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1. Introduction

In the linguistic study of syntax, various formalisms have been
developed for measuring the combinatorial power of natural languages. In
particular, there is a well-known hierarchy of grammars which can be
employed to calibrate syntactic complexity. No similar tradition exists in
linguistic semantics, however. Although there exist powerful formalisms
for stating truth conditions, these are usually presented as 'monoliths':
without any obvious mode of 'fine-tuning'. The purpose of this paper is to
show how semantics has its fine-structure too, when viewed from a proper
logical angle.

The framework used to demonstrate this correspondence is that of
Categorial Grammar. In this field, a syntactic hierarchy is provided by the
landscape of logical calculi of implication, starting from an Ajdukiewicz
type system with Modus Ponens only and then ascending up to a full
intuitionistic conditional logic, which also allows conditional subproofs.
These correspond to various 'engines' for driving categorial combination,
which can be studied as to their mathematical linguistic properties by
employing the tools of logical Proof Theory. (See Klein & van Benthem, eds.,
1988, Buszkowski, Marciszewski & van Benthem, eds., 1988 or Oehrle, Bach
& Wheeler, eds., 1988 for a fuller account of this paradigm.)

Being logical calculi of deduction, these various systems of
categorial grammar also come with a systematic semantics. Each
categorial derivation corresponds effectively with a type-theoretic term
which encodes the corresponding semantic reading (see van Benthem 1986,
chapter 7). This correspondence again reveals a landscape, this time of
different fragments of a full type-theoretic language employing function
application and lambda abstraction, i.e., a standard medium of expression
in model-theoretic semantics. In fact, what we have then is a semantic
hierarchy of richer or poorer vehicles for expressing denotations of
linguistic expressions, which may be studied by employing the tools of
logical Model Theory. If Montagovian Compositionality is the thesis that
Type Theory provides enough 'abstract glue' for implementing Frege's
Principle for natural language, the issue is now to determine just how
much glue is needed from case to case. (This theme is developed in van
Benthem 1986, 1987b.)

The further organization of this paper is as follows. Section 2
contains a presentation of standard type-theoretical semantics,
emphasizing the general semantic questions about natural language
engendered by it. The fine-structure perspective is then elaborated in
Section 3. Next, in Section 4, some variations on the standard approach are
reviewed, in order to show how the concerns and methods so far transfer
to more complex modelings of linguistic phenomena. Finally, some more



technical background material has been collected into the appendices of
Section 5.

2. Type-Theoretical Semantics

2.1 Preliminaries
We shall be using a standard type theory, based on primitive types
e (‘entity’) and t ('truth value') |,

with at least two rules for forming complex types:

(@, b) (functions from a-type to b-type objects)
a.b (ordered pairs of a-type and b-type objects)

These refer to semantic structures built up as follows (‘function
hierarchies')

De is some initial universe of individuals

Dt is the truth value domain {0,1}
D(a,b) ={f|f: Da - Db }
Da_b = Dax Db.

A suitable type-theoretic companion language then has variables and
constants of each type, as well as (at least) the following ways of forming
complex terms:

Application: if A isatermoftype (a,b) and B aterm of
type a, then A(B) is a term of type b
Abstraction: if A isatermoftype b,and x avariable of

type a,then Ax.A is aterm of type (a, b)
Pairing: if A isatermoftype a,and B aterm of

type b,then <A,B> is aterm of type a.b

Projection: if A isaterm oftype a.b,
then = (A), nR(A) are terms of types a, b .

Interpretation of this language in the above structures is standard.



Moreover, there are various possible extensions to its resources, such as
adding an identity predicate = in arbitrary types with its proper meaning.

Remark: Product types and the attendant terms are not very prominent in
what follows. They have been added, however, in order to demonstrate that
the type-theoretical approach is not confined to working with functions

and function types only. &

Recently, various semantic modifications of this framework have
been proposed, including 'many-sorted' prunings of overcrowded function
hierarchies, as well as more partial, 'information-oriented' versions of the
latter. But, the standard format adopted here will suffice for illustrating
the issues that we are concerned with.

Now, terms in this type-theoretic language may be assigned
systematically to derivations in Categorial Grammar. This may be
illustrated as follows (for a full exposition, see van Benthem 1986,
1987b):

Example: Reflexives.
e As has often been observed, reflexives "self" (and even bound
pronouns) may be viewed as argument reducers on relations : i.e., as items

in type
((e, (e, 1)), (e, 1) ( "[despise] oneself" ) .

Here is a categorial derivation exemplifying this, together with its
type-theoretic meaning:

"Mary despised herself"

e (e (et) (e (et),(et)

MP
(e, 1)
MP
t
MARY,  DESPISE, (4 SELF(q (0 1) o 1)
SELF(DESPISE)
SELF(DESPISE)(MARY)

Note how Function Applications reflect occurrences of Modus Ponens.



By invoking the obvious denotation of the reflexive operator, being

AR (6. 1) MWer RW(Y)

the latter formula may be converted into the intended meaning

DESPISE(MARY)(MARY).

e But also, reflexives may occur in parametrized cases, such as
( "[teach] oneself [a lesson]" ), where the relevant type has become

(e, (e, (e, 1)), (& (e, 1)) .

Here, a categorial derivation producing the intended meaning will be more
complex, invoking a stronger calculus of type implication:
(where TEACH(x)(y)(z) stands for z's teaching x to y)

1
e (e (e (o)
MP
(e, (e, 1) ((e, (e, 1), (e, 1)

MP

(e, 1)
COND, withdrawing assumption 1

(e, (e, 1)

Xe TEACH(e’ (ev (e» t)))

TEACH(x) SELF (o (0. 1), (e, 1)

SELF(TEACH(x))

AX,. SELF(TEACH(x))

Note how, this time, lambda abstraction encodes the final
Conditionalization step in the categorial derivation.

Again, the ordinary definition of reflexives may be plugged in to
obtain the desired meaning

AXge Mo TEACH (o 6 1y XW)(Y) -



e And finally, even reflexivization in prepositional phrases,
superficially quite different, exhibits the same pattern semantically:

"to" plus "oneself"

(e, ((e, 1), (e, 1)) (e, (e, 1)), (e, 1))

may be combined into a reflexive prepositional phrase with a suitable
meaning in type ((e, t), (e, 1)) :

"to oneself" : KP(e,t). Ax . TO(x)(P)(x).

Here is the relevant calculation:

)
e (e, ((e, 1), (e, 1)
2 MP
(e, 1) (e, 1), (e, 1)
MP
(e, 1)
COND, withdrawing 1
(e, (e, 1) ((e, (e, 1), (e, 1)
MP
(e, 1)
COND, withdrawing 2
((e, 1), (e, 1))
X O, (e, 1. (e, )
Pee. y TO(x)
TO(x)(P)

REF(Ax,. TO(X)(P))

?»P(e, y* REF(Ax . TO(x)(P)))



which reduces to AP. Ax. TO(x)(P)(x) by the definition of REF. &

What this example also demonstrates is an important facility.

A type-theoretic framework is useful in semantics because it supports a
search for maximal generality for phenomena which we have discovered,
across various linguistic categories. Reflexivization is one such
wide-ranging phenomenon; further illustrations (involving, e.g., Boolean
structure) will be found below.

In the following parts of this Section, we shall consider some of
these general themes, including their logical background theory. It may be
of interest to compare the selection of topics made here with that in
Gallin 1975, which, although otherwise quite useful, still represents the
standard logical theory of the Montagovian paradigm, without much
linguistic input.

2.2 Derivations and Readings

As the preceding discussion has shown, a derivation of some type
b from a sequence of types A encodes a meaning which may also be
expressed in a lambda form

t,[{x,|acA}]

where the term t of type b has parameters x_ occurring for each acA.

Note that the translation is not exclusively 'type-driven’ (to use a modern
slogan): to one derivable transition

A=b,

there may correspond different derivations, and hence possibly different
readings. Thus, it is the derivation which is the unit of linguistic meaning,
rather than the surface string. On the other hand, not every difference in
derivational structure must cause a detectable difference in semantic
meaning. Here are some illustrations of what can happen in general.

Example: Varying Numbers of Readings.
(1) e (et) =>t.

Here, there is only one meaning, expressible in the form



X(e, t) (yG) .

To be sure, different categorial derivations do exist here, such as

e (e}
MP
t
versus
y
e (e, 1)
MP
t
COND, withdrawing 1
(e, 1), 1) (e, 1)
MP

t

But, the more complex one can be reduced to the simpler one by means of
'normalization’: a proof-theoretic technique which does not affect meaning.

(2) e = ((e,e),e).

Here, different meanings exist, witness the non-equivalent derivations

1
e (e e)
MP
e
COND, withdrawing 1
((97 e): e) : )“X(e, e)’ X(e, e)(ye)
1
e (e, e)
MP 1
e (e, €)
COND, withdrawing 1
e D AX

@ 6" Xe ) X, 0)Ye)) 5



etcetera.
@ HhHttt) = t.

This case is ambiguous too, leading to different scope orders:
X, t)(z(t’ t)(yt)) versus  z, t)(x(t, t)(yt)) .

(4) Infact, cases with exactly n non-equivalent readings, for
each finite n, may be obtained from the following valid transition:

e, ..(n times)...,e = e.

(5) Finally, more complex examples may be found in van Benthem
1987c, 1988Db, concerning the possible ways of construing transitive
sentences with complex NPs:

((e,1),t) (e, (e,t) (&1t = t;
or deriving binary determiners from underlying unary quantifiers.  »

This observed diversity of readings for linguistic expressions
suggests various more systematic questions. One is how many readings
exist for given type transitions. No algorithm is known for computing this
number in general - but still, some facts can be noted. For instance,
Statman 1980 characterizes precisely those derivable transitions in a
typed lambda calculus with one basic type which have finitely many
readings. In our case, there are more primitive types than just one: which
may also be subject to additional restrictions (see below). But, Statman's
result can probably be extended.

Moreover, special cases are of interest: in particular, the
'unambiguous' type transitions having just one reading - or in other words,
those logical laws which have essentially just one proof.

Example: Unambiguous Transitions.
Well-known examples of this kind are such 'type change laws' as the
Montague Rule for raising denotations

a = ((a,b),b),

whose only corresponding lambda normal form may be seen to be (by a
simple syntactic calculation)
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lx(a’ b)* x(u,) .
Likewise, the so-called Geach Rule for composing denotations
(@, b) (b,c) = (ac)

has essentially just the lambda normal form

AX, - Up, c)(v(a, b)(x) :

Thus, for important parts of current 'flexible categorial grammar’, the
difference between derivations and mere transitions on type strings turns
out to be inessential afterall. &

How can it be recognized whether one of these cases occurs?
Here, we can only offer a

Conjecture: The question whether a given type transition has
exactly n type-theoretic readings, where n is finite or "infinity',
is decidable.

Behind all this lies a perhaps more important semantic question
concerning the actual enumeration of all possible readings for a given
transition. What we need is some systematic method for accomplishing
this. One such method, based on formal grammars and automata, is
presented in Appendix 5.1. Here is a sample outcome (cf. van Benthem
1987c).

Example: Transitive Sentences with Complex Subjects and Objects.
Obviously, there are the usual scope possibilities with the transitive verb
or its passive form:

NP1 (Ax. NP2 (TV (x))) ('every boy loves a girl)
NP2 (Ax. NP1 (TV(x))) (‘a girl loves every boy')
NP1 (Ax. NP2 (Ly. TV (y)(x))) (‘every boy is loved by a girl')
NP2 (Ax. NP1 (Ay. TV (y)(x))) (‘agirlis loved by every boy')

But in general, further cases arise, such as the reflexive form
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NP1 (Ax. TV (x)(x)) .

In fact, all possibilities are generated by the following finite state
automaton (see Appendix 5.1 for further information):

*
v, T
®g
v, T
X
R
M, o) Aoy AV Ao vt R Ve
= o r = 2 > o > o » o > o -5
((9, (ev t))v t) t (e, t) t (9, t) e
AV

e

Note that traversing this automaton will produce an infinity of possible
non-equivalent lambda normal forms for the above transition. &

This example also introduces a further subtlety to the issue of
semantic readings. For, although the number of possible readings for the
transitive sentence pattern is infinite in a global sense, 'locally' inside
each model, there will only be finitely many distinct possibilities. The
reason lies in the special structure of the truth value domain D, , which

was supposed to be finite, indeed two-valued. By an additional argument
(cf. again Appendix 5.1, or van Benthem 1987c), it may be shown that:

Given any two items A, B in the domain D((e 0,1 of some model,
the only items in D«e, © ), 1) application/lambda definable from these are

those generated by forms AR. followed by a matrix in the following list
(with 'N' standing for A or B, and '(—)" indicating an optional negation):
(=IN (Ax,. (=)R(x)(x))
(=N (Ax,. (=N ((=)R(x)))
(=IN (Axg. ()N Ay, ()R(Y)(X))) -
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Cases such as these may be called 'locally finite'.

Now, we turn to some further aspects of admissible readings,
focussing on what may be called 'constraints on truth conditions'.

A First En nter with rren

The preceding discussion has still missed some subtleties concerning
expressibility of 'readings' for linguistic expressions. We are being given
an expression with, say, n components of types a,, ..., a ,andthe
question is if and how these may be composed into a meaning of type b .
Now, this statement of the problem already seems to convey some
restrictions on type-theoretic forms <[ {a,, ..., a}] which are

admissible here. For instance, it seems reasonable to demand that

each type a, have at least one corresponding parameter
u, occurin t.

But then, already one of the earlier examples would be ruled out, namely
the n readings supposedly corresponding to the valid transition
"ntimes e to e'. For, the relevant terms here would be single u -

(Incidentally, using product types, the requirement could be met trivially,
by taking some suitable projection out of the ordered sequence of all Uy -)

So, conditions on the format of truth conditions come to the fore,
in particular concerning occurrences of terms within these. Here is another
example. Intuitively, it would seem that the parameters u,; standing for
the component expressions can be used just once, as happens in actual
sentence construction. But then, there is another demand on our schema 1 :

the free parameters u,; should occur only oncein <.

Again, this has repercussions for the earlier examples. For instance, in the
given schema for transitive sentences, only finitely many readings remain:
as only two N positions can be filled. (But, e.g., there is still an infinity
of admissible readings for the earlier transition e = ((e, €), e) .)

But, it would seem that this new requirement too, can be
circumvented quite easily. For, if t© contains two occurrences of some
parameter u, then we can rewrite it to the equivalent term

AX. [x/u]z (u) , which obeys the letter of the above requirement. But
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evidently, this move violates its spirit: and hence, we shall be led to
consider lambda terms having certain restrictions on lambda binding
throughout, in Section 3 below. In other words, we have encountered a
reasonable source of fine-structure for truth conditions.

Disregardin rren

Next, there are also opposite cases, where an emphasis on occurrences
seems quite inappropriate. For instance, in the setting of some specific
model, there are natural questions of definability from given items:

Suppose that objects u,, ..., u_ are given, in domains of types
a,, ..., a, . Which objects in some target domain D, are lambda
definable from these?

In this case, unlike the previous one, we are not concerned with any
particular piece of syntax awaiting interpretation. And in fact, no
constraints on the occurrences of parameters in definitions for these
objects seem implied. Therefore, the question can be of high complexity.
For instance, given some function u, on the natural numbers and some

natural number u, , the question whether some other natural number v is

definable from these two is in general not decidable. On finite base
domains, however, the above question may in fact be decidable. The
statement that it does is (a general form of what is) known in the
literature as 'Plotkin's Conjecture’ (cf. Statman 1982).

This second kind of question has a more linguistic counterpart
after all, be it not in terms of interpreting expressions, but rather in
terms of language recognition. A language is a set of admissible strings
over some finite alphabet, and the recognition problem is to see if an
arbitrary string belongs to this set. Here, items in the alphabet correspond
to the above parameters, and in principle, strings in the language can have
arbitrary numbers of occurrences of these. Now, semantic problems like
the above arise, once we no longer talk about recognizing strings, but
objects denoted by strings. For instance, given a context-free grammar and
some map from symbols in its alphabet to objects, as well as some
interpretation schema for its rewrite rules, we can ask of an arbitrary
object in the relevant domain whether it belongs to the obvious 'denotation
class' of this grammar. (Incidentally, the language recognition problem is
the special case where the interpretation map is the syntactic identity
function, wih mere concatenation for the rules.) For instance, the
recognition problem for denotation sets of context-free grammars is
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undecidable. [The above natural numbers example shows this, with respect
to the grammar { N = u,, N = u, N}.] But again, we have an interesting

Question: Is the semantic recognition problem decidable on all
finite structures?

Thus, again we see how the usual concerns of mathematical linguistics
may be transferred from pure syntax to semantics. 'y

Finally, whatever constraints have been considered up till now, a
fact is that the above calculus produces far too many 'readings' for most
ordinary linguistic expressions. For instance, out of the above four scope
readings for complex transitive sentences, only two are really plausible.
Also, e.g., an unambiguous expression like "Every dinosaur died" would still
obtain two readings, namely the inclusion of DINOSAUR in DIED, but also its
converse.

There are various strategies for coping with this overgeneration in
Categorial Grammar. One is to impose restrictions on categorial calculi:
either on their axioms and rules of inference, or by imposing some filter on
admissible derivations. (For instance, derivations with an overly high
'‘computational cost' might be banned.) Another is to encode some more
syntax into the type structure: as is done in the 'directed calculi' of
Lambek/Bar-Hillel (see Moortgat 1988 for an up-to-date presentation.)
But, in more semantic terms , it is quite attractive to view the
type-theoretic semantics for categorial derivations as mapping out a
'logical space' of a priori denotational possibilities, out of which natural
language only realizes those satisfying certain additional 'denotational
constraints'. In the latter vein, Keenan 1988 has some interesting
empirically motivated semantic universals constraining the logical
latitude of quantifier scoping.

2.3 Denotational Constraints

In the study of various special categories of expression, one
encounters so-called 'denotational constraints', being general structural
properties which all, or at least, many important denotations for linguistic
expressions turn out to possess. Prominent examples are found in the study
of generalized quantifiers (cf. van Benthem 1986): where all determiners
appear to be conservative, while many important ones are logical or
monotone. Our type theory provides a convenient setting for making such
notions quite general across arbitrary categories of expression.

One major source of denotational constraints is the area of Boolean
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operators, which provides many examples of concepts with a universal
meaning (cf. Keenan & Faltz 1985). For instance, there is a general relation
of hereditary inclusion ('"Boolean implication') defined as follows

is <
L IS =

a9 it forall xe D, f(x) <, 9(x)
<f,g> <, <i,j> if f<iand g<

<
<
f

bl -
Now, an object f e D(a, b) is monotone in its a-argument if
x <,y implies f(x) < f(y) ,forall x,yeD,.

And more general versions of this notion are possible, referring to other
argument types waiting inside b . This generalizes the well-known notion
of monotonicity found with generalized quantifiers, expressing a certain
'inferential parallellism' between an expression and some of its parts.

Other examples of general Boolean structure concern such notions
as homomorphisms from one Boolean type domain to another [the earlier
mentioned reflexivity operator REF is one example] - or continuous
operators, which are already computable from their atomic input, as they
commute with arbitrary Boolean joins of their arguments.

A final example of Boolean structure arises with the already
mentioned general constraint of conservativity. |.e., for determiners D,
the first argument turns out to restrict the second:

DAB iff DA(BNA).

In the process of categorial combination, this phenomenon proliferates.

Example: Conservativity in Complex Transitive Sentences.
The denotation of a sentence pattern

Q1A R Q2B

may be computed as follows, in accordance with the simplest categorial
derivation of the type transition

(e, 1), ((e; 1), 1) (et) (e (e ) ((et).((e.t)t) (et) = t:
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Q1 (A Ax.Q2 (B, R (x))) iff
Q1 (A Mx.Q2 (B, Ly.(R (x)(y) A B(y)) A A(x))) iff
Q1 (A Ax.Q2 (B, Ay.(R(X)(y) AB(y) AA (X)) A A (X)) iff
Q1 (A . Q2 (B, Ly.(R(X)(y) AB(y) AA(x))) .

le, Q1A R Q2B holds iff Q1A Rn(AxB) Q2B does. &

And similar phenomena occur in other linguistic patterns. For
instance, in evaluating an expression like "walk to every city", the common
noun "city" will come to restrict the individual argument of the preposition

"to", whose type may be taken to be (e, ((e, t), (e, t)) , as we did already in
Section 2.1. A full calculation goes as follows.

Example: Computing Conservativity in Prepositional Phrases.

Derivation tree:

1
e (e ((e 1) (e 1)
MP
2
(e, 1) ((e, 1), (e, 1))
MP
3
e (e, 1)
MP
t
- COND, withdrawing 1
(e, 1) (e, 1), 1)

MP

t
. COND, withdrawing 3
(e, 1)
COND, withdrawing 2
((e, 1), (e, 1)

Corresponding lambda term:
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Xe 1O, (e,1), (6, 1)

Ze TO(x)

Yo TO(x)(2)

TO(X)(2)(y)

Ax,: TO(X)(2)(y) EVERY CITY 0,4,

EVERY CITY(2x,. TO(x)(z)(y))

Ay,- EVERY CITY(Ax,. TO(x)(z)(y))

AZg 4 Ay,- EVERY CITY(2x,. TO(x)(z)(y))

Here, by ordinary conservativity, the last three lines may replace their
part Ax. TO(x)(z)(y) by Ax. (TO(x)(z)(y) ACITY(x)). &

BRemark. Incidentally, there are several different semantic construals of
this expression in our general format. In general categorial terms, the
transition (e, ((e, 1), (e, 1)) ((e,1),t) = ((e, 1), (e, t)) also has
readings such as the following ( with U of type (e, ((e, t), (e, 1)) and V
of type ((e, 1),1)):

Az Ax . V(U(x)(2)) ,

(e, t)’

which, when plugged into the above example, would express BEING WALKED
TO BY EVERY CITY . Actually, the latter reading too would have its own

appropriate form of Conservativity, computed as above. &

By the above mechanism of categorial evaluation, every common
noun in a quantifier phrase will come to restrict at least one individual
argument position, in an entirely predictable manner. By itself, this then
gives us a general principle of Conservativity across the whole language.
(Compare also the discussion of 'Restriction' as a feature of logical
constants in van Benthem 1988b, for a connection with computation of
denotations on universes of minimal size.) Again, this illustrates the
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earlier point in Section 2.1 about the beneficial generality inherent in a
type-theoretic framework.

Remark: Constraining Readings.

Conservativity provides one instance of the way in which denotational
constraints may rule out type-theoretically possible readings, as

suggested in Section 2.2. For instance, a sequence of the form 'Determiner,
Common Noun, Verb Phrase' (say, "every sinner repented") will only be
conservative with the arguments of the determiner applied in the order
given. A reading in the converse order, although a priori possible, will in
general violate conservativity: witness the non-conservative converse of
"all", being "only". &

Next, for a different kind of constraint, we turn to another form of
semantic behaviour.
Model-theoretically, logicality of an object f in some type domain

D, involves f's being insensitive to the specific nature of individuals:

that is, f will be a fixed point of all permutations of the individual
domain D, (lifted to arbitrary domains D, in a canonical manner). It may

be shown that every closed term of a full type theory, even involving

identities, defines a logical denotation in this sense - and that, at least,
starting from finite individual domains, a converse holds too.

Example: The earlier reflexivization operator is a logical item in its type,
and indeed, the only reducer of binary predicates to unary ones which is a
logical homomorphism. (Cf. van Benthem 1988b, also for many further
general aspects of logicality.) &

For the pure lambda calculus without identity, this feature can be
strengthened to one found in Plotkin 1980, namely invariance under
individual relations. Adapted to the present setting, this notion reads as
follows. First, we define hereditary relations on the whole hierarchy of
domains:

Let R, be any binary relation on D, -
Let R, be the identity.

And inductively, let
fR(a, by 9 iff forallu,ve D,: uR_v — f(u) R, 9(v) .
(The obvious clause for ordered pairs is omitted here.)

An item f in atype domain D, is relation-invariant if
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fRaf , for all individual relations R.

Now, a straightforward induction shows that, if T is any term with free
variables x,, ..., X, then for all sequences a,, ..., a_,b,, ..., b  ofthe

appropriate types:
ifa,Rb, (i=1,..,n), then [[]l(a,,..,a) R[[]lb,, ..., b,) .

In particular, then, items definable by means of closed lambda terms are
relation-invariant. Conversely, Plotkin has shown that, at least up to the
second-order level in the type hierarchy, all relation-invariant items must
be lambda definable, in any structure. A concrete application of this notion
will be found in Section 4.2 below.

Remark: Hereditary relations and their impact on lambda terms are
reminiscent of the earlier notion of general inclusion. Nevertheless, there
are some differences too, which preclude any general invariance result like
the above with respect to Boolean inclusion. Special cases where the latter
preservation does occur will be studied in the next Section.

2.4 Polymorphism

Categorial derivation with its associated semantic interpretation
as presented here may be viewed as a general mechanism for 'pooling’' of
denotational constraints contributed by the various components of an
expression into the eventual semantic behaviour of the whole. Examples of
this phenomenon have already occurred in the preceding Section. One
suggestive focus for this phenomenon arises in the study of what is often
called polymorphism, i.e., the ability of natural language expressions to
modify their types in different environments, as required by the needs of
interpretation. The above semantic account may also be viewed as a theory
of polymorphism, explaining how items in one type can also occur in
another one, with a systematic transfer of meaning:

derivation of a=b, lambda term ¢ [{x.}].

In this perspective, a central question is one of 'dynamics':

How are the earlier denotational constraints affected
by type changing?.
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Or, more generally,

How does one constraint manifest itself across
polymorphic type jumps?

Here are some answers.

Type change preserves logicality, in that permutation-invariant
items in type a are transformed into permutation-invariant items in the
derived type b . But, e.g., a monotone item in type a can lose its
monotonicity in derived types.

Example: Loss of Monotonicity.
An individual A is trivially monotone - whereas, e.g., its derived form in

type ((e, t), (((e, 1), (e, 1)), t)) is not:

?»x(e, y* ly«e, ), (e, )" y(x)(Ae) . N

In general, of course, there need not be exact reproduction of the
original semantic property, but rather the emergence of some new variant
of it. For instance, we have already seen in Section 2.2 how a property like
conservativity for subject NPs (in type ((e, t), t) ) also transfers,
suitably understood, to object NPs in type ((e, (e, 1), (e, 1)) .

In addition to transferring or modifying already existing
denotational constraints, polymorphism can also create new semantic
properties of interest. For instance, the transition e = ((e, t), t)
transforms plain individuals A_ into homomorphisms in the NP type

((e, 1), 1) (Individual Lifting) :

X - X(A) .

(e, 1)"

This 'semantic creation' behaviour of lambda terms may be
investigated more systematically, using cues from logical Model Theory.
What will happen in general is that such semantic behaviour may be read
off from the syntactic form of the lambda terms. For instance, in the
previous example, it is the fact of the variable x's occurring in the
syntactic 'head position' of the lambda term which causes the
homomorphic behaviour of the total function defined. Further examples
will be introduced presently.
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Another perspective on these issues arises by asking, not which
properties of old denotations are preserved under polymorphism, but which
relations between them continue to hold after the change.

Perhaps most obviously, there is the question as to which
polymorphic changes reproduce the old items exactly, in that they
establish a one-to-one map from some old type domain D, into a new

domain D, . For instance, the above individual lifting is indeed one-to-one,
when viewed as a map from items in the domain D, (represented by the
parameter 'A_’") to values in the domain ((e, t), t) . Put differently, so that

the analogy with the former kind of semantic transfer question becomes
obvious:

the lambda term Ay,. xx(e y* x(y) defines a one-to-one function
in the domain of type (e, ((e, 1), 1))) .

But e.g., the earlier reflexivization behaves differently:

xx(e e 1)° Ay, X(y)(y) does not define a one-to-one function
in the domain of type ((e, (e, 1)), (e, t)) .

Here is an unsolved model-theoretic

Question: To give an effective syntactic characterization of the
lambda terms defining one-to-one functions.

And here is another illustration.

Example: Equivalent Types.
A well-known categorial equivalence is that between basic predicates
(e, t) and lifted intransitive verbs (((e, t), t), t) :

(e, t) = (e, 1), 1), 1) : Ax x(A

(e, 1), 9" (e, t))

(((e,1), 1), 1) = (e, 1) : Ax,. B«e’ 0, t)(ky(e, y* y(x)) .

Nevertheless, the second transition is not one-to-one: and indeed, the two
type domains are not isomorphic. &

Digression: One additional reason for interest in one-to-one definable
maps is the possibility of recreating the domain hierarchy within itself at
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some higher level. For instance, in setting up a viable semantics of
plurality, one possible route is to switch from individuals in type e to
sets of individuals (in type (e, t) ) as the basic objects. This may be done
without loss of earlier structure by mapping old individuals uniquely to
their singletons in the new type:

AXg. AYg. y=X.

Likewise, the study of polyadic quantification sometimes requires viewing
pairs or sequences of individuals as new basic objects (cf. de Mey 1988):
which again involves an upward 'translation’ of the universe. «

Remark: There are two equivalent ways of looking at the discussion so
far. From a semantic point of view, there is little or no difference between
studying definable type transitions a = b or simply definable maps in the
functional type (a,b) . Thus, an interest in various formalisms for defining
polymorphic shifts is at the same time an interest in classifying
denotations as to their logical complexity of definition. Accordingly,
focussing on lambda terms t[u] with parameters, or on the corresponding

closed terms Ax. t[x] is largely a matter of convenience. &

Another natural question of transfer concerns the earlier relation
of general inclusion. If a polymorphic transition a = b is to respect
Boolean inference, then we must have the following general implication for
the associated term < (written with a harmless abuse of notation):

X, <Y, = X Jl<Tly,] -

Note that this is the same as saying that t, when viewed as denoting a
function from the a-type domain to the b-type domain must be monotone
in the earlier sense. Again, whether this property holds turns out to depend
on the actual form of the lambda term involved.

Example: Preservation of Boolean Inclusion.

A typical example of a monotone function is given by the following term,
describing a lifting of one-place sentence operators to one-place predicate
operators:

lx(e, 9" MY Uy o, t))(x(y)) .
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A typical non-example is the earlier Individual Lifting

lx(e’ " X(ug) . »

Again, the logical question arises of characterizing just those
lambda terms which induce monotone transitions in the required sense.
Streamlining the treatment in van Benthem 1987a somewhat, we can say
that a reasonable guess would be to allow only those terms in which the
parameter u occurs only in the syntactic head position, as defined earlier
on (which corresponds to the 'leading variable' of the matrix following the
first adjacent prefix of lambdas). The latter certainly represent monotone
mappings. But, there are some counter-examples to the converse, with
typical cases such as the following (see the earlier reference):

(1) terms with arbitrary occurrences of individual parameters u o
(2) iterations like U l)(u(t t)(zt)) .

So, the general characterization of monotone lambda terms is still open.

Digression: Reversing directions, it may also be asked which semantic
behaviour would in fact be necessary and sufficient for having the
parameter u occur in head position only. Here is a conjecture, based on a
generalization of the earlier inclusion relation:

The following two assertions are equivalent for any
lambda term t[u]:

(1) [u] has u occurring in its head position only ,
(2) [u] preserves 'local relations', in the following sense:

Let R be any relation on type domains satisfying the
following condition on functional types:

forallf,ge D(a by’ fRg iff f(x) Rg(x) forall xeDa.
Then always (with the earlier abuse of notation)
uRv implies t[u] R 1[v].

As a small piece of evidence for the conjecture, it is easily seen
how the above two kinds of counter-example disappear with preservation
for arbitrary relations R . For instance, taking R to be the inequality
relation on D, , its lifted version will hold only between those functions in

D(t ) which are each other's complements. Thus, in the latter domain, the
negation — and the identity id are R-related. But, for any t-object x,
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it holds that —(—(x)) = x = id(id(x)) ; that is, the earlier monotone term
does not denote R-related truth values. a»

Remark: Model-Theoretic Preservation.

The above questions are related to the so-called 'preservation theorems' of
logical Model Theory. But, there is one important difference. For instance,
in the well-known preservation result for predicate-logical formulas that

are semantically monotone with respect to some predicate, the resulting
syntactic class is defined as follows. Modulo logical equivalence, the only
relevant syntactic shapes are those formulas in which every occurrence of
the relevant predicate is syntactically positive. Now, spelling out the
definition of the latter notion, and taking an appropriate categorial view of
predicate logic, the syntactic normal form class for monotone formulas
turns out to include cases where the relevant predicate u occurs in
embedded argument positions typically forbidden by the above
type-theoretic description. The reason is this. Predicate logic has certain
built-in logical constants, quantifiers and Boolean operators, which
themselves stand for monotone items (whether 'upward' or 'downward').
And for instance, if u occurs monotonely in an argument term t for a
monotone function denoted by f, then its occurrence in the compound term
f(t) will still be monotone. A generalization of this predicate-logical
situation to a lambda calculus having built-in monotone constants is
immediate, and so is the analogous question of preservation. &

This concludes our discussion of the dynamics of polymorphic
transfer of semantic behaviour.

Finally, it should be observed that there is more polymorphism in
natural language than has appeared so far. What has been studied up till
now is 'derivational' polymorphism, arising in the process of grammatical
derivation. But, there is also evidence for 'variable' polymorphism,
reflecting indeterminacies in initial type assignment. And other forms of
type change may occur too, such as the various notions of 'collectivization'
introduced in Section 4.1, needed to give a good account of plurality and
related constructions. Naturally, such additional mechanisms raise their
own questions of semantic transfer.

3. The Semantic Hierarchy

3.1 Fragments

Categorial Grammar comes with a landscape of weaker or stronger
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calculi of implication as its combinatorial engines. And these calculi
themselves form a hierarchy of ascending logical strength, which can be
stratified according to various natural principles. But at present, we are
interested in the semantics behind the enterprise. Now, there are various
different kinds of semantics for conditional logics in the literature (cf.

Gabbay & Guenthner, eds., 1984). But, as has become clear in the preceding
Section, it is advantageous to look for the meanings of conditional proofs,
rather than mere conditional assertions. And then, Type Theory is the
general medium for expressing denotations associated with categorial
derivations.

Now, this medium too admits of a significant layering. For
instance, as with other logical formalisms, one could classify lambda
terms according to specific syntactic patterns of their logical operators. A
case in point are the so-called 'pure combinators' of the form

<prefix of lambdas; lambda-free application term>,

of which several have occurred in the preceding Section. And then, more
complex lambda patterns could be classified. For present purposes,
however, another principle of classification is more useful, namely by
patterns of variable binding.

Again, there are several options here, but we shall follow a lead
from an earlier discussion in Section 2.2. There, it was shown how the
actual numbers of occurrences of variables in lambda terms reflect
significant facts about semantic construction. In the full type-theoretic
language, a lambda can bind any number of variables, but it is natural to
look at more restricted cases too. For instance, one basic candidate is the
fragment where each lambda binds exactly one variable, something which
turns out to correspond to the basic categorial calculus of Lambek 1958,
which has become a landmark in the area. ( See van Benthem 1986 for the
precise correspondence. Actually, the latter calculus has one additional
restriction of 'non-empty premise sequents', which will be disregarded in
this paper.) Thus, one basic hierarchy in categorial semantics is that of
ascending fragments of Type Theory with ever increasing numbers of
bindings allowed per lambda operator. (Here, the case with zero bindings
could be identified with the pure application fragment.)

Many of the illustrations found in Section 2 already belonged to the
single-bond Lambek fragment.

Example: Number of Bindings.
Here are two typical single-bond items:

Mg, 1+ X(Ug) (Individual Lifting) ,
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xx(e, " AY,- Ug t))(x(y)) (Parametrizing Unary Sentence
Operators) .

By contrast, the following typically require multiple binding:

AR(e’ . 1)" Axy- R(x)(x) (Reflexivization)

Mg 1) Mo, MZgr Uy ¢ 1)X(@)(y(2))  (Parametrizing
Binary Sentence Operators) . &

Remark: Other principles of classification based on binding patterns are
possible too - such as restricting the total number of available bound
variables in advance. For instance, it can be shown that the expressive
power of both the full Lambda Calculus and its Lambek fragment is
essentially diminished by imposing a restriction to some fixed finite
number of bound variables. Thus, the two principles of classification for
lambda terms are really distinct. And, even further fine-structure of
variable patterns might be investigated. Some examples will be mentioned
below. &

Digression: The Role of Identity.

In this paper, 'Type Theory' has been equivalent, by and large, with 'Lambda
Calculus'. Thus, we have not considered the richer formalism which would
arise by adding identity to the above formalism. The latter enriched

system is very powerful, and hence stands in even more need of
fine-structuring into fragments. Nevertheless, it should be noted that the
presence of identity affects the earlier binding hierarchy: as it may be

used to simulate multiple variable binding. For instance, returning to
predicate logic,

In the presence of identity, lambdas need never bind more than
three variable occurrences.

The reason is the trick displayed in the following example. Any formula of
the form

o(x, X, X, X)

can be rewritten to
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Jy, 3Y, Y5 (60X, ¥q, Vor Vg) & X=Y, &Y =Y, & Yo=Y, ). 4

As we shall see later on, fragments like the above may have much
nicer semantic properties than the full type-theoretic language. In a
general sense, of course, this phenomenon is already well-known from
contemporary Logic. After all, the now 'standard' first-order predicate
logic itself is a quite succesful fragment of full type theory, obtained by
restricting attention to lower type levels. And within first-order logic
again, fragments such as universal Horn clause formalisms have proved
their surplus value in logic programming, precisely because of their
special semantic characteristics.

Even so, one reasonable question is in which sense the above
proposal can be said to form a genuinely semantic hierarchy.

Here, a distinction is to be drawn. What we have been mainly
concerned with up till now is in fact compositional semantics, which
studies merely the 'semantic glue' needed to merge component meanings
into wholes. And by looking at weakest fragments needed to perform such
functions, we are establishing the 'Price of Compositionality’, so to speak.
In addition, however, there is lexical semantics for denotations in specific
categories. And these may come with their own special purpose
classifications of semantic complexity: witness, for instance, the
'semantic automata' hierarchy of generalized quantifiers proposed in van
Benthem 1986, 1987d. Even so, the border line between the two areas is
fluid. For instance, type-theoretically definable items will form an
important subclass, at least, inside many specific categories: and to them,
the above classification applies directly. (Note that such items will be
'logical' in the sense of Section 2.2., which gives them an independent
interest.)

Example: Classifying Logical ltems.

Within the domain of each constructively provable type, we have
type-theoretically definable objects, and hence, at least in principle, an
ascending hierarchy of items definable by means of one-, two- or higher
multiplicity of lambda binding. Thus, relation reducers in type

((e, (e, 1), (e, (e, t)) include

single binding: AR(G, (e 1)° AX . Ay . R(x)(y) (Converse),

double binding: AR « AX_. Ay . R(X)(x) (‘Diagonal’),
(e, (e, 1) e e

etcetera .
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So, various layers of complexity of type-theoretic definition for
semantic functions may be compared, either across different types, or
even within a single one. As to the latter case, as was noted above, if a
type is to have lambda-definable items at all, it must correspond to some
constructive law of implication; and if it is to have, e.g., single-bond
items, it will have to be provable already in the Lambek calculus. This still
leaves many interesting cases for investigation, witness the function
domain corresponding to the earlier categorial transition for complex
transitive sentences

(e, 1), 1) (e (e, t) ((e.;),) = t,

which was studied in Section 2.2. On the other hand, in the Lambek
calculus, only the first reading would be available.

Finally, here are some further examples illustrating the workings
of the binding hierarchy. One interesting question has to do, again, with the
earlier distinction between compositional and lexical semantics. Natural
language has 'invisible' mechanisms for performing certain compositional
functions, so to speak, whereas other, more complex ones, have to be
explicitly lexicalized. At least to a first approximation, it seems that
single-bond Lambek transitions are freely available, whereas procedures
for performing multiple binding have to be lexically expressed: witness the
reflexivizer "self". (A possible counter-example are phenomena of deletion
and gapping, where higher bindings may be at work, invisible in syntax.)
Here is a technical illustration of the power of this division of labour.

Example: Quinean Predicate Logic.

In the 'predicate-functor' formalism for predicate logic proposed in Quine
1966, there are no variables, but only logical constants plus 'book-keeping'
operators on predicates performing identifications and permutations. The
latter formalism is provably as expressive as the usual Fregean one. Now,
taking the appropriate categorial point of view on Boolean operators and
logical quantifiers, predicate logic becomes a small fragment of Type
Theory, which can be written in the following style:

usual notation: Vx( 3y Rxy & —=Sxx)

categorially: V(Ax. &( 3 ( R(x)) (=(S(x)(x)))) .
Now, a restriction to single lambda binding here will produce a small
fragment of predicate logic, studied , e.g., in van Benthem 1988c . (For

instance, on a finite vocabulary, this fragment is logically finite.) The role
of Reflexivization now becomes particularly vivid in the following
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observation, which may be proved by an argument analogous to Quine's:

Single-bond predicate logic with an additional reflexivizer
of type ((e, (e, t), (e, 1)) is expressively equivalent with
all of predicate logic.

For the full type-theoretical language, no similar result holds. It will be
necessary to add reflexivizers in all types ((a, (a, b), (a, b)) . Provably, no
finite number of these will do. [The reason is this. Such a finite set of
reflexivizers has only a finite corresponding set of 'type counts', in the
sense of van Benthem (1986, chapter 7). But, it will have to derive all the
above contraction types in the Lambek calculus: which preserves type
counts. This contradicts the fact that the above family of contractions has
an infinite associated set of type counts.] &

There is still a lot more room for speculation here on the border
line between logic and linguistics. For instance, natural language does not
have arbitrary reflexivizers, even where these would be a priori possible.
For instance, one could imagine a reflexivizer self on binary relations
over unary predicates, such as determiners: so that "Every self dog"
would stand for "every dog is a dog". But, such particles do not seem to
occur. (Of course, one can think of ad-hoc reasons why having this
particular feature would not be all that useful in natural language.)

Another point of fact is that not all of the single-bond mechanism
appears to be freely available after all. Notably, various forms of
permutation, a feature built into our semantic Lambek calculus, are in fact
lexicalized in the passive constructions of natural language. One possible
reason here is that performing permutations in type-theoretical terms
requires stacking of lambdas: and, judging from the examples in Section 2,
there may be a natural tendency to avoid these. If this is taken seriously,
we might have yet another source of semantic fine-structure, namely
various restrictions on the length or depth of lambda nesting.

3.2 Expressive Power

Next, there are various more theoretical issues to be considered in
the new finer-grained perspective. Notably, what happens to the semantic
theory developed in Section 2 as one varies the semantic formalism along
the different fragments introduced above? Here are some samples.

First, the availability of readings for expressions will be obviously
affected by the expressive power of the semantics.
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Example: Readings Revisited.

Returning to the main example of Section 2.2, here are some new outcomes
(with 'I' standing for the full Type Theory corresponding to intuitionistic
derivation, 'L' for the Lambek single-bond fragment, and 'A' for the pure
application fragment corresponding to the original categorial grammar of
Ajdukiewicz) :

(1) the transition e (e,t) = t has exactly one reading
in A, L and I.

(2) the transition e = ((e, e), e) hasnoreadingin A,
exactly one in L, and infinitely many in |.

(3) the transition (t, 1) t (t,t) = t has exactly two readings
in A, L and I.

(4) the transitions from 'n copies of e to €' have no readings
in A or L ,andexactly n in |;except for the cases n=1
(just one reading everywhere) and n=0 (no readings anywhere).

(5) the transition for complex transitive sentences has no
readings in A, exactly fourin L, and infinitely many in 1.

In particular then, the full lambda calculus allows an infinity of
readings in some cases, whereas this did not happen in the Lambek
fragment. There is a general result behind this:

Proposition:  The number of single-bond lambda terms 1, [ {x_|ac A} ]
for any L-transition A = b is finite up to logical equivalence.

The proof of the latter result is constructive (cf. van Benthem
1986): we can find representatives of each equivalence class. Thus, as a
corollary, we can also determine such special cases as the earlier
‘'unambiguous' transitions having a unique reading.

Nevertheless, the number of Lambek readings may still be subject
to combinatorial explosion. For instance, in the following sequence of
stacked prepositional phrases

"to NP1 [from NP2] ... with NP«x"
(e, (e, 1), (e, 1) ((e, 1)) ... (e, ((e, 1), (e, 1) ((e, 1), 1)
= ((e, 1), (e, 1) ,

we can extract quantifiers in any order, yielding k! genuine scope
ambiguities. And even weaker calculi, designed expressly to curb this
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tendency, such as that of Hendriks 1988b, though more parsimonious, still
seem to involve exponential growth. It would be of interest to have more
precise numerical information in this area, which could then be measured
against possible general computational intuitions concerning the semantic
complexity of natural language.

Another area of interest are the earlier questions of polymorphic
transfer and their related preservation results. For instance, the natural
syntactic conjecture for monotonicity of lambda terms, amounting to
having the relevant parameter only in head position, which failed for the
full type-theoretic language, does in fact hold for the Lambek fragment (cf.
van Benthem 1987a). Similar improvements, in the form of
model-theoretic preservation theorems, are probably possible for such
notions as 'one-to-one mapping', and other cases of interest in Section 2.

Here again, we want to conclude with the general question as to
the genuine semantic content of our framework. Is not relating
denotational constraints to specific lambda forms rather doing a form of
logical syntax?

There are various points to be noted here. Generally speaking,
logical Model Theory is about the interplay between certain syntactic
forms of definition and certain semantic forms of behaviour. Thus, the
preceding questions would be typically model-theoretic in this sense.
Still, even on this point of view, one would like to see, conversely, some
matching semantic forms of behaviour for the various fragments of full
type theory introduced above. And in principle, this ought to be possible.
But, existing model-theoretic notions seem designed for some kinds of
‘fragmentation’ rather than others. In particular, they fit in better with
divisions according to occurrences of logical operators, and not so much
with those according to binding patterns.

Example: Characterizing Pure Combinators.

A typical fragment of the former kind would be the earlier pure
combinators, consisting of some lambda prefix followed by a lambda-free
matrix. And indeed, it is an interesting (open) question to characterize
these forms, amidst all type-theoretical terms, by some notion of
invariance across suitable 'substructures'. (In general, formulating such
results will probably force one to leave the standard function hierarchies

of Section 2.1, and move to some 'generalized model' version thereof: as is
quite common in the literature.) &

But, a more radical reaction is possible too. Perhaps, the present
perspective of meanings for derivations has really changed the traditional
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notion of 'semantics': by making complexity of truth conditions, or their
associated verification procedures, an integral part of the enterprise. If

this is so, then there ought to be significant differences in complexity
between, say, the L fragment and the full | formalism. And in one sense,
this is what the earlier observations indicate. But, how to to substantiate
such claims by means of some formal interpretative procedure?. Here,
some generalized version of the 'linear machine' of Lafont 1988 may be
useful. Another possibility derives from the model-theoretic notion of
Ehrenfeucht-Fraisse games , suitably augmented with further game
structure, such as the pebbling used in Immerman 1982 for characterizing
variable-restricted fragments of predicate logic. We shall illustrate this

for the above single-bond predicate logic.

Example: Model-Comparison Games for Single Binding.

In an Ehrenfeucht-Fraisse game, two players are comparing two models,
with player | trying to establish their difference, player Il their

similarity. The game proceeds in rounds, started by | who picks an object
in one of the models, and followed by 1l who picks a (matching) object in
the opposite model. After some pre-arranged number of rounds, a
comparison is made between the two finite submodels obtained, by
collecting the objects chosen on each side. If these are isomorphic, then
player Il has won, otherwise, the win is for player | . The basic result
here is the following:

Two models verify the same predicate-logical sentences up to
quantifier depth n if and only if player |l has a winning strategy
in their Ehrenfeucht-Fraisse game over n rounds.

In fact, the final comparison itself may be pictured as another game:
player | is allowed to choose any fact involving the objects selected,
whose truth value is then compared in both models. All comparisons must
maitch, if player |l is to have a guaranteed win here.

Now, Immerman's characterization of restricted bound variable
fragments of predicate logic involves changing the course of the main
game: by allowing selection of objects only through some fixed amount of
pebbles which can be put on them. When these run out, earlier selections
will have to be undone by removing a pebble.

By contrast, in order to characterize the single-bond fragment, a
restriction is needed, not on the main game, but on the comparison
to be performed during the 'end game':



33

1 the fact selected can only involve distinct occurrences
of objects selected in the course of the main game
(represented, say, by their 'stage numbers')

2 this fact has to be selected by | beforehand.

Here, condition 1 is inspired by attention to the actual mechanics of
verification. Because of it, typically, the players will not be able to see

the difference between a reflexive model, satisfying the double-bond
property Vx Rxx , and one which is not reflexive. Condition 2 , on the other
hand, serves to break any Boolean connection between atoms in the matrix,
thus removing another source of multiple binding (exemplified in formulas
like Vx(PxvQx) ). Call this new convention the 'Linear Token Game'. Then,
the following can be proved by an obvious induction:

Two models verify the same single-bond formulas up to quantifier
depth n if and only if player Il has a winning strategy in the
Linear Token Game on these models over n rounds.

Evidently, there are further possibilities for playing around with
Ehrenfeucht-Fraisse games. For instance, the joint effect of condition 1
with fact selection postponed until the end yields another interesting
fragment of predicate logic. &

Of course, this analysis is to be extended to Type Theory in general.
Possibly, this can be done in terms of players picking corresponding
objects on either side, so that all possible equalities between application
compounds of these will match on both sides in the final comparison.

But, other kinds of semantic games might be worth exploring in
this context too: such as Hintikka verification games on single structures.

Digression: Complexity of Proofs.

'‘Complexity' is a phenomenon which can be conceptualized in many
different ways. And therefore, outcomes may not always be unambiguous.
Thus, the Lambek system will not do better than the full intuitionistic one
on every count of proof complexity. For instance, one initial conjecture
might be that, in each type which is L-(and hence I-)derivable, there will
be smallest L-derivations. But, this need not be so. For instance, here is
the L-derivation again for the earlier example e = ((e, e), e) , together
with a shorter |-derivation, employing a structural rule (Empty
Conditionalization') which is not available in L :
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e (e, €) e
MP COND
e ((e, ), €)
___ _COND
((e, ), e)

And similar examples may be found with cases of L-derivable Contraction,
suchas ((t, 1), ((t, t),c) = ((t.1),c) . »

Finally, one other semantic road might leave the idea of
interpreting derivations for a while, concentrating on mere derivable
sequents. This, after all, is what happens in ordinary semantics of logical
calculi, where one abstracts from the derivational motivation for valid
inferences. Thus, we arrive at the question what independent viewpoints
are possible on the implicational calculi in the categorial landscape. As
has been observed before, these can be modelled in various ways:
algebraically, in possible worlds style, etcetera. This issue will return in
Appendix 5.2, where a connection is surveyed with current 'Linear Logic',
an enterprise whose motivation is in fact quite close to the present one.

4. \Variations

The above investigation has been concerned with the fine-structure
of standard type-theoretic semantics (as originated by Montague), a theory
which is undergoing considerable modification at present. And in fact, of
that old standard theory, only the so-called 'extensional fragment' has been
considered so far. In this Section, a number of possible extensions or
modifications of the earlier approach will be considered, in order to show
that the just-mentioned restrictions can be liberalized. These more liberal
set-ups may be grouped loosely under the headings of 're-interpreting old
types' and 'introducing new types'.

4.1 Re-Interpreting Individuals

It has often been pointed out that the bare structure of the
individual domain D, cannot suffice for many descriptive purposes. Thus,

a viable account of the behaviour of, e.g., mass terms requires a domain of
individuals structured, at least, by some form of non-Boolean inclusion.
Likewise, in the treatment of collective quantification, it seems

imperative to take groups into consideration, in addition to single
individuals.
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One somewhat conservative move, which already provides a great
deal of useful additional structure, is to replace the individual type e
by the type (e, t) of sets of individuals in a number of categorizations -
as has been advocated by various authors since the early eighties. Notably,
intransitive verbs will now receive type ((e, 1), t) [formerly, that of
NPs], rather than (e, t) - whereas one might retain the old type (e, t) for
common nouns. (But, e.g., van Eyck 1985 has an e-to-(e, t) replacement
throughout.)

As we have seen in Section 2.3, such one-to-one self-embeddings
of the universe preserve a lot of the original structure. Even so,
re-categorizations such as these ask for adjustment of previous
denotational constraints for lexical items. But apart from that, the earlier
general derivational apparatus will work in the same fashion. Here is an
ilustration.

Example: Adjusting Generalized Quantifiers.
Determiners may now be taken to live in the following type

(e, 1), (((e, 1), 1), 1)),

relating sets with families of sets. Truth conditions which have been
proposed then exhibit such forms as

ALLAB: (1) Ac U{XnA|XeB} (van Benthem 1986)
(2) Ac U{XcA|XeB} (Hendriks 1988a)

In fact, these exemplify 'lifting strategies' for the old determiners, such
as

(1) D,y goesto AA AB D 4(A, UB(A)

@1 " (e )"
(2) D,4 goesto AA(e’ y* xB((e' 0,1 D 4(A, L(Brpow(A)) .

Earlier denotational constraints also return. In particular,
Conservativity has even been built into the above truth conditions.

What happens in general, however, is that the additional structure
on the new 'individual' domain becomes important. In the present case, this
is mainly set inclusion. For instance, this time, we should expect
Logicality of determiners to mean, not invariance for arbitrary
permutations of the new individuals (possibly disrupting their relative

location), but only with respect to inclusion automorphisms of D(e )
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satisfying the following equivalence:
n(X) € n(Y) iff XcVY.

Still, the latter may be represented again as being induced by arbitrary
permutations = on the old individuals, obtainable from them as follows:

m(x) = un({x}).

And thus, the earlier notion of logicality has really survived in the same
mathematical form.

Nevertheless, the additional structure can be more interesting too.
For instance, Monotonicity will now come in several variants, because
there are other natural relations between families of sets than mere set
inclusion. Thus, the above two clauses (1), (2) both satisfy the
'straightforward’ variant of monotonicity in the B argument: if true, they
remain true for larger families of sets B . But, we can also define

B,<B, iff VXeB,3YeB,X < Y.

Reading (1) is monotone with respect to this relation too, whereas reading
(2) is not. Thus, a new kind of semantic variety is encountered.

Another useful perspective on the polymorphism occurring here is
given in the following 'Partee Triangle' of related basic types, with their
various semantic interconnections:

Individual Lifting
e —> ((e, 1), t)

Quining / BE

(e, 1)

Here, 'Quining' is the earlier operation of forming singletons. See Partee
1987, or van Benthem (1986, chapter 3), on the applications and the theory
of this schema. For instance, note that the various polymorphic operations
in the Triangle commute.

Example: 'Cosy Corners'.

Such linguistically interesting inter-connected corners of the
type-theoretical universe occur more often; witness, e.g., another triangle,
proposed by Henk Verkuyl in the study of collectives:
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Raising

.1 3 > (e, 00,9

Lowering
Quinir\

(e, 1), 1)

Here, Raising is the obvious analogue for predicates of Individual Lifting.
But this time, unlike in the previous case, there is also a lambda-definable
return road (as was observed already in Section 2.3), being the Lowering
map

AX,- Ue, v, t)( xz(e’ 9" z(x)). &

4.2 Re-Interpreting Truth Values

Another broad source of semantic variation is to be found in
various enrichments of the truth value domain beyond the two values 0
and 1. Forinstance, recent partial model theories employ three or four
truth values (cf. Muskens 1988), whereas fuzzy logic employs even a whole
continuum (cf. Zadeh 1988). Again, such a move does not affect the earlier
categorial apparatus as such - although it may engender more
sophisticated versions of earlier semantic definitions. (See J-E Fenstad et
al. 1987, or van Benthem 1988a, on some issues in partial Type Theory, and
Ketting 1988 on the theory of fuzzy generalized quantifiers.)

But, even the intensionality already present in Montague's
framework may be viewed as arising through a re-interpretation of the old
type t. This now becomes a domain of propositions: which can afterwards
be represented as sets of possible worlds, in a new type (s, t) ; where

D, is again {0,1} in the old sense,
D, is a new primitive domain of 'possible worlds', or 'indices' .

This time, there is a new issue of categorial combination, namely as to
how freely the new s type may participate in semantic derivation. In fact,
it seems that no Lambek single-bond restrictions apply to bindings of the
form Ax_ (cf. van Benthem 1988d). For instance, in reading an

intensionalized version of the sentence
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"all elephants danced"

((e, 1), (e, 1), 1) (s, (e 1)) (s, (e,t) = (s,9,

one might want to end up with the following multiple binding

Ax,. ALL(ELEPHANT(x))(PAST(DANCE(x)) .

But again, perhaps the more interesting semantic questions have to
do with the intricacies of the new semantic situation as such. Here is one
illustration - which can be dealt with eventually by means of already
available type-theoretic techniques.

Example: What is Extensionality?.

One surprising feature of intensional semantics, not often brought up, is
that we apparently lack a clear-cut general notion of extensionality in an
intensional Montagovian universe. There are some paradigmatic examples,
of course. For instance, a predicate is sometimes called 'extensional if its
interpretation does not change over possible worlds; i.e.,

P intype (s, (e, 1) is of the form Ax.. P(e t)*,
for some extensional predicate P* in type (e, t) .

Or, an adjective A in type ((s, (e, 1)), (s, (e, 1))) is called 'extensional' if
the computation of its value for some intensional predicate P is 'local':

A(P) = Ax,. A*(P(x)),
for some extensional adjective A* in type ((e, 1), (e, t)) .

But, there seems to be no obvious road from these examples towards
answering the question when an object in some arbitrary intensional type
a=a(e,t, s) is'extensional'.

Nevertheless, an answer may be proposed in terms of the
categorial notions developed in Section 2 (see especially Section 2.3). It
can take either a 'linguistic’ or a 'structural' form.

Linguistically, call a term |-extensional if there exists a
definition for it, in the form of a lambda term of the e, t, s type theory
whose parameters carry only pure e, t types. The intensional types a in
which such items occur will be those which are derivable in the
intuitionistic conditional logic from a sequence of pure e, t types.

Structurally, call an object in some domain s-extensional if it is
invariant for individual relations on D (leaving D o D, undisturbed). (See
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Section 2.2 for this notion.) Thus, given fixed domains of individuals and
truth values, it can survive drastic changes in the possible worlds
structure. This seems to make sense in general semantic terms, while
producing the right results in the above special cases. (For a technical
proof, see van Benthem 1988f.)

In general, l-extensionality implies s-extensionality, but not
conversely (cf. Plotkin 1980). So, there is still an interesting option. &

Variations such as the above will be necessary, in particular, when
the type-theoretic framework is used for dealing with programming
languages, where the new s-domain represents the states of a computing
device. (This the dynamic logic approach surveyed in Harel 1984. Cf. also
van Benthem 1988*.)

4.3 New Types

In the last analysis, one also needs entirely new kinds of type for
semantics. Examples are provided by the many recent event-based
frameworks, where individuals and events are treated on a par, occupying
separate (though formally similar) primitive domains D, and D . Even so,

this need not invalidate the earlier categorial approach. For instance, one
interesting line of investigation arises with the new basic sentential
pattern (note the analogy with the earlier scheme for plurality)

Det CN VP
((e, 1), ((E, 1), ) (e,t) (E,t) = t.

What will be the proper 'temporalized' account of generalized
quantification, and its denotational constraints?

Here is another kind of new feature which has been proposed, this
time not concerning the introduction of new types, but of new modes of
categorial combination. (In general, this is not at all against the grain of a
type-theoretical approach: witness Lambek & Scott 1986.)

Digression: Coordination versus Subordination.

In connection with event-based frameworks, it has sometimes been
suggested that another basic combinatory mechanism should be envisaged,
in addition to function application - namely some form of coordinating
conjunction. For instance, many relative clauses and adverbial or

adjectival phrases might be treated in the latter manner, rather than in the
earlier subordinating applicative mode.
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This is indeed possible. But, there is also an alternative: which is
to employ the old functional apparatus provided with suitable denotational
constraints. For instance, an (‘extensional’) conjunctive adjective is a
function A intype ((e, 1), (e, t)) which satisfies the following
conditions:

it is introspective: A(X) € X,

itis continuous: A(u,_ X) = u,_A(X) .

iel iel
And, all such adjectives can be represented in the following conjunctive
form (cf. van Benthem 1986) :

A(X) = XnA*
for some predicate A* of individuals. &

Another, more fundamental change would be to allow variable types
in our set up - as has become widespread in computational linguistics,
with unification serving as a major mechanism for building up and passing
on information.

Apart from computational convenience, there may also be intrinsic
semantic motivations for taking this line. For instance, in many cases, the
above e, t, s types are too rigid: even granting the phenomena of
derivational polymorphism discussed in Section 2. An illustration may be
found in the earlier area of collective expressions and plurality. We can
start a sentence "all bandits” thinking indeterminately of individual
bandits or groups of these, letting a choice occur only after having
encountered a subsequent predicate: distributive ("snored"), or collective
("quarrelled"). Being able to assign a variable-based type

((x, 1), 1)

to such a head NP would leave the semantic choice open until the
appropriate moment. (But note that this is an argument about semantic
procedure rather than semantic content.)

Another example arises with intensionality. For instance, in the
earlier treatment of a sentence like "All elephants danced" , we let the
determiner have its standard type ((e, t), ((e, 1), t)) : requiring it to
capture extensionalized 'snapshots' of the two (s, (e, t)) predicates
involved. But in certain contexts, this determiner might have a stronger
force, expressing a regularity across possible worlds: that is, in type

(s, (e, 1), (s, (e, 1)), 1)) .
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Again, having an initial assignment employing an appropriate type variable
would give us this intuitive latitude right from the start. (Note how this

idea is also relevant to the practice of logical inference: where it may be
only the context of a proposed inference itself which gives us the required
concretization.)

If this move is to be more than just a convenient computational
trick, however, we shall have to devise an independent semantics for it.
Here, suggestions might be taken from the category-theoretic approach of
Lambek and Scott 1986, or the parametrized structures of Situation
Semantics, which build indeterminates right into their semantic objects.
This would certainly require an overhaul of the earlier standard Type
Theory. (See van Benthem 1989 for more detailed discussion of the
intrinsic case for variable polymorphism.)

5. Appendices
5.1 Generating Readings

As was already observed in Section 2.2, techniques for obtaining
enumerations of readings have an independent interest. Here we present
one general method, based on formal grammars and automata, which was
developed in van Benthem 1987c in order to classify possible readings for
complex transitive sentences.

This time, however, we take another example, concerning the
category of determiners. Moreover, we shift the question somewhat: since
determining possible readings is merely one way of looking at the issues
involved. (Compare the digression 'for and against occurrences' at the end
of Section 2.2.) Thus,

When is a semantic determiner, in type ((e, t), ((e, t), t)),
lambda-definable from items in lower types
[ie,e t, (e t), ((e,t),t)]?

We can describe all possible lambda normal forms for determiners with
parameters from the types indicated using a kind of context-free grammar,
having symbols (at most) X, X', C,, V, for each of the relevant types a.

Here, V_ stands for a variable of type a, C, for a constant (parameter),
X, forany term of type a, Xa' for such a term which does not start with

a lambda. The point of this division will become clear from the rewrite
rules for terms in normal form to be presented now, for all types a :



42

Xa = Xa' ,
X, = Ca ,
Xa = Va

Next, rules for application or lambda abstraction depend on the actual
types being present. [Recall the fact that lambda normal forms contain no

more redexes of the form (Ax. a) (B) , while the types of all variables
occurring in them must be subtypes of either the resulting type or one of
the parameter types.]

Xen oy = ey Xy
Xi(e, 1,1 = Wiy X

Xt = X(e, 1) (Xe)

X = Xe .9 Ke,p)
X,y = AV,. X

The description of possible readings is much facilitated here, because we
can make this grammar regular. This may be visualized in the following
finite state machine for producing readings (where 'D,' stands for C, or

V, , where applicable):

C((e 1), 1)
(e t)
=-——--<_' "
(9 t) D(e t)
) D
e
C((e t), 1) \*
|

Dee.t

This scheme produces determiner denotations of forms such as the
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following:

1. Mg 4t Ce, ),

2. kx(e, y* xy(e’ y* Se, ), t)(x)
3. kx(e, y* xy(e, 9" x(c,)

4, }Lx(e, y* xy(e’ 9" Cle, v, t)( Az,. c'((e, D, t)( AU, x(2)))

Here, the latter kind is 'iterative’, producing infinitely many forms by
repeating the c'«e 0,1 (Au, subroutine. Thus, globally, there are

infinitely many distinct possibilities for defining determiners.

Nevertheless, this global infinity is still 'locally finite'": a
phenomenon already observed in Section 2.2. For, all these forms are
equivalent, in any model, to only a finite number of cases.

The reason is as follows. Any scheme of definition will start with
an initial ).x(e, y and then some further term t of type ((e, 1), t) . Now, if

the latter contains no free occurrences of the variable X, 1) then it
defines some fixed object: which also has one parameter Cle, 1,4 denoting
it. Hence, we are in the above case 1. Next, if the variable X 1 does

occur in 1, then, analyzing the latter term one step further, we can
rewrite the whole scheme of definition to

7LX(9, 1" }"y(e, 1 [0"2(9, 1" ©z/x]) (x)],

where the subterm kz(e y* 1[z/x] does not contain any free occurrence of
the variable Ye,1 - (To see this, check the 'exit routes' in the above

diagram.) Now, this subterm again denotes some fixed object in the
((e, 1), 1) type domain: and hence, we arrive at the above form 2.

Therefore, the general result becomes this:
Terms of the first two kinds listed above always suffice. [

This result says that determiners admit of no non-trivial reductions to
lower types: they are a genuinely new semantic category.

Evidently, this is just one of a number of questions about
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reducibility in type domains which may be investigated. For instance, can
we prove general 'hierarchy results' on definability?

Remark: Readings Revisited.

Actually, a proof of the local finiteness result for polyadic quantifier
readings, referred to in Section 2.2, requires a more careful analysis of the
potential infinity of lambda forms, relying on Boolean reductions to arrive
at a finite list. &

Whether for this purpose or for others, the 'grammatical' approach
to description of possible type-theoretic readings may be of interest by
itself. For instance, here is one

Conjecture: A derivable transition has finitely many readings
if and only if its associated context-free grammar is acyclic.

5.2 Linear Logic

The Type Theory employed in this paper for categorial purposes has

only few connectives, namely 'implication' , and 'conjunction’' . . From a
logical point of view, this makes it a rather poor system. Is there no use
for other connectives, and hence a richer logic?

In fact, there have been various proposals in the literature for
making linguistic use of additional type structure. For instance,
conjunction types would enable us to say that an expression belongs to two
categories at the same time. Moreover, disjunction types would encode
partial information about an expression's belonging to one of a number of
possible categories. (Compare 'disjunctive feature structures' in lexically
oriented grammars.) Finally, Moortgat 1988 has various 'infixation
operators' for categorial encoding of linguistic expressions with gaps.

A more systematic linguistic perspective on these matters arises
in the theory of formal languages. In fact, we can also interpret a calculus
like Lambek's as referring to the behaviour of concatenation of expressions
in different 'languages' (being the sets of expressions of different
categories; cf. Buszkowski 1982):

xel,, iff 3x,el, Ix,el, X=X, X, (Lyp=La-Ly)

Xe La\b iff Vze La zMx e Lb
xel,, iff Vze L, x"z e L,
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l.e.,, \ and / are left- and right-inverses, respectively, of the

concatenation product .. Thus, the Lambek calculus encodes part of the
behaviour of language families under useful operations. But then, there are
many further candidates which qualify; such as, in particular, all Boolean
functions of intersection, union and complement. But also, noting that all
these examples are natural operations staying inside the class of regular
languages, one might add the Kleene iteration *. And in fact, the latter
has an intrinsic linguistic motivation too. For, when dealing categorially
with texts, arbitrary finite iterations of sentences and operations over

these will have to be considered in any case.

Digression: Closure Operations on Regular Languages.
Products, Unions and Iterations are the canonical operations on regular
languages in the Kleene normal form theorem with respect to finite
automata. But, arbitrary Booleans make equally good sense. And in fact, the
two Lambek implications are closure operations on regular languages too.
Here is a sketch of the argument for the leftward slash a\b :

Suppose that M, is a finite state recognizer for L, - Now, localize

all states in this machine which can be reached, starting from its initial
state, by processing some string belonging to L, - Then, an arbitrary string

will belong to L, if and only if it will drive M, to a recognizing state
from each of those 'L_-reachable' states. And the latter condition can be
checked by a finite state automaton constructed out of M, in an obvious
way. &

Just as with the original implications and products, a proof
calculus may be set up for the new connectives. For instance, Boolean
conjunction behaves as follows:

A=b A>c Ab =d Ab = d
A = bnc A bnc = d A ,cnb = d

There is a slight analogy here with concatenative conjunction; but, there
are also obvious differences. E.g., typically, Boolean conjunction is
'monotonic’ on the left, concatenative conjunction is not.

For the Kleene star, however, no standard introduction and
elimination rules lie at hand. But, it will still satisfy such principles as

A", A* = A, A= A*.
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(The situation may be compared with the axiomatization problem for
regular programs in propositional Dynamic Logic: cf. Harel 1984.)

Very important in setting up such calculi is the use of a weak
categorial base, like the Lambek calculus. The latter may be described as a
system of implicational logic agreeing with ordinary systems in its
'logical rules', while leaving out the so-called structural rules for handling
derivable sequents (cf. van Benthem 1986 on this perspective). The latter
feature reflects the fact, discussed already in Section 2.2 above, that, in a
categorial grammar for analyzing linguistic expressions, one deals with
occurrences of premises rather than equivalence classes over these, as
happens in standard logic. This weakness allows for distinctions such as
the one between the above two conjunctions: which would collapse into one
given the full structural rules of standard logic.

Remark: A Hierarchy of Structural Rules.

Much hierarchical structure in the categorial landscape arises from a
ladder of possibilities starting from some calculus with no structural

rules at all, and then adding various structural extras, such as
Permutation, Contraction or Thinning of premise sequents: all the way up
to the full calculi of ordinary logic. This view fits in with the semantic
hierarchy of Section 3. For instance, the rule of Contraction, being

Ab,b =c¢c
Ab =>c¢c ,

will bring in lambda terms for derivations in which multiple variable
binding is allowed after all.

Now, the same perspective may also be arrived at from a purely
logical angle, having to do with the proper analysis of reasoning. Recent
work on so-called 'linear logic' (cf. Girard 1987, Lafont 1988 or Avron
1988) has started from a criticism of standard logical systems, whose
structural rules treat the premises of an inference as a mere set,
destroying any available information about their actual organization. More
sensitive systems of logic, respecting this structuring of premises, will
have to drop the standard 'structural rules' (who, in a sense, are rather
de-structuring operations). Thus, Girard has come to advocate a basic
‘occurrence logic', whilst also stressing its potential for making finer
distinctions among logical constants. That is, in linear logic, there are two
conjunctions (as above) and, at least in some systems, also two
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disjunctions. Moreover, one very fruitful idea has been to absorb some of
the usual structural rules into new logical constants. For instance,
Contraction is not allowed in general; but it is admissible for so-called

exclamation forms !<|> (standing for 'arbitrary occurrences of ¢ '), whose
logic is more classical. This new operator resembles the above Kleene star
*, which also allowed derivable contraction. (It may even be exactly the
same notion.) There are many interesting technical results about the
various systems of linear logic, which we cannot go into here. As a final
point of motivation, again, it may be noted that there are also complexity
considerations behind the new enterprise which would seem to be quite
congenial to those underlying the Semantic Hierarchy of Section 3 above.

More generally, this convergence between grammatical and logical
concerns, which can be observed to-day, may be understood as follows.
Categorial grammarians are looking for systems describing syntactic
structures, whilst also insisting on some principled semantic motivation.
This leads to calculi taking a somewhat liberal attitude towards every last
syntactic detail. Thus, from the Ajdukiewicz system upward, one ascends
toward stronger logical calculi of types. Linear logicians, on the other
hand, are starting to take the actual structure of premises more seriously.
This takes them on a downward road, from full standard systems to weaker
ones, more sensitive to syntactic detail, but hence also: to logical
distinctions between logical constants. And, the two movements turn out
to meet on common ground. (It now remains, of course, to turn a casual
encounter into real affection, and a life-time of collaboration.)

Finally, once more, there remains an important issue concerning
these calculi of linear logic, namely:

What is their genuinely semantic motivation?
To be sure, it has turned out possible to devise various algebraic
modellings, both in categorial grammar and in linear logic. And also, one
can expand the earlier lambda calculus so as to have analogues for the new
logical constants. But, in a sense, these are just various direct encodings
of what remain essentially proof-theoretically motivated systems. At
least for those, then, who do not believe that Proof Theory is the genuine
Theory of Meaning, a task remains. What would be an independently
motivated, enlightening semantics for Lambek or Girard type calculi?

We conclude by presenting one kind of modelling which may at
least point in the right direction. Broadly speaking, inference in standard
systems of logic describes an inclusion relation between sets of
structures, or (information) states, where the premises hold and the set of
states where the conclusion holds. Thus, in particular, standard
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propositions describe sets of, or equivalently: unary properties over,
states. And, the usual structural rules of standard logic reflect this
picture: which makes them seem inevitable trivialities.

By contrast, much of the motivation for occurrence logics has a
'dynamic’ ring: one wants to pay more attention to the actual processing of
the information contained in the premises. At least to a first
approximation, this might be modelled abstractly by making propositions
binary relations over states (rather like the 'transition relations'
associated with programs in computation). And then, an inference may be
called valid if the initial and final state of any 'verification sequence' for
the successive premises form a succesful transition pair for the
conclusion also. Technically, this leads to the following interpretation (cf.
van Benthem 1988*):

Let S be some arbitrary set of 'states’. Let R_ be any binary

relation over S, for primitive types a . Next, inductively, let the various
logical constants introduced in the above stand for suitable binary
operations on relations over states. For instance, the Booleans have their
obvious set-theoretic meaning, the concatenative product stands for
relational composition, the Kleene star for (something very much like)
transitive closure, etcetera. In particular, suitable clauses for the

directed implications \ and / are possible too, witness

R = { (X, ¥) | forall (z, x)e R,:(z, y)eR,}.

Then, valid inference for sequents A = b may be defined in the
above-mentioned way, for all their relational interpretations as described
here.

It is easy to see that this provides a sound interpretation for the
Lambek calculus (an observation due to Ewa Orlowska), as well as richer
systems of linear logic based upon it. One natural issue remains, of course,
whether this modelling is also complete.

But, even pending an answer to the latter question, it can be said
that the relational interpretation provides some new insight. By a minimal
modelling for some of the more dynamic aspects of interpretation, it
explains at once why standard structural rules are neither trivial nor valid.
To take the case of Contraction again: evidently, a composition R,oR, need

not be contained in R, itself. Or alternatively, if one insists on
contraction for some particular proposition, this will mean that its
associated transition relation must be transitive. [It would be of interest,

of course, to study various subclasses of propositions satisfying special
mathematical properties.] But also, the proposed semantics explains the
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proliferation of logical constants in occurrence logics: as we are now
entering the area of Relational Calculus, which is known for its richer
logical apparatus.

5.3 Variable-Free Notations

The semantic treatment in this paper leans heavily on a lambda
calculus with several restrictions on its variable patterns. Recently,
however, there has also been an emerging interest in variable-free
formalisms, as being closer to the actual structure of natural languages. In
this appendix, we shall consider a few such notations, in order to draw
some comparisons.

The idea that natural language behaves in certain ways as if it
were a variable-free companion of predicate logic has been put forward by
many authors, such as Quine, Dummett and Geach. In particular, Geach 1972
contains a proposal for enriching categorial grammar - itself already a
mechanism for doing away with some variables [ for instance,
EVERY(FOX)(LIES) replaces Vx(Fx—Lx) ]- with a number of operators
from Quine 1966, in order to deal with anaphors and reflexives. What Quine
had invented (cf. the discussion of single-bond formalisms in Section 4)
was a variable-free notation for predicate logic, based on operations
which identify or permute arguments of predicates. Moreover, two standard
conventions were introduced for the logical operators:

(1) quantifiers govern the last argument position of a
subsequent predicate,

(2) connectives turn a subsequent m-ary and n-ary predicate
into an (m+n)-ary one.

Then, a variable-free formalism arises which is intertranslatable with
ordinary predicate-logical notation; and for which, e.g., intrinsic complete
axiomatizations have been found in the meantime. (Cf. Bacon 1985. Some
further discussion occurs in van Benthem 1988c¢.) Geach suggests that
similar operators occur in natural language, relating identification to
reflexives and permutation to passives.

But also, e.g., in intensional logic, similar viewpoints occur. After
all, an operator formalism like that of propositional temporal logic is a
kind of variable-free shorthand for avoiding explicit quantification over
points in time - and a whole debate has raged concerning the propriety of
this move as a reflection of temporal perspective in natural language (cf.
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van Benthem 1977). The situation here was much clarified by the analysis
given in Gabbay, Pnueli, Shelah and Stavi 1980, who showed that such
operator formalisms are available for precisely those fragments of
predicate logic, with some finite lexicon, which employ only up to some
fixed finite number of distinct bound variables.

Remark: Actually, issues are a bit subtle here. For, after all, the above
Quine formalism is a finite operator notation for all of predicate logic,
without such bound variable restrictions. The crucial point, however, is

that the Quine operators take predicates of arbitrary finite arities, rather
than having some fixed categorial type. And, the G, P, S & S analysis only
applies to the latter kind of operator. &

And finally, of course, there is Combinatory Logic, as an
alternative formalism for the Lambda Calculus itself, which again provides
variable-free notations for arbitrary lambda terms. For instance, the
lambda terms of our earlier approach encode a Gentzen natural deduction
format for categorial derivation - which also has an equivalent
Hilbert-style axiomatic format, with corresponding combinatory terms.

Example: Combinators.

Sufficient combinators for the full lambda calculus are

Axyz. xz(yz)
AXY. X .

For the Lambek fragment (at least, as conceived in this paper), the
following set suffices:

| = AX. X
P = Axy. yx
C

Axyz. x(y(z)) .

(With S added again, one gets the fragment allowing arbitrary
non-vacuous lambda binding.) These combinators may be used to define
others, such as our earlier reflexivizer with behaviour

Wix = fxx .

For instance, here is a sentence which Geach 1972 translates into
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the Quine formalism:

"Everyone who hurts everyone who hurts him, hurts himself"
Vx( Vy (Hyx - Hxy) — Hxx) .

In a standard categorial format, this would have the form

V(Ax. V(dy. H(y)(x), Ay. H(X)(y)), Ax. H(x)(x)) ,
which can be translated into the following combinator expression:
S(S(S(KV)(PH))H)(WH) .

Although the Lambda Calculus formalism has been the main vehicle
for fundamental logical research in the area (cf. Barendregt 1981), a
combinator format has shown its virtues as well - especially in
compultational practice, where variable-free compilations of programs
originally written in standard mathematical variable notation support
more efficient execution. Steedman 1988 suggests that the syntax of
natural language is in fact like such a variable-free compiled formalism.
[In this case, the business of natural language semantics might be
described as 'putting in variables' at strategic places.].

This situation raises a number of interesting questions, both
semantic and computational. For instance, in which precise sense are
variable-free formalisms computationally more tractable than
variable-based ones? And, do they suggest some independent semantic
hierarchy?
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