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A mathematical model for the CAT framework of Eurotra

Theo M.V. Janssen
Dept. of Mathematics and Computer Science
University of Amsterdam
Nieuwe Achtergracht 166
1018 WV Amsterdam
The Netherlands

1. Introduction

Eurotra is the machine translation project of the EEC. The basic ideas for the design of the
system are given by the CAT framework, which is, together with various relaxations, presented in
several publications (e.g. Arnold e.a., 1985, 1986, des Tombes e.a. 1985, Arnold & des Tombes
1987). In the present paper a mathematical model for the CAT framework will be developed. This
will be a model of the structural aspects of the framework, such as the structure of the grammars
and of the translation steps. The model uses notions and results from universal algebra; a branch of
mathematics which deals with structures and their relations. The model is in a certain sense the
same as the CAT framework, but it is build with different tools. Eurotra is a project of ongoing
research with continuous practical experience, and this might cause changes in the original
framework. Since the present paper is mainly based upon the publications mentioned above, it
does not necessarily describe the present situation correctly (for your information, the author is not
personally involved in the project). The aim of this paper is, however, not to present some version
of Eurotra, but to argue for a more abstract and more mathematically based approach to Eurotra
(and other machine translation systems). It will be shown that there are several advantages of such
a mathematical approach. It brings new insights in the framework (see sections 4 and 5), and
gives us a new appreciation of certain Eurotra proposals (see sections 6 and 7). Furthermore, the
mathematical model for Eurotra will, I expect, be a good starting point for investigating later stages
of the Eurotra system.

The aspects of the Eurotra system that are relevant for the discussion of the present paper are
the following. It is a transfer system that translates sentences. In the course of this translation
process the sentence is analysed in different ways according to different criteria. Each of these
analyses is considered as an expression in some analysis language. The process of translating a
sentence is a process which transputs the sentence through the several analyses for the source
language, and next in reversed order for the target language. Each of these steps from analysis
language to analysis language is considered as a translation step of the same nature as the 'real’
transfer step from the last source language analysis to the first target language analysis.

The different analysis languages are mentioned below (using the terminology from Amold &
des Tombes 1987). In the Eurotra publications the discussion usually is restricted to the analyses
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3, 4 and 5, and so will be done in the present paper.

1. ENT (=Eurotra normalized text)

The input and output of the system are unanalysed expressions, presented in some normalized
form.

2. EMT (=Eurotra morphologically analysed text)

At this level the words of the expressions are morphologically analysed. So instead of works a
expression will contain something like work[third person singular present tense].

3. ECS ( =Eurotra Constituent Structures)

Constituent structures are assigned to morphologically analysed expressions. The order of the
words in the structure is the same as in the surface expression.

4. ERS ( =Eurotra Relational Structures)

The syntactic relations of an expression are given in a labelled tree. The surface order needs not to
be respected; for instance a direct object of a verb is connected immedeately with the verb it
belongs to.

5.1S ( =Interface Structures)

The semantic relations of a phrase are given by means of a labelled tree.

2. Algebras as syntax

Several considerations have influenced the design of the CAT framework. One of these is the
principle of compositionality of translation. It reads, in my formulation, as follows:

The translation of an expression is a function of the translations of its parts

and of the way they are syntactically combined.

This principle I will take as point of departure for the development of a mathematical model. The
other considerations will not be mentioned here, since the compositionality principle is sufficient
for that purpose.

The principle of compositionality speaks about the parts of an expression. So there has to be
in the model a formal source for determining what the parts of an expression are. The information
on how expressions are formed is given by the syntax of a language, and consequently the rules of
the grammar determine in our model what the parts of an expression are. This means that the rules
build new expressions from old expressions, and we will call these old expressions parts.

Let us consider an example. Suppose that a rule, called S1, builds John takes the apple away
from John and take away and the apple. Then these three expressions are the (immediate) parts of
this sentence. If one would prefer to consider this sentence as consisting of two parts, then one
should not have rule S1 in the grammar, but a rule S1' that builds this sentence from the two parts
John and take the apple away.

A syntax with the kind of rules as described above is a very specific example of what is called
in mathematics 'an algebra'. Informally stated, an algebra is a set with functions defined on that
set. After the formal definitions some examples will be given.



Definitions.

A an Algebra A, consists of a set A called the carrier of the algebra, and a set F of functions
defined on that set. So A = <A ,F>. The elements of the carrier are called the elements of the
algebra. A function is called n-ary if it takes n arguments. Instead of function, we often use the
name operator. If an operator is not defined on the whole carrier, it is called a partial operator.
If F(E1,Ep, ...Ep)=E, then E1,E), .., and E are called parts of E.

The notion set is a very general notion, and so is the notion algebra which has a set as one of
its basic ingredients. I will give three examples of a completely different nature. The first is the
algebra with as carrier the set N of natural numbers {0,1,2,3,....} and with addition and
multiplication as operators. The second example has a more linguistic character. The carrier is the
set of all finite strings of words which can be formed from the entries in a given dictionary, and the
operator is concatenation. A third example consists of the set of trees (consituent structures) and as
operation making a new tree from two old ones by giving them a common root. In order to avoid
the misconception that everything is an algebra, finally a non-example. Take the second algebra
(finite strings of words with concatenation), and add an operator that counts the length of a string.
Then it is not an algebra any more, since the lenghts (natural numbers) are not elements of the
algebra.

As argued above, it is a consequence of the principle of compositionality of translation that
the grammars have to be algebras. And indeed, in the CAT framework for Eurotra all grammars are
algebras (although this terminology is not used). The first two levels of analysis in Eurotra
(unanalysed sentences and morphologically analysed sentences) are algebras with concatenation as
operator. The three other levels (ECS, ERS and IS) concern labelled trees and the operators mostly
combine two or more trees to a new tree by providing them with a new common root.

In the linguistic examples we have met operators of different nature. In the second example of
the above paragraph the operator was concatenation of strings, whereas in the example in the
beginnings of this section it was a substitution: the apple is placed between take and away. An
operator which introduces a new word, viz. a determiner, is the Eurotra operator Sgef that
produces the apple from apple . We have defined the notion part of E as the inputs of the operator
producing E. Hence, according to rule S1, take away is a part of John takes the apple away,
whereas it does not occur as substring of that sentence. And the, which intuitively might be
considered as a part, is according to Sgef not a part of the apple . Rules that involve unification
are frequently used in Eurotra. They give us other examples of rules that build a compound
expression from parts that are not parts in the naive sense. These examples show that part is a now
a theoretical notion and not an empirical one; the formal notion and the intuitive notion coincide if
the syntactic rules are concatenation rules.

Next we will meet a subclass of the algebras, viz. the finitely generated algebras. All Eurotra
algebras belong to this class. To give an example, consider in the subset {1} in the algebra of
natural numbers defined above. By application of the operator + to elements in this subset, that is
by calculating 1 + 1, one gets 2. From the then obtained set one can produce 3 (by 2+1, or 1+2),
and in this way the whole carrier can be obtained. Such a subset is called a generating set for the
algebra. If an algebra has a finite generating set, the algebra is called finitely generated. If we have
in the same algebra the subset {2}, then only the even numbers can be formed. Therefore the
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subset {2} not a generating subset of the algebra of natural numbers. On the other hand, the even
numbers form an algebra. This fact that can be explained as follows. If one starts with some set,
and add all elements that can be produced from the given set and from already produced elements,
then one gets a set that is closed under the given operators. Hence it is an algebra. This method can
be applied to any subset in any algebra.

Definitions

Let A = <A,F> be an algebra, and H be a subset of A. Then <[H],F> denotes the smallest algebra
containing H, and is called the by H generated subalgebra. If <[H],F> = <A,F>, then H is
called a generating set for A. The elements of H are called generators. If H is finite, then A is
called a finitely generated algebra.

So for the first example of an algebra, a finitely generated algebra, holds <N, {+, X}> =
<[{1}], {+, x}>. Another example of an algebra was the set of all strings of entries in a lexicon;
this algebra is finitely generated with the lexicon as generating set. An algebra that is not finitely
generated is <N, X >, the natural numbers with multiplication.

The terminology of Eurotra is different from the algebraic terminology. They use the name
constructor instead of operator, atom instead of generator, and write <C,A> where we would write
<[A],C>. If we may understand T as an abbreviation for translation, the name CAT framework
(or <C,A>-T framework) can now be understood.

3. Terms as production processes

The compositionality principle states that the translation of an expression is determined by the
translations of its parts and the way in which they are syntactically combined. The latter clause
accounts of course for the the fact that the same parts can be used in different ways, yielding
different expressions (e.g John loves Mary vs Mary loves John). So from compositionality it
follows that this 'way of production' is crucial for the purpose of translating. Therefore it is useful
to have a representation for such a production process or derivational history. Below an example
of a derivational history and its representation will be given.

Consider the sentence John finds the apple . According to the Eurotra rules this sentence is
formed as follows. The operator Cqef is applied to the noun apple, forming the noun phrase the
apple. Next the operator Cyp is applied to the just formed noun phrase and the verb find, yielding
the verb phrase finds the apple. Finally Cg is applied to this verb phrase and John . This
production process is represented by the following sequence of symbols:

Cs(ohn,(Cyp(find, Cpeflapple))).

This method for representing a formation process, viz. by means of bracketing, operator symbols
and generators, can be used in any algebra. Such expressions are called rerms.

Definition

Let B = <[B], F> be an algebra. Introduce for each element in B a distinct symbol b, and for each
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operator in F a distinct symbol f. Then Tg F, the set of terms over <[B], F> is defined as
follows

1) for element in B the corresponding symbol b e TB F

2) if f corresponds with an n-ary operator, and if t1, t2,.. . tn € TBF.,

then f(t1,t2, .. tn) € TBF.

In case we do not want to be explicit about the set of constants, we may use the algebra itself as
subscript (as in Tg ).

Terms can be combined to form new terms. An example was the combination of the term
Cpef(apple) with find to form the term Cyp(find, Cpeflapple) ). Thus the terms over an algebra
form an algebra again, and this algebra is called a termalgebra. There is a simple relation of the
terms to the elements in the original algebra. With the term Cpef(apple) corresponds an element
which is found by evaluating the term, i.e. executing the operator on its arguments. Note that
different terms may evaluate to the same element, and the evaluation of a term can be very different
from the term itself.

As I argued, it follows from the principle of compositionality of translation that the terms give
the relevant information for translation. And indeed, the translations between the analysis
languages of Eurotra are defined not between the algebras for ECS etc. themselves, but on the
corresponding termalgebras. Hence translations are mappings from termalgebras to termalgebras;
such mappings will be considered in the next section. The evaluation of term in such an
termalgebra (in Eurotra) is a linguistic analysis tree. A difficulty with the role of terms in the
Eurotra framework is that linguists are not used to them, and have therefore no intuitions about
their linguistic acceptability. They probably prefer to read evaluated terms, called inspection trees
by the proposers of the CAT framework. But in the translation process itself such inspection trees
play no role.

4. Homomorphisms as compositional translation

The principle of compositionality of translation does not only tell us which objects are to be
translated, but also in which way this translation has to be performed. Suppose we have an
expression obtained by application of operation f4 to arguments aj, . . . ,a,. Then the translation
into B should be obtained from the translations of its parts, hence by application of an operator gg
(corresponding with f) to the translations of aj, . . . ,a,. So, if we let T denote the translation
function, we have

T(fa(ag, - - . ,ap ) = gB (T(a1), . . T(ap)).

In Eurotra such a translation mapping is called a strictly compositional translation, and in algebra it
is called an homomorphism. In the CAT-framework the translations indeed are homomorphisms
between termalgebras.

A homomorphism h from an algebra A to algebra B is, intuitively speaking, a mapping
which respects the structure of A in the following way. If in A an element a is obtained by means
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of application of an operator F , then the image of a can be obtained in B by application of an
operator corresponding with F. The structural difference that may arise between A and B is that
two distinct elements of A may be mapped to the same element of B, and that two distinct operators
of A may correspond with the same operator in B.

Definition
Let <A,F> and <B,G> be algebras. A mapping h: A —B is called a homomorphism if there is a
mapping h': F — G such that for all f €F and all aj ..a; € A holds h(f(a, . . ,ap)) =

h'(f)(h(ay), . . ;h(ap)).

As a matter of fact, we have already met a mapping with these properties. The operator which
evaluates aterm is a homomorphism, or, in the Eurotra case, the operator that produces an
inspection tree from a given derivational history. But the more important in our approach is the
role homomorphisms have in the translation procedure.

By the introduction of terms and homomorphisms all ingredients are present which are needed
in order to define what compositional translation is. A compositional translation from algebra
<A ,F> to algebra <B,G> is an homomorphism from T<A F> to T<B G> - So the translation of
an element a € A is obtained by first finding its derivational history in T<A F> , then
homomorphically translating it into T<B G> and finally evaluating the thus obtained expression.

This process is summarized in figure 1.

T<AF> y T<B,G>
h

€1l |p €2

<AF> <B,G>

h : translation homomorphism; e1,e7: evaluation homomorphisms,
p: parsing, finding a corresponding term for a given element in <A,F>

Figure 1. The basic model for compositional translation

Indeed, in the CAT framework all translation steps are homomorphisms. It requires, however,
some further steps to arrive at the model for the CAT framework when starting from the above
model for compositional translation. An obvious difference is that compositionality speaks about
translating from one language to the other, whereas in a Eurotra translation several analyses
languages are involved. In building the model, we need a mathematical result, stating that the
composition of two homomorphisms is again an homomorphism.

Theorem
Let <A, F>, <B, G> and <C, H> be algebras, and let gc A — B and h: B = C be
homomorphisms. Let the composition geh : A — C be defined by geh(a) = h(g(a)).



Then geh is a homomorphism from <A, F> to <C, H>.

This theorem allows us to extend the model as presented in figure 1 with a second translation step,
see figure 2. The theorem states that executing the two translations consecutively amounts to a
homomorphic translation from <A, F>to <C, H>. The decomposition of this translation into two
steps as well as the use of the intermediate language B, can be considered as auxiliary. In principle
the intermediate stage could be eliminated and the the homomorphism geh could be defined directly
without reference to B.

T<AF> 3y T<B,G> > T<C,H>
g h

€1l |P €2 €3

<A P> <B,G> <C,H>

g,h : translation homomorphisms; e1,e2 €3: evaluation homomorphisms,
p: parsing, finding a corresponding term for a given element in <A,F>

Figure 2. Compositional translation with one intermediate language

In the CAT framework of Eurotra all translations are homomorphisms between termalgebras.
And the theorem we have applied once, can be applied again: composing several homomorphisms
to a single one. The many translation steps in Eurotra define together one translation
homomorphism. All intermediate translation steps can be considered as auxiliary means for
defining the translation from source to target. Our mathemtical model shows that the CAT
framework is in essence a framework for obtaining a compositional translation (a conclusion that is
not explicit in the Eurotra publications). The mathematical model for the CAT framework is given
in figure 3. The main result from the algebraic theory is the presence of the uppermost arrow: the
direct translation homomorphism.



4 N
TECS,A — TERS,A — TIS,A — Tis,B — TERS,B—> TECS,B

P |°ECS,A [°ERS,A €IS,A ¢IS,B €ERS,B €ECS,B

4

ECS,A ERS,A IS,A IS,B ERS,B ECS,B

A: source language, B: target language

eECS,A» €ERS, A €IS, A» IS,B> €ERS,B €ECS B! evaluation homomorphisms,
p: parsing, finding a corresponding term for a given element in ECS,A

figure 3. The mathematical model of the CAT framework,
for translating from source language A to target language B.

5. Polynomials as relaxations

Up till now there was a parallelism between the mathematical model and the Eurotra CAT
framework. We obtained a new perspective and have seen some features that were hidden in the
framework. But in the present section we will investigate a proposal where the mathematical model
leads us to a different appreciation. This proposal might be considered as a reflection of the
Eurotra opinion that compositional translation is a beautiful ideal, but unattainable in practice. One
is willing to take it as a starting point, but relaxations are considered as indispensable. In the
present section the proposal will be investigated, and it will turn out that the proposed relaxations
are, with one exception, relaxations that fit completely into the mathematical model. Hence they are
no relaxation at all of the notion of a compositional translation.

The relaxations that will be discussed below are proposed in several Eurotra publications. We
will follow the formulation in Arnold e.a. 1985. Immediately after the introduction of the notion
'strictly compositional' translation (= homomorphic translation) the relaxation is introduced. For
the ease of the discussion, the relevant passage is quoted.

A translation relation T between Gj= <CjA;> and Gj = <CjA;> is strictly compositional if T
maps Aj into Aj and there is a mapping t from C; into Cj such that ifexp = c[uj, . .uy ] then
the translation of exp is: t(c)[T(uj), . . ,T(uy)]. In addition to strict compositionality the following
relaxations are allowed:

1) The number and/order of arguments of ¢ and t(c) may differ
2) Rather than being a an actual member of the constructors for a given G, either c, or t(c) may be a
function made up of variables, and atoms, and constructors of G.



In order to discuss this proposal, the algebraic theory has to be developed somewhat further.
What is needed is a method to define new operators in a given algebra. A simple example of an
operator defined from given operators is composition: if f and g are operators which take one
argument then fog is defined by first applying f to the argument, and next applying g to the result.
So for all a fog(a) = g(f(a)). A less elementary example concerns the algebra of natural numbers
with + and x as operators. The new operator takes two arguments and is represented by the
expression X1 X X1 + x2 X x2. The operator assigns to the arguments 1 and 2 (given in this
order) the value 1 X 1+2 x 2, i.e. 5, and it assigns to the arguments 2 and 3 the value 2 X 2 + 3 X
3, i.e. 13. An expression like x1 X x1 + X2 X x7 is called a polynomial. Given two arguments, the
resulting value is obtained by substituting the first argument for x1, the second argument for x2,
and performing the calculations which are indicated in the expression. Informally stated, a
polynomial is a term with variables, and it defines an operator. This method of defining new
operations by means of polynomials can be used in every algebra, the relevant formal definition are
given below.

Definitions.

The set Poll¢[g] F> of n-ary polynomial symbols, shortly polynomials, over algebra
<[B],F>, henceforth abbreviated as Pol?, is defined as follows.

1) For every element in B there is a distinct symbol b € PoI” . These symbols are called constants.
2) For every number i , with 1<i<n, the symbol xj € Pol™, These symbols are called variables.

3) For every operator in F there is a distinct symbol f. If F is a m-ary operator, and we have that if
P1> P2 - - »Pm € Pol™ then also f(p1, . .,pm) € Pol™

The set Pol of polynomial symbols over algebra <[B],F> is defined as the union for all n of
the n-ary polynomial symbols, i.e. by Pol = Uy Pol 1,

A polynomial symbol pe Pol? defines an n-ary polynomial operator; its value for given
arguments is found by evaluating the term that is obtained by replacing x1 by the first argument, x)
by the second etc..

Given an algebra <[B],F>, and a set P of polynomial symbols over A., we obtain a new
algebra <[B],P> by replacing the original set of operators by a set of polynomial operators. An
algebra obtained in this way is called a polynomially derived algebra, or shortly a derived
algebra.

Note that a symbol like x1 is a member of Poll, Pol2, etc, and analogously for all other
symbols. The polynomial x1+x2 might be a 3-ary polynomial, and the corresponding operator has
the property that its value is independent of its third argument. This polynomial illustrates that the
form of a polynomial does not determine completely the arity of the corresponding operator. If it is
necessary to mention explicitly the number of arguments a polynomial takes, this can be done by a
superscript indicating the arity (but in most contexts the arity will be evident).

The relaxation presented in the beginnings of this section was divided into two clauses. Each
of the two can be split into several subcases. Below we will consider them separately, and show
that their effects can (with one exception) be obtained by means of translating an operator into a
polynomial. This means that there is a strictly compositional translation into a polynomially derived
algebra, i.e. into an algebra of which the operators are defined by means of polynomials.



1a) the order of arguments of ¢ and t(c) differs

An example of change of order of arguments arises when the translation of c[u},u2] is defined by
t(c)[up,u]]. The same effect can be obtained by translating operator ¢ into the polynomial symbol
t(c)(x2,x1).

1b) the number of arguments in t(c) is less than in ¢

A simple example is that c[u7,u2] is translated into t(c)[x]. This effect is obtained by translating ¢
into the polynomial symbol t(c)(x1) from Pol2. Recall that this corresponds with a two place
operator for which the value of the second argument is irrelevant.

1¢) the number of arguments in t(c) is more than in ¢

It is of course not meant by the proposal that c[u],u2] can be translated into t(c)[u],u2,u3], since
there is no u3 that can serve as argument of t(c). Presumably those situations are intended where
the main operator after translation has more arguments than the original operator, and the extra
arguments are known. An example is reduplication, e.g. when the translation of c[uj,u] is
defined as t(c)[u,u2,u]]. Another possibility is that the extra argument is a constant. An example
(not from Eurotra) arises if we translate from Latin (which has no articles) into English. We might
then translate CNp(pater) into C'Np(the, father). The effects of these two examples are obtained
by the polynomials t{ CNp )(x1,X2,X1) and t(C'Np) (the, x1) respectively.

2a) t(c)is a function made up of variables, and atoms, and constructors
The description of what is meant by a function, learns us that it is the same as a polynomial. In the
light of the cases 1a .. 1c) we see that relaxation 1) is in fact a special case of relaxation 2b).

2b) c is a function of variables, and atoms, and constructors

A special case of this relaxation is the following: variables are allowed in c. An example arises
when c7[ 1, 2, 3] is translated as c3g[ 2, 3]. The same effect is obtained by means of the
polynomial c3g(x2,x3). The general case that ¢ is a function does not fit into the idea that the
relaxations are in fact homomorphisms to a derived algebra. This exception will be discussed in the

next section.

The investigations in the mathematical model show that the original Eurotra division of the
relaxation into two cases is not correct. The first clause is in fact a special case of the second one.
Furthermore, the relaxations allowed for in the second clause can, with one exception, be
formulated by means of polynomials. So they consitute variants of the compositional framework,
and do no disturbe compositionality at all.
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6. Deviations

Most Eurotra relaxations can be considered as the introduction of polynomially derived
operators. The single exception is that the left hand side of a translation rule can be a term. In the
present section we will discuss an example this relaxation. First its linguistic background will be
sketched. Sentences like
(1) John seeks Mary
are in Eurotra, as well as in many linguistic theories, syntactically analysed as consisting of two
parts, a Noun Phrase (John) and a Verb Phrase(seek Mary) . But semantically this sentence is
considered as a ternary structure, with relation seek and arguments John and Mary. This explains
why in ECS it is given a binary structure and in ERS a ternary one. The involved operator in ECS
is Cg and in ERS it is Cgybj/Obj- So one whishes to get the following translation
(2) CsWohn, Cyp(seek, Mary)) ===> Cgybj/obj(seek, John, Mary)

For this purpose the following translation rule is proposed (Arnold e.a. 1985).

(3) Cs(X1,Cyp(X2.X3)) ===> Csub;/obj(X2,X1,X3)

So one term is translated into another one. The output of an homomorphic translation rule is fully
determined by the operator and the translations of its parts, whereas in this proposal the form of the
parts play a crucial role. Therefore it is not a homomorphic translation. It might seem an innocent
variant; however, in interaction with other rules the situation turns out to be harmful. An example
of such an interaction is given below.

Consider the sentence
(4) John gives Mary the book.

In ECS this would probably have the structure

(5) Cs(Wohn, Cyp(CTVPp(give, Mary),Cpef(book))))

In ERS it would probably have the structure

(6) Csubj,Iobj,0bj(&ive, John, Mary, Cpef(book)).

The translation rule that performs this translation is

(7) Cs(X1,Cyp(CTVvP(X2, X3),X4)) ===> CSubj,Iobj,0bj(X2, X1,X3,X4).

The aim of these two translation is obvious: sentences like (1) have to be translated by rule (3), and
sentences like (4) by (7). Unfortunately, translation rule (3) is applicable to structure (5) as well.
This introduces an undesired nondeterminism, which was not realized when relaxation 2b was
proposed. The rules (3) and (7) themselves do not tell uniquely what has to happen when (5) is
given as input. Someone writing a computer program for these translation rules has to make a
decision what to do. This is of course not acceptable: what the translations is, should not be
determined by the programmers, but by the designers of the rules. And this example gives just one
of the possible conflicts. There certainly will be many other rules for translating sentences and
there might be a competition among such rules as well. So in the context of other rules (3) does
not define a translation function at all, then this may disturbe the whole translation process.

One should not conclude from the above discussion that the proposed relaxation should be
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rejected completely. It is only intended to show that the relaxation is not as innocent as the other
ones. There are several strategies one might follow in order to avoid the problems. One might try
to reformulate (3) in such a way that it is no longer applicable to a sentence like (4). That probably
requires a further relaxation: the introduction of negative conditions. And even then,there is no
guarantee that no conflicts will arise. An alternative strategy is to introduce an ordering of
translation rules that tells which rule has to be tried first etc.. In this way a new component is
introduced into the framework. I would prefer to stay in the realm of algebra, and consider (3) and
(7) as instructions for termrewriting. Then they are not considered as instructions for going from
the one algebra to the other, but as instructions for obtaining a normal form within one algebra.
Methods from the fields of term rewriting systems can then be used to deal with the problems of
interaction. For a survey of the field of termrewriting, see Klop 1987. Further investigations might
answer the question whether,with one of these strategies, compositionality can be maintained.

7. Discussion

The mathematical model for the CAT framework presented in section 4, defines a structure
which is about the same as the CAT framework in Eurotra. The main difference is that our model
has been build from mathematical ingredients such as homomorphisms and algebras, whereas the
CAT framework is presented with ad hoc definitions. The advantages of using well known
mathematical tools are manifold. First of all, the definitions are more clear and more elegant than
the Eurotra definitions. Secondly, the mathematical notions carry on their sleaves a treasure of
mathematical knowledge, thus enabling us to prove properties of the system. We have employed a
very elementary theorem: that the composition of homomorphisms is a homomorphism. Using
this, we showed that the Eurotra framework produces a homomorphic, i.e. compositional,
translation from the source language to the target language.

A third advantage of the mathematical model was met in sections 6 and 7.The mathematical
model describes structure of the translation system independently of the accidental linguistic
information it contains, and thus the essential aspects of the system become evident. In this way
relaxations of the system can be distinguished in innocent variants and fundamental changes. This
discussion in sections 6 and 7 of the Eurotra relaxations can be summarized as follows. The
translation relation between two Eurotra algebras A and B is a homomorphism (strictly
compositional) from TA into an algebra that is polynomially derived from Tg. Only one relaxation
constitutes an exception to this statement. That relaxation cannot be added to the framework in the
proposed way, but requires further changes . The mathematical model enabled us here to separate
innocent variants from harmful deviations.

It is interesting to compare the above sketched situation (translating into polynomially derived
termalgebras) with the situation in PTQ ( Montague 1974). There one aims at translating a fragment
of English into intensional logic, since that logic is used to represent meanings of English phrases.
The algebraic grammar for intensional logic has its own motivation, and its operators do not
correspond with the operators in the algebraic grammar for English. So a direct homomorphism
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from the termalgebra for English to the termalgebra for intensional logic is not possible. The
meanings of operators for English correspond sometimes with complicated logical formulas
containing variables where arguments have to filled in. Therefore TEnglish is homomorphically
translated into an algebra that is polynomially derived from the algebra for logic. This method of
using polynomially derived algebras originates from Universal Grammar ( Montague 1970). This
observation is again an example of the benefit of a mathematical perspective: the essentials of the
system become evident.
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