicates.

Then, we can define an operation X Il L. on model classes X, with an obvious
meaning. Finally, let the operator U select (say) individual-minimal models.

Proposition: For X and X(L, as above,
(UMOD(®)) I L, = pMOD(X(L, ).

Proof: ' c'. Let D be a minimal model for X. A fortiori, D k Z(L. . Now, the
operation |l L, preserves truth of universal L,-formulas. So, A Il Lo k= Z(L,.
Moreover, individual-minimality of this model is automatic, because the universe

has only definable objects.

'D'. Let D be a minimal model for Z( L. Consider the following set of
formulas:

(A) X u<'all true L,- atoms or true negated Le-atoms in D' > .

Every finite subset of A has a model. [Otherwise, Z would classically imply a
formula — M0;; where the d; are (negated) L.-atoms occuring in A. But then, this
formula would belong to Z( L. and be true in D, whereas by definition, Mo; is true
in D.] By compactness, then, A itself has a model, say M. Now, consider the
submodel M* of M whose domain is generated by all closed term interpretations
from L.+L;. By the universal form of £, M*k= X. Moreover, M* is a minimal
model for X, given its term construction. Finally, D is isomorphic to M* Il L., since
M* satisfies a faithful description of its atomic structure. But then, the required
extension of D may be constructed by isomorphic copying from M*. &

Remark: This type of analysis can be pushed further. For instance, for arbitrary
theories Ty < T, the following statements can be proved equivalent:
*  (UMOD(T) IIL; = uMOD(Ty)
* T is m-conservative over T,
i.e., for all quantifier-free L;-sentences ¢, T k¢ onlyif T; ;4 ¢.

Finally, we note one further similarity between the theory of abstract data
types and the philosophy of science. Philosophers have emphasized the existence of
a huge network of scientific theories, connected by various relations, such as being
an 'extension' of another theory, or being 'interpretable' in it. Again, such
relations have also been proposed and studied for abstract data types. In fact, a very
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interesting calculus of operations on and relations between data types has been
developed in Bergstra, Heering and Klint 1986. We conclude with one example,
which is relevant to the useful property of modularity.

The sum 21+2, of two abstract data types is just the union of their axioms,
in their combined language. Again the question arises as to the connection between
the minimal models for the various components and for the whole. As before, one
direction is easy to establish (again, for the purposes of illustration, we consider the
case of individual-minimality):

e if D is a minimal model for X,

then D Il L; is a minimal model forX; (i=1,2) .

For a converse, we would need an amalgamation property:
e If D; is a minimal model for Z;, and D; one for %, ,

then there exists some minimal model D for X such that D I L; =D; (i = 1,2)
This will hold only if X satisfies a strong splitting condition:

e if X E=@v@, for quantifier-free Li-sentences @; (i =1,2),

then Z; l=ing @1 or X5 =g .

In such a case, Z; and Z; do not really 'interact' in X.

As soon as they do, however, the above may be violated.

Example: ¥1={Pav Qa}, Z={—-QavRa}.Z=%;UX, =PavRa,
but neither ¥ k= ;g Pa nor %, k4 Ra.

The interest in the fine-structure of axioms X, both as to different kinds of
vocabulary involved and as to various syntactic modules, represents a notable
tendency in current research. Against the background of the earlier general semantic
results, actual performance of logic programs or data specifications will still be
crucially affected by their syntactic design. It is important to bring to light useful
structures here. (See also Apt and Pugin 1987 on 'stratified' PROLOG programs.)
This is not just a technical concern within computer science. Also in general logic,
there is a great need for a better theory of the structure of premises, if we are to
arrive at a deeper understanding of at present intangible phenomena like good
organization and structuring of arguments.
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3. DYNAMICS

The study of minimal models and non-monotonicity almost forces one to
acknowledge the more dynamic aspects of knowledge acquisition and revision. But
even so, it is only one strand among various motives pointing in the latter direction.
In this Section, we shall also consider dynamics at the level of building up
interpretations of single statements, and related forms of information flow.

3.1 Dynamics of Interpretation

"Processing mechanisms' play a pervasive role in programming languages,
obviously - but also in natural language. For instance, it seems natural to
understand various possibilities and impossibilities in anaphoric linkage from an
algorithmic perspective. And, such considerations are also appropriate in the
analysis of conditionals (cf. Stalnaker 1972) or bare plurals when viewed as
expressing default rules (cf. Pelletier and Schubert 1985). Here, we shall
concentrate on the example of anaphora (see Section 3.1.2).

There are various new semantic theories invented especially for their
‘dynamic flavour’; but, in fact, ordinary predicate logic itself provides an excellent
initial model for studying such phenomena. To see this, we take our starting point
in a well-known approach to the semantics of programs, due to Floyd and Hoare.

3.1.1 Operational Semantics for Programs

The basic format of interpretation for predicate logic is Tarski's relational
schema

M, I I= ¢ [a] (‘¢ is true in M under I, a");
where M is a model structure, I an interpretation of vocabulary into suitable items of
M, ¢ some formula, and a an assignment to the variables occurring freely in .
Here, the assignment is a modest 'auxiliary interpretation function', needed in order
to get a recursion going on the structure of ¢. Later on, however, this Cinderella
met her prince. In Computer Science, assignments may be viewed as memory states
of a computer (functions from identifiers / addresses to data values) - and as such,
they play the leading role in computationally oriented introductions to Logic (such
as Gries 1981).
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One fundamental generalization of the Tarski schema to the semantics of
programming languages has taken place in so-called operational semantics . In
addition to the set of descriptive formulas, one also defines a set of programs
inductively, and then interprets these according to the following schema (in the
context of some model M, I ):

[[x]] is the set of successful state transitions associated with the program 7.
Here are some typical steps encountered for simple program constructions:

1 [[x:=t]] = { (a,a%yy |a any assignment }

@) [rumell = { (a,b) I Hfor some ¢, (a,c) € [[m1]] and (c,b) € [[m,]] }

(3)  [[IF e THEN m, ELSE m,]] = {(a,b) IM,I I= g[a] and (a,b) € [[r4]],

or M, I I e[a] and (a,b) € [[n7]] }

Predicate-logical formulas function as static assertions in this context. They
may be tests as in (3), or statements of specification for programs, or statements
about program behaviour, such as the well-known correctness assertions

{o} = {y}:

for all assigments a such that M,I I=¢ [a],

and all assignments b such that (a,b) € [[x]],

it holds that M,I |= [b].

(‘pre-condition ¢ for m implies post-condition ') .

Although the semantic format is still very much in the usual spirit, even this
application yields its own questions. For instance, the logical meta-theory of this
framework derives its interest to a large extent from the fact that its predicate-logical
counterpart does not transfer smoothly. Notably, in searching for completeness
theorems in this area, it turns out that even the correct formulation of what should
be regarded as 'completeness’ is a tricky issue (cf. Cook 1978, Bergstra and
Tucker 1982).

Programming languages, at least the traditional imperative ones, exert
dynamic control over a series of actions to be performed by the audience, usually
the computer. But, this feature is also very conspicuous in natural languages, where
speakers direct their listener's representation of information by means of various
textual devices. This process occurs explicitly in reasoning, when we set up an
argumentative structure using imperatives: 'suppose', 'let', 'take', ... . But it is
also present at the sentence level, witness the illustration given below. Thus, the
slogan of Language as Action has become a central one in current semantics, and
many proposals for 'dynamic formats' of interpretation have appeared (cf. Kamp
1981, Heim 1982, Seuren 1985).
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One phenomenon where dynamic aspects emerge is that of anaphoric
connection. In actual discourse, pronouns are used to refer back to earlier
expressions, in such a way that the listener can pick up links intended by the
speaker. There are limits to this process, however: not anything goes - and
contemporary dynamic theories are often motivated by the desire to explain these
constraints by reference to some processing mechanism. Here are three examples of
anaphoric facts whose explanation seems to go beyond predicate logic as ordinarily
conceived:

'A speaker arrived. He was late.' €))

How can the ‘existential quantifier’ pick up a pronoun in another sentence?
Moreover, there is a clear-cut ordering involved, witness the impossibility of an
intended link as in the following sentence:

*'He was late. A speaker arrived.' 2)
And finally, within a single sentence, consider the pattern:

'If a speaker arrives, he is late.' 3)
This is traditionally transcribed as follows:

Vx ((SxAAX) — Lx),

interchanging the conditional with the existential quantifier. (It is as if the, invalid,
prenex law (AxO(x)—>y(x)) <> Vx(Pp(x)—>y(x)) had been applied.) Why cannot this
sentence be interpreted correctly as it stands: its obvious form being

3x(SxAAX)— Lx) ?

These problems are solved in the cited work by Kamp and Heim through the
intermediary of a level of 'discourse representation’, in between syntactic form and
eventual truth conditions. But, as was pointed out convincingly in Barwise 1987,
they can be handled equally well without such a move, by adopting a more dynamic
format of interpreting syntactic forms, inspired by the earlier operational semantics.

3.1.2 Operational Semantics for Assertions

A very clean presentation of this idea arises when the language interpreted is
predicate logic itself, as is shown in Groenendijk & Stokhof 1987. Thus, the earlier
'static’ assertion language for programs itself receives a dynamic interpretation:

[[Px]1] = {(a,a)IM,IEPx[a] }:

i.e., atomic formulas are just tests without special side-effects.

Loayl]l = [l ollyll:

i.e., conjunction is treated like composition (o or ;).
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[[@xell = {(a,b)l(c,b) e [[¢]] for some c~xa} :

i.e, existential statements are made true by finding some witness to their matrix.

These stipulations explain the first two anaphoric facts mentioned above.
IxAxALx will have the same interpretation as 3x(AxALXx), but not as LxA3xAx.

In general, the effect of the above clauses is to widen scopes toward the right.

An explanation of the third phenomenon observed requires a treatment of
conditionals. We start with a preliminary notion, however:

((=¢ll = {(alfornob,@b)el[e]l} .

Thus, a negation is a strong denial, without side-effects. Then, a clause for
implications @—\ may be derived via their traditional equivalence with —(pA—Vy),
or by direct introspection:

[[o—y]]l = { (a,a)|for all b with (a,b) € [[@]], there exists ¢

with (b,c) € [[w]] }.
Finally, we introduce universal quantification, again without side-effects:

[[Vxe]l] = {(aa)lforallbwitha~xDb,(ab)e[[¢]]}.

Then, it may be checked that the following two formulas indeed have the same
associated transition relation:

JxAx - Lx and Vx(Ax — Lx).

Thus, the anaphoric sentence 3 is vindicated as it stands.

On the other hand, no binding across the conditional occurs with the related
syntactic form

—JxAx — Lx.

For, the negation in the antecedent 'envelops' the scope of the existential quantifier.
But this is as it should be. After all, there is no such link in natural language either,
witness the incorrect sequence

*'If no speaker arrives, he is late.'

It should be admitted at once that this account still has many empirical
weaknesses. For instance, it describes anaphoric facts in natural language only
indirectly, being dependent on a translation into predicate logic. Moreover, those
anaphoric facts are much more diverse and subtle than may be apparent from the
four examples given here. But, the account does show how standard predicate
logic, far from being an obstacle to recognizing the role of dynamical interpretation,
can actually be a good testing ground for theorizing about it.

In fact, there is still a close connection between ordinary predicate logic and
its interpreted variant. In a sense, the latter amounts to reading 'ordinary ' formulas
with a different scope convention , extending scopes of existential quantifiers as far
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as possible toward the right, until one hits the boundary of an operator like
negation, which 'seals off' its subformula. (For a more general discussion of
different scoping conventions, as expressing various strategies of interpretation for
one single language, cf. van Benthem, 1986b).

More formally, there is a reduction to ordinary predicate logic which works
as follows. For each formula ¢, with free variables xj,....,x,, the following
induction defines a predicate TRANS (@, X1,...,Xn, Y15+--s¥n)

[intuitively, '(Xy....Xy 5 ¥1.-..¥,) is a successful @-transition between partial

assignments'] :

TRANS (Pxi; xiyi) =  yi=XjAPx;

TRANS (QAY; X,y) Jz (TRANS (¢; X,z ) A TRANS (v; Z, ¥))
(here the z are new free variables)

TRANS (3x;9; x,y) = Jz; TRANS (¢; x(zj/xj),y)

TRANS (—0; X,y) =  y=XxAVz-TRANS (¢; X, z).

By an obvious induction, TRANS (¢; X,y) defines the successful transitions

for . Therefore, any central semantic notion of dynamic predicate logic can be
reduced to static assertions in this way.

Nevertheless, the new formalism as it stands does seem to correspond more
closely to practical uses of predicate logic, or semi-formalisms employed in
mathematical prose, where we do tend to use scoping conventions closer to the one
mentioned above.

Another attraction of the dynamic framework is that it suggests taking a
fresh look at definining connectives, and logical operators generally. As has often
been observed, logical operators do not have meaning only: they also exert control.
(For instance, Jennings 1986 points at the use of "and" and "or" as sequencing, or
more generally punctuation devices.) What we can do in the new setting, for
instance, is to define both 'dynamic' order-dependent versions of connectives, and
more classical 'parallel’ ones, studying their interplay. One instructive example is
provided by conjunction. The natural 'classical' stipulation, in terms of intersection
of successful transition sets, will now express a different option from the preceding
one: namely, a requirement of parallel execution. And similarly, a classical negation
in terms of complement will suddenly acquire a new operational significance.

Finally, the new system also suggest several ways of defining valid
consequence as arising from successive processing of premises. One natural
candidate is the following:
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®1,.....¢n EV if, for all models M,I and assigments aj,...ap+1

such that (aj,az) € [[@1]], ... , (an, an+1) € [[@,]],

there exists an assignment b with (ap+1,b) € [[y]].

This notion of consequence, like the ones presented in Section 2, lacks several of
the main structural properties of the standard one (be it for different reaons).
It is not monotone for instance:

JxAx EAx; but IxAx A Ix—Ax i Ax.

But this time also, it even lacks such simple 'domestic’ properties as insensitivity to
permutation, or contraction of identical premises:

JxAx A Lx E3Ix(AXALX); but  LxAdxAx ¥ Ix(AxALX),

JdxAx A Ix—-AX A IXAXx EAX; but  IxAx A Ix—AX | Ax.

Still, as in Section 2, certain special cases will remain valid - including the
following leftward form of monotonicity:

¢ Ey implies ¥,0 Ey .

Once again, the divergences from classical logic here arise from reasons
different from those in Section 2. We have defined 'logical consequence' rather
close to one particular interpretation algorithm, and are now feeling its effects.
Whether this has been a wise policy, will be discussed further in Section 4 below.

3.2 Dynamics of Information Flow

Changing assignments means no more than changing our links with a
certain model. We have been studying the 'dynamics of adjustment’, so to speak.
But already in Section 2, we also encountered the dynamics of changing
information. The latter perspective is currently receiving a good deal of attention
too. For instance, in the philosophy of science, there has been work on the
dynamics of changing theories, which has also issued in more general epistemic
studies of various operations on knowledge states: in particular, addition and
retraction of information (see Girdenfors 1988.)

There are at least two ways of thinking about the dynamics of changing
information states. One is the classical perspective: common to both standard logic
and such less standard frameworks as e.g. possible worlds semantics. Here,
incoming information is treated as reduction of the space of a priori possibilities - as
was done already in Section 2, when discussing 'classical' versus 'minimal'
transformations on information states. The other perspective takes some more
primitive notion of epistemic state, in particular, one in which partial information
need not be represented by a cloud of all possible total (world) extensions. And
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then, 'propositions' can act as more abstract operators on such states. We shall
consider both approaches.

3.2.1 Reducing Possibilities

First, the method of 'eliminating uncertainty' is easy to implement, witness
current folklore. Here is one particular example, due to Veltman 1987 (but compare
also Heim 1982, and others). Consider a modal propositional language with the
ordinary Boolean connectives as well as modality ¢ ("might"). Let U be a set of
'possibilities’ (say, ordinary valuations), for which it makes sense to call an atom p
true or false. Then we can define, for each formula @, a corresponding
transformation [[¢]] on subsets of U:

[PIX) = {xe X | x verifies p}
oAy X) = el @O N [IWI(X)
TovyI (X) = I X) v [y (X)
[=o11(X) = X - [lol (X)

and

{ X if [[epX) = @
&  otherwise

[0 oIIX)

If desired, one might add a sequential conjunction as before:

;s vIX) = (w1l ([l XD

For purely propositional formulas @, it is easy to see that [[¢]]X) merer
amounts to intersecting X with the truth range of @ in U computed in the standard
fashion. But, already with the modal operator, some interesting phenomena occur,
once consequence is introduced on the analogy of the previous subsection:

?1, ...¢n VY if,

for all X, [[@1; ... ;¢,]11(X) < [[WII(X).
Note, e.g., that O—p;p will be a consistent sequence, implying p, whereas its
permutation p;0—p is inconsistent. As Veltman argues, this reflects the facts of life
for our ordinary use of the epistemic modality "might". And there are various other
applications of this formal system too.

Also as before, the new dynamic consequence can be embedded in 'static’
standard logic. For instance, in a sense, the above little system is a part of monadic
predicate logic. To see this, assign unary predicate letters P (uniquely) to each
proposition letter p, while also taking one distinguished unary predicate letter X. By
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induction, we translate each formula ¢ into a syntactic operation A(¢) on monadic
formulas o = a(x) having a free variable x:

A(p) (o) = o A Px

A(PAY) (o) = A(@) (o) A A(y) (o)
A(pvy) (o) = A(9) (o) v A(y) ()
A(—9) (o) = a A= A(g) (@)

AC) (o) = Ay [y/x]1 Alg) () A
A(p;¥) (o) = A(y) (A() (o)

Evidently, this is a direct transcription of the above 'truth definition' into a simple
language quantifying over states in U. Thus, we have the following reduction:
?1,..,¢n EY if and only if
VX(A(@1;..;0n) (Xx) = A(y)(Xx)) is valid in monadic predicate logic.
As a bonus, decidability, the finite model property and other desirable features are
immediate for the new dynamic logic.

3.2.2 Building Up Information

Next, implementation of the second approach can actually go in many
directions, since we can structure 'knowledge states' in many different ways. (The
first approach may in fact be defended as being an elegant way of avoiding such
decisions: cf. Stalnaker 1986.) In particular, we have to specify the 'grain size', as
it were. Are knowledge states like sets of sentences, with all their syntactic
peculiarities? Or, should we smoothen these somewhat by thinking of deductively
closed theories in some logic? Could we work on the analogy of Beth tableaus, or
should we steer away from their particular notational structure, as is done in
Hintikka model sets? Slight differences in presentation may now become logically
significant.

We shall not go into any particular proposal here. Rather, we want to point
out a certain danger, of merely revamping existing systems. Suppose that we
choose the approach via deductively closed theories (as is suggested by
Giirdenfors' treatment). Let us work in ordinary classical propositional logic. (Note
that this decision itself determines what will be 'deductively closed' theories.) The
main idea then becomes just this:

the action of any formula ¢ on any 'state’' T consists in

forming the deductive closure of T U {¢}.

Now, these theories come in an obvious relation of inclusion :
TieTy if T;cTh
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Moreover, they form a distributive lattice, with respect to the available operations of
supremum | | and infimum [] on theories. Then, one can set up a recursive
definition of operators [[ ¢]] by merely providing a convenient decomposition:
fonD (D = [l ol (M) = [elI(D| Myl ,
TowllM = [elM[T] MwilT)
And other connectives could be treated by postulating additional structure on the set
of knowledge states (e.g., for implication, one would have to make it into a
Heyting algebra). But obviously, nothing much would be gained in this way. So,
there is a danger (to be avoided) of trivially achieving a 'dynamic' presentation.

Another approach might be to start from a very abstract notion of dynamic
information structure, studying specializations as they arise. For instance, the
general type might be this:

S .=, {tp | peP}),
where S is a set of 'information states', ordered by increasing strength (&), on
which a certain family of transformations acts, indexed by propositions. In other
words, we assume a perspective from Group Theory.

This perspective makes it easy to ask systematic questions. One is how
much structure should be imposed on the transformations. Evidently, they should
form a semi-group under composition. But, should they also be a group: i.e.,
should there be an inverse to every proposition (its 'retraction')? [Gérdenfors 1988
has rather looked at this structure of transformations from the point of view of
Category Theory, demanding the presence of equalizers, modelling equivalence
between propositions.] But also, this question interacts with the possible structure
to be imposed on information states: should they form a lattice, a Heyting Algebra
or even a Boolean Algebra? Then, it would be natural to have corresponding
closure conditions on transformations too. E.g., there should be some operation
on them such that

WATYE) = M Tq(x) , for all xeS.

Once a class of transformations with certain closure properties has been
chosen, we can bring up various additional questions. For instance, what are
natural subclasses of transformations satisfying additional mathematical
requirements? One natural example are idempotent operators, satisfying the
condition

TpoTp = Tp.

This is certainly a very plausible logical requirement too. Another reasonable
condition would be monotonicity , in the sense of respecting growth of information:
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xEy onlyif Tp(x)=1p(y), for all x,yeS.
This certainly holds for ‘classical' propositions; but also, e.g., for all modal
propositions in Veltman 1987 (where = is identical with D).

Here is one elementary observation in this vein.

Proposition: If S is a Boolean Algebra, and {1, | pe P} a set of idempotent
operators which are also distributive, i.e.,
Tp (xNy) = Tp(x)MItp(y) , forall x,yeS,
then the whole information structure can be represented by a set structure
of the 'eliminative' kind described earlier.

Proof: (Compare also the analysis of set transformations given in Section 2.)
For each state se S, set
5§ = {xlxes).
For each proposition peP, set
P = {xlpx)=x-
(This is the common idea of identifying propositions with their fixed points.)
Then it is easy to prove that
1) xegy iff x
S

2
@ B = 5N

y
p. &

But, one could also try to apply more sophisticated mathematical results
here, on the representation of algebras or lattices with certain types of
‘ endomorphisms. (Compare Jonsson and Tarski 1951/2.)

Finally, one basic attraction of the present framework is that it also suggests
new types of question, beyond the classical case. For instance, where
transformations are around, invariants cannot be far away (cf. van Benthem
1985b). A relation R between states is invariant with respect to our class of
propositions if, say,

x,y)eR iff (7p(x), Tp(y))eR, for all peP.

Is there an interesting invariant structure on S?

3.2.3 Relational Calculus and Categorial Grammar
Nevertheless, there are also other possibilities for abstract information

structures. Perhaps, propositions are not really functions on information states, but
rather relations, which can also take no value, or more than one. For instance,
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certain propositions might embody choices, leaving several options. In that case,
one natural framework would be to view propositions as forming an algebra in the
sense of the Relational Calculus, with basic operations such as composition,
intersection, union, etcetera. (Recall the earlier discussion of the dynamics of
changing assignments.)

One basic question in this perspective too, is what would be the natural
operations on propositions. This amounts to asking for some principled account of
operations on binary relations. (For an algebraic study of these matters, see
J6nsson 1984.) One way of doing this employs the framework of Type Theory.
For instance, there is a natural notion of logicality for this type of operator, in terms
of invariance for permutations of states (cf. van Benthem 1987b). Moreover,
again, we can introduce additional useful conditions, such as continuity, in the
sense of respecting arbitrary unions of families of relations. All possibilities can
then be classified (cf. van Benthem 1987a), and they form a neat basic set,
including the above-mentioned examples.

Proposition: The logical continuous operators on binary relations are exactly those
defined by a schema of the form
AR.Axy.3uv. Ruv A 'some Boolean condition on identities

involving x,y,u,v'.

Examples are converse:

AR.Axy.Juv. Ruv A x=v A y=u,
or diagonal:

AR.Axy.3uv. Ruv A x=y=u=v.
The result is easily specialized to operations from binary to unary relations; with a
typical example such as projection:

AR.Ax.Juv. Ruv A x=u.
It can also be generalized to n-ary operations on binary relations, bringing in
(typically) disjunction or conjunction:

ARS.Axy.Juv.3zw. Ruv A Szw A x=u=z A y=v=w ,
or composition:

ARS.Axy.Juv.3zw. Ruv A Szw A x=u A v=z A w=y.

This kind of systematic classification is important if we are to bring some
order into the plethora of possibilities for 'dynamic’ logical operators.
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Another interesting question is how such a relational structure would
translate into a corresponding system of inference . Here, we can follow a
suggestion arising from Orlowska 1987, and exploit an analogy with Categorial
Grammar. The logic will be very much like a so-called 'Lambek Calculus', as
developed in that area (cf. van Benthem 1986a, 1987a). The main idea can be
explained as follows:

* basic propositions p are interpreted as binary relations Rp

* complex propositions p.q are interpreted through the composition RpoRy

e disjunctions may be interpreted by unions
But, what to do about implications?

Here, Orlowska notes that two quite plausible ‘implicational’ operators may be
used, introduced recently by Tony Hoare:

RS = U{XIRXcS)

S/R U{X | XoR < S} ,
which describe 'weakest pre- and post-specifications'. (This continues the well-
known work on pre- and post-conditions in the operational semantics of
programming languages. But see also J6nsson 1984 for a purely algebraic
introduction of \ and /.) Accordingly, the dynamic perspective suggests introducing
two implications, one searching for its argument on the left-hand side, and one
searching on the right. [A similar idea has been suggested independently by
Gordon Plotkin (private communication).] But, this is precisely standard practice in
Categorial Grammar, which has developed systems of proof for directed types

a\b and b/a.

For instance, the basic Lambek Calculus is the following Gentzen-type system:

Axiom: a = a
Rules: X = a YbZ = ¢ X =>a Y,b,Z = ¢
Y., X,a\b,Z = ¢ Y,b/a,)-(-,-Z- =c
X,a=>b a,X = b
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X>a Y=b X,ab,Y = ¢

X,Y = ab X,ab, Y = ¢

Derivable sequents in this system L include a.a\b = b, but typically exclude
a\b.a = b. [Here, we have deviated somewhat from the standard version, in

allowing empty sequences on the left. As a consequence, we can derive, e.g.,
(ele)t = t.]

Proposition: The Lambek Calculus L is sound for the above relational calculus.
That is, if the sequent ay,...,ap = b is L-derivable, then,
for any assignment of binary relations Ry to primitive types x,
with R, for complex a computed as above,
Ra10..0Ra, C Ry,

It would be very interesting to have a converse too (for the operations . ,\and /,
that is.) Thus, we would establish a link between basic logics of categories in
natural language and plausible systems of 'dynamic logic'.

3.2.4 Propositional Dynamic Logic

Indeed, there is also a profitable connection to be found with 'Dynamic
Logic' in the usual sense of that phrase (see Harel 1984). In that research program,
one adopts an enriched modal logic having both propositions and programs, in
which the latter denote transition relations between states, whereas the former stand
for functions from states to truth values (their more traditional role). One interesting
feature is that there are operators mapping one into the other: modalities take
programs to operate on propositions, whereas a test operator takes propositions to
programs. This turns out to be a third convenient abstract framework to explore for
present purposes.

Note that here, a possibility comes to the fore which has hitherto been
neglected. We have been treating propositions themselves as being operations on
information states. But in fact, we may want a separation of concerns: into
propositions expressing a certain informational content, and various modes of
transforming states (which can use certain propositional contents, to be sure). For



42

instance, the above test operator is one such mode, which checks if a state has a
certain property, but then leaves it as it is. Another operator might be addition,
which, given a propositional content, transforms any state into a minimal extension
(as measured along some prior inclusion relation among states) having that content.
Thus, we are now interested in Propositional Dynamic Logic for its potential as a
dynamic logic of propositions, rather than programs.

Again, the general situation here can be analyzed in type theory.
Propositional dynamic logic has primitive types t (for truth values) and s (for
states). Propositions have the functional type

(s,t) (from states to truth values') ,
while programs have

(s,(s,1)) (‘from pairs of states to truth values').

The above 'switching modes' will then be operators in the type

((s,1), (s,(s,0).

As before, it makes sense to ask for logical items here, being those which are
invariant for permutations of states. [Note the formal similarity with the earlier
relational calculus case of the converse type ((e,(e,t)), (e,t)).] And in fact, the test
operator is logical, while also satisfying the earlier special requirement of
continuity. Also as before, we can classify all possibilities of the latter kind in the
schema

AP.Axy.3u. Pu A 'Boolean condition on identities involving X,y,u'.

As a first attempt, one might consider that fragment of dynamic logic which
only has basic programs of the form ?¢ (where ? is the test operator) and then the
usual program operations

; (sequencing), U (choice) and * (iteration) .

But, this will reduce to ordinary propositional logic, because of such equivalences
as the following :

M UTR>P < <T>QV <I>0

<n1;T2>Q < <M 1><M>P

<?0>0Q S 0AQ

) = 1 ( the identity map)

So, it becomes imperative to add some further structure, as was suggested
above. That is, the set Dg of states will now carry a binary inclusion relation. Then,
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we add two further modes of handling propositions. First, the mode of addition
may be defined as follows:

+¢ is the relation {(s,s") | s =5’ and @ is true at s' and,

either @ is true at s and s'=s, or ¢ is false at s and ¢ is false

at all states in between s and s'} .
There is an analogy here with the "until" operator of Tense Logic.
This then suggests having also a dual mode of subtraction (compare "since"):

- is the relation {(s,s) | s'Es and @ is false at s' and,

either @ is false at s and s'=s, or @ is true at s and ¢ is true

at all states in between s'and s} .
Of course, the test operator ? retains its original definition:

?¢ is the relation {(s,s) | ¢Qistrueats } .
In addition to these three modes +, -, ? , it will also be useful to have a general
modality referring to possible extensions along  in the usual way:

Do is true at x if @ is true at all y with xgy

0@ is true at x if @ is true at some y with xgy .
[Given our dual set-up, it would also make sense to introduce similar 'downward'
operators. ]

This logic will validate some basic principes for proposition-based

transformations.
For instance, all three are idempotent:

20; 2?0 =
+Q; +¢ = +Q
“¢:-0 = -¢
But, there are also other validities, such as
¢ = (<tHe>y o vy)
=P = (<-P> Y © V) )
or the related
To;+9 = 9
e = 7=
Some non-validities may be worth observing too:
+¢; -0 # I

-¢;+0 # I,
where I is the identity transformation. The reason is shown in the following two
pictures of possible information structures:



1_'p —_— 2 p . (2,2) € [[+P]], (2’1) € [[‘P]],
2p

1-p < . @D e [-pll, (L3)e [+,
3p

Mutatis mutandis, this formalism can also be used to analyse various axioms
concerning theory extension and theory revision found in Makinson 1987 or
Gardenfors 1988, two studies whose abstract perspective is quite congenial to the
one presented here.

The general logic of the dynamic propositional language with only programs
formed using ?¢,+¢ ,-¢ and ;, U, * is probably still effectively
axiomatizable . [Without the iteration *, this will even be automatic, because there
is a standard translation then of the semantic truth conditions into a first-order
language: compare van Benthem 1984.]

Other questions concerning this logic are of a more general model-theoretic
nature. In particular, as before, one can also study special types of transformation
here. For instance, tests 7@ always denote a (partial) identity function on states,
which does not really ‘move forward'. But, so do certain additive cases, such as

+p
where ¢ is the above general modality.  If a program +¢ always denotes a partial
identity function, then this must mean (under a reasonable assumption of well-
foundedness for £) that we never encounter s s, @ true in s' but false in s. In
other words, ¢ is downward-persistent, in an obvious sense. But, such formulas ¢
will be equivalent to 0¢. So, the above example was indeed characteristic. Thus,
we get an interplay between semantical properties of transformations and well-
known properties of their underlying propositions.

A further specialization would arise if we were to restrict the available
propositions beforehand to cases that are upward- or downward persistent (or
perhaps, merely convex).

Another important line of specialization arises, if we impose further
restrictions on the structure of states (S, ). For instance, it might be reasonable
(as earlier on) to regard this as a, possibly distributive, lattice - a lattice which
might even be closed under arbitrary joins and meets. (The earlier case of
deductively closed theories is one example.) In the latter case, it becomes possible
to make propositions uniformly into functions, instead of relations. Namely, one
stipulates that
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+¢ maps any state s to the meet of the set
{s'lses}u{sl@istrueats] (f that meet exists).
And -¢ is defined similarly by a join of suitable = -predecessors.

Evidently, the logic of this scheme will be richer than before.
In dynamic logic terms, programs +¢ and -¢ have now become deterministic.

Digression: A Connection with Minimality

Studying the logic of our dynamic propositional operators involves the
earlier issue of minimal modelling (see Part II). For, +¢ may be regarded as a
minimized case of a more liberal operator

PLUS ¢ = { (s,s) | s=s'and @ is true at s' }.

Such an operator would reduce to a general modality as follows:

<PLUS ¢>y < O(QAY) .

But, due to the minimality in the truth clause for +@, no similar reduction appears
feasible for the latter notion. There is no natural general modal equivalent for the
statement <+@>V. The only plausible reduction would be the special case

<+¢>T < 09 ;
which will hold provided that we demand well-foundedness for the extension

relation .

What further principles are reasonable for the modality <+@> ?
Of course, there are the standard modal axioms, such as Distribution:

<to>(avB) & (<+e>ov<+o>p).

For further axioms, again, we can turn toward earlier systems of minimal logic in
Part II: notably, those presented in Sections 2.2.2 and 2.2.3. For instance,
conditionals @=>y may now be compared with modal formulas

[+o] v.

Of the principles of the minimal conditional logic, then, rightward Monotonicity
and Conjunction follow directly from the Distribution axiom. The remaining ones,
however, require various additions, such as

Reflexivity: [+olo.

Disjunction of Antecedents: ([+olyal+ly) = [+ovlv.
Deriving the final principle '¢=>vy, 9=>% / (@AY)=Y' will require a suitable
strengthening of the above Wellfoundedness principle.

Thus, properly viewed, the present dynamic logic encompasses the minimality-
based logics of our earlier investigation.
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Finally, there are still aspects of dynamic interpretation which go beyond the
present framework. For instance, commitment to an implication —\ in ordinary
discourse is often explained as obeying a standing instruction (compare the rules of
a Lorenzen dialogue game):

'as soon as one becomes committed, in further discourse or argument,

to the antecedent ¢, the obligation to add v is incurred'.

In the above terms, this would rather say something about the internal structure of
a transition process. A successful transition (s,s’) gives the two extremal points of a
finite sequence of intermediate steps:

S=8]--S--..--Sp=§

which may obey, e.g., the constraint that, whenever s; validated @, the next step
Si -- Si+1 was an addition of y. [An alternative would be to program standing
instructions explicitly, via Kleene iterations.] This move towards representing a
richer internal structure of processes can also be observed in ordinary Dynamic
Logic, namely, when one passes on to some kind of Process Algebra (cf. Bergstra
and Klop 1984).

Thus, this final perspective too offers us a versatile model for studying the
dynamics of information flow.



47

4. DISCUSSION

The preceding Sections contain enough material to warrant the conclusion
that dynamic information structure eminently deserves further logical study.
Indeed, the literature already shows some quite promising explorations.
Nevertheless, there are also some difficulties to be observed.

One is a kind of general paradox of complexity. Although most systems in
the area seem inspired by a desire for modelling simple efficient reasoning (of
which our own 'domestic reasoning' is taken to be a paradigmatic example), the
actual proposals produced seem to go in the wrong direction. This was striking
with Circumscription, which produces a notion of consequence whose complexity
is vastly higher than that of classical logic. (Compare the conjecture in van
Benthem 1985c, that Tarski's classical notion of consequence is distinguished,
among all its rivals, as being the only one to produce an effectively axiomatizable
set of validities). But also, the dynamic systems of Section 3 produce logics whose
inferential behaviour, upon closer inspection, is not at all as perspicuous as that of
standard predicate logic.

Of course, there may be ways-out here. Perhaps, in actual practice, we shall
always avoid the complex cases (compare the Lifschitz analysis of 'elementary'
circumscription) - and there may be even a system to that practice which can be
brought to light.

But, in some ways, these observations also raise the issue of whether we
are going about things in the right fashion. For instance, Franz Guenthner has
suggested that we should distinguish between (at least) two kinds of inference. One
is 'on-lin€’, close to the original linguistic structure of premises, and may be more
‘dynamic'. The other operates on more abstract informational content, even after
we have forgotten the specific original linguistic formulations. The latter may be
closer to classical standard logic.

The latter point is reinforced by the difficulties encountered in analyzing
operations on 'information states', where one finds that the properties of particular
representations chosen tend to get in the way of logical understanding. Perhaps,
what is needed is a clear separation of concerns. [The earlier division into
propositional contents and modes of transforming information states was already
one attempt in this direction.] In fact, many authors have warned that a genuine
deep theory of any phenomenon should stay at a reasonable level of abstraction
from its particular implementations. (Compare recursion-theoretic theories of
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computation vis-a-vis actual algorithmics, or the plea for a procedurally neutral
approach to semantics in Fenstad et al. 1987).

This issue of where to locate what also reminds us of another broad
alternative to the semantic approach taken throughout in this paper. Many issues
treated here really play at the syntactic level of text and discourse. For instance, the
earlier example of 'retracting' a proposition is difficult to grasp semantically: how
to recover a unique source for a given value of a transformation? But, this is a self-
inflicted perplexity. At the text level, we know what was the previous proposition,
and there is no difficulty at all in retracting iz. And similar considerations apply to
such 'modifying speech acts' as 'conditionalizing', which require undoing the
effect of some previous transformation:

"P. If Q, that is ..."

Similarly, the earlier modes of taking propositions are a simple fact of life at
this level. We know in a certain discourse whether we are going to take a certain
answer exhaustively (see Section 2) or in the normal sense. For instance, when
reading a certain Danish children's book to my sons, called "Auntie Thea", I
arrived at a passage where questions are posed and answered. Here is one example:

"What was Auntie Thea wearing?"

"A red hat."

On the theory of Groenendijk and Stokhof 1985, who always predict the
exhaustive reading, this would hardly be a children's book ... . But of course, my
sons realized the 'language game' we were in , and asked what else she was
wearing.

So, we may have to look for a theory of text structure and discourse, as
indicated by control expressions, such as "so", "but", "suppose”, "let", etcetera.
And the proper model for that may be not so much Semantics as Proof Theory,
with its account of the structure of proofs: themselves already a nice and rich
example of textual phenomena. For instance, there is already a fair amount of
anaphoric relations, and dynamic dependency structures in Natural Deduction
arguments. (For more technical applications of proof theory, to circumscription, cf.
Jaeger 1986.)

But even more generally, we also need a pragmatic theory at the level of
logical language games, explaining the ease with which we adopt or switch certain
modes of reasoning behaviour. (Compare the discussion at the end of Section 2.1.)
Logic should not just be about the 'forms’ which are the products of reasoning, but
also about the 'rules’ which guide that activity.

We still have a long way to go.
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