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0. GENERAL INTRODUCTION.

The central idea of this paper is to 1ook at both relation algebras and
temporal logic of intervals from a viewpoint of two-dimensional
modal logic, and try to find analogons and/or new results. Here we
mean by a two-dimensional modal logic a system of modal logic in
which (at least some of) the intended Kripke semantics is such that
the set of possible worlds is (a subset of) a Cartesian product AxA
for some set A: i.e. possible worlds are pairs of more basic objects.
The theory of relation algebras was developed by Tarski et alii, in
order to give an algebraic, variable-free treatment of binary
relations. A temporal logic of intervals is a system of modal logic in
which intervals are the entities where the truth of formulas is
evaluated.

The report originated with the following very simple observation: if
one views an interval as the ordered pair consisting of its
beginning- and endpoint, a set of intervals can be seen as a binary
relation (on the set of timepoints). The next idea was to use the
well-known analogy between logics and algebras, or treatment of
logics as algebras (e.g. proposition logic as Boolean algebra,
predicate calculus in cylindric algebras). The immediate outcome
was a striking similarity between an interval logic with a 'CHOP-
operator' C - @Cy holding at an interval if it can be chopped into two
pieces at which @ resp. ¢ hold - and the above mentioned relation
algebras. In my opinion this similarity is shown most clearly in the
perspective of two-dimensional modal logic.

Now one research line was to try and find applications of the theory
of relation algebras for interval logic; in particular, the formulation
of the most known principles holding for binary relations was a
source of inspiration to finding axioms for interval logic with CHOP,
and a natural deduction method of generating all principles holding
for binary relations was the cornerstone for a similar system of
interval logic.

On the other hand one might wonder whether the modal perspective
on relation algebras sheds a new light on this field itself. As it
turned out, two things proved to be useful: the concept of
correspondence between modal and classical formulas, and the so-
called ‘'inequality rule' of Gabbay which pops up like a deus ex
machina every now and then in modal logic to make axiomatic
systems complete.



In the next chapter we give our modal perspective on binary
relations. First we give some basic facts and definitions concerning
the relation algebraic approach to the subject; next we expose the
above mentioned analogy of logics and algebras. The 'modal logic of
relation algebras' which is the result of this analogy in the present
case, is called CC and defined in section 1.3. In 1.4 we explore the
expressive power of this logic and after that the recursive
axiomatization with the inequality rule is given. We then treat an
extension of CC with an "inequality operator”, and in the last section
of the first chapter we give two applications in the theory of
relation algebras. Chapter two is on interval logic, starting with a
short introduction to the subject. The 'CHOPPY interval temporal
logic' CDT is defined in section 2.2, some results concerning
expressibility come in 2.3, and after that an axiom system is
treated, briefly. In the last section of this chapter we give a sound
and complete deduction system for the logic. In Chapter III we
discuss some related subjects and in the last chapter we give our
conclusions.



1. RELATION ALGEBRAS AS TWODIMENSIONAL MODAL LOGIC.

1.1. Relation algebras.

We here state the facts we need on the theory of relation algebras.
For an introduction to the subject the reader is referred to [HMTII],
[JT]or [J2].

In the theory of binary relations one studies constant relations and
operations on binary relations (over some unspecified set V).
Examples are the Boolean operations and constants, the identity
relation (Id) and the operations of composition (), converse (-1) and
reflexive transitive closure (*), where

Id = {(x,x)| xeV}

RIS = {(x,y)| there is a z with (x,2) € R, (z,y) € S}

R-1 = {(x,y)l (y,x) € R}

R* = {(x,y)l there is a finite number of objects Xp,...,Xn With x=Xg,
y=2Xn and (xi,Xxj+1) € R for i = 0,..,n-1}

Tarski [T] was the first one to suggest an algebraic approach to the
subject. A relation type algebra is defined as a Boolean algebra with
operators (by definition this is a Boolean algebra, extended with
some normal/additive operators, cf. [JT]), in this case a binary
operation ;, a unary ¥ and a constant 1'. The class FRA of full
relation algebras consists of those relation type algebras that are
isomorphic to an algebra of the form (Sb(VxV), U, -vxv, @, |, -1, 1d),
where Sb(VxV) is the powerset of VxV.

The question naturally arises as to study the variety RRA of
representable relation algebras generated by the class of full
relation algebras. The theory of universal algebra ([BS]) tells us that
RRA = HSP(FRA) (where H, S and P denote the class operations of
closing under homomorphisms, subalgebras and direct products) and
by Birkhoffs theorem we have A in RRA iff all identities holding in
FRA are true in A. Tarski proved that every representable relation
algebra is a subalgebra of a direct product of full relation algebras,
i.e. V(R) = SP(R). Some reflection shows that then every RRA can be
embedded in an algebra of the form (Sb(E), U, -vxv, &, |,
-1, 1d) where E is an equivalence relation over the set V.

In order to enumerate the identities holding in RRA, Tarski
suggested the following axiomatization, where we follow the
literature in using the symbols ; for |, ¥ for -1 and 1' for Id:

(1) axioms governing the Boolean part of the algebra.

(2) (x+y);z = x;y + X;2Z



(3) (x+y)Y = X" +y~

(4) (xV)¥ = x

(5) (x;y);2 = x;(y;2)

(6) x;1' = X

(7) (xy)Y =y x”

(8) x¥;=(x;y) < -y.

A relation type algebra satisfying these axioms is called a relation
algebra. It soon turned out, however, that the RA-axioms do not
exhausively generate all valid principles governing binary relations.
There are relation algebras that are not representable, as was first
shown by Lyndon in [Ly]; perhaps the simplest, finite example was
provided by MacKenzie and is given in [TG].

The question whether finitely many identities might be added to the
RA-axioms in order to axiomatise RRA was answered negatively by
by Monk in [Mo1], while in [Mo2] he showed that it is not even
sufficient to add infinitely many axioms in a finite number of
variables: infinitely many relation variables are needed. Explicit
infinite axiomatizations are known, however, by Lyndon [Ly] or
MacKenzie [McK] (cf [Mo2] for the related case of cylindric algebras),
but these axiomatizations are not very appealing to our intuitions.
wWadge [W] gave another way of recursively enumerating Idgra, by
using a Gentzen type deduction method, in which object variables
again are introduced in the proofs. (Maddux [M3] used this method to
define varieties RAy between RA and RRA, where the identities
holding in RAx being the ones provable in Wadges system by using
only « different object variables.) In [M4] Maddux shows that by
adding a 'non-logical’ operator ° to the algebras all identities holding
in RRA® can be finitely axiomatized.

Some simple sufficient (yet not necessary) conditions for a RA to be
representable are known: e.g. in [M1] it is shown that a relation
algebra is in RRA if 1 is the sum of functional elements (elements x
satisfying x¥;x < 1')

1.2 CC: a modal logic of compositon and converse.

In this section we will define a modal logic, the associated algebra
of which will have the type of relation algebras. Therefor this logic
must have operators corresponding to the composition and converse
operators of relation algebras, and a propositional constant for the
identity element 1.



Definition 1
Let L be a set of propositional constants; the set of CC-formulas
in L is inductively defined as follows:

(1) all atomic propositions &,tt,ff,p1,p2,...are L-formulas (pjeL).
(2) if @ and y are L-formulas, then so are 71 and @A .
(3) if @ and g are L-formulas, then so are oy and ®¢.

Definition 2
We will use the following abbreviations, besides the usual ones

for the Boolean connectives:

S for tto, &' for 71400, B¢ for O(QAJ)

O for pott, Ol for pog, @ for O(eAd),

B, M, 8', @' as the duals of ©, ¢, ©'and ', (Be="1S 711, etc.),
h(p) for (H@ A M'B@) and v(p) for (M@ A B'MT@).
(cf.remark 4 for the intuitive meaning of these operators).

The mirror image u(¢®) of a formula ¢ is inductively defined as
follows: for atomic propositions «, p(a)=o; u(71@) = u(e),
Hleayw) = ule)au(y), n(®p) = ®u(p) and u(goy) = u(ylou(e).

Concerning the semantics for this logic, we have a choice. The 'most
intended models’ are two-dimensional:

Definition 3 S i
A (proper) model for this logic is a pair M = (W,V), where ¥ is a
set called a domain, and V is a valuation, i.e. a map assigning a
subset of WxW to each atomic proposition, such that V(tt) = Wxv,
V() = @, V(&) = {(x,y) € WxW| x=y}. Elements of WxW are called
worlds of the model.

A forcing relation I is inductively defined as follows:
(1) For atomic propositions o, M,x,y I o if (x,y) € V(x),
(2) Mxy I @ if Mxy K 6o,

My IF @Ay if M,x,y F @ and M,x,y I y,
(3) M,x,y I oy if there is a z in W such that M,x,z I ¢ and

M,z,y F g,

My IF ®@ if My, x I @.
If no confusion can arise concerning the valuation, we will write
X,yl-@, etc.
A set of formulas 2 is satisfiable in a model M if there is a world
(x,y) in M such that M,x,y I+ @ for all @ in X; X is satisfiable if it
is satisfiable in some model. A formula @ is satisfiable (in a
model M) if {@} is. A formula is valid /valid on a model M



(notation: E@ / ME@) if its negation is not satisfiable/ not
satisfiable in M.

Bemark 4.
Note that L-formulas, when interpreted in a plane W2, have the
following reading (viz. fig. 1, where CW denotes the current
world):
®@: @ holds at the point obtained by mirroring the current one
in the diagonal;
©@: somewhere on the same latitude, ¢ holds;
Be: everywhere on the same latitude, @ holds;
S@: on the diagonal point of this latitude, ¢ holds;
©'p: somewhere else on this latitude, @ holds;
$: somewhere on this longititude, @ holds;
h(): @ holds only and everywhere on this latitude;
etc.

B o

n fig. 1
the following formulas hold in CW: oy, ®x, 88, D3, Oy, ©'y, etc.

It is also useful to have a more abstract, direct approach where the
possible worlds are the basic entities themselves. In this case the
presence of a n-ary modal operator gives rise to the existence of an
n+1-ary 'accessibility’ relation in the models:

Definition 5
Let Lcc be the first order language with a triadic relation symbol

C, a dyadic R and a monadic I.

TL¢c is the universal second order language of L¢c, i.e. formulas of
the form VP1..VPr@(P4,..,Pn), where @ is a first order formulas in
Lcc U {P1,...,Pn}.



Definition 6,

An arrowframe is a structure for Lec, i.e. a pair F = (W,*) where *
is an interpretation for the symbols C, R and I. (In the sequel we
will blur the difference between syntax and semantics and write C
for C*, etc.).
A model for CC is a pair (F,V), where F is an arrowframe and V is
a valuation, i.e. @ map assigning subsets of F to each atomic
proposition of CC such that V(it) = F, V(ff) = &, V(4) = L
By induction on CC-formulas we define a forcing relation I-. We
only give the clauses for the modal operators:

FVwIF §if F F Iw,

F,V,w I ®¢ if there is av withRwv and F,V,v I @,

F,V,w I @ouy if there are u,v in F with FF Cuvw, F,V,u I @ and

F,VvIF .

Concepts like validity on an arrowframe (FF.c) are defined in
the usual way.
The complex algebra of an arrowframe F is defined as the
relation-type algebra CmF = (Sbw, U, n, ¢, &, W, ;, ¥, 1'), where
the operators ;, ¥ and 1' are defined as:

X;Y = {z| there are x in X, y in Y with Cxyz},

XY = {yl there is an x in X with Rxy}

1"=L

BRemark 7. It is in accordance with the above definition to view the
proper models M = (W,V) of definition 2.2 as models, by setting

F = (Wxw, C, R, I) with

C = {<(uyv),(v,w),(uw)luv,we W}

R = {<(uyv),(v,u>luyvew}

I ={<uu)>lueWw}
We call F the arrowframe over the set V.

wWe will need some names for classes of frames:

Definition 8
For a class of relation-type algebras K, let ArK be the class of

arrowframes F for which CmF is in K.
€2, the class of two-dimensional arrowframes, is formed by those
structures which are isomorphic to an arrowframe over a set.

Now that the syntax and semantics of this logic have been defined,
we may look for some generalizations of basic constructions and



facts we know from ordinary modal logic. As an example we mention
the following:

Definition g
Call a relation Z between M = (F,V) and M' = (F',V') a zigzag if it

satisfies the following conditions:

(1) if x2x', then x and x' force the same atomic propositions
(including §),

(2) if xZx' and Rxy, then there is a x' with xZx' and R'x'y’,
and analogously in the opposite direction,

(3) If xZx' and Cyvx, then there are y',v' with C'y'v'x', yZy' and vzZv’,
and analogously in the opposite direction.

If we have a zigzag between M = (F,V) and M' = (F',V') which is

functional and surjective, we call it a zigzag morphism from F

onto F".

By induction on the complexity of CC-formulas one easily proves the
following:

Fact 10, For all CC-formulas ¢:

(1) If Z is a zigzag between M and M' and wZw', then M,w I @ iff
M,w'IF .

(2) If z is a zigzag morphism from F onto F', thenF F ® = F' k @,

Just as in the case of ordinary modal logics and modal algebras
(cf.[Gb]), notions like the above zigzagmorphism have a familiar
relation algebraic counterpart (here taking subalgebras), but we will
not go into that matter here.

1.3. CC: Characterizing frames and correspondence.

In this section we will show what additional structure we need to
provide arrowframes with in order to let their complex algebras not
only have the type of relation algebras, but be (representable, two-
dimensional) relation algebras themselves. We also present our
results concerning the language (CC or predicate logic) in which
these properties can be expressed.

Recall that for a class of relation-type algebras K we defined ArK as
the class of arrowframes of which the associated algebra is in K.

4



Starting with the clas RA, it is immediate from the setup that an
arrowframe is in ArRA iff it validates the CC-versions of the RA-
axioms. We will show that each of these axioms has a first-order
correspondent as well, but first we give an example of such a
correspondence: consider the condition that the binary relation R
should be functional (each world should have exactly one R-
successor). This property is easily expressible in predicate logic by
the formula Vx3y (Rxy A Vy' (Rxy' - y=y')), but one can also show
that the class of 'R-functional arrowframes' is characterized by the
CC-formula ® 1@ < T1®@@. In such a case we call such formulas
correspondents. Now usually this functional behaviour of R is
considered such a basic fact, that it is reflected in the definition of
arrowframes: in this section we will take arrowframes to be
structures of the type (W, C, f, I), with W, C, I as before and f a
function from W into W.

Theorem 2. (Maddux)

There is a first order sentence @pa in L¢c such that
F E @ra & F is in FRA.

Proof
We will show that each of the RA-axioms, in CC-form, has a first

order correspondent. The sentence (pra then is the conjunction of
these correspondents.
claim1; FF ®®@ o @ (RA4)
iff FE ffx=x (4)
proof: the «-direction is straightforward, for =, suppose ffu=u.
Let V be a valuation with V(p) = {x}. Then F,V,x IF p A T®®p.

claim 2: F F @o(yo) — (@oy)od (RAS)
iff F E Cvwy A Cuyz — 3x (Cuvx A Cxwz) (5)
proof: consider the following figure:
u >V > W >
X >
b >
¢ -

First suppose F is an arrowframe validating @o(yoZ)—(poy)oz,
and Cvwy and Cuyz hold. Let V be a valuation with V(p)={u},
V(q)={v}, V(r)={w}. Then F,V,z I po(qgor), whence F,V,z I
(peglor. Written out this gives the existence of an x with Cuvx A
Cxwz, quod erat demonstrandum. On the other hand, suppose F E
(5) and let F,V,z I @o(yoz). By the truth definition there are



u,v,w and y such that Cvwy, Cuyz, ul-¢@, viFry, wi-&. Using the
existence of an arrow x as given by (1), we get F,V,z I (goy)oz,
claim 3: F E (goy)ot — @o(yol) (RAS')
iff F F Cuvx A Cxwz — 3y (Cvwy A Cuyz) (5"
proof: like the previous one.
(Remark, In [M2] varieties are defined of relation-type algebras
satisfying weaker versions of the asociativity axiom. For all
these versions similar correspondences hold, as Maddux shows.)

claimd4. FF @ — @od (RAB)
iff F E Vx3y (Iy A Cxyx) (6)

proof; & is immediate, for =, suppose for uew there is no v with

Cuvu. Take a V with V(p) = {u}, then F,V,u IF p A 71(pod).

claim 5. F F @od — @ (RAB")
iff FEVXx(Cxyz Aly - x=2) (6")

claim 6: F F ®(poy) & @Yol (RA?)
iff F E Cuvw e Cf(v)f(u)f(w) (?)

claim ?: F E ®@o(poy) —» Ty (RA8)
iff F E Cuvw e Cf(u)wv (8)

(assuming the function f satisfies Vx ffx=x.).
proof:

Let F,V,w IF ® o1 (o), so there are u,v with f(u)l-¢@ and
viF 1 (@oy). Now suppose wiFy, then as Cf(u)wv, viF@oy, which
is a contradiction, so wi-y. For the other direction, let F E
®@o(@oyw) —» Ty and assume (u,v,w) is a triple in C. Let V be
a valuation with V(p)={f(u)}. V(q)={w}. We claim that vI-poq,
whence Cf(u)wv holds in F. For, suppose otherwise, i.e.
viIF T1(peq); then w I ®po1(peq), so wi- 71q: a contradiction.
(Remark. We may also characterize this property by the CC-
formula (@ A wo&) — Yo (& A ®yol).)
The sentence @R is of course the conjunction of the (universal
closure of the) Lgc-formulas 4,5,5',6,6',7 and 8.
OTheorem 1.3.2.

Note that in in Lcc we now have the following equivalent
characterizations for Cuvw (provided f is in ArRA):

Cuvw Cviwfu Cwfvfu

Cfuwv Cfvfufw CFwuv (9)

In general, though, CC-formulas will have a universal monadic

second-order equivalent on the frame level. We use some standard
([vB3]) correspondence-theoretic means to establish this:

10



Definition 3.
(1) Let 8 be the follwing translation of CC-formulas into first order
formulas in L¢e U {P1,P2,..}:
(i) 8(pj) = Pix for propositional constants pj,
8(4) = Ix,
B(tt) = Ix v TIx
(ii) 6(@eAy) = 8(@) A 8(y),
8(T1@) = T16(1),
(iii) 8(@oy) = Tyz (Cyzx A 8(@) [y/x] A 8(y)lz/x],
8(®e) = 8(p) [fx/x].
(2) ® is the translation of CC-formulas into TILcc-formulas, defined
by the following procedure: let p1,..pn be the propositional
constants in @, then ©(¢) = VP1..VPaVx8(@).

The following lemma expresses the correspondence of @ and 8(@) on
the level of models, and of @ and ©(@) on the level of frames:

Lemma 4,
(1) For all models M = (F,V) and worlds u in F:

MEc @ [ul & ME 6(@) [ul
(2) For all frames F:
FEcclp & F F O(p).

Proof,

(1) Straightforward by induction on the complexity of (.

(2) By (1): the universal second-order quantification in F F ©(g) is
the classical counterpart of the informal quantification over
valuations in F F¢¢ (.

OLemma 1.3.4.

The fact that in the above examples this second-order formula
reduces to a first-order one, is due to their syntactical form, falling
under an appropriate generalization of Sahlgvists Theorem ([Sa],
[vB211), of which we only give the following case.

Definition 5
A proposition letter p occurs positively in p; it occurs negatively

in 7@ if positively in @ and the other way around; if p occurs
positively (negatively) in @ or g, then it does so in @AY, PV,
®@ and @oy. A formula is positive if all occurrences of
proposition variables are positive.

11



The set UD of universally dominated formulas is the smallest set
containing the atomic formulas which is closed under: if @ and g
e UD, then so are @Ay and T1(T@oT1@). The set of existentially
dominated formulas is the smallest set containing UD which is
closed under the operators v, ® and o.

A formula is in Sahlgvist form, or a Sahlgvist formula, if it is of
the form @ = y—&, where @ is existentially dominated and & is
positive.

Theorem 6,
Let @ be a formula in Sahlqvist form. Then @ has an effectively

producable first order correspondent @* with FEcc@ & FEQ¥,

Proof,
Using the substitution method of [vB2], chapter IX. 01.3.6

Turning to the class ArRRA, we know that this class has a CC-
characterization (as RRA is a variety) and therefor a Tl¢c-
characterization. It is as yet an open question whether ArBRA has a
first-order characterizaton as well.

Finally we show that the class €2 of two-dimensional frames has a
first-order characterization. That this class does not have a CC-
characterization is immediate from the fact that the class of full
relation algebras is not a variety. It is easy to show that €2 is not
closed under taking zigzag-morphic images: let F be the arrowframe
on the integers Z. Define F' = (W,C,R,I) withW = 2,C = Kx,y, 2>l z =
x+y}, R = {<x,-x>| xe 2} and I = {0}, and let g be the map from F onto
F' defined by g(x,y) = y-x. It is the straightforward to verify that g
is a zigzagmorphism while F' clearly is not twodimensional.

Theorem 7. Anarrowframe F is two-dimensional
iff FE @pa A Yuw 3lvxy (Cuvx A Cvyw) (10)

Proof.
- We only prove the direction from right to left:
Let F be an arrowframe in FRA satisfying the above condition (10)
for C. wWe will show that F is isomorphic to a proper frame.
First, as F F (5), one easily verifies that
claim 1. F E Yuw 3lvxyz (Cuvx A Cvyw A Cvwy A Cxwz), (11)

12



A >
An arrow in a two-dimensional frame will be a pair (a,b). We now
define the arrowframe-counterparts Lu and Ru of (a,a) and (b,b):
claim 2. F E Vu3lLu (ILu A CLuuu) (12)
F F Yu3lRu (IRu A CuRuu) (13)
Existence of Lu and Ru follows from (3), unicity from (9) and
(11), cf.

u >Ru > fu >
d >

fu >
Lu >

We now define g: W +~ IxI by g(u) = (Lu,Ru) and prove that g is an

isomorphism:

claim 3. g is surjective:
Let u and w be in I. By (11) there are v,x,y and z as in the figure.
By Cuvx, Iu, (6') and (9') we get v=x and by Cvwy, Iw and (6'):
v=y. So we have Cuvv and Cvwv, whence u and w satisfy the
definition of Lv and Rv, so (u,w) = g(v).

claim 4, g is injective.
Suppose Lu=Lu' and Ru=Ru'. By the proof of the previous claim
both x=u and x=u' satisfy

Lu=LU' » X *Ru=Ru' >
X >
X >
whence by (10) u=u".

claim S, g preserves C, f and I.
For C, suppose Cuvw. We will not prove Lu=Lw or Rv=Rw, only

Ru=Lv: both Ru and Lu satisfy
u p BU/LV o v >
u >
L >
so by (10) Ru=Lv.
claim 6, g antipreserves C, f and I.
This proof is left to the reader.

OTheorem 1.3.7.

13



1.4 Completeness.

In this section we will give a recursive axiomatization of all CC-
formulas valid on the class of twodimensional frames. The axiom
system consists of the axioms for Relation Algebras and three
derivation rules, of which the third one, IR, is a bit odd and worth
some discussion. For the moment we only mention that the rule
originates with Dov Gabbay in [G], and that we believe that in this
proof we have the first example of a setting in which applying the
rule really adds new theorems to a logic.

Definition 1. The modal logic ACC consists of
(1) the following axioms. :
all propositional tautologies.
EC(ypCx) & (QCy)CX
®(pCy) & BYCRQ)
@CE & &Cp & @
BRE «
(Vv y)CX & @CX V YyCX
R(eVY) & BPVRY
. ®@ECT(@Cy) - Ty,
(2) the rules of inference
MP. Modus Ponens:
to infer @ from ¢ and ¢ — .
N. Necessitation:
to infer ®@, (T @Cy) and (YC @) from .
IR. Redundancy of distinguishing properties:
to infer  from h(p)— @, provided p does not occur in @.

ONOGOAUN =

A deduction in ACC is a finite string of formulas each of which is
gither an axiom or follows from earlier formulas by a rule of
inference.

A formula ¢ is a thesis of ACC (notation: ACC @ or @ if no
confusion arises) if it appears as the last item of a deduction.

A formula @ is a consequence of a set I' of formulas, notation
CH, if there are formulas ¥4,..,5n in T such that F(§1A..A3n)— @.
A set of formulas " is consistent if ff is not a consequence of I;
a maximal consistent set (short: MCS ) is a consistent set which
has no consistent extension.

14



We will now prove the soundness and completeness of this system
for the class of models of definition 2. As usual, one side of this

proof is easy:

Theorem 2. (SOUNDNESS)

Every thesis is valid in C2.

Proof:

This is a routine check for all axioms. As an example we verify the
validity of axiom 8:
Suppose M,x,y IF ®@o1{oy). By the truth definition, this implies
the existence of a z in M satisfying M,z,x I @ and M,z,y I+ T(@oy),
whence for all w, M,z,w I @ implies M,w,y ¥ y. Taking w=x, we
obtain M,x,y ¥ .
The theorem then follows by the observation that the rules of
inference preserve validity. We only prove this for R3: suppose
K@, then there is a model M=(W,V) and a world (s,t) in M such that
M ¥ @ [s,t]. Let V' be the valuation which differs from V only with
respect to p: set V'(p) = {[x,y] € WxW| y=t}. Then (W,V') makes
both h(p) and 7@ true in [s,t]; hence we have ¥ h(p)— .

OThm 2.

The completeness part of the proof is the place where the action is.
As usual, to prove that every valid formula is a thesis, we use
contraposition and show that every negation of a non-thesis, or more
generally every consistent set, is satisfiable in some twodimen-
sional model. We should mention here that in section 3.4 we give an
analogous yet simpler proof for the {8, ®, B, @, ®}-fragment of CC;
a reader having difficulties with understanding this section is
advised to read 3.4 first.

Fact 3,

(1)The following are theses of ACC, as are their mirror images:
Bleg—y) - (Be—By)
Be-BB¢g

©—-BOe

Be-@

S(p—-y) - (Bp—-By)
81 180Q

SISTREA ST

B(e—-y) » (®E-By)
1P 1R

DONOUGTRAN =

15



10. PRV Q
11. Hp -6
12. BR@ -»QOQ
13. ©Pp-0O0
14. $Be -8B
15. oy — (eVE'o(pvy')
16. (YABG)oX — Yo(xADs)
17. (6 A @ A Dy) - O A Dlpoy))
18. ©p & PV O'@
18. &(v(p) A p) & Blv(p) - y)
(2) If @ is a thesis of ACC, then so are B and M.

Definition 4,
For an MCS Z we define
DI = {@l Dy € 3},
ez = {gple@ e 2},
R ={p| @@ € Z} U {®pl @ € Z}.
An MCS A is called on the diagonal if §eA.

Lemma S
(1) Every consistent set has a maximal consistent extension.
(2) If = is an MCS, then so are ®%,8% and ®Z. Furthermore & € ©X
and § € B2.

Proof,
(1) By a standard Lindenbaum construction.

(2) By the theses 7 and 10.
OLemma S.

Definition ©.
I isonarow with A, notation '=A, if {¢| B e '} € A.
Likewise we define: " is in a column with A, and write I"A.

Lemma 7,
(1) T=A & forall peA, O@ e T.
(2) =and| are equivalence relations
(3) For all MCSs I, 8r=r.
(4) For all MCSs IMand A: M'=A = &I | ®A.
(5) If ©@ isinTl, then there is a 2 with ¢ € Z and 2=l
(6) If I'=A, §el" implies ' = BA.
(7) If I'=A, v(@)el and v(@)eA thenT = A.

16



(1)
(2)
(3)
(4)
(5)

(?)

Standard.
Standard, as B and @ are S5-modalities.
Straightforward, by definition of 8.
Idem, by 3.13.
By showing that, under the given conditions, {¢} U {y| ByeT}
is consistent.  can be any maximal extension of this set.
For3el, 3A6 el = ©(Ad) e A = T8y e A = B85€ A =
5 € ©A,s0 " € BA. On the other hand, ® € ©A implies
B(§—0p)e A= 48-opell = pel 508A cT.
Suppose e = S(v(p) A §) € A = (3.19) B(v(p) - ¥) € A
= v(p)oy e A = jeA.

OLemma 7.

Definition 8,
I, Mand £ form a triangle if for all @ € TMand y € Z we have oy

inl.

Lemma 9, For MCSs I, TT and Z the following propositions hold:

(1)
(2)
(3)
(4)
(5)
(6)

I, O and I form a triangle.

If C, MTand Z form a triangle then 8TT= O2.

If I, T and X form a triangle, then M=T and I"[=.

If [, T and X form a triangle, then so do 2, ®TT and I".

If [, Mand Z form a triangle, then so do ®, ®2 and ®TI.

For any L-MCS ' and formula oy in ", there are L-MC3s T
and X such that @eTl, yeZ and I',TT and 2 form a triangle.

Proof,
r 2 o
A glance at the following
figure may help to under- T Sl=0z &2
stand the meaning of the
above. ° @M ]
Straightforward.

(1)
(2)

(3)

Assume @eBTl, 1peD2. Then BReT,Dpe2 = SO € T
But then (B AB 1)o@ € [ by thesis 16, which is
impossible.

Straightforward by the definitions.
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(4) Let T, TMand Z form a triangle and m'e ®T, 5 € . If oy ¢ 2,
then T (1'oy) € =, as T is an MCS. Hence @m'o1(Tr'oy) is in I,
contradicting its consistency by axiom 8.

(5) If6'e ®Z, m' € BT, then®6 € Z,®T' € T. This gives ®1'o®¢’
el = ®(c'om') e M = o'om' € BT

(6) Let ©1,92,.. be an enumeration of L-formulas. We will define,
in a Lindenbaum-like construction, sequences of sets of L-
formulas TlpE T €..., 20E21<€..., such that all T, are finite
and consistent, T+ is either MaU{@np} or TaU{T @}, Zn+1
either Zpu{@n} or Zou{py}, and (ATR)e(AZ,) is in T for all n,
The key observation for the induction step is the following
(with m, = ATp, 6 = AZy): as mpoop, is in [ we have
((TThA@n) V (TThA T1@R)) © ((6nAtpn) V (6nAT1@R)) in T, and so by
axiom 6 (at least) one of the following is in T:

(TThA @n) © (6nAQn), (TThA@n) © (6nA T0y),
(TThA T1@n) @ (GpAR) or (TThATI@R) © (A T @R).
If for instance the second is the case, we take Tp+q1 =
TMau{pn}, Zn+q = Zpu{T1 @y}, etc. It is then straightforward to
prove that I, UnewTn and Unew=n form a triangle.

OLemma 10.

As was mentioned before, we will prove completeness by
constructing for a given MC3 I', a model M in which " is satisfied. In
every finite stage of the construction we will be dealing with a
finite approximation of M called a matrix:

Definition 11.

For n a natural number and L a set of propositional variables we
define an L-matrix of size n to be a pair A = (1,A), where
Q1 is a set of n elements called the domain of A, and
A is a coherent L-chronicle on f.
An L-chronicle on a set R is a map which assigns an L-MCS to each
pair (v,w) of L. A chronicle A is coherent if for allu,v,w €}:

(1) A(u,v), A(w,v) and A(u,w) form a triangle.

(2) Alv,u) = ®A(u,v).

(3) § € Aluv) & u=v.
Note: usually the domain £ of A\ will be formed by a natural number
n = {0,1,..,n-1}, and informally we will speak of MCSs on the i-th
row, etc.
If A\,A" are L-,L'-matrices of size n, n', then \' is said to extend A
(notation: ANEN') if n<n', 48" and for all u,v in f: A(u,v) <
A'(u,v).

18



A matrix is maximally distinguishing if there are, for every u € £,
formulas @ and y such that h(@) € A(v,u) for every v, and v(y) €
A(u,v) for every v.

A matrix is only an approximation of a model; it will not be perfect.

Definition 12
An L-defect of a matrix A =(L,A) is a quadruple (v,w,@,p) with
v,w € L, @ and y L-formulas such that @oy € Alv,w), but fornou
in 2 one finds @ € A(v,u) and ¢ € Alu,w).

we will prove in lemma 20 that we can repair every defect of a
maximally distinguishing matrix A by adding new points to A,
together with new A-images. First we need the following lemmas,
of which the first one expresses the fact that if one of the A-
images in a matrix is enlarged by formulas in new propositional
constants, then this extension can be carried over to the whole
matrix.

Lemma 13,
Let » = (R,A) be a maximally distinguishing L-matrix, u,v € J,
L'oL and " a consistent L'-set with TD> A(u,v). Then there is an L'~
matrix »' = (L,A') extending A such that A'(u,v)DT.

Proof,
The lemma is proved by induction on [Al, the size of A. Without loss
of generality we may assume £ = {0,1,..,IAl-1}, u=0 and v=1.

For INl=2 we take A(0,1) to be L'-MCS extending ' (such a set
exists by lemma 7.1). Then we define A(1,0)=® A(0,1),
A(0,0)=DA(0,1) and A(1,1)=8A(0,1). It is left to the reader to
verify that A" indeed is a matrix.

If INl=n+1, by the induction hypothesis we have an L'-matrix A" =
({0,1,..,n-1},A'} extending A and such that A'(0,1) D I'. We must
complete the construction by adding L'-formulas to the L-MCS3s
A(i,j) where i or j equals n (viz. the following figure).

Let @n be the formula for which h(tp) € A(i,n), for every i.
Define, for 0<i<n-1:

A'(i,n) = {] OleAh(en) € A'(i,j)} and A'(n,i) = ®A'(i,n)
A'(n,n) = @A'(n,j).
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(Note that we need not specify j in this definition as I is an 55~
modality and A(i,j)IA(ik).).
N\' itself is then defined in the obvious way.

n AlOn)  Allp)  — Alin) - Aln-1,n) A(n,n)
n-1  Afop-DA(N-1) — Alip-1) — Aln-1p-1) Aln,n-1)
I I I I I

i A0,i)) A1) — AGHD  — An-1,) Aln,i)
I I I I |
1 A0 AT A1) — Aln-1,1) Aln1)
0 A0,0)  AU10) ALO)  — A'n-1,0) A(n,0)
0 1 i n-1 n
Claim 1: A'(i,n) 2 A(i,n).
Proof: Straightforward. O
Claim 2: A'(i,n), A'(n,i) and A'(n,n) are maximal consistent.

Proof: We first proof the maximality of A'(i,n): as Ohlpy) €
A'(i,j), at least one of ®d(@Ah(gn)), OP(T@Ah(@y)) is in
A'(i,j), whence one of @, is in A'(i,n).

For consistency, suppose both ¢ and 7@ are in A'(i,n). Then both
Do Ah(pp)) and G(T1@Ah(@y,)) are in A'(i,j). By lemma 9.5 there
are MCSs 2 and T with 2, T, @ Ah(gn) in £ and 7@ Ah(@y) in
1. This implies Z[T, as | is an equivalence relation, and =T, as
@ is in Z and not in T. But by lemma 9.7 this contradicts the
fact that h(@n) € = and h(py) € T. O

Claim 3: A' is coherent.

Proof. We prove that X' satisfies (2), (1) and (3) of definition 16.
The fact that A'(j,i) = ®A'(i,j) is immediate, either by
induction hypothesis or by definition of A'(n,i). The proofs for
the other conditions in (2) are likewise simple.
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For the triangle property (1), it suffices to prove that every
triple of f-elements involving n forms a coherent triangle. So
first suppose yeA'(i,j), @e A'(j,n). Wwe must show geotp € A'(i,n).
As N was maximally distinguishing, there are formulas @, and
wi such that v(yj) is in every MCS of the i-th column and h(¢@y)
in every MCS of the n-th row (cf. the figure)

A'(i,n) <@ h(gn) =P A'(j,n)

t N

vigi) ¥

v

A'(1,]) A'(j,])

Now we can establish the following facts:
(viwidAaw) e A'(i,j), (h(en)Aa@)e A'(j,n)

= Ov(yay) € A'(j,j) and OleAh(pn)) € A'(j,]) (16.1,12.3)
= S(vpday A OCvlgi)ay)e(@Aah(en) ) e A'(j,]) (6.17)
= S(v(yi) A Olyol(pAh(en)) e A'(),]) (prop. logic)
= B(v(gi)— Olyo (@Ah(en)) ) e A'(],])) (6.19)
= Oy o(@ahlpn)) € A'(i,])) (16.1, 12.3)
= Olhlen)Ayop) e A'(1,]j) (def. of ©, h(py))
= o € A'(i,n) (def. of A'(i,n))

The triangle property for other triples involving n can be proved
likewise, or by using lemma 12.3 and 12.4.

The third condition for coherency follows immediately from the
fact that A, the matrix we started with, already satisfied

§eA'(i,]) & i=]. O
OLemma 13.

Lem 1
If " is an L-MCS, @oy € "and p ¢ L, then T U {(@Ah(p))oy} is
consistent.

Proof,
By lemma 12.6 there are L-MCS3s T and 2 such that I', T and Z form

a triangle and @ € T, ¢ € =. T v {h(p)} is consistent, for
otherwise there would be a T € T such that  h(p) —» —11. But as
p¢L, this would mean by derivation rule 3 that 711, quod non.
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By the previous lemma it easily follows that there is an MCS ™
extending " such that @ Ah(p))ey is in I'". This means that ' v
{(pAh(p))oy} is consistent.

OLemma 14.

Remark: This is the only place in the completeness proof where we
need the derivation rule R3.

The following lemma says that every defect of an md matrix A can
be 'repaired' in an md matrix extending A, both in language and in
size.
Lemma 195,

If » is a maximally distinguishing L-matrix of size n with a

certain defect and L'=Lu{p}, where pgL, then there is a maximally
distinguishing L'-matrix A'2\ of size n+1, lacking this defect.

Proof
Assume the elements of § = {0,..,n-1} are numbered in such a way
that the defect has the form (0,n-1,@,y).
By lemma 14 A(0,n-1) U {(@Ah(p))oy} is consistent, so by lemma
13 we can extend A\' into an L'-matrix (£,A') such that @ Ah(p))oy
is in A'(0,n-1). We now define
A'(i,n) = {@] OGlpah(p)) € A'(i,j)} and A'(n,i) = ®A'(i,n),
A'(n,n) = OA'(n,j).
It then easily follows that @ € A'(O,n), ¢ € A'(n,n-1). The proof of
the coherency runs just like the proof of the second claim in
lemma 18, except for condition 3; we want to show that &e A'(i,n)
implies i=n.
So suppose §€ A'(i,n), i=n. Then A'(i,n) = ®A'(i,n) = A'(i,i) by 9.6.
S0 A'(0,n) = A'(i,n) = A'(i,i). This implies h(@j) € A'(O,n), so with
lemma 7.7 we have A'(O,n) = A'(0,i). Likewise we prove A'(n,n-1)
= A'(i,n-1). But then @eA'(0,i) and weA'(i,n-1), so @e A(0,i) and
geA(i,n-1). This contradicts the fact that (O,n-1,@,yp) was a
defect of A.
To prove that A' is maximally distinguishing it suffices to show
that h(p) distinguishes the n+1-th row and v(®p) the n+1-th
column.

OLemma 15.

Theorem 16. (COMPLETENESS).
ACC is complete with respect to £2.
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Proof,

Suppose £ is consistent. We're going to construct a model in which

> is satisfiable.

Define Lo={pl p is a propositional constant in @}.

Fix an Lg-MCS Z¢ with £92Z. Define Ao = (0,Aq) as follows:

-if §e2: fo=1, Ao(0,0)=2.

—if §¢3: Bo=2, Ao(0,1)=3Z, Ag(0,0)=0%, Ag(1,0)=8Z, Ao(1,1)=60%.

For the sake of notational simplicity we now assume €2, so Ag is

a coherent matrix of size 1.

Suppose for all new, pn+1 is @ constant not in L, and define, for

all new, Ln+1=LpU{pn+1}.

Then £ U {h(p1),v(®p1)} is consistent (cf. the proof of lemma 14),

so it can be extended to an L1-MCS 1.

Fix an enumeration of all quadruples (m,n,@,y) with m,n natural

numbers and @,y Lo-formulas.

Now, an iterative application of lemma 20 yields the existence of

a chain of matrices N{EX2&... such that

(1) A = (1,{(0,0,21)})

(2) Every A, is a maximally distinguishing L,-matrix, and if
An+1# A, Aneq = n+1 ={0,1,..,n}.

(3) If A, has no defect then A,.q=A,. Otherwise, in Ap.q the first
defect of Ap (i.e. the one appearing first in the fixed
enumeration of quadruples (m,n,@,p) ) is removed in N4 .

One can easily show that, if A, has a certain defect, this will

eventually be repaired, i.e. there is an m>n such that A, does not

have this defect.

Now let A be the "union of the Lg-part of the Ap's", i.e. A is a map
assigning Lo-MCSs to elements of Ax8, where £ = Uneeln.
By the following definition of V we give a model M = (4,V):

V(p) = {(s,t)l pe A(s,t)}

[ruth lemma: For every Lo-formula @: M,s,t E @ iff @ € A(s,t).

Proof: by formula-induction:

(1) for atomic formulas the assertion is clear by definition of V.

(2) for =71y or p=(yAX), the proof is a routine check.

(3) the case ¢ = ®y is treated by observing that ® A(s,t)=A(t,s).
So consider the case where @ = yox.
First, suppose M,s,t E . Then there isau in § with M,s,u F ¢
and M,u,t F X. By induction hypothesis ¢y € A(s,u), X € A(u,t).
Let n = 1 + max(s,t,u). Then s,t,u € L, and by definition of A, @
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e An(s,u) and X € Aplu,t); as Ap is coherent, this implies ypox €
An(s,t) € A(s,t).
For the other direction, suppose yox € A(s,t); let n = 1+
max(s,t), then s,t € Lp and pox € Ap(s,t). If there is no u in Ly
with ¢ € Ap(s,u) and X € An(u,t) then this is a defect of Ap. In
that case there must be an Am 2 Ap in which this defect occurs
no longer. This means there is a v in Im with ¢ € Ap(s,v) and X
€ Am(v,t). As Ay € A this yields M,s,t F yox by the induction
hypothesis.

OTruth lemma.

As = < A(0,0), we have indeed found a model in which I is

satisfiable.
QED.

1.5. CC and the 'difference opera