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The categorial fine-structure of natural language

Johan van Benthem, Amsterdam & Stanford, March 2003

Abstract          Categorial grammar analyzes linguistic syntax and semantics in terms of

type theory and lambda calculus. A major attraction of this approach is its unifying power, as

its basic function/argument structures occur across the foundations of mathematics, language

and computation. This paper considers, in a light example-based manner, where this elegant

logical paradigm stands when confronted with the wear and tear of reality. Starting from a

brief history of the Lambek tradition since the 1980s, we discuss three main issues: (a) the fit

of the lambda calculus engine to characteristic semantic structures in natural language, (b) the

coexistence of the original type-theoretic and more recent modal interpretations of categorial

logics, and (c) the place of categorial grammars in the complex total architecture of natural

language, which involves - amongst others - mixtures of interpretation and inference.

1 From Montague Grammar to Categorial Grammar

Logic and linguistics have had lively connections from Antiquity right until today

(GAMUT 1991). A recurrent theme in this history is the categorial structure of

language and ontology, from Aristotle's grammatical categories to Russell's theory of

types in the foundations of mathematics. Further bridges were thrown as logic and

linguistics developed, with Lambek 1958 as a major advance in sophistication, many

years ahead of its time. Large-scale logical analysis of natural language really took

off around 1970, thanks to Montague's work (Montague 1975, Partee 1997). This

system connects linguistic structure and logical semantics in the following

architecture. The pivotal deep structure are syntax trees formed by grammatical

construction rules. In one direction, these trees project to actual surface expressions

by an obvious deletion map shedding all category symbols, brackets, indices, and

other theoretical entities put there by the theory. In another, semantic direction, trees

constructed in this explicit manner can be translated compositionally into logical

formulas of a sufficiently rich language, for which Montague chose an intensional

type logic IL (cf. Gallin 1975 for its mathematical theory). In particular, this sends

syntactic categories to semantic types. These logical formulas have a standard
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compositional model-theoretic semantics, which then comes to natural language by

composing the two homomorphisms. Alternatively, one can do model-theoretic

interpretation directly on the syntax trees. In a schema, we have:

Actual         surface Syntax    translation     Logical     semantic        Models

  Expressions     form          Trees           Formulas    denotation     Described

The expressive power of this apparatus is immense (Janssen 1983): it can recognize

and interpret all RE languages, and hence it stands to natural language a bit like

Turing machines stand to real computation. Thus, around 1980, a need was felt for

significant constraints on what the Montague Machine can do. Mathematical

linguistics already had natural grammar levels, from simple regular to complex RE.

Could there be similar fine-structure parameters on the logico-semantic side? Indeed,

the above architecture offers some footholds. Though its syntactic tree operations can

be baroque, in practice, most of them amount to some form of concatenation with

categorial function–argument composition. And likewise, the logical forms with their

semantics suggest levels of expressive power inside full higher-order logic.

Then Categorial Grammar returned on stage. On the syntactic side, Buszkowski 1982

revived the study of Lambek grammars, pointing out their linguistic interest and

mathematical depth in an influential series of papers (cf. Buszkowski 1997). This

initiated a tradition running all the way to the architectures of explicit proof-theoretic

control in Moortgat 1997, Morrill 1994, Gabbay, Kempson & Meyer Viol 2000,

where different categorial inference rules and modal vocabularies are used to find the

right combinatorial fit for linguistic phenomena. In the meantime, this stream has

merged with linear logic, and substructural logics generally (Restall 2000).

Simultaneously, around 1980, I was thinking about the minimal glue needed to

compose linguistic meanings inside the baroque mechanics of Montague grammar.

This led me to define a categorial calculus inspired by Geach 1972, associating

single-occurrence lambda terms to derivations, and noting such nice combinatorial

features as the invariance property for occurrence counts between premises and
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conclusions. I then learnt about Lambek 1958, and van Benthem 1983 shows how the

Lambek derivations correspond one-one to special linear lambda terms. The now

common term 'Lambek Calculus' seems due to me – though audiences always

complained that it was indistinguishable from 'Lambda Calculus' at my supersonic

rate of speaking.  It took some more time to realize that this reinvented the Curry-

Howard Isomorphism for a non-classical proof calculus – a move with precedents in

relevant logic. But once all this was in place, questions of fine-structure could be

asked, including the study of linguistic ambiguity: precise numbers of different

readings for natural language expressions. The eventual result of my fateful encounter

with Lambek was van Benthem 1991, which connects logic and grammar across a

wide interface. In the present paper, I look at some unresolved issues and new themes.

2 Natural language in the light of type theory

Categorial calculi are close to mathematical type theories, and hence they suggest a

proof-theoretic lambda-calculus based paradigm for natural language understanding.

This match between mathematical logic and linguistics has proved natural and

fruitful. But, as a general mechanism for the analysis of natural language, it also

raises a number of open questions, all about the linguistic role of categorial proofs.

2.1 Categorial derivation and computing meanings

Categorial derivation in the Lambek Calculus has many formats, but at some level, all

involve binary assertions of the form

expression E has syntactic category C

term τ has semantic type a

Moreover, the two viewpoints work in tandem, so that a syntactic parse of a string of

words with syntactic categories produces a matching description of a denotation,

using correlated semantic types. This proof-theoretic parsing–as–deduction is

computationally attractive, it works compositionally, and it gives the semantics for

free. For instance, mixing syntactic and semantic types, the typed string
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feed e → (e→t)    all (e→t) →  ((e→t) → t)     penguins e → t

amounts to a categorial derivation for the type e →  t from these three premises,

whose associated meaning recipe is given by the function composition term

λxe• (ALL(PENGUINS)) ((e→t) → t)  (FEEDe→ (e→t) (xe ))

In a simplified format, we can picture this analysis for a given string E = <E1, .., En>

using a proof tree with assertions σ:X saying that expression X has meaning σ:

x1: E1 xn: En

     proof in some

                type-theoretic

        calculus

      τ(x1, .., xn): E

We can also add further information to the assertions: syntactic, or even phonological.

Thus, rich grammatical derivation becomes the well-established notion of formal

proof. (Note 1.) Lambda calculus and type theory are thriving areas of mathematical

logic (Barendregt 1992), whose theory can now be imported to natural language.

Moreover, these systems are not just engineering devices for combinatorial puzzles of

syntax. They also provide a more general perspective on parameters for linguistic

description: an explanatory desideratum in linguistic frameworks. The paradigm

predicts that natural variations among grammars will occur by varying proof strength

for the type theoretic calculi driving the above proof trees. This has been borne out

most spectacularly by occurrence-based substructural calculi like that of Lambek

1958. Moreover, in addition to deductive strength, one can vary expressive strength,

by changing the vocabulary of type-forming operations, yielding even more syntactic

control (Moortgat 1997). Thus, the wide variety of human languages might come

about by different parameter settings for deductive and expressive strength.
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This view of what makes language tick is attractive, but it has not gone unchallenged.

Does natural language really revolve around functional expressions hooking up to

others via fixed slots? An alternative with a logical pedigree are unification-based

grammars, which involve flat merging of equational constraints from diverse sources:

syntactic, semantic, or even pragmatic. The equational logics driving this approach

have a well-established tradition, too. (Note 2.) In the rest of this paper, we shall stick

with the categorial approach, though many of our points apply more generally.

Confronting categorial logics with language structure raises special issues beyond

engineering of the right categories and straight deduction – and so categorial grammar

is not just a colony of type theory. We discuss a few of these issues (a few more are in

the Notes), mainly concerning the semantic uses of the calculus. This is in line with

Montague grammar, whose impact has been more on semantics than on syntax.

2.2 The proof steps: what is the glue?

The type-theoretic approach suggests that the only systematic combinatorial glue for

composing natural language meanings out of their constituents is that provided by

lambda terms, viz. function application and lambda abstraction. These are the logical

counterparts of the proof steps of a categorial implication calculus, via the Curry-

Howard isomorphism. Moreover, as can be seen in linguistic examples, this glue is

restricted to typed terms whose lambdas bind single occurrences of variables. If

natural language wants to bind more variable positions, it says so explicitly. E.g., to

make one subject bind both arguments of a transitive verb "admire", it adds a

reflexivizer SELF, as in the sentence 'Hyacinth admires herself'. SELF is an

expression of type (e→(e→t)) → (e→t) with a lexical lambda meaning

λR(e→(e→t))• λxe• R(e→(e→t)) (xe)(xe)

This is extra lambda glue that comes at a price, viz. explicit mention in the syntax.

But the issue of free combination is more complex than this. Some constructions in

natural language suggest that we do get a bit of stronger logical vocabulary for free.
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For instance, proper nouns in type e can serve as unary predicates in type e→t (as in

German 'der Heinrich') which suggests free uses of identity to form singleton terms

λye• ye = xe

Likewise, some adjectives seem to have a natural meaning with a free Boolean

conjunction. A "green bag" is something which is both green and a bag:

λxe•  GREEN e→t  (xe) & BAG e→t (xe)

A linguistic area which poses particular challenges of this sort are quantificational

patterns in natural language. An evergreen like "Every boy loves a girl" can be

analyzed in a straightforward categorial manner, by first composing "loves a girl" and

then feeding this to the noun phrase "every boy". But many quantifier constructions

defy this straightforward composition, in that they show emergent meanings. For

instance, "Three managers owned ten Porsches" need not mean that there were three

ten-Porsche owners: it can also mean that the three managers owned ten Porsches

total. This so-called cumulative meaning comes for free: but what is its glue? Things

get even more complex in a sentence like "The boys got one cookie each". This

strongly suggests that there is a one-to-one map from boys to cookies, even though

there is no overt identity in the sentence. The free glue needed to define all this again

goes beyond simple lambda calculus, involving at least identity. Finally, free meaning

composition of quantifiers gets even more complicated in the case of plural

expressions and mass terms (van der Does 1992). Indeed, there is no definitive

invariance analysis of quantifier constructions in natural language enumerating all

these emergent meanings (van Benthem 1989, Keenan & Westerståhl 1997).

In more traditional logical terms, we do not yet understand the full syncategorematic

repertoire of natural language, and hence, the logical glue to be put into its calculus.

Single occurrence lambda binding is prominent in the glue, but we may also need

some free uses of identity and Boolean conjunction. The latter items will return in

what follows. There are still further unresolved aspects to the proof paradigm for
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natural language, such as the extent and purpose of the phenomenon of ambiguity,

i.e., different derivations for the same string. But we omit these here. (Note 3.)

2.3 Proof data: semantic constraints on lexical items

Proofs consist of steps starting from certain initial givens. Proof steps suggested

restrictions on combinatorial glue, but there may also be constraints on the initial

materials to be glued together. Or linguistically, what meanings can occur for

expressions has a lexical aspect just as much as a compositional one. Indeed, it has

been found that denotations of basic expressions satisfy systematic semantic

constraints. Indeed, the lambda calculus itself points toward one sort of these.

Invariance for transformations  Pure lambda terms denote special type-theoretic

objects which are invariant for permutations of objects in the universe of discourse.

This is a general semantic constraint whose logical history goes back at least to Tarski

(cf. van Benthem 1991). Note that permutations respect identity of objects, and hence

the latter notion again emerges in the foundations of natural language semantics.

Basic logical expressions like Booleans or quantifiers are permutation-invariant – but

so are other syntactic expressions, like the above reflexivizer SELF. All this

exemplifies a general perspective known from mathematics since the 19th century.

Many linguistic categories show semantic invariances for suitable transformations of

relevant objects. In general, these transformations may preserve much more structure

than identity between objects. Examples are order-preserving transformations for

tenses of temporal adverbs, or transformations respecting geometrical patterns for

spatial prepositions. Van Benthem 2002 offers a general logical perspective on the

invariance paradigm, its attractions and its foundational limitations. (Note 4.)

Boolean structure   Another source of semantic constraints on linguistic expressions

is the pervasive Boolean structure of natural language, which surfaced in our

discussion of the glue. This time, consider implicit constraints on denotations for

lexical items. E.g., determiner expressions D like "all", "two", "most", "enough" are

conservative, in that their first argument restricts the range of the whole assertion:
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D (A, B) iff D (A, B∩A)

But Boolean structure is much more pervasive than this, as all domains for 'Boolean

types' ending in a final truth value type t have a natural inclusion structure (Keenan &

Faltz 1985). Many further semantic constraints that have been found involve Boolean

structure. For instance, some linguistic expressions denote Boolean homomorphisms

in their function type: an example is again the reflexivizer. (Note 5.) All this makes

Boolean structure a serious candidate for inclusion in a base logic of natural language.

Then we would need enriched typed lambda calculi with additional Boolean operators

having their normal meaning. E.g., van Benthem 1991 extends Friedman's

completeness theorem to such calculi – and still richer linear logics for linguistic

syntax include additive conjunctions (Moortgat 1997). Still, it seems fair to say that,

with a few exceptions (Dalrymple et al. 1995), such richer categorial systems have

not yet addressed the full agenda of Montague-style semantics of natural language.

Through categorial derivation, all this information, lexical and compositional, gets

combined in complex expressions. Many details of the total system are ill-understood.

E.g., the vast function spaces of type theory have many exotic inhabitants. How can

we zoom in more realistically on the denotations for actual linguistic expressions?

2.4 Parsing and inference: the case of monotonicity

Finally, Boolean structure also points at another aspect of natural language.

Expressions are used to infer things, and logical calculi for interpreting natural

language should also respect and explain the evidence about intuitively valid

inferences.  This broadens the range of linguistic phenomena which a logical calculus

should deal with from syntax and semantic more narrowly construed – as has been

realized very forcefully in the Montagovian tradition (cf. Partee & Hendriks 1997).

In particular, the natural relation of Boolean inclusion ≤ is like logical implication,

which plays an important role throughout natural language semantics. For instance, a

quantifier expression "All (X, Y)" allows the following valid inferences:
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All (X, Y) Z≤X All(X, Y)                  Y≤Z
--------------------------------- -------------------------------------

      All(Z, Y)         All(X, Z)

We say that "All" is downward monotone with respect to inclusion in its X-argument,

and upward monotone in its Y-argument. On the basis of such lexical observations,

we must then explain more generally when expressions are monotone in which of

their parts. For instance, the earlier phrase "feed all penguins" is upward monotone in

the words 'feed' and 'all', but downward monotone in 'penguins'. A categorial calculus

with suitable Boolean structure can account for this in a systematic manner (van

Benthem 1986, 1991). This gives rise to open questions about monotonic lambda

terms, which we will formulate in our discussion of 'natural logic' in Section 4.

This concludes our discussion of the fit between traditional categorial analysis and the

intrinsic joints in the syntax and semantics of natural language. Our main claim is

that, though the Lambek calculus does much of the job of meaning composition,

there are quite a few systematic phenomena slightly beyond it, which seem of a

logical nature all the same. Thus, the basic mechanism of free semantic composition

might lie somewhat higher up in type theory – but at present, we do not know where.

We now broaden our discussion to other logical views on the categorial apparatus

(Section 3), and after that, to a broader view of language as a whole (Section 4).

3 Emergence of the Modal Paradigm

Since the early 1990s, interest has also focused on another form of semantics for

categorial calculi, namely models for which they are sound and complete. The

atmosphere then changes from proofs and type theory to models for, in particular,

modal logics. Roughly speaking, categorial operations may be viewed as binary

modalities, and this view has been reinforced by the use of further modal operators

over this base (cf. Moortgat 1997). In this section, we outline this model-theoretic

semantics of categorial deduction, discuss some of its uses vis-à-vis natural language,

and suggest some comparisons with the original type-theoretic approach.
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3.1 A budget of modal models

There are many modal interpretations for categorial deduction. We note a few

characteristic ones here – van Benthem 1991, 2003 present more complete overviews.

Language models   Lambek's original syntactic calculus intuitively refers to models

whose universe consists of all strings over some initial alphabet, while languages

themselves are arbitrary sets of such strings. For instance, a categorial product A•B

then denotes the obvious concatenation product of languages, while a categorial left

implication  A→B denotes a sort of left-looking functional string language:

L A•B =  {s∩t | s ∈ LA, t ∈ LB }

L A→B =  {s | for all t ∈ LA: t
∩s ∈ LB }

It took until Pentus 1993 before the associative Lambek Calculus LC was shown

complete for this intended interpretation, in the following sense:

A sequent A1, …, Ak ⇒ B is derivable in LC if and only if for each 

interpretation L in a language model, the concatenation product

of the premise languages is contained in the conclusion language.

Process models  Other attractive models for categorial calculi have a more dynamic

flavour, involving state transitions. For instance, categories may also be interpreted as

binary transition relations, with categorial product becoming relational composition,

and the directed arrows its left- and right-inverses. This leads to semantic clauses like:

R A•B = R A  ; R B

R A→B  =  {(s, t) | for all (u, s) ∈ RA: (u, t) ∈ RB }

Valid consequence now means that, in any such process model, the composition of

the relations to the left of a sequent must be contained in the consequent relation.

Completeness for process models was shown in Andréka & Mikulas 1993.

Vector models   In the meantime, there are even vector models, in which category

expressions denote sets of vectors, viewed as regions of a geometrical space.
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Categorial operations are then identical with the Minkowski operations on images in

mathematical morphology (Aiello & van Benthem 2002). Vector models generalize

the numerical models introduced in van Benthem 1991, which were inspired by the

occurrence count invariants of derivable categorial sequents. Each simple numerical

vector model represents an invariant that can be used for pruning proof search trees.

Abstract ternary models  The preceding models have a common generalization:

M = (S, R, V)

for a minimal binary modal logic with a ternary accessibility relation Rs, tu, which

can be read as "s is the concatenation of the strings t, u", "s is the composition of the

transitions t, u", etc. The truth definition for an existential binary modality is this:

M, s |= <•>φψ iff  ∃t, u:  Rs, tu & M, t |= φ & M, u |= ψ

To get the categorial implications, one needs three modalities describing

R–compositions in different orders, a so-called versatile triple (Venema 1991):

M, s |= A•1B    iff ∃tu: Rs, tu &  M, t |= A &  M, u |= B

M, s |= A•2B     iff ∃tu: Rt, us &  M, u |= A &  M, t |= B

M, s |= A•3B    iff ∃tu: Rt, su &  M, u |= A & M, t |= B

Ternary models validate a decidable minimal modal logic which embeds categorial

calculi, as the three basic operations of categorial grammar translate as follows:

T(A•B)= A•1B

T(A→→→→B)  = ¬(¬A•2B)

T(Β←←←←Α)  = ¬(¬A •3B)

Further structure on the models is optional. E.g., the product relations will only

become associative if we impose additional corresponding modal axioms. Without

this assumption, the given translation validates precisely the non-associative Lambek

Calculus – with it, we get the associative version LC (Kurtonina 1995).
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Ternary models are very austere. Our final class of modal models is a common

structure to the earlier examples which retains a bit more vivid intuitions.

Arrow models   One can think of state transitions or categorial morphisms as

abstract arrows allowing for composition. Modally, arrow models are of the form

M =  (A, C3, R2, I1, V)

with A a set of abstract arrows carrying three structural predicates:

C3 x,yz x is a composition of y and z

R2 x,y y is a reversal of x

I1 x x is an identity arrow

A suitable modal language has the following key clauses for two modalities:

M, x |= φ•ψ iff     there are y, z with C x, yz and M, y |= φ,  M, z |= ψ

M, x |= φˇ iff     there exists y with R x, y  and M, y |= φ

There is again a minimal modal logic for such models in general (cf. van Benthem

1991, Venema 1996). On top of that, further axioms express constraints. In particular,

assuming for convenience that reversal is a unary function r , two frame

correspondences regulate the interaction of reversal and composition:

(φ•ψˇ→  ψˇ•φˇ iff ∀xyz:  C x, yz → C r(x), r(z)r(y)

φ • ¬(φˇ•ψ) → ¬ψ iff ∀xyz:  C x, yz → C z, r(y)x

Given this, there is no need for separate modal products any more, as we can view

composition triangles like this from any arrow we please taking reversals:

 a       b       

     c
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The second reversal/composition law involves a sort of implication, reminiscent of

the basic categorial application law A • A→B ⇒ B. And indeed, the above categorial

to modal translation extends naturally to this setting:

Categorial A→B  translates into arrow-logical ¬(Aˇ • ¬B)

Kurtonina 1995 shows how categorial logics become arrow logics in this way, and

sometimes vice versa. But note how categorial combination now involves arrow

reversal. Thus, a dynamic arrow view of categorial grammar shifts intuitions.

This concludes our brief tour of modal models for categorial calculi. All examples

given here generalize the original syntactic language models. But the approach can

also analyze semantic models like the type hierarchies of Montague semantics. (Note

6.) As all these categorial models are removed from what modal logicians usually

study, they also offer nice open questions for logic – whatever their linguistic merits.

We now discuss some general features of the modal approach as such.

3.2 The modal worldview

The above models place categorial calculi in the setting of general modal logic. Thus,

categorial languages may be viewed as fragments of modal languages whose formulas

describe properties of strings, vectors, arrows, etc. Thus, existing modal techniques

will apply. One of these is the systematic use of translations from a modal language

into the first-order language over the relevant models. Here is how this would work

out for categorial expressions over ternary models (Kurtonina 1995):

A•B ∃yz: Rx, yz & Ay & Bz

  Α→→→→Β  ∀yz ((Ry, zx & Az) → By)

  Α←←←←Β  ∀yz ((Ry, xz & Az) → By)

The translation is easily extended to further categorial operators, such as conjunction.

Note the 'guarded' form of the first-order quantifiers matching the modal operators.

This explains the modal semantic characteristic of invariance for bisimulation, and

the decidability of the modal consequence problem (Andréka et al. 1998). Practically,

the translation allows us to view issues in categorial models in the light of standard
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first-order model theory. Our next section has some examples involving model-

theoretic preservation properties of categories and types.

More theoretically, the translation puts categorial languages in the following light.

Basic modal logic is a decidable miniature version of first-order logic, and modal

logic in general is about language design maintaining a balance between expressive

power and complexity of satisfiability and other important tasks like model checking

(Blackburn, de Rijke & Venema 2001). Even so, satisfiability in the minimal modal

logic is Pspace-complete, and for the complete guarded fragment of first-order logic,

it is even Exptime-complete. In this top-down perspective, categorial formalisms go

one step further: they are tractable miniatures of modal languages. E.g., derivability in

the non-associative Lambek Calculus goes down to time complexity P. (Notes 7, 8.)

On the semantic side, categorial languages can be analyzed using invariance for

modal-style bisimulations, with special twists reflecting the absence of Booleans

(Kurtonina & de Rijke 1997). The resulting landscape of first-order fragments with

varying deductive strength and vocabulary has not yet been charted systematically.

Cf. Areces 2000 for the related case of hybrid logics and description logics, and

Kerdiles 2001 for other non-Boolean fragments of first-order logic.

Finally, like the type-theoretic paradigm, our modal approach has competitors in

linguistic analysis. For instance, the modal grammar of Blackburn 1995 uses various

modal languages to describe syntax trees as the primary structures of linguistics. This

is in the spirit of more radical model-theoretic proposals for redefining the business of

linguistics as providing logical theories of linguistic structures (cf. Rogers 1996).

3.3 An illustration: learning

We now consider a typical new research topic from the 1990s, partly for its intrinsic

interest, but mainly to show the above model-theoretic perspective at work.

Learning  Categorial parsing presupposes that lexical expressions already have

categories or types. The only issue is how to interpret a given combination of these,

by finding the right categorial derivation. But initially, such category assignments

have to be learnt before a language user reaches a steady state of competence.
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In recent years, linguists have become increasingly interested in issues of learning.

It is one thing to describe a functioning syntactic calculus, but another how to explain

why it might be learnable. Without some such explanation, a grammatical paradigm

lacks credibility. These issues have also occurred intermittently in categorial

grammar. Kanazawa 1994 shows that standard categorial languages are not learnable

in the sense of Gold, while suitable modifications are. Vervoort 2000 presents

practical learning algorithms with statistical twists due to Adriaans 1992 working

with some success on text corpora such as the Bible book of Genesis. Indeed, similar

learning concerns should make sense for logical calculi of ordinary inference! We

make a few semantic observations on parsing versus learning in a categorial setting.

Learning categories  Categorial learning algorithms work on growing finite

input sets, computing preliminary types for basic symbols at each stage. What

guarantee is there that this process will stabilize, in the sense that we can determine

whether a type holds or not at some finite stage, and stick to that? None, in general,

because of the following semantic analysis in a modal language of categories.

Consider some categorial language model, representing the set of assertions known to

us so far. We are given that some expressions have the basic type t, while for all

others, we can compute whether they have any complex type a formed from t using

products and implications by the earlier truth definition in language models. Suppose

that in this way an object x is seen to have type t→→→→t. Now we add objects to the

model, corresponding to new assertions coming in. Then the type of that object may

change. Here is an illustration, involving the first-order type t→→→→t:

¬t

                x : t→→→→t        t   x: ¬ t→→→→t

After this, no further change occurs: adding new objects will not change the truth

value of ¬ t→→→→t. But more complex cases can show alternating behaviour. Consider

the second-order type (t→→→→t) →→→→ t. This may be false for x in a model because there is a

cheap isolated t→→→→t object y to its left, without the concatenation of y, x being t. But
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now add an object z to y’s left blocking its property t→→→→t like above. Then (t→→→→t) →→→→ t

becomes true again for x. But adding another isolated t→→→→t  object to its left makes it

false again, etc. In terms of our learning procedure, a second-order type of the form

(t→→→→t) →→→→ t  may flip-flop all the time as we learn new facts about our language.

Category assignment and persistence    These phenomena have a simple explanation

in first-order logic. First note that our ternary first-order translation takes all non-

nested first-order types – or rather, their corresponding modal formulas – into

universal first-order formulas of the form ‘prefix of universal quantifiers – quantifier-

free part’. E.g., t→→→→t  becomes

∀yz  (( Ry, zx & Tz)  → Ty)

These formulas stay false under model extension once they are falsified somewhere.

Indeed, modulo equivalence, the first-order existential formulas are precisely those

preserved under model extensions by the Los–Tarski Theorem. But second-order

types are of a universal-existential form. E.g.,  (t→→→→t) →→→→ t  translates into

∀uv ( ( Ru, vx  &  ∀yz  (( Ry, zv & Tz)  → Ty))  →  Tu)

 (do not confuse the categorial and first-order arrows here!) which is equivalent to

∀uv ∃yz ( ( Ru, vx  &  (( Ry, zv & Tz)  → Ty))  →  Tu)

The latter formulas, too, have a model-theoretic characterization. Consider a family of

models which is convergent: any two models in the family are submodels of another

in it. These families represent coherent investigations, say samples of some language.

The natural union of such a family represents the total information obtained. Now, a

first-order formula is preserved under unions of convergent families iff  it is definable

by a universal-existential formula (cf. Doets 1996). Thus, first-order and second-order

types have some natural semantic behaviour. (Note 9.) These seem the most complex

types encountered in natural language (cf. van Benthem 1991). These observations

seem the model-theoretic side of the learning situation for categorial grammars.
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Other issues in categorial practice can also be analyzed in this model-theoretic

manner. Another interesting example would be categorial parsing and its systematic

combination of syntactic and semantic structure. (Note 10.)

3.4 Connecting type theory and modal logic

Perhaps the most obvious methodological question in the area is how type-theoretic

and modal perspectives are related. There have been various attempts at answering

this issue, which emerges in many fields besides categorial grammar, such as

intuitionistic logic: cf. Alechina et al. 2001, de Paiva 2002. In the categorial setting,

derivations involve lambda terms τ  which denote objects in semantic type domains.

These objects are a much richer sort of denotation than that provided by the above

models of strings or arrows. On the other hand, both realms have a parallel binary

semantic format stating that objects have abstract unary properties:

object τ  lives in type domain A 

object s satisfies modal formula A.

Van Benthem 1998 suggests that the two meet at the level of ternary composition,

reading Rs, tu  as "value s is the result of applying function t to argument u". But this

hides some important differences, such as the fact that validity does not have the

inclusion character in the above modal models. For instance,

validity of a sequent A1, .., Ak ⇒ B says that there exists some typed

lambda term τ of type B with only the free type variables xA1 , .., xAk.

Thus, the objects exemplifying the premises must be transformed into one

exemplifying the conclusion. In this light, modal models are projections of type

hierarchies, but the connection remains to be spelled out. On the other hand, arrow

models suggest categories, which are the natural generalization of type hierarchies

(cf. Lambek & Scott 1986). In this way, it might be possible to match up the

category-theoretic analysis of categorial logics with modal perspectives. (Note 11.)
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4 Inferential Architecture of Natural Language

Our final topic is the position of categorial grammar in the larger picture of logic and

language. As usual, we discuss only a few features and unresolved questions.

Inference at various levels   Categorial grammar views parsing as a form of

inference. Now parsing is a fast, largely unconscious process, prior to the many

conscious linguistic processes we engage in: planning an assertion, asking a question,

or: drawing a conclusion. Natural language is full of inferential mechanisms for such

diverse purposes. As is sometimes said, it has a natural logic. Some of these

mechanisms play a role at the level of unconscious sentence interpretation. E.g.,

Kamp & Reyle 1993 show how analyzing and generating correct plural expressions

involves semantic inferences about whether terms denote individuals or groups.

(When Anjuli says "Farewell, my Lord and Light.", we know from the setting that a

singular verb form must follow.) Other sorts of inference, the ones in our logic

textbooks, drive conscious planned reasoning – and yet others lie in between. Thus,

natural logic is an intriguing cognitive phenomenon straddling the fence between

conscious and unconscious processes in language use, spread out over various

mechanisms, with an architecture quite unlike standard logical systems.

Natural logic  There is no established architecture for natural logic. Van Benthem

1987 proposes a number of levels. The simplest level are monotonicity inferences like

Most days are rainy, all rainy days are cloudy, Q AB     B⊆B'

therefore: most days are cloudy      Q AB'

These replace predicate occurrences by ones with a larger, or smaller extension.

Inferences enlarging or shrinking predicates abound in linguistic interpretation, but

they also occur in simple computational manipulation of data bases.

Another general mechanism is domain restriction for certain argument positions. This

is witnessed by the earlier conservativity law for linguistic determiners:

Q (A, B) iff Q (A, B∩A)
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Here, the second argument is restricted by the first. More generally, natural language

never seems to employ the unbounded Fregean quantifiers: every variable carries its

own special sortal conditions. Domain restriction constrains variables, much as in the

computer science literature on constraint satisfaction techniques.

Further natural logic mechanisms include more global interpretative processes such as

the setting of temporal perspective in a narrative. For instance, ter Meulen 1995

shows how tenses and aspectual expressions help create an ordered sequence of

events, where positioning of events is not just determined by syntax, but also by

compatibility relations between predicates. E.g., "Hortensia entered and left" must be

sequential in time, whereas "Hortensia entered and brought a novel" seems

simultaneous. Moreover, this compatibility may depend on inferential long-distance

effects: if Mary has died, then the information that she is dead remains available when

interpreting syntax describing later events. Van Benthem & ter Meulen 1999 show

how these inferences do not involve a full-fledged temporal logic as used in systems

of conscious temporal planning or reasoning, but rather a tractable Horn-clause

fragment of the latter. This observation also applies to our main topic.

The role of categorial calculi    Categorial derivation has several roles to play in

natural logic. First, resource-sensitive Lambek calculi are tractable unconscious base

mechanisms of interpretation, making sense of linguistic expressions. But next, the

very fact that there is no unique best calculus, but only a landscape of options, turns

out to be a virtue. The exciting feature of the substructural landscape of categorial

systems, all the way up to the contraction rule, is this. More classical calculi

correspond to more time-consuming conscious inferential processes. After all, we

encounter them when analyzing ordinary constructive inference. (Note 12.) Thus, the

same system can be parametrized for different cognitive functions.

Finally, categorial systems also serve another useful function, because of their glue.

They spread information from other sources through expressions. One nice example

is monotonicity. Categorial construction lifts simple inferences to more complex

settings, providing lambda terms showing, e.g., how an expression with a quantifier

occurring under a preposition like
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"opens with a knife"

eventually gets positive monotonicity marking on all four of its constituent words.

Likewise, categorial derivation systematically spreads information about variable

restrictions (van Benthem 1991). This is how we get from conservativity of basic

determiners to a valid equivalence in transitive sentences like

(Q1 A) R (Q2 B) iff (Q1 A) R ∩ AxB  (Q2 B)

in which A restricts the first argument of the binary verb, and B the second. An

example would be the evergreen "Every man loves a woman", where the first

argument of "loves" is restricted to men, and the second to women.

The case of monotonicity   Interfacing categorial derivation with other inferential

processes also raises some systematic questions. The following case has been studied

extensively in van Benthem 1986, 1991. Monotonicity is such a simple inference

because it takes a free ride on categorial derivation by the natural inductive definition

of positive occurrence in lambda terms. One marks positions in expressions as

positive or negative as they are parsed, virtually without cost, using an interplay of

two sorts of information. One is the given monotonicity behaviour of lexical

expressions: e.g., the left-down, right-up monotonic behaviour of a quantifier "all".

The other is the monotonicity transfer due to the compositional glue. This makes all

function heads and lambda bodies positive. By contrast, argument positions become

'opaque', blocking inference from them – unless they are opened up by functional

terms having a monotonicity marking in their argument position.

Example  "All boys fight" is upward monotone in "All" for general reasons: this is

true for every sentence of the form "Q boys fight". It is also upward monotone in

"fight", but this is due to lexical information about "All". E.g., no monotonicity

marking, up or down, would occur in "Exactly ten boys fight". Another illustration of

this interplay is the earlier sentence "feed all penguins" in Section 2:

λxe• (ALL(PENGUINS))  ((e→t) → t)  (FEED(x))
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Its categorial derivation makes the term ALL positive automatically, while making

FEED upward monotonic and PENGUINS downward monotonic through adding

lexical information about ALL at just the right places.

Thus, inferential sensitivity for monotonic replacement is part of our understanding

an expression just as much as understanding its syntactic structure. Observations like

this also raise technical logical questions. Recall the Lyndon preservation theorem in

first-order logic. First, there is soundness: any formula φ(P) with only positive

syntactic occurrences of the predicate P defines an operation which is semantically

monotone in P. Lyndon also proved a completeness result saying that all semantic

monotonicity comes about by positive occurrence (modulo logical equivalence). The

same issue arises here. Let us say that a lambda term τ(x) is semantically monotone in

the argument x – with some abuse of notation - whenever the following implication

holds in every semantic model interpreting τ, with '≤' standing for Boolean inclusion:

if x ≤ y, then τ(x) ≤ τ(y)

The question whether an analogue of the Lyndon preservation theorem for first-order

logic holds for the typed lambda calculus, is still open. Van Benthem 1991 does prove

that semantic monotonicity implies positive syntactic definability for the linear

fragment of the full lambda calculus which corresponds to derivations  in the Lambek

Calculus LC. But that proof proceeds by brute force, and does not generalize.

Sanchez Valencia 1991, 2001 show how such simple monotonicity calculi underlie

most of traditional pre-Fregean syllogistics, and also find surprising parallels between

the types of inference in C.S. Peirce's existential graph calculus of first-order

reasoning. Moreover, these books provide a range of linguistic applications.

Combining systems   Natural logic splits inference into a family of special purpose

systems.  It seems implausible that one simple logical idea, no matter how elegant

mathematically, will unify all of these. But then, unity may also come about in

different ways. A typical them in modern (modal) logic is the issue of combining

systems. Instead of designing vast 'super-logics', one has a network of simple
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inferential systems, with suitable links allowing them to pass information as needed.

(Cf. Gabbay 1996.) Thus, the logical unity is in the system of combination, rather

than in one fundamental base calculus. The same architecture seems attractive for

understanding natural language. Not much is known systematically about logical

theory combinations and their properties – a topic which has received more attention

in the philosophy of science than in logic proper. (Note 13.)

5 Conclusion

The main points of this paper can be summarized as follows. As briefly related in

Section 1, categorial grammar and categorial logic provide elegant fine-structure to

the logical study of natural language. Section 2 showed that there are still issues

though about the fit between Lambek calculi and the free non-lexicalized composition

mechanisms of natural language. Section 3 demonstrated that the framework satisfies

one criterion for successful theories in science. These should have new interpretations

completely unenvisaged when first proposed. The modal semantics amply serves this

purpose, even though its precise relation to the categorial proof-theoretic perspective

remains to be understood. Finally, Section 4 discussed the place of categorial logic in

a larger view of interpretation and inference natural language, which is of course what

one would like to understand eventually.

Here is one final thought. Language is an empirical cognitive phenomenon, and one

with a lot of perhaps accidental history in its cultural genes. What can be the role of a

simple uniform logical or mathematical paradigm in this setting? Returning to our

link with Montague grammar, Montague's famous thesis stated that

there is no difference of principle between natural and formal languages

(cf. van Benthem 2002). What is being claimed here? Probably, this was meant as a

dogma of methodology, not in any naturalistic sense. Thus, categorial logic might

then just be a recommended mathematical working format for describing languages,

say, like using differential equations in suitable applied domains. There need not be

any more radical naturalistic claim that natural language is really like basic categorial

mechanisms. But sometimes, much more is being claimed. An example is Macnamara
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& Reyes 1994, a vigorous defence of type structure and category theory as the key to

cognitive science, coming from Jim Lambek's own home base. This reflects an

emerging broader discussion today about possible naturalistic uses of logical systems,

calling into question Frege's celebrated anti-psychologism. But even in its

underspecified reading, the Thesis has been immensely useful as a bridge between

natural and formal languages. Indeed, by now, one would also include programming

languages in the equation (cf. Janssen 1983). All this has led to a plethora of parallels

between linguistics, philosophy, and computer science. Moreover, the computer

science connection suggests an interesting broader use of categorial logic. Computer

science often creates its own virtual reality to match its theories. Even where it does

not match natural language perfectly, categorial grammar might suggest design of

perspicuous and useful new languages,  perhaps hybrids of formal and natural ones.

In all, I believe that the love match brokered by Lambek between categorial grammar

and natural language still has some romance to it, even though there lots of interesting

twists, misunderstandings and subplots to go before the happy ending.
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7 Notes

1 The equation of standard proof and linguistic meaning in our account does

have a presupposition. Is the usual notion of equivalence of proofs or lambda terms

really the right level of identity for assertions in natural language? This is not

obvious, since there could be independent linguistic intuitions here, and perhaps even

different notions of equivalence. There is little work on categorial proof equivalence

and this linguistic issue of 'strong recognizing power', but cf. Tiede 2000.

2 Shieber 1986, Fenstad et al. 1987, and other authors propose merging of

equational constraints as the basic linguistic mechanism. In this process, unification

takes place of the relevant terms – and information flows as variables become more

specified through successive matching. The resulting grammars, too, involve a

computational framework with a wide spectrum of uses, viz. equational logic and

constraint satisfaction. For some logical theory behind this paradigm, cf. Rounds

1977. Categorial and unification ideas co-exist in categorial unification grammars.

These allow for function applications plus variable specification, as in the typical

combination step from (x→ t) →y and e→y to t by unifying x→t and e→y. The
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underlying logics have both function application and unification in proofs. They are

fragments of higher-order type theories with variable types (van Benthem 1991).

3 Different derivations of one type from a string of types correspond to different

readings of a whole expression. E.g., an unbracketed string ¬ t←t  pt  [] t→t works out to

logical scope order ¬[]p  or []¬p depending on the order of function application in its

categorial derivation. The single-occurrence restriction allows only finitely many

possible readings for a given sequent in the Lambek Calculus, but numbers can vary.

Van Benthem 1991, Chapter 9, shows how the familiar categorial combinations have

unique readings: all their proofs have the same lambda calculus meaning. E.g., the

categorial law A→B, B→C ⇒ A→C behind the penguin example can only express

function composition. The book provides a method in terms of finite automata to

generate all readings for a given derivable type transition. Still, there is an open

problem of precise counting formulas for numbers of readings, or alternatively, for

the different single-occurrence lambda normal forms living in arbitrary  implicational

types. Thus, we do not know the precise degree of compositional ambiguity provided

by even the basic categorial calculus. Actually, ambiguity seems a feature of natural

language, rather than a defect. Presumably, it serves some useful purpose, say, in

efficient coding of frequent situations. Parikh 2001 proposes a game-theoretic

approach. But so far no conclusive mathematical explanation has been given.

4 Van Benthem 2002 remarks that invariance seems a typically semantic notion,

rather than a proof-theoretic one. Nevertheless, the known connections between

permutation invariance and type-theoretic provability suggest deeper links.

5 SELF is even the only permutation-invariant Boolean homomorphism in its

type. Van Benthem 1986 shows how the complete Boolean homomorphisms in any

type (a→t) → (b→t)  correspond one-to-one with all objects living in type b→a. The

correspondence specializes to the permutation-invariant items in both types. Hence,

any permutation-invariant object in the type (e→(e→ t)) →  (e→ t), or equivalently

(e•e→t) → (e→t), corresponds to a permutation-invariant object in type e→e•e. But

of the latter kind, there is clearly only one, viz. the duplicator map λxe• <xe, xe>.

6 In Montague semantics, finite type hierarchies interpret categorial languages

as follows: categorial slashes turn into function spaces, and categorial product into
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Cartesian product. To modalize these hierarchies, we need two ternary relations: (a)

z is the result x(y) of applying x to y, (b) z is the ordered pair <x, y>. Thus, the modal

language will have two binary modalities <app>, <pair>.  Apart from this, in can be

treated as our general ternary models. Special axioms then impose mutual constraints

on the two relations. E.g., an equivalence between (AxB) → C  and A →  (B→C)

would say that x(y(z)) = x(<y, z>). This would contract a categorial isomorphism into

an identity. No modal completeness theorem is known for these models.

7 This perspective fits well with the grammar modalities used by Moortgat and

others on the analogy of linear logic, allowing simple control over syntactic

combination without changing the substructural Lambek base (Moortgat 1997).

8 The low complexity of categorial languages is related to that of the 'poor

man's modal languages' studied in Spaan 2000. Nevertheless, there are also some

unexplained phenomena. As we noted, without constraints on the ternary relation, the

first-order translation validates exactly the non-associative Lambek Calculus NLC,

whose complexity is in P. The associative LC arises only with special associativity

axioms. But this move explodes modal complexity! The modal logic of associative

ternary models is undecidable, since it can encode word problems. Evidently, its

well-chosen categorial fragments like LC escape from this fate, retaining low

complexity: NP or perhaps (an open question) even P. What is the general principle?

9 Stability of type assignment along increasing models may improve in two

ways. One is via more uniform model-theoretic constructions out of finite

investigations, such as inverse limits. Then more forms of first-order statements

stabilize (van Lambalgen 1995). Another is making statistical assumptions about

sample sizes at which all relevant grammatical complexity must show up – as with

the ‘shallowness hypothesis’ in the categorial learning procedure of Adriaans 1992.

10 Categorial parsing for meaningful tasks typically involves mediating between

two realms: surface syntax and semantic models. That is, complex signs are

manipulated (Morrill 1994) which combine syntactic and semantic information,

including strings, lambda terms and so on. Indeed, we often get a neo-Montagovian

baroque in syntax. From a logical point of view, this exemplifies a typical modern

trend: meaningful tasks involve logic combinations! Building up forms like this is a
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Janus affair, looking at language models on one side, but toward hierarchies of type

domains like Montague's original models on the other. Given a language model M

and a type model N, the parsing process builds up a product model MxN that can be

mapped homomorphically onto M and N through left- and right-projection. Barwise

& Seligman 1995 defend this construction as a form of informational unification.

Products of modal logics have been investigated in Gabbay & Shehtman 1998.

They amalgamate models, giving the combined language interpolation properties.

11 Arrow logics for categories have not yet been studied in great detail. All

axioms of basic arrow logic are valid, and so are the mentioned triangle principles,

making allowance for the fact that inverse is now a partial function on morphisms.

But categories really suggest a two-sorted modal language, with separate assertions

expressing properties of arrows (morphisms) and of states (objects). State modalities

can be used to describe constructions such as products. Two-sorted 'dynamic arrow

logics' of this kind have been studied in van Benthem 1996, Chapter 8.4.

12 To see the two levels together, consider a Modus Ponens inference from

If t→t Johne comese→t , Marye leaves e→t and Johne comes e→t toMarye leavese→t. This

involves categorial implications for the function types of 'comes' and 'leaves', but

there is also the explicit implication 'if' of type t→→→→t.

13 Another source of relevant results might be domain constructions in category

theory, suitably tied to concrete inferential phenomena. I am happy to leave this task

to Jim Lambek and the formidable group of Montreal category theorists!


