Institute for Language, Logic and Information

MODAL LOGIC
AS A THEORY OF INFORMATION

Johan van Benthem

ITLI Prepublication Series
for Logic, Semantics and Philosophy of Language LP-89-05

83,
&

University of Amsterdam



- 86-06 Johan van Benthem

The ITLI Prepublication Series

1986

86-01 . The Institute of Language, Logic and Information

86-02 Pcter van Emde Boas A Semantical Model for Integration and Modularization of Rules

86-03 Johan van Benthem Categorial Grammar and Lambda Calculus

86-04 Reinhard Muskens A Relational Formulation of the Theory of Types

86-05 Kenneth A. Bowen, Dick dc Jongh Some Complete Logics for Branched Time, Part I Well-founded Time,
Logical Syntax Forward looking Operators

1987 87-01 Jeroen Groenendijk, Martin Stokhof Type shifting Rules and the Semantics of Interrogatives

87-02 Renate Bartsch Frame Represeatations and Discourse Representations
87-03 Jan Willem Klop, Roel de Vrijer Unique Normal Forms for Lambda Calculus with Surjective Pairing
87-04 Johan van Benthem Polyadic quantifiers
87-05 Victor Sinchez Valencia Traditional Logicians and de Moglga.n's Example
87-06 Eleonore Oversteegen Temporal Adverbials in the Two Track Theory of Time
Categorial Grammar and Type Theory

87-07 Johan van Benthem .
87-08 Renate Bartsch The Construction of Properties under Pergeclxyu

87-09 Herman Hendriks . Type Change in Semantics: The Scope of Quantification and Coordination
1988 | p.88.01 Michicl van Lambalgen Logic, Semantics and Philosophy of Language: Algorithmic Information Theory
LP-88-02 Yde Venema Expressiveness and Completeness of an Interval Tense Logic

LP-88-03 Year Report 1987

LP-88-04 Reinhard Muskens Goingram’al in Montague Grammar

LP-88-05 Johan van Benthem "~ = Logical Constants across Varying Types

LP-88-06 Johan van Benthem Semantic Parallels in Natural Language and Computation
LP-88-07 Renate Bartsch Tenses, Aspects, and their Scopes in Discourse

LP-88-08 Jeroen Groen?ndijk, Martin Stokhof Context and Information in Dynamic Semantics
A mathematical model for the CAT framework of Eurotra

LP-88-09 Theo M.V. Janssen
LP-88-10 Anncke Kleppe A Blissymbolics Translation Program
Mathematical Logic and Fourdations: | ifschitz' Realizabiility

ML-88-01 Jaap van Oosten

ML-88-02 M.D.G. Swaen The Arithmetical Fragment of Martin L6f's Type Theories with weak Z-climination

ML-88-03 Dick de Jongh, Frank Veltman Provability Logics for Relative Interpretability

ML-88-04 A.S. Troclstra On the Early l?istory of Intuitionistic Logic

ML-88-05 A.S. Troelstra . Remarks on Intuitionism and the Philosophy of Mathematics

CT-88-01 Ming Li, Paul M.B.Vitanyi Computation and Complexity Theory: Tyo Decades of Applicd Kolmogorov Complexity
General Lower Bounds for the Partitioning of Range Trees

CT-88-02 Michiel HM. Smid
CT-88-03 Michicl H.M. Smid, Mark H. Overmars Maintaining Multiple Representations of
Leen Torenvliet, Peter van Emde Boas Dynamic Data Structures
CT-88-04 Dick de Jonih. Lex Hendriks Computations in Fragments of Intuitionistic Propositional Logic

Gerard R. Renardel de Lavalette
Machine Models and Simulations (revised version)

CT-88-05 Peter van Emde Boas
CT-88-06 Michiel H.M. Smid A Data Structure for the Union-find Problem having good Single-Operation Complexity

CT-88-07 Johan van Benthem Time, Logic and Computation
CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leéen Torenvliet, Peter van Emde Boas
CT-88-09 Theo M.V. Janssen Towards a Universal Parsing Algorithm for Functional Grammar

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy
CT-88-11 Sieger van Denncheuvel, Peter van Emde Boas  Towards implementing RL
X-88-01 Marc Jumeles Other prepublications:  On Solovay's Completeness Theorem

9 1P-89-01 Johan van Benthemlogic, Semantics and Philosophy of Language:The Fine-Structure of Categorial Semantics
LP-89-02 Jeroen Grocnendijk, Martin Stokhof ~ Dynamic Predicate Logic, towards a compositional,

non-representational semantics of discourse

LP-89-03 Yde Venema Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-04 Johan van Benthem Language in Action
LP-89-05 Johan van Benthem Modal ic as a Theory of Information
LP-89-06 Andreja Prijatelj Intensional Lambek Calculi: Theory and Application
ansin The Adagtuacy Problem for Sequential Propositional Logic

LP-89-07 Heinnch

LP-89-08 Vicior Sénchez Valencia Peirce's Propositional Logic: From Algebra to Graphs

LP-89-09 Zhisheng Huang Dependency of Belief in Distributed Systems

ML-89-01 Dick de Jongh, Albert Visser Mathematical Logic ‘and Foundations: Eyplicit Fixed Points for Interpretability Logic
ML-89-02 Roel de Vrijer Extending the Lambda Calculus with Surjective Pairing is conservative

ML.-89-03 Dick de Jongh, Franco Montagna Rosser Orderings and Free Variables
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna ~ On the Proof of Solovay's Theorem
ML-89-05 Rineke Verbrugge I-completencss and Bounded Arithmetic

ML-89-06 Michicl van Lambalgen The Axiomatization of Randomness

ML-89-07 Dirk Roorda Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
ML-89-08 Dirk Roords Investigations into Classical Linear Logic

ML-89-09 Alessandra Carbone Provable Fixed points in 1Ag+£2,

CT-89-01 Michiel HM. Smid Compulation and Complexity Theory: Dynamic Deferred Data Structures
CT-89-02 Peter van Emde Boas Machine Models and Simulations

CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvliet, Peter van Emde Boas  On Space Efficient Simulations
CT-89-04 Harry Buhrman, Leen Torenvliet A Comparison of Reductions on Nondcterministic Space
CT-89-05 Picter H. Hartel, Michiel H.M. Smid A Parallel Functional Implementation of Range Queries

Torenvlict, Willem G. Vree
CT-89-06 H.W. Lenstra, Jr. Finding Isomorphisms between Finite Ficlds
CT-89-07 Ming Li, Paul M.B. Vitanyi A Theory of Learning Simple Concepts under Simple Distributions and
Average Case Comchxily or the Universal Distribution (Prel. Version)

CT-89-08 Harry Buhrman, Steven Homer Honest Reductions, Completeness and
Leen Torenvliet Nondeterminstic Complexity Classes
CT-89-09 Harry Buhrman, Edith Spaan, Lecn Torenvliet  On Adaptive Resource Bounded Computations
CT-89-10 Sicger van Denncheuvel The Rule Language RL/1
CT-89-11 Zhisheng Huang, Sieger van Denncheuvel Towards Functional Classification of Recursive Query Processing

Peter van Emde Boas TS
X-89-01 Mariannc Kalsbeek Other Prepublications:  Aq Orey Sentence for Predicative Arithmetic

X-89-02 G. Wagemakers New Foundations: a Survey of Quine's Set Theory
X-89-03 A.S. Troelstra Index of the Heyting Nachlass

X-89-04 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar, a first sketch
X-89-05 Maarten de Rijke The Modal Theory of Inequality

¥~8 -06 Peter van e Boas Een Relationele Semantick voor Conceptueel Modelleren: Het RL-project

990 SEE INSIDE BACK COVER



Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and Information

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)
Plantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam 1012CP Amsterdam

MODAL LOGIC
AS A THEORY OF INFORMATION

Johan van Benthem

Department of Mathematics and Computer Science
University of Amsterdam

Received September 1989



MODAL LOGIC
AS A THEORY OF INFORMATION

Johan van Benthem
Institute for Language, Logic and Information
University of Amsterdam

June 1989

1 Introduction

In recent years, there has been a growing feeling that the days of Modal Logic are
numbered. After its flourishing in the sixties and seventies, the enterprise is now
succumbing to joint attacks coming from newer 'information-oriented' and 'dynamic'
paradigms for logical research. Now, leaving behind the ontological extravagances of the
'science of possible worlds' can hardly be counted a great loss. But then, this was merely
a dominant ideology concerning a framework which itself admits of many possible uses: in
particular, uses having to do with the structure and processing of information. One
indication of the latter potential has been known for a long time, namely the possible worlds
semantics of intuitionistic, or more generally, constructive systems of logic. The purpose
of this note is to elaborate this point more systematically, investigating the nature of Modal
Logic as a theory of information structure, and eventually even of information flow.

What is needed for such an investigation is a liberal conception of our enterprise,
encompassing both richer semantic structures and richer formal languages than the proud
but poor austerity of the O, notation. In a sense, our thesis would be that ordinary
modal or intuitionistic logic have always had the power of being theories of information -
but they somehow failed to realize their full potential. One reason for this lies in the usual
direction of thought in modal semantics. Starting from a given formalism, one searched for
appropriate modelings, without entering the next stage of what should be an iterative
process: from the point of view of our models, is the original language the most appropriate
one, or should we re-design it? This point is brought home most clearly, perhaps, in the
case of intuitionistic logic. Given that we can model this system succesfully in possible



world models thought of as patterns of information stages, the obvious next question ought
to be this: whether the original set of logical constants employed in intuitionistic logic is
really expressive enough to say all that we would like to say about such information
patterns.

It is of interest to observe that there are other areas of Intensional Logic where
research has been more varied and liberal in the above sense. In particular, this is true for
temporal logic, where there has always been an emphasis on two directions of thought: not
just modelling some prior formalism, but also finding appropriate descriptions of temporal
structures which are of intrinsic interest. For instance, temporal logic has been a laboratory
for experimentation with progressively richer structures (pure orders (T, <) , metric
structures (T, <, +) allowing addition) as well as increasingly expressive formalisms
(from tenses "past”, "future" to complex connectives like "since", "until"). This
development will serve as a lead in what follows.

2 The Pattern of Information States

The simplest kind of structure that is relevant here is that of partial orders of
information states under possible 'growth':
W, Q).
The simplest appropriate language is that of a modal propositional logic, with evaluation on
models M = (W, <, V) having a valuation V for the proposition letters spread over the
state pattern:

MEOg[w] iff ME@[v] forall vow.
The minimal logic valid here is S4, or S4 plus the 'induction axiom' Grz if one restricts
attention to finite partial orders.

Now, let us analyze this situation more systematically, following an idea of Dov
Gabbay. As is well-known, the above modal language can be translated into a standard
first-order one involving a binary relation R as well as unary predicates P corresponding
to the proposition letters p . Next, the point is that the first-order formulas needed for this
are special in several ways. For instance, all their quantifiers occur 'restricted’ to R . But
most significantly, they can make do with a very small number of distinct variables:

two variables suffice.
To see this, translate proposition letters as Px or Py as the case may be, respect Boolean
operations as usual, and treat the modality as follows:



() = Vy&xcy - U9)
if y is the free variable in ©(9) (otherwise, use Vx (ycx — ©(9) ).

Example. The translation of OJOOp need not become
Vy (x<y — 3z (ycz A Vu (zcu — Pw))),

as usual. It can be written more economically, but equivalently, as
Yy (xCy — Ix (ycx A Vy (xgy — Py))) . [

Thus, ordinary modal logic is part of a 2-variable fragment of a first-order language over
information structures. And what Gabbay has shown is that, in general, there is an
effective one-to-one correspondence between finite intensional operator formalisms and
fixed k-variable fragments of first-order logic.

Here is a description of the first two steps in the resulting hierarchy.
Fix some model M.

Proposition. All operations of the form Ax- ¢(x, Ay, ..., Ay) with ¢ first-order,
employing only one variable are definable by Boolean combination of the A;.

With two variables, the following set of modal operators is functionally complete:
+
@ p : Ax- Jy (xgy A Py)
-+
@ p : Ax- Ty (ygx A Py)
Ip : Ax-JyxEyayExaPy).

For the full first-order language, however, no finite functionally complete set of

operators exists.

Proof. With one variable (x). Subformulas of the form Jxo are closed and hence have
a fixed truth value. Thus, a Boolean combination remains.

With two variables. Consider innermost subformulas starting with, say, a quantifier
Jy . Such formulas 3y a(y, x) may be rewritten as Boolean combinations of cases

Jy A{(-) xcy , (m)yex, (-)Py}

using general logic. But then, by the partial order axioms, the above three possibilities
clearly suffice.

Finally, that no general functional completeness result holds over a class of models
allowing arbitrary finite widths of branching, may be shown using the method of
Ehrenfeucht Games with Pebbling presented in Immerman & Kozen 1987. [




Thus, one part of the art in Modal Logic is to locate suitably expressive fragments
which still admit of an enlightening operator analysis.

But, there is more to the study of information structures. Our statements of interest
will often have further special semantic characteristics.

A first example of this has to do with 'search’. It seems intuitively plausible that
deciding the truth or falsity of some statement ¢ at an information state w involves only
surveying states 'accessible' from w via successive steps in the growth pattern <. This
constraint is embodied in the well-known "Generation Theorem" stating that modal
formulas are invariant, at any state w , between evaluation in a full model M and
evaluation in the smallest c-closed submodel 'generated' by w .

Another example has to do with an issue which deserves more interest in semantics
generally. It is one thing to introduce a notion of information model. But, we should also
provide some criterion of identity, telling us when two models can be considered
‘equivalent’. Now, one candidate has a strong backing in contemporary computer science
(but also, e.g., in set theory), namely bisimulation. As it happens, this notion already
existed in Modal Logic, be it under a different name:

A relation C between two models M1, M2 is a zigzag if it satisfies

the following conditions:

1  if wjCwy then wy, wy carry the same valuation on proposition letters

2a  if w;Cwy, Wy C vy, then there exists vy such that

Wy C vy, V1Cvy

2b  analogously, in the other direction .

Note that, e.g., the identity is a zigzag relation between any model and its generated
submodels.

Now, modal formulas ¢ are invariant for zigzag relations, in the sense that

if wjCwy, then M1 Eo@[wq] iff M2 E@[w,].
And this property is characteristic for the modal formalism (van Benthem 1985):

Theorem. A first-order formula ¢ = @(x) is (equivalent to) a translation of a

modal formula if and only if it is invariant for zigzag relations.

Proof. (Sketch) 'Only if. By a straightforward induction on modal formulas, where the
back-and-forth clauses take care of the modality.
Tf'. Let m(¢) be the set of modal consequences of ¢ . We prove that, conversely,
m(Q) Eo,
from which the desired definability follows by compactness.



So, let M Em(@)[w]. By a standard model-theoretic argument, we find N, v satisfying
. N Eolv],
. (M,w), (N,v) verify the same modal formulas .
Now, take any two countably saturated elementary extensions of M,N : say, M*, N*.
In such saturated models, the following relation defines a zigzag:
" (M*, x) verifies the same modal formulas as (N*,y) ".
But then, we have, successively:
NEo[vl, N'kovl, M Eqowl(®
and hence M Eo@[w] . [

Example. Finite Models.
Since finite models M are always saturated, the above is illustrated more concretely there.
For finite M, N, we even have a general equivalence between the following two

assertions:
1 M,w) , (N,v) verify the same modal formulas,
2  some zigzag between M and N connects w to v. ¢

Question. Can we improve the above theorem so as to remove the restriction to
first-order formulas, without merely introducing the usual closure conditions
for first-orderness (using ultraproducts)?

What we have seen so far are the characteristic semantic properties of the modal
formalism - and thus, what will have to be abandoned in richer logics of information
structures.

On the other hand, we can also specialize even further, restricting attention to modal
formulas with very special semantic behaviour. A prime example here is that of

persistence:
which formulas ¢ have the property that always

if MEo@[w] and wcv, then M Eo@[v] ?
This is a well-known property of intuitionistic formulas, and indeed we can make the
following simple

Observation. The persistent modal formulas are exactly those definable using the
intuitionistic connectives A,v, —, L
(with each proposition letter occurring in the scope of some — ).



Proof. In one direction, intuitionistic formulas ¢—y (i.e., O(@—Vy) in the modal
reading) are persistent, and so are their compounds with A, v and L.
Conversely, let @ be persistent: and hence equivalent to Clo .
Now, rewrite @ using some well-known equivalences to a form as described.
The key observation here is that any formula Clot is equivalent to some form
O AW{(=)p, (OB},
and hence to
A0 W{(=)p, (OB},
i.e., to a conjunction of forms
O{p, OB} —» W{p, OB}
(with the falsum L used for empty disjunctions). ¢

Thus, we can study various kinds of 'informative behaviour' of propositions in a
modal setting.

3 Richer Formalisms

There are several kinds of statement that one would like to make about information
structures which go beyond the resources of the standard modal language. For instance,
when 'updating' an information state with the proposition ¢, the new relevant states
would be those where @ has become true for the first time: and this requires a comparison
with a 3-configuration of the initial state, the first ¢-state, and those in between. Thus, in
addition to succession, betweenness along the ordering becomes important.

A modal language which is appropriate at this level introduces an operator "until" as
follows:

M EUoy[w] iff there exists some vow with M E@[v]
and for all v with wcu GVv: MEvy[u] .

For instance, the formula

U@ Ay)—o
expresses that Y holds at some updated ¢@-state.
This language is appropriate for describing the behaviour of programs over time
(cf. Goldblatt 1987), involving properties like 'safety’, 'liveness' or 'absence of unsolicited
response’. Thus, it also seems useful as a description language for information processing
in a more general sense. Here is one further illustration.



Example. Necessary and Sufficient Conditions.
To say that ¢ is a sufficient condition for y may be rendered, at least to a reasonable
approximation, within the basic modal logic:
O = <v).
This is in fact what computer scientists call a liveness property. To say that ¢ isa
necessary condition for y involves inspection of the past of W states. A first attempt
might read
Oy —Pg),
where "P" is the past analogue of "{". But, we want only past occurrences within the
future of the initial point of evaluation, and hence, the appropriate formalization is this:
-Uy—0 . [

For the logic of this enriched modal formalism, one may consult Goldblatt 1987 or
Burgess 1982. (But note that some of their axioms depend on linearity of the underlying
ordering: which is of course not assumed here.)

As has been noted already, the underlying first-order language of this enriched
formalism now employs 3 variables, witness a typical translation clause like that for
"until":

wUpq) = Jy(xcy APy A Vz(x czgy — Q2)) .
What about an invariance analysis for the relevant formulas?

One plausible candidate here is the following enriched notion of bisimulation or
zigzag: it satisfies all earlier clauses, as well as

3a if wiCwy, viCvy and wiCcu; c vy,

then there exists some upy with u;Cup, wo Cup Cvp,

3b analogously in the opposite direction .

Thus, the strengthened bisimulation also has to respect betweenness. This gives us
additional power of discrimination:

Example. Finer Distinctions.
The following two frames are bisimulation equivalent, but do not admit of a strengthened
bisimulation:



I/ \

Yet, there are even 3-variable patterns which are still not detected under this mode of

°* ¢ @ €— O

identification, such as the position of being a common successor of two states:
XCZ A YCZ .

/N /NN
N/ NS

There is an obvious strengthened bisimulation between these frames: and yet only the one

on the left validates
VxVyVz ((xCy A xCz) — Ju(yCu A zCu)) . [ ¢

Now, it is easy to see that all statements in the Until-formalism are invariant for
strengthened bisimulations. Nevertheless, this notion does not quite 'fit' - as becomes
clear with some technical difficulties in adapting the earlier characterization result of
Section 2. A better candidate would be a bit weaker, namely

3a  if w1Cw2 and wj € vi, then there exists some vy with

wyp c v2, viCv2 and for each up with wp Cup Cvp
there is a matching u; such that wi cuj; c vy, uiCuz.

3b'  analogously for the other direction .

But again, the earlier method of proof does not seem to transfer easily.

Without going into technical details, the core difficulty appears to be this: we are
trying to characterize a 3-variable fragment by focussing on its formulas with one free
variable. This seems somewhat inappropriate, and it would be much easier to work with a
formalism allowing formulas both with one free variable (properties of states) and with two

free variables, expressing binary relations over states. As we shall see later on, there is in



fact a good deal of independent motivation for making such a move (see Section 6), and
some further results will be presented there.

For the moment, it may suffice to observe that the present turn has its roots in
ordinary Modal Logic too: witness the early interest in so-called ‘multi-dimensional' modal
logics having various indices of evaluation simultaneously.

Digression: D-Logic.

On the issue of expressive strength, it may be worth pointing out that there exists a
relatively simple addition to the modal language which removes some of the most basic
failures of expressive power. The idea (due to Gargov et al. 1987, Koymans 1989) is to
introduce a difference operator D, whose semantic truth condition reads

MEDg@[w] iff ME@[v] for some v+ w.
This is again a modality, satisfying the usual Distribution axiom
D(@vvy) < DovDy,
as well as principles of symmetry and 'pseudo-transivity'.

Adding D to the basic modal language will already allow us to define all universal
first-order properties of the order — . In particular, its anti-symmetry, which is beyond the
resources of the basic formalism, now is expressed as follows:

VxVy((xcSy A yCx) — y=x):
(pA=Dp A O@AaOp) —q. ¢

So, there are many options for increasing the strength of our modal formalisms, as
measured against the underlying first-order description language for information structures.

We conclude with two general remarks, one concerning axiomatization, the other
concerning expressive power. First, at least on the universe of partial orders, recursive
axiomatizability of our modal logics, enriched or not, is never in doubt. For, validity of
any modal formula ¢ will be equivalent to the validity of its first-order transcription on all
partial orders: and the latter consequence problem is RE . The art is, of course, to find
enlightening purely modal axiomatizations.

Next, viewing matters from the perspective of the full first-order language allows us
to raise some interesting general questions. For instance, what is a 'modality'? There are
more or less restrictive answers here, but one candidate would be this:

A modality is any function on sets defined by some first-order schema

Ax- @(x, Ay, ..., An) which is continuous in the sense of commuting

with arbitrary unions of its arguments A; (1 <i<n).



Continuity expresses a requirement of 'local computability': as may also be seen from the
following syntactic characterization.
A first-order formula ¢ is distributive if it has been constructed from conjunctions
of atoms Ajy in which no predicate A;j occurs more than once, and arbitrary
formulas in whichno A;j occurs (1 <j<n) usingonly v,3.
A typical example, of course, is the modality < itself:
Ax: Jy (xCy A Ay) .

Proposition. A first-order formula defines a modality if and only if it is equivalent to a
distributive form.

Proof. (This argument is a simplification of a much more complex ancestor. It is due to
Peter Aczel.)

All distributive forms define continuous functions. In one direction, this is clear from
the positive occurrence of all A;, and the resulting semantic monotonicity. In the other,
from a union to at least one of its members, the statement is clear for formulas of the form

3x : M{ Ajx, wholly Aj-free formulas } (no iterated Aj)
as well as disjunctions of these. But, all distributive formulas can be brought into this
shape.

Conversely, suppose that ¢ defines a continuous operation. Then, there is a
distributive equivalent, as shown in the following special case. Let ¢ = ¢(A1, A2) . We
have the following semantic consequence, distinguishing cases as to (non-)emptiness of
arguments:

¢ = Ix1Ixa(A1x1 A Aoxa A [Ay'y = x1/A1, Ay-y = x2/A2]0)

v

Ix1(A1x1 A [Ay-y =x1/A1, 1/ A2]9)
v

Ixo(Agx2 A [L/A1, Ay-y = x2/A2]0)
v

[L/A1, L/A2]@ .

This consequence uses the downward half of continuity (observing that each denotation

[[A11], [[A2]] is the union of its singleton subsets): that it is actually an equivalence,
follows from the upward half (being monotonicity). [

10



Remark. This argument does not go through if we merely require the usual Distribution
Axiom, which expresses commutation with finite unions of arguments. For instance, on
linear orders, the following principle is finitely, but not fully continuous in A :

Vx3dy (x<y A Ay) .
What would be an appropriate syntactic characterization in this case? [

Other questions arising at this level of generality have to do with the distinction
between monadic and polyadic modalities. For instance, which modalities are genuinely
binary, resisting decomposition into a Boolean compound of unary modalities? Here is one
answer, concerning general operators.

Proposition. The binary operator Until is not definable in terms of unary modalities.

Proof. Consider the rational numbers (Q, <) with the following valuation:
V(p) = {(n,n+1)| neN, n iseven} U {1} .
The non-definability follows from three observations:
(1) the formula U—pp holds in all open p-intervals, but not in the right-closed (0,1] .
(2) allpointsin V(p) verify the same formulas in the propositional tense logic on Q
with operators F ("future") and P ("past"), and so do all those in N-V(p) .
(In particular, the number 1 has no distinguishing features here.)
(3) all unary modalities on Q are definable in its tense logic .
For, consider distributive forms. It suffices to look at disjuncts Jy(ou(x,y) A Py),
where a isa P-free first-order formula in <. But, because of the homogeneity of
the rational order, the latter reduce to disjunctions of cases x<y , x>y, x=y : which
are all covered by the F, P formalism. [

Other examples of genuine binary notions occur, e.g., with the earlier 'minimal’
updating. Saying that all future ¢ are Wy can be done with a unary modality:
He—=w.
But, saying that all first ¢ in the future are Yy amounts to an essentially binary connection
of the form
weo, ).

Remark. On the latter view, binary modalities become more like generalized quantifiers
over sets of states - and might be profitably studied as such. In general, of course, this

11



would take us outside of the first-order representation language on information structures.
But, that is an interesting transition anyway:
Does the modal logic of information also need higher-order truth conditions

eventually?
<

4 Richer Information Structures

In a theory of information, one central notion will be that of addition of pieces of
evidence. Thus, the mere partial orders of the preceding Sections will become upper
lattices, having suprema in their parial order:

W, c,+).
This perspective is familiar, e.g., from another information-oriented research program,

namely Relevance Logic (cf. Dunn 1985).
If we want to take advantage of this richer structure, suitable modalities will have to

be introduced exploiting it. Here is one obvious candidate:

ME (pU\;I [x] iff thereexist y,z with x =y+z

such that M E=oly] , M Ey][z] .

This will be useful, in particular, once we start exploring different notions of information-
oriented consequence. In the standard setting, we put

. P15 s On EVY
if, in all information models M, at each state x,

ME@[x] and ... and M E@y[x] implies M Ey[x].
Thus, there is an equivalence with ordinary conjunction of premises:

PIA ... AQpEVY.
But, in many recent proposals oriented toward information processing (as reviewed in van
Benthem 1989A), we think of successive addition of the information supplied by the
premises:

* 0L ..OmFEY
if, in all information models M, at all states xi,....Xp,

ME@i[x1] and ... and M E@y[xn] implies M Ey[xi+ ... +Xq] .
The latter notion thus becomes equivalent with

(p1U U(pn Ey.

For the purpose of comparison with the earlier Sections, however, we shall step back

now, and return to the original partial orders. Instead of demanding the existence of



suprema, we shall merely take them as they come. In fact, absence of a lowest upper
bound for some states might model the surely not unreasonable assumption that they
contain conflicting information.
Then, the truth condition for the addition modality becomes:
MEo@Uwy[x] iff thereexist y,z such that
x =sup(y,z) , MEo@[yl, MEvy[z].
When spelt out, this takes us into the 4 variable fragment of our first-order language:
Jy3Jz (yx A z&x A =Fu (yCu A zCu A ugx) A QY) AY(2)) .
Moreover, this fragment may be analyzed in terms of semantic invariances as before.
For instance, call a bisimulation strong if it respects suprema in the following sense:
4a if wiCwyp and wi=sup(uj,v1), then there exist uy, v2
such that wp = sup(up, v2) and ujCuz, viCva,
4b  and vice versa.
Here is a small illustration of the characterization results which may be obtained here:

Proposition. Two finite models (M,w), (N,v) are strongly bisimulation equivalent
if and only if they verify the same extended modal formulas
(of the © , U language) in their roots.

Proof. The 'only if' direction is a simple induction.

As for 'if': here is the crucial observation. Suppose that x, y verify the same modal
formulas, and x = sup(u,z) . Assume that there are no s,t with y = sup(s,t) with both
u, s and z,t verifying the same modal formulas. For each of these finitely many cases,
then, pick some formula o with uk=o, s or Bwith zE=B, zKEB . Then, x,y
disagree on the modal formula Mo U AP . ¢

In a modal language like this, one can develop a more elaborate calculus of special
types of 'informative content'. For instance, not just 'persistent’ propositions will be of
interest now, but also, e.g., 'additive’ ones, satisfying the condition

if M=g[x] and M =o[y] and z=sup(x.y) ,

then M E=o[z] .
For instance, which syntactic forms guarantee this behaviour, starting from atomic
propositions already having it?
One example are the persistent formulas: but are there others involving U2

13



Remark. This type of question has strong formal analogies with calculi of mass terms or
temporal aspect in the semantics of natural language, where persistence and additivity are
fundamental notions (cf. Krifka 1989). [

Finally , it should be noted that we can also rearrange the modal perspective, so as to
make addition, and hence U , the central modality, rather than some binary order among
information states. In that case, the abstract pattern is just this:

There is a distributive binary modality U,

which induces a ternary relation for its evaluation:

ME (pU\]I [x] iff there exist y,z with Ryzx
such that M E=o[y], M Evy[z] .
This modal logic too has a perfectly ordinary development, as may be seen in van Benthem
1989 B, which uses it to model some modal aspects of Relation Algebra (where R stands
for composition of relations, and the objects in W for 'transition arrows").
Here are some example of expressive power in this formalism. The formula
(eUw)Uz — oUUyp
corresponds on frames to the requirement of associativity in the following form:
VxVyVzVuVv: (Ryzx A Ruvy) — ds: (Rusx A Rvzs) .
Likewise,
oUo — ¢
expresses idempotence:
VxVy: Ryyx — x=y.
Having the ordinary modalities present after all, we can also enforce connections such as
the following:
(pU\y — Po APy
(with P for "past", as before) defines that
VxVyVz: Ryzx — (ycx A zCX).

Behind these examples, there even lies a general definability result (see again the

above reference):

Theorem. All modal principles of the following form define
first-order conditions on R, < (which are effectively obtainable from them):
¢ — vy, with ¢ a compound of proposition letters, v, A, U, <, P and
y an arbitrary formula in which each proposition letter occurs only positively.

14



5  Other Directions of Information Processing

Up till now, modal languages of information structures have been mainly 'forward-
directed', looking at future information states. Only occasionally, some 'backward-
looking' operators from tense logic made their appearance.

In a general theory of information, however, both directions of search through
information patterns will be essential. After all, many important constructions involve
surveying the 'epistemic past', or even back-and-forth movement.

Example. Conditionals.
A popular folklore account of possibly counterfactual conditionals runs like this:
"Assume the antecedent. Or, if this is not consistently possible, go back to the first stage
where it was still possible: then see if the consequent always follows from the antecedent”.
In a past-time version of the earlier "until" language, adding a dual "since" (S),
this would read as follows:

=S (O A =O(p-y), =O0). [

Another illustration is the recent work on epistemic operations changing knowledge
states. Here, revision is just as important as addition. For instance, one can view our
modal logics as an alternative to the semantic theory of such epistemic operations as
developed in Gérdenfors 1987.

Example. Addition and Subtraction.
A knowledge state updated by ¢ validates just those Yy which satisfy
=U(Q A =y, —0) .
A knowledge state 'downdated’ by ¢ validates just those y which satisfy
—S(=Q A Y, 9) .
Our modal logic by itself then already forms a systematic theory of updating and revision,

with their interactions. (Cf., e.g., van Benthem 1989C on such issues as whether an
update followed by a downdate with respect to the same proposition cancels out.) ¢

Finally, the notion of 'addition’ of information in the binary sense of Section 4 also
admits of an obvious downward dual: we may just as well consider infima in the
information ordering, giving rise to a dual modality (pr]\y expressing a kind of generalized

disjunction.
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6  Dynamics of Information Flow

Various topics treated so far have a 'dynamic' flavour, referring not just to what is
true at single information states, but also to transitions between such states. In cognition,
we are not just describing what is true, but also giving instructions as to getting from one
cognitive state to another. Thus, from many different angles, there is a growing
contemporary interest in what might be called the programming aspects of information
flow. As one current slogan has it:

'"Natural Language is a Programming Language for Cognition'.

What this move brings with it is a change from 'static' propositions to 'dynamic’
ones, serving as instructions for updating information states. This is the point of view
defended, e.g., in Discourse Representation Theory or other current dynamic semantics.

Our perspective here will be rather be one of co-existence, having both traditional
and more dynamic propositions. In terms of a standard intensional type theory, we have

type (s,t) : classical propositions
type (s,(s,t) : propositions as programs ,
together with appropriate operations on these.

The two systems will have different flavours. In the realm of propositions as
programs, important operations for compounding will be notions of control: such as

o sequential composition
v (indeterministic) choice .

And the logical paradigm for the latter is not so much Boolean Algebra, as Relation
Algebra. Still, the Boolean operations make sense in type (s,(s,t)) too: and hence we
expect (and find) a rather richer structure of logical constants in current systems of dynamic
semantics than was usual in standard logic.

To the modal logician, this perspective will be familiar from the area of Dynamic
Logic, but now viewed as a theory of cognitive computation, rather than calculation with
mechanical devices. (See Harel 1984 for a survey.)

Now, one important feature of dynamic logics is precisely the interaction between
statements and programs, as effected by various cross-categorial operators:
test takes statements ¢ to programs ¢?,
modality < takes programs T to operators <m> on statements .

And more simply, one can think of a fix-point operator
AR) = {x | (xx) e R}
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which takes cognitive programs to their 'truth set": i.e., those states where they have no
effect.

It is this interplay which is involved, e.g., in so-called 'correctness statements' for
programs T :

¢ — [nly

(from ¢-states, program 7 always takes you to W-states'). And a similar interplay
seems useful in the study of information processing and cognition.

Thus, the world of dynamic logic for information processing looks like this:

static projections
< ——

static dynamic
logical < : (s,t) (s,(s,1)) : ) logical
operators operators

dynamic modes
—_—

Note in particular the two transformation arrows in the types ((s,(s,t)), (s,t)) and
((s,1), (s,(s,1))) . From right to left, we are interested in static 'projections’ of dynamic
relations, such as the above diagonal operator A, or the usual projections to domain or

range. From left to right, we are concerned with various dynamic 'modes' which may be
acquired by a standard proposition: it can serve as a content for a variety of dynamic
activities such as testing, updating, downdating (and the latter both in 'liberal’ or 'minimal’
variants).

To define the latter, we have to endow the base domain Dg with at least the partial
order structure of earlier Sections. Then we can set, e.g.,

7 = (xx) | o)}

ADDg = (xy) | xcy & o)

MINo@ = (xy) | yox & —0()

UPDg = (&) | xay & 0(y) & ~3z: xc 25y & 9(2))
DOWND¢ = (&) | yox & —o(y) & ~3z: ygzcx & —¢(2)) .

And Modal Logic of information flow will now be the dynamic logic of structures and
operators such as these.

Of course, in this enterprise, the questions of crucial interest to us need not be the
standard technical concerns inherited from our founding fathers - as will be illustrated in
what follows.
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Example. Characteristic Properties of Modes.
In van Benthem 1989C, a folklore view is studied where information states are sets of
Tarski structures, ordered by a preference relation <. Then, two modes of taking a new
proposition are distinguished:

'straight addition': A » ANnMOD(p)

'minimal addition": A ~» WA NMOD(y)),
where | picks out the <-minimal ('most preferred’) models in a class of structures. The

latter notion turns out to have the following characteristic formal properties (in a self-
explanatory modal notation):

Hp =P

H(pvq) — HpV H]

Hp A Uq = u(pvq).
Now, given any information state x, the above modes suggest a notion of minimization
too:

(@) = {ylxcy & o(y) & -3z xczgy & 9(2) -
E.g, UPD amounts to some minimized version of ADD . And, the above three principles
give the essentials of this process. S

Here is another non-standard concern which comes to the fore now:
What is an appropriate choice of logical constants?
Disregarding the c-structure for the moment, there is one general set-theoretic notion
which makes sense as a constraint on logicality across arbitrary types, viz.
invariance for permutations of the base domain Dj.
What this means is that, given any permutation © of Ds, an operation f on (s,t)
propositions should commute with it:
f(r[P] = =n[f(P)],
and likewise with more than one argument, or with operations on (s,(s,t)) . The general
notion is analyzed in van Benthem 1986, 1988B, with outcomes such as the following:
. the only permutation-invariant operators on (s,t) type propositions are the
Boolean ones,
) on the type (s,(s,t)) , such operators include all the usual notions of Relation
Algebra (in particular, all Booleans, composition, diagnonal and converse).
On top of this, one can then study the effects of further important constraints. For instance,
we can determine all permutation-invariant operators of the above 'transformer’ types

which also respect inferential structure: in that they are Boolean homomorphisms.
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Proposition. The only permutation-invariant Boolean homomorphism in type
((s,(s,1)), ((s,1)) is the earlier reflexive' operator A.
In type ((s,t), (s,(s;t))) the only two examples are the functions
AP AxsAys: P(xs)
AP AxXsAys: P(ys) .

Proof. It is shown in the above references that Boolean homomorphisms in any type
((a,1), (b,t)) correspond one-to-one with ordinary functions of type (b,a) . What this
implies in the present case is that we need only search for permutation-invariant items in

types (s, s's) and (s°s, s), respectively.
And these are just
AXg <X,X>
and
AxXs.st Tiefi(X)
AXg-s* Tright(X) :
which explains the above outcome. &

Note that not even the earlier test operator qualified here: it is permutation-invariant,
but not a Boolean homomorphism. ( ?—¢ is not equal to —? ¢ .) Nevertheless, it does
retain the useful property of continuity introduced already in Section 3: i.e., it respects
arbitrary unions of its arguments — and hence it may be computed 'locally’ on its singleton
arguments. Conversely, permutation-invariant continuous projections which are not
homomorphisms include the earlier operations of 'domain’ and 'range' of binary relations.

In the modal setting, this style of analysis will shift somewhat. Significant modal
operators need not be invariant for all permutations of information states: after all, the latter
may destroy relevant information about their < ordering pattern. But, what they should
be invariant for are those permutations of D which preserve the ordering structure: i.e.,

the inclusion automorphisms.

Moreover, it makes sense to generalize various elements in the earlier modal analysis
to the present type-theoretical framework. One important example is the notion of
bisimulation invariance introduced in Section 2. We would like to express, e.g., that
certain higher modal operations as considered here are bisimulation invariant.

Here are some illustrations.



Example. Bisimulation in Higher Types.
Let C be a zigzag relation between two models M1 , M2 on domains D: , D2S .

Intuitively, two propositions @, ¢, correspond under C if always

w1Cwy implies that @;(wy) iff @a(w2).
And then, an operator on propositions is bisimulation invariant if it takes C- corresponding
propositions to C-corresponding propositions. Note that the usual 'p-Morphism Lemma’
states just this fact for propositional operators which are definable in the standard modal
formalism.

To take another type of modal operator, we have bisimulation invariance for the

following 'modal projection’' of dynamic propositions:

AR (5 s.0° AXse Tys2X,e R(X,Y) -
What this means is that, for each pair R1, R2 of C-corresponding relations [i.e.,
whenever w,Cw,, v;Cv,, then R1(wy,v;) iff R2(w,,v,) ], their modal projections are
C-corresponding propositions as above. S

A proper generalization of this notion goes as follows.
Starting from some relation C between M; and My, we define a family of relations
{CalacTyPE between objects in corresponding type domains in the hierarchies built on M;

and Mj:

type s : w1 Cswy iff w; C wp
type t : xCy iff x=y
type (a,b) : f Ca,p) g iff forall x,y suchthat x Cay : f(x) Cp g(y) .

For instance, for the types (s,t) and (s,(s,t)) , this coincides with the above notion of
'C-correspondence’. Now, an expression E in any type a is bisimulation invariant if its
denotation, viewed as a function from models to a-type objects in the corresponding type
hierarchy has the following property:

for all bisimulations C between models M;, M,

[[ENIM1) Ca [ElI(M2) .
Again, this fits the above examples of modalities.

And in fact, we have the following general result.

Proposition. Any closed typed lambda calculus term containing Boolean parameters as
well as restricted quantification of the forms Jy; cx;, Jys Dxs defines a

bisimulation invariant expression.



Proof. By induction on the construction of such lambda terms, it is easily proved that the
following stronger assertion holds:

If term T, has the free variables xg, ..., X,,

and Aj, A; are assignments in M;, My, respectively,

such that A;(x;) Caj A5(x;) (where aj is the type of x;),

then [[t(My, Ap) Gy [[TTI(M2, Ag) . <

Of course, not all important modal constructions pass this test: after all, it was too
restrictive even for ordinary Modal Logic eventually. For instance, even a propositional
mode like ADD is not bisimulation-invariant: as zigzag relations will not preserve
inclusion in a suitably strict fashion. Another counter-example is a relational operator like
composition. But then, as before, we can introduce stronger notions of invariance to deal
with such cases. These will not be pursued here, however:

The point of the present technical excursion has been merely to show how some of
the central notions of Modal Logic can be lifted to a more general type-theoretic setting.

Finally, let us return to a general perspective from the earlier Sections. Contrary to
what many people seem to believe, the shift toward dynamic formats does not mean an
essential break with earlier static formalisms at the meta-level. For, the behaviour of
programs can always be described 'statically' in terms of transition predicates having the
proper arity. Indeed,

Dynamic Logics can always be reduced to Classical Ones .
Many specific reductions in special cases support this generalization. Thus, the issue is
rather more subtle: dynamic formalisms are not beyond the scope of classical systems, but
they provide an intrinsically import new perspective on questions which would not easily
come to the fore otherwise.

In this perspective, let us look again at the first-order description language of
information structures. As was stated already in Section 3, this formalism provides for one-
place propositions (via formulas with one free variable), but also for two-place relations
(two free variables), etcetera. Now, we can also extend the scope of the earlier investigation
of suitable modal fragments and their semantic characteristics to this wider formalism. Here
is an example, inspired by the 3-variable analysis of Section 3: which also seems to be the
proper level of complexity for formulating many significant dynamic operations.

First, we extend the notion of zigzag relation in a perhaps unexpected direction:
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A trisimulation between two models M1, M2 is a relation C between individuals
in M1, M2, but also between ordered pairs and between ordered triples of such objects
which are linearly ordered by <, satisfying the following conditions:

1 if wq Cwp,then wi, wp verify the same proposition letters
2 if C relates two objects of length smaller than 3, then they satisfy the back-
and-forth property with respect to extension to longer linear sequences

(in particular, with length 2, this allows both 'extension at the ends' and

'interpolation’)

3 if two pairs or triples are related by R, then so are their restrictions to

subsequences of lower length.

A trisimulation may be viewed as a correspondence between linear searches that could
be performed in two information patterns M1, M2 . The point of this definition is, amongst
others, that it induces a notion of invariance for formulas having up to three free variables,
in an obvious manner. And for instance, it is not hard to see that all transcriptions of
formulas from the modal language with "Until" (and "Since" ) added are invariant for
trisimulations. The effect of this will be seen in the following result.

Theorem. The trisimulation invariant first-order formulas ¢ = ¢ (x) are precisely
those which are definable from unary atoms using —, A, v as well as restricted
quantifiers Jy xCy A o(x,y)) , Ay (YyCx A ax,y)) , Tz (xZzCy A oU(X,Y,Z)) ,
Jz (xcycz A o(X,y,z)) , 3z (z&xCy A a(X,y,z)) , modulo logical equivalence.

Proof. This may be shown essentially as in the proof of the characterization theorem for
basic modal formulas in Section 2. In one direction, matching sequences in the relation C
verify the same formulas from the language displayed (having the appropriate number of
free variables): where the special forms of quantification ensure that only linear sequences
need be considered. For the converse, a trisimulation between two saturated structures may
be defined essentially as was done before for bisimulations: this time, in terms of pairs of
sequences (up to length 3 ) satisfying the same formulas of our special language. Again,
the above quantificational patterns of 'succession' and 'betweenness' are just what is
needed to obtain the required back-and-forth properties. ¢

These unary formulas can all be written using 3 variables in all, as is easily seen by
inspection of their syntax. Nevertheless, there is a subtlety here. For, already with binary
relations defined by formulas ¢(x,y) , more variables may occur essentially. A trivial

example is the following trisimulation invariant pattern:
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xEyaydxaaxy) , for arbitrary first-order formulas o .

This complication can be met in several ways. First, we shall be mostly interested in
those cases where the free variables x, y represent states encountered during some process
of search through an information pattern. But then, their relative positions will be connected
somehow. For instance, very often, y will follow x in the inclusion order. Accordingly,
the question is rather what the binary formula ¢(x,y) looks like in those cases where
XCy . And it may be shown that, for this relativized form of definability, the forms of
definition listed in the above theorem suffice. (Of course, the connection between the
positions of x and y may also be more complex: arising, e.g., from a 'zigzagging'
search through the information pattern, choosing C-successors or -predecessors.)

But also, there is a good deal of independent logical interest to the 3-variable formalism:
which possesses an interesting characteristic semantic invariance that will be determined
separately below.

Now, by the Gabbay analysis, there must also be a finite functionally complete set of
'modal’ operators for the dynamic logic of 3 state variables. Such a set will not be written
out explicitly here. Let us merely note some useful candidates for inclusion:

] Booleans both on unary and binary predicates

] Relational algebra operations of composition, converse and diagonal

(these are complete for a 3-variable first-order language for manipulating
binary relations: as was already observed by Tarski)

] Unary modalities F, P on unary and binary predicates

. A modality of "Betweenness" taking unary predicates ¢ to binary ones:

Ax-Ay- 3z (xgzCy A §(2)) ,
as well as some book-keeping operators for introducing or removing
argument places.

In such a formalism again, one can pursue all the earlier semantic concerns.

For instance, which syntactic forms of definition will guarantee which desired semantic
behaviour? To take a specific example:

Which modal schemata define binary relations among information states that are

progressive, in the sense of being includedin < ?

This would seem to be one obvious dynamic counterpart to the determination , in the unary
case, of all upward persistent statements. No answer will be given here - but note, e.g.,
that the progressive relations are closed under Boolean A, v and relational e, as well as
modal P.
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With this example, we conclude our exploration of the basic model theory of a
dynamic modal logic of information.

Digression. There is also a perspective from Abstract Model Theory behind the above
notion of a trisimulation. For a full first-order language, we have the well-known concept
of partial isomorphism between models, being the existence of a family of finite partial
isomorphisms between their domains, satisfying the Back and Forth properties. Now, for
k-variable fragments, this notion may be restricted to partial isomorphisms of length at most
k ( 'k-partial isomorphism' ). In fact, the basic modal language needs only length 2 :
where the maximum length is not even involved in the back-and-forth process. Thus,
zigzag relations could be thought of as coupling individual objects only. Likewise, with
trisimulations, the relevant length is 3 : but, the 'action' occurs only at lengths 1 and 2.

Here are some useful model-theoretic observations about these notions,
demonstrated for the case k =3 (but the outcomes are completely general) :

. Formulas ¢ = ¢(x,y,z) constructed using only the variables x,y,z

are invariant for 3-partial isomorphism in the following sense:

Let P be a family of partial isomorphisms of length at most 3 establishing
3-partial isomorphism between two models M1 and M2 . Any pair of matching sequences
in P will give ¢ the same truth value in both models.

But, there is also a converse:

. Any formula ¢ = ¢(x,y,z) in the full first-order language (possibly employing
other bound variables besides x,y,z) which is invariant for 3-partial
isomorphism is logically equivalent to a formula constructed using these three
variables only.

The first assertion follows by a straightforward induction on the relevant class of
formulas. Moreover, the second assertion may be proved essentially like the
characterization of the modal fragment in Section 2: starting from two models which are
elementarily equivalent with respect to three-variable formulas, one finds saturated
elementary extensions which are 3-partially isomorphic via their pairs of sequences up to
length 3 verifying the same type in this restricted language.

Together, these two assertions provide a complete model-theoretic characterization of
the 3-variable fragment of a full first-order language (and of k-variable fragments in the
general case).

As an application of this analysis, the well-known Functional Completeness of the
3-variable fragment of a monadic first-order language over linear orders (due to Kamp and

Gabbay) may be understood as follows. Between such structures, 3-partial isomorphism
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implies full partial isomorphism (by a simple argument resting on linearity): and hence, any
first-order formula ¢(x,y,z) on these models is already definable by one from the relevant
3-variable fragment.

Moreover, the various 'extension patterns’' needed to induce the back-and-forth
properties up to length k yield an obvious choice for a functionally complete set of
operators in a corresponding variable-free modal notation.

Finally, it should be observed that the relation between the preceding notion and
bisimulation or trisimulation invariance is not wholly straightforward. Of course,
trisimulation is a relative of 3-partial isomorphism where attention has been restricted to
linear sequences and comparisons between unary predicates at corresponding states only.
But, in general, trisimulation invariance need not imply invariance for 3-partial
isomorphism, or vice versa. What we have, by a simple argument, is only the former
implication for formulas having one free variable: which explains the outcome in the earlier
characterization theorem. [

7 Conclusion

The main purpose of this paper has been to investigate, and advertize, the prospects
of Modal Logic, in a suitably liberal version of its research program, as a theory of
information structure and information flow.

Up until now, the main motivation for having such applications at all have stemmed
from natural language semantics and cognitive science generally. But perhaps, this
perspective may eventually affect even the core areas of standard logic and mathematical
foundations.

8  Appendix: Cognitive Programming

If we are to take the dynamic perspective on information processing seriously, then
we shall have to pay attention to actual algorithms and procedures in our logical semantics.
And indeed, there are some ways of introducing such concerns into Logic, mainly using
tools from Automata Theory.

One natural question is whether the earlier logical constants on information models
admit of a procedural explication, in terms of instructions for searching through the
information pattern. Such explications have been given for logical quantifiers in van
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Benthem 1986, using 'semantic automata' surveying the universe of relevant individuals in
some arbitrary order. But in the present case, search should probably proceed along the
built-in relation of inclusion among information states. Semantic automata which are
suitable for this kind of task have been studied, e.g., in the model theory of Temporal
Logic (cf. Thomas 1989) - but also, for more general linguistic purposes, in van Benthem
1988C. Here is an example of the latter kind of approach.

Let us assume that our information models are finite trees, with truth or falsity of
atomic propositions indicated at their nodes. Our automata will work progressively
upward, processing a node only when all its children have been processed. The core
machine is a set of instructions which first reads the atomic information on the current
node, then determines which routine to run on the set of state markers left on its children at
the end of some previous cycle, and following the outcome of that, prints another such state
marker on the current node. In the simplest case, the relevant routine will be a finite state
transducer.

For instance, to check whether some extension of the distinguished node (i.e., the top
node of the tree) has property q, the machine will print some suitable state marker q on
g-nodes, which gets passed on to their parents, and so on, until the top. (The central
routine here just checks an existential quantifier on children.) This is merely one illustration
of a general phenomenon (the relevant theorem is in van Benthem 1989C):

All forward-looking basic modal properties of trees can be computed
in this way by finite state procedures.

But not just unary modalities like <> can be computed in this format, also essentially
binary ones like Upq . (Here, the idea is to mark nodes having p, and then to pass up
some special state marker on their parents having q, etcetera.) Thus, the whole modal
hierarchy on information models can also be analyzed in terms of machine instructions for
this kind of search.

Nevertheless, this perspective is not fully satisfactory. For one thing, the 'bottom
up' direction of search does not reflect our intuitions concerning inspection of truth
conditions, which rather seem to work 'top-down'. Still, this is not essential - and we can
rework the above into a top-down set of recursive instructions for checking our desired
semantic properties. The problem is rather that information models need be neither finite
nor tree-like: and we may have to inspect, e.g., non-well-founded graphs. Or even
assuming well-foundedness, checking for Upq may involve non-linear inspection of
patterns like the following:
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Traversing just one single unbroken g-path up to a p-state is not enough.
So, we have to conclude here with a

Question: What would be an appropriate kind of graph automaton
on information models?

But, there are also other ways in which such procedural considerations can enter.
Notably, there is the issue of programming cognitive transitions. Given some relation
among information states, can we write an explicit program in our dynamic logic effecting
just these transitions? Or conversely, what is the class of relations expressible by various
classes of modal programs?

Here, we can still consider a great variety of programs: arising by choices of control
instructions (finitary ones, or also infinitary) and of basic actions. To be more concrete,
one could take all the regular operations:

;o woF
and allow two kinds of atomic action:

atest ? on a proposition letter,

amove S or P to some successor or predecessor of the current node .
This allows us to program, e.g., the following transitions on trees:

S$*; q? : AX-Ay: XCy A qy

(—q?;S)";q? Ax-Ay- XCy A qy A Vz (xgzgy — —qz) .

But in general, we also obtain non-first-order relations, say, demanding an odd number of
intermediate q positions for an "Until pq" statement. (First-orderness is guaranteed
when we abandon the infinitary iteration * : using, e.g., only the earlier operations of
Relation Algebra. But in addition, some simple, 'acyclic' programming structures
involving * will be first-order too.)
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Without going into details here, it may be observed that the present analysis does
suggest a rather interesting kind of (non-deterministic) finite automaton matching the above
programs which has some Turing machine-like behaviour. Its format will be this:

from state plus test on propositional atoms
to move (S,P or "stay") plus new state .
Here are the diagrams for the above two examples:

B
~

\Y

[ 3]
p—
=
U
I

2 (accepting)

U : 1 TREE = S 1
S

1 q? > 2 1 q = - 2 (accepting)
( ) S : 1 —q? = S 1

But one can easily vary. For instance, the next machine will search for q in the
whole information pattern generated from the current node:

1 q? = — 2 (accepting)
1 TRUE = S 1
1 TRUE = P 1.

Finally, a more realistic theory would have automata not just testing facts at fixed
information states, but also e.g. have them construct new states, by adding individuals or
facts. Basic actions would then include such instructions as

"create x such that ...",
"see to it that Px becomes true"” .
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