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PEIRCE'S PROPOSITIONAL LOGIC: FROM ALGEBRA TO GRAPHS

Summary

Both historic and systematic aspects of Peirce’s logical work are studied in the present report.
In the first part we consider the change in Peirce's treatment of logical calculi, starting from a
Hilber type approach and culminating in a more representative one, the system of existential graph
{SEG). The second part is devoted to a presentation of the propositional part of SE, and to the proof
that this system has the same deductive strength as modern standard system. Nex, the report tums
to the analysis of SEG from the perspective of transformational grammar. Subsequently, we pay
attention to the semantic basis of these rules. In this part we see the pervasive notion of mono-
tonicity playing a systematic and historical rol. In particular, we argue that Peirce’s insertion and
deletion operations are conceptually linked to the so called monotonicity rules known from formal
semantic. Finally, in a concluding section we show that Peirce’s logical work can be used in the
construction of a monotonicity calculus akin to systems of natural logic.

introduction

As we are often told, Peirce introduces in [Peirce 1885] 'a symbolism adequate for the whole
of logic and identical in syntax with the systems now in use’ [Kneale and Kneale 1962, p. 431].
within this symbolism Peirce sets up a propositional system which is seen as the second
successful axiomatization of propositional logic. In 1897 Peirce’s lifelong interest in logic cul-
minated in the development of the system of existential graphs (SEG)Published interest in SEG
dates back to [Gardner 1958], [Prior 1964]; the topic has subsequently been taken up by [Roberts
1973], [Thibaud 1975] and [Sowa 1984].

whereas the system of 1885 constitutes a standard propositional calculus, the SEG has special
properties of its own. In the first place, Peirce defines a non-linear propositional 1anguage with the
same expressive power as usual linear 1anguages. In the second place, the system embodies a few
global inference rules which, seen from the perspective of standard systems, allow us to draw
consequences from given premises without having to resolve them into smaller parts. Roughly
speaking, the effect of Peirce's rules is the following:

& within any context we may introduce c.q. eliminate double negations;

* within specified syntactic positions we are allowed to insert c.q. to delete
(occurrences of ) formulas; and finally

e within certain syntactic configurations we are allowed to copy c.q. eliminate
{occurrences of copied) formulas.

Peirce's richly diverse logical research contributed significantly to the revival of logic that
took place at the end of the 19th century. Peirce’s place in the history of logic justifies by itself
the historical study of his logical theories and the assessment of the contemporary value these
theories have.

In the present report we hope to show the importance of the study of SEG from two distinct
perspectives.

® In the first place we assess the importance of SEG for the the history of
modern logic. As we will point out, SEG constitutes Peirce’s second successful
treatment of classical logic. Furthermore, Peirce himself seems to have de-
scribed SEG as his chef d'oeuvre , thus estimating SEG even more important
than his 1885 contribution. These facts alone make SEG worth studying from a
historical point of view. However, SEG itself constitutes the result of a his-
torical development and we intend to point out some aspects of this process. In
particular, we will see that there is a (literally) Fregean motivation behind
the construction of the formal language of SEG. We will also see that, almost
reminding Jevon's program of mechanical inference, Peirce sought to reduce
inference to simple substitution procedures.



= In the second place we will point out the relevance of Peirce's global infer-
ence rules for the construction of natural logics { i.e. systems of inference,
based directly on grammatical form). We noticed above that SEG embodies
global inference rules different from the local rules of standard systems. This
different approach to inference is worth studying on its own account. Further-
more, this view on inference is a feature SEG shares with systems of natural
logic. These systems rely essentially on the notion of monotonicity. We intend
to show that Peirce's deletion and insertion rules are based on this notion as
well. Moreover, we will stress the fact that Peirce’s copying rule is based on
the semantical notion of conservativity - a principle not exploited yet in the
construction of natural logics.

There remains, however, an aspect of SEG that we will not consider in the present report, al-
though this aspect renders SEG an interesting system for modern readers. [Sowa 1984], a book de-
yoted to cognitive science and artificial intelligence, claims that SEG is more adequate than
standard systems for the representation of knowledge. In particular, Sowa takes SEG as the logical
base for the construction of a theory of conceptual graphs, from the perspective of artificial intel-
ligence research. Readers interested in this aspect of SEG are referred to Sowa's own work.

1. The 1885 system

1.1 The language and the icons

In the 1885 pape1r Peirce tries to develop a system "adequate for all the problems of deductive
logic[CP 3. 364]". In order to deal with these problems Peirce builds up an implicational language
containing the following basic expressions:

. propositional letters:t, t,...;
. implication symbol: —;
. parentheses;

and a formation rule
. If ®,y are propositions, so is (x—y).
In this language Peirce formulates a few primitive expressions which he calls icons:

(1) K= K

(2) (x =2(y = 2= (y -(x— 2));
(3) (x> y) =y 22)> (x = 2));
(50 (= y)—=r) >R

These primitive icons are supplemented with a derived one:
(6) K =y — x).

{Observe that the icons 2,5 and 6 form a sufficient base for the axiomatization of the pure impli-
cational calculus).The fourth icon, intended to cope with negation, is introduced in a less conspic-
uous yray;

e must now again enlarge the notation so as to introduce negationLet b be
such that we can write b — x, whatever x may be. Then b is false.[CP. 3. 361



There is no unanimity among commentators with respect to the exact meaning of the fourth icon.
There are at least three different interpretations of this passage. The most influential one is due to
PriorZ who supposes that Peirce is offering at the same time the definition % = x—f and the icon
f — . [Prior 1958, 135], while others just read either the definition or the icon.

It seems that Prior's view is the most plausible with regard to the spirit of Peirce's treatment
of negation, although it is the least faithful to the letter of the cited passage. For instance, Peirce
likes to stress that the principles of contradiction and of excluded middle are to be treated sepa-
rately (which by the way he identifies with p——""pand " - respectively).:"

By using Modus Ponens (MP) and the definition of negation we can derive ®— 7§ within the
1885 system:

{(p—f)— (p—f)isanicon Hence by (2) and MP, p—{{(p—f) — f). And by
definitionp — 2 —p.

The so-called Peirce’s law is introduced in order to obtain a negation-free equivalent of the
principle of excluded middle:

A fifth icon is required for the principle of excluded middle and other
propositions connected with it. One of the simple formulae of this kind is
{{x = y) =%) — . This is hardly axiomatical. [CP. 3. 384]

But this icon by itself is not sufficient for the derivation of = - p—p. As Prior points out, the
definition of negation and Peirce’s law are not sufficient: an additional axiom is required. [Prior
1962 p. 511

1. ((f = p)of) =1 Peirce's law

2 ap = f 1 and definition of negation
3 f =({(f—-p)—>p) From icons 1,2 and MP

4. Ap—=({(f-p)-p) From 2,3 icon 3 and MP

5. (f—=p)=("p—=p) From 4, icon 2 and MP

By adding the ex falso rule to Peirce's system we get the desired formula.

1.2 Rules of proof

One intriguing aspect of Peirce’s paper is the absence of explicitly formulated rules of proof.4
Peirce states that if X is a true proposition we may write y—x . This can be interpreted as stating

Ri:from I x follows -y — X

But of course this rule cannot be sufficient. For instance, the proof Peirce gives of (6) reveals
that other unstated rules are being used:

“To say that ¥ — % is generally true is to say that it is so in every state of
things, say in that in which y is true; so that we may write y—(x—x), and then
by transposition of antecedents x —(y—x) or from % we may infery — x. [CP.
3.378]

Prior and Berry assert that Peirce’'s system presupposes both substitution and Modus Ponens. But
the expressions used by Peirce have the status of schematic letters:

The letters of applied algebra are usually tokens, but the x,y,z, etc of a general
formula, such as(x + y)z = + %z are blanks to be filled up with tokens, they are
indices of tokens. [CP. 3. 364]

we think ve are allowed to dispense with substitution: the letters Peirce uses are blanks to be
filled with flesh and blood proposition letters.

Given y—(x—x), we know that from (2) and Modus Ponens the desired icon follows. It is jus-
tifiable to add MP to Peirce’s system. As the following passage shavs, Peirce himself would have
accepted the correction:



the moment that a person who has made the incomplete inference "4 therefore
B" is led to reflect upon or criticize this procedure into the slightest degree, he
will recognize the leading principle; If A then B as a premise and thus reform
his inference as follows:

If AthenB

But A

Hence, B.
This form of inference is called Modus Ponens. [CP. 4. 365]

This seems to settle the matter: we can act as if Peirce has forgotten to formulate explicitly
ane of his inference rules. Now we can reconstruct Peirce’s proof of (6) in this way:

1. % — X (1)

2 y = (x— ) From 1 by R1

k3 % — {y— ®) From 2 and the adequate choice of {2) by
M.P.

Thus, by using (1), (2), R1 and MP Peirce derives (6). The latter, (3) and (5) form an adequate
basis for the akiomatization of the implicational calculus. If we add to these principles the prin-
ciple ex falso sequitur quodiibet, then Peirce has offered a basis for the axiomatization of classical

propositional logicS

1.3 Rules of inference

However, there is another possible reconstruction of Peirce’s proof. We could say that Peirce
does not use (2) as a step but invokes it in the same way that we invoke Modus Ponens. The most
dramatic explanation would be the suggestion that Peirce is systematically confused between a
logical consequence and a material implication interpretation of his implication symbol. Or,
alternatively, that he intended his symbol to be read ambiguously.E‘These kinds of considerations
may arise in connection with the reading Peirce gives of (6) : y — & follows from x. But there is a
more sanguine (c.q. conservative) course of action. [Peirce 1885] is a revised version of [Peirce
18811 In this earlier paper we read that

the two inferences

X

y and b

. z Ly =z
are of the same validity.[CP. 3. 182]

So Peirce states x,yF z & x F y — 2, akind of postulated Deduction Theorem. ? By applying
this theorem to the primitive icons we obtain new inference rules which are then used in deriva-
tions.

1.4 The Future

Having built his system, Peirce disposes of it by pointing out that "the general formulae given
above are not convenient in practice” and then proceeds to sketch several more flexible approaches.
One of these consists of the acceptance of x— y as necessarily true if it is not possible to find a
counter-example for it, i.e a valuation making x true and y false [CP. 3.387- 391]

Peirce further demolished the i885 system by allowing {multiplication), disjunction{addition)
and negation, instead of material implication, as primitive operations. By adding the equations x
Ax=T;xvx=1t;% At =xand xv f = & to the classical algebraic properties of the Boolean
operators, we could say that a formula x is necessarily true if it resolves into t.

To treat problems of deductive logic, Peirce introduces another device:

To any proposition we have the right to add any expression at pleasure;also to
strike out any factor of any term. The expressions for different propositions
separately now may be multiplied together.[CP. 3. 391]



These last two rules are the basis of Peirce’s future theory of deduction. Eventually he would
assert that

“There must be operations of transformation. In order that these operations
should be as analytically represented as possible, each elementary operation
should be either an insertion or an omission. Operations of commutation, like
%y .- . y% may be dispensed with by not recognizing any order or arrangement as
significant. Associative transformations, like (xy)z . - . x(y2) ... will be dis-
pensed in the same way.” [CP. 4. 374]

The system in which this ideal was achieved is the theme of the next fewpages: the alpha
graphs. In this system the adding and striking out operations did indeed become insertion and
omission rules.

1.5 Qualitative Logic and monotonicity

[Roberts 1973] and [Thibaud 1976] describe how the alpha graphs system grew from Peirce's
interest in diagrammatic representations of logical expressions. In this section we make a distinct
connection between the later graphs and Peirce's early work. This connection has to do with Peirce’s
interest in inference rules. Here we will see the first appearance of a syntactic version of mono-
tonicity rules expressed in a formal language.

The missing link between the graphs and the 1885 system is the so-called Qualitative Logic, a
calculus probably set up in the early nineties. The language of this system contains a special
symbol for material implication(illation) formed from the disjunction symbol joined to a negation
line (streamer):

-

Thus ‘if a, then b’, would be written
atb

[Peirce 1976 IV p. 108]

After the reader has gone through the trouble to learn yet another notation, Peirce shows how
this new symbol can be represented in the standard Boolean frame:

vre first separate the streamer of the sign of illation and in place of
atb

write a v b[Peirce 1976 IV p. 114]

So let us make use of the old symbols. The system also contains two constants, one for verum
and one for falsum and admits the blank as a legal expression. we will use t and f for verum and
falsum respectively; the blank is taken as an equivalent of 1.

Peirce's next step is the construction of a formal calculus.B One of the rules expresses the icon
missing in the 1885 paper. It also gives an independent definition of negation by using f 9

For f which is the symbol of falsity, we have the general formulaf v a
whatever a may be. The falsity of a, usually written —a is really equivalent to
—av f.[1976 1V, p. 109]

Here we have a passage which inclines the balance in favour of Prior's interpretation of the
1885 system.
There is another theme from that earlier paper finding its way intoo this system. Peirce

opens his treatment of the calculus by saying that the inference rules must be instrumental: 10

to prove the tyvo propositions If —7a v b, then if a then b; and If from a follows
b, then —1a ¥ b[1976 IV, p. 107]



And there are also links with the latter systems:

we require that the rules should enable us to dispense yrith all reasoningin our
proofs except the mere substitution of particular expressions in general for-
mulae. [1976 IV, p. 108]

But, after all, Modus Ponens is taken as a primitive inference rule. Then Peirce proceeds to gener-
alize Modus Ponens in the first of three extra rules he formulates:

The general rule of substitution is that if —a v b, then b may be substituted
for a under an even number of negations, while under an odd number a may be
substituted for b[1976 IV, p. 108]

The link with his final approach is clearer in one of the extra rules which Peirce derives :

f may be substituted for any term under an odd number of negations, and t for
any term under an even number[1976 IV, p. 110]

These passages are an unambiguous formulation of the so-called (syntactic) monotonicity rules.
In modern format, these rules can be captured in the following way:

. p — @, Flp) - F(y) where F(1p) is any formula containing the sub-
formula @ positively and F(y) results from it by replacing this occurrence of

@by .

. @ — g, F(y) F F(p) where F(y)} is any formula containing the sub-
formula g negatively and F{¢) results from it by replacing this oc-
currence of Y by @.

Peirce's above cited passage constitutes the first formal expression of these rules we have
been able to find. With the benefit of hindsight (which the present gives about the past), we see
that Peirce did not have a long way to go to arrive at his later deletion/insertion rules. At the end
of 1.4 we quoted two passages from Peirce’s work. In the first one, from the standard period, we
mentioned rules allowing the elimination of conjuncts and the introduction of disjunctions. In the
second one, from the graph period, we quoted the ideal of admitting only insertion and deletion.
From the transition period we saw a passage which states that the rules should be reduced to
operations admitting substitutions.These passages show a certain continuity in Peirce’s thoughts
about inference rules. In particular we can see that the later rules grew from the monotonicity
rules.The connection between Peirce’s insertion/deletion rules and the monotone rules is not only
systematic but historical as well.

Digression

It is worth knowing that the syntactic monotonicity rules have a role in the further develop-
ment of logic. These are for example Dictum de Omniin [Sommers 1982, pp.184],the
Semisubstitutivity of Conditional Rules in [Zeman 1967 p. 484 ], and Theorem 24 in[Kleene
1967,p.124]. Even some years earlier, the rules were mentioned in [Kleene 1952,p. 154.]. In this
last book e are referred to [Curry's 1939,pp. 290-91 ] for another version of the rules. Curry, in
turn, refers us to [Herbrand 1930 § 3.2 111 and [Maclane 1934112 Finally, the first post-Fregean
reference to the rules which we have found is [Behmann 1922,pp. 172-174].

In general, these versions of the monotonicity rules diverge in two important ways. There is
the weak version in which the premises of the rules are provable formulas (Behmann,Curry, Her-
brand, Kleene 1967, Zeman). There is also the strong version in which the premises are assump-
tions (Kleene 1952, Maclane, Sommers). Furthermore, there is a version in which the substitution
affects all the occurrences of @ in F{{p) (Herbrand, Maclane) and another in which the substitution
affects only a specified occurence of ¢ (Behmann, Curry, Kleene, 1952, 1967, Sommers, Zeman).

Semantic monotonicity appears in [Lyndon 1959] as a property of first-order sentences A gen-
eralization beyond formal languages is provided by [van Benthem 1986].



1.6 Remarks

In the above pages we have pointed out some features of Peirce’s logic by using a modern ter-
minology. This kind of anachronism is very tempting. Successful theories, like Borges’ successful
writers, create their own past. This self-made past may or may not coincide with the real past.
Likewise, Peirce's paper has been seen as belonging to a tradition leading to the standardization of
logic in the hands of Hilbert's School. Nevertheless the question arises whether or not we are
entitled to attribute to him the full-fledged notion of the concepts involved in this choice of ter-
minology. For instance, ye have noted that

. he sets up an axiomatic system yielding pure implicational logic,

. he used schematic letters in the formulation of his axioms,

. he distinguished several principles governing the behaviour of
negation,

. he has some awareness of the deduction theorem or he has formulated

introduction and elimination rules for the implication symbol.

And of course the most sensible thing to do is to question these remarks In diffuse form and
scattered through the pages and the years all these ideas are present in Peirce’s writings. We can
see these ideas in them because we know where to look and what to expect. It is the future in the
hands of, say, Bernays and Gentzen which makes of this part of the logical past a source of antici-
pations.

2. The Alpha Graphs

2.1 Preliminaries

Peirce sets up the SEG with the intention of giving "a satisfactory logical analysis of the rea-
soning in mathematics”. [CP.4. 424]. Part of this project consists of the construction of an adequate
artificial language in which proofs and inference principles can be represented. The following re-
marks due to Peirce communicates the same spirit permeating Frege's project:

what is requisite is to take really typical mathematical demonstrations, and
state each of them in full, with perfect accuracy, so as not to skip any step, and
then to state the principle of each step so as perfectly to define it, yet making
this principle as general as possible. .. If we attempt to make the statement in
ordinary language, success is practically impossible. .. At all times, the bur-
den of language is felt severely, and leaves the mind with no energy for its
main work. It is necessary to devise a system of expression for the purpose
which shall be competent to express any proposition whatever without being
embarrassed by its complexity, which shall be absolutely free from ambiguity,
perfectly regular in its syntax, free from all disturbing suggestions, and come
as nearer to a clear skeleton diagram of that element of the fact which is per-
tinent to the reasoning as possible. [NM. 3. 406]

The alpha graphs form the propositional basis of Peirce’'s system. The propositional language
uses the blank area on which we write as a symbol for a specific object, namely verum . As symbol
for negation it employs an oval around the proposition to be negated and it uses juxktaposition to
symbolize conjunction. We will see shortly that as a notational variant of propositional logic the
alpha graphs are not perspicuous.!3 Their utility lies somewhere else: within this language Peirce
formulates a few global inference rules which, supplemented with the blank (or t as symbol for
verum) as axiom, yield full propositional logic.

At this point a word of caution is in order. We are not asserting that Peirce himself axioma-

tized propositional logic (on the basis of the blank and his global rules). 1%we doassert that it can
be shown that the alpha graphs contain the basis required for such an axiomatization. As a matter of
fact, it seems more probable that in the construction of the SEG, Peirce is primarily concerned with

the relation of formal deducibility between a set of assumptions and an end formula. 1o



For convenience's sake, in this second part, we will not always follow Peirce’s terminology or
notation. The reader interested in the original formulation of the graphs is referred to [Peirce 1933
IV] or to the richer presentation found in [Roberts 19731

2.1 The language
we use the following language:

. Proposition-letters: Pg, Py, ...
. A sheet of assertion :

taken as a graph representing verum in the sense that each blank part of it stands for a true
expression.
. & box intended to denote the negation of any expression it encloses: I:l

In general we omit the explicit mention of the sheet of assertion considering the areas on which
we write as our temporary sheet, and we will refer to the blank by the expression t.
Graphs:

Each propositional letter P is a graph.
t is a graph.

If p is a graph, so is [E]

If @1 and 2 are graphs so is @1§2.

The “translation” from the usual languages into Peirce graphs is straightforyard:

mip) = p for all propositional 1etters.

(o @)= i E) |

moay)=Tmlgimi{y)
vy = IE

me-sw = [e [w]|

As a tool for immediate use we list translations of some well-known formulas, using @’ as an
abbreviation of Ti(tp) :

1. m(e—=( ¢ — @)=

o |w[e]

2 Y = )= (p—y) =

[w]] Lol || | | L] w




3 iy = (W— &N— (g P) 5 (g— &) =

o |[ w1« Lol ||e[2]

23 The calculus
Axiom
1. The blank is an axiom

Rules of inference

1. within an even number of boxes any graph (¢ may be deleted.
(Deletion Rule DR)16

2 within an odd number of boxes any graph @ may be
inserted. (Insertion Rule IR)1?

3. The graphs

@ and |[¢]

are mutually interchangeable.
( Double Negation Rule DN)18

4. The graphs (... ¢...); @l . .ey/ .. ) are mutually interchangeable.
(Copying Rule CR)19

8. L — ]

Py
(Conjunction Rule CNR)Y20
The graphs @y and Y are mutually interchangeable.

{Generalized Commutativity Rule GCRYY

o]

& Examples

The following inferences are examples in standard notation of uses of DR,IR and CR respec-
tively:
(e, Aok {i=1,0).
(2) " (e A )
(A WEEA (pAY); A T(PAPIF A DY

Next, we define the notions of proofin SEG , theorem of SEG and deduction in SEG in the fol-
lowing form:



10

. A proof in SEG is a sequence @, . @, of graphs such that, for each
@y, either pj ist or (pj is a direct consequence of some of the precedings
graphs by virtue of one of the above  rules or (; has the form @ j[Pk for some

j k<L
. A theorem of SEG is a graph (@ such that there is a proof with @, = .
. & deduction of @ from {lIJ1, e lpm} in SEG [Notation: Wi W I—tp]

isasequence &, ..., &, of graphs such that ¢ = & and for each &, elther &
istori; isin {L|J1, .. ,q: }oor ¢ isa direct consequence of some of the
precedings graphs by '-nrtue of one nf the above rules ors has the form &. Ek for

some j k< i
& Examples
. Fmip—t)

1. t axiom
2. [] DN
3. o] IR

t axiom

1,
2. [] DN
3 o[ ] i

4. e[e] CR (applied with y = blank)

. @, e > Ik y
1 p Assumption
2 tp Assumption
3 o |o[w] CNR

4 g CR

5. [w] DR

6. Y DN

Notice that this example proves that the alpha graphs are closed under Modus Ponens. We can
also prove a kind of "implication introduction” in SEG:

pr o=+ |uw[g]




Proof

Let g, ..

11

&, be a deduction of @ from . We show that I tp for 1< i< n. First of

all, 3;1 must be @ or t. Our two first examples take care of these cases.

Assume nowr that tp forall j< 1. Either &, is @, or &; is t, or & follows by R1-R4

from some Ek, or Ei has the form Eksm for same Ek*sm with km<C j In the first two cases,

|—q:

,asinthecasei =1.

In the third case, by inductive hypothesis, || £, || Hence, by applying the rule that

transforms &, into &; once again, - [ 21,

In the 1ast case, we have by hypothesis:

1. F
2 F
3 +
4 F
5 F
6 F
7 F

(&,

1] Em Then,
T I | I T ] - CR
g Ek Em CR
e DN

This completes the proof. The case i = n constitutes the desired result.

2.4 Deductive strength of the alpha graphs
In this subsection we derive some theorems which are needed to prove the following assertion :

The alpha graphs have the same deductive strength as standard propositional login:.z2 It suffices to

prove

s p'H{p—p)
. (" =) (p - gy
. (p - (P> EN'F ((p— ) = (p— )Y

since we have already shown that the system is closed under Modus Ponens and that implication
introduction is valid for SEG.



12

. '+ (p — @)
Proof

@' Assumption

1,
2, [¢] DN
3, w[e ] i

T3 (o erE{p - gy

Proof

1. @ Assumption
2. @ DN
3 ¢ w] GCA

T4 (p - (p—= ENF ((p— ) —{p— &)

Proof

1. @ L|J' Assumption

2 ¢ wit] DN
3 ¢ DN
4. ¢ | o' [w] CR
5, o [w]|e [¢] GCA
6. o[w]| [|e[2] DN

3. The Alpha Rules as Transformations

In the preceding paragraph we have formulated Peirce’s representation system for propositional
inferences. A natural question in this regard concerns the complexity of the alpha representation of
inferences, vis-&-vis the complexity of inferences as codified in standard systems. Partially, this
is a question of linguistic nature. To investigate this matter more closely, we formulate the alpha
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rules in the formalism of transformational grammars, and compare inferences in this new setting
with inferences in Hilbert-type systems. In this section we claim that in Peirce’s system inference
is to be seen as a (literally) "transformational process” in the linguistic sense. In order to show
this, we will develop the necessary technical means ( the reader may skip details at first reading).

Let us start by reminding the reader of the most relevant aspects of (standard) transforma-
tional grammars. A grammar of this type consists of tyo parts. In the first place, a context-free or
context-sensitive part yielding phrase-markers usually represented as parsing -trees (PT). In the
second place, transfarmational rules which are mappings of PT's into PT's. Each such rule contains
tvo parts : a structural analysis(5A) and a structural change(SC} which tells us what the resulting
PT is. The structural analysis is used to determine whether or not the rule applies to a given input.
If the rule will apply to a given input &, then the SA tells us which segments of & will be deleted,
expanded or rearranged.

3.1 The base
As base of the system we use a context-free grammar generating the propositional formulation
in Polish notation

1. 3= A3S
2 =795
3 S = atomic formula (t, p, p’, p",...)

With each of the expressions generated by this grammar we associate a PT.
Below we give the PT of the formulas = —p, 7 Ap™Q:

3
3
- 3
-
p
3.2 Coding and polarity

Observe that in this format, given a formula @ with PT «, the sub-formulas of @ are all the
formulas generated by the sub-trees with tope node labeled 5. Taking the PT of ¢ as stepping-
stone, we can derive a code for all the sub-formulas of .

. Given a formula @ and its PT «, we code the nodes labeled 5 as follows:

(1) The top node is given the code <0>

(2) If a node 1abeled S has code x and branches into the nodes labeled = and S,
then this new 5 is given the code <x,2>.

(3) If a node labeled S has code % and branches into the nodes labeled A, S and
5, then these nev S-nodes get the codes <x,0>, <x,1> respectively.
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Example
. A node labeled S in a coded PT is called positive if the code of S
contains an even number of 2's. Otherwise it will be called negative.
. A sub-formula W of a formula ¢ is called positive (negative) if the

node labeled S which yields @ is positive (negative).

Example

According to the above coded PT, the positive sub-formulas of 7 Ap—q are the formula itself
and q, whereas the negative sub-formulas are Ap—q, p, g

3.3 Deletion and insertion in the Polish notation

It is evident that in this perspective, the deletion rule can not be applied without a further
proviso. If we delete a positive sub-formula the resulting string may not correspond to a well
formed formula. For instance, by deleting the positive q in Apq, we obtain Ap. The reason is, of
course, that in the Polish notation the blank is not a legal expression. To incorporate Peirce's
deletion rule into our standard 1anguages, we need to decompose this rule into two parts. In the first
place, we allow every positive sub-formula to be replaced by the proposition t. In the second place,
we make explicit the algebraic properties of verum: Apt is interchangeable with p. Hence, given
Apq we derive Atq in the first place and then q. Thus deletion becomes a combination of algebra
and the rule: t may be substituted for any positive formulaBy the same token, insertion can not be
applied without further proviso. Thus, we can't pass from —p into —pq, since this string does not
belong to the Polish 1anguage. Once again, we decompose this global rule into an algebraic and a
substitutional part. The algebraic part remains the same as before. The substitutional part, consists
of the mirror image of the deletion rule: any formula may replace a given negative occurrence of t.
Thus, we derive =1 Apt by algebra and substitute q for t, abtaining = Apg.

3.4 Dominance and c-commanding
We say that each <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>