Institute for Language, Logic and Information

PEIRCE'S PROPOSITIONAL LOGIC:
FROM ALGEBRA TO GRAPHS

Victor Sdnchez Valencia

ITLI Prepublication Series
for Logic, Semantics and Philosophy of Language LP-89-08

%
&l
%

University of Amsterdam

Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and Information

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)
Plantage Muidergracht 24 Nieuwe Doelenstraat 15

1018TV Amsterdam 1012CP Amsterdam

PEIRCE'S PROPOSITIONAL LOGIC:
FROM ALGEBRA TO GRAPHS

Victor Sanchez Valencia

Department of Mathematics and Computer Science
University of Amsterdam

Received November 1989 ' Research supported by N.W.O.

PEIRCE'S PROPOSITIONAL LOGIC: FROM ALGEBRA TO GRAPHS

Summary

Both historic and systematic aspects of Peirce’s logical work are studied in the present report.
In the first part we consider the change in Peirce's treatment of logical calculi, starting from a
Hilber type approach and culminating in a more representative one, the system of existential graph
{SEG). The second part is devoted to a presentation of the propositional part of SE, and to the proof
that this system has the same deductive strength as modern standard system. Nex, the report tums
to the analysis of SEG from the perspective of transformational grammar. Subsequently, we pay
attention to the semantic basis of these rules. In this part we see the pervasive notion of mono-
tonicity playing a systematic and historical rol. In particular, we argue that Peirce’s insertion and
deletion operations are conceptually linked to the so called monotonicity rules known from formal
semantic. Finally, in a concluding section we show that Peirce’s logical work can be used in the
construction of a monotonicity calculus akin to systems of natural logic.

introduction

As we are often told, Peirce introduces in [Peirce 1885] 'a symbolism adequate for the whole
of logic and identical in syntax with the systems now in use’ [Kneale and Kneale 1962, p. 431].
within this symbolism Peirce sets up a propositional system which is seen as the second
successful axiomatization of propositional logic. In 1897 Peirce’s lifelong interest in logic cul-
minated in the development of the system of existential graphs (SEG)Published interest in SEG
dates back to [Gardner 1958], [Prior 1964]; the topic has subsequently been taken up by [Roberts
1973], [Thibaud 1975] and [Sowa 1984].

whereas the system of 1885 constitutes a standard propositional calculus, the SEG has special
properties of its own. In the first place, Peirce defines a non-linear propositional 1anguage with the
same expressive power as usual linear 1anguages. In the second place, the system embodies a few
global inference rules which, seen from the perspective of standard systems, allow us to draw
consequences from given premises without having to resolve them into smaller parts. Roughly
speaking, the effect of Peirce's rules is the following:

& within any context we may introduce c.q. eliminate double negations;

* within specified syntactic positions we are allowed to insert c.q. to delete
(occurrences of) formulas; and finally

e within certain syntactic configurations we are allowed to copy c.q. eliminate
{occurrences of copied) formulas.

Peirce's richly diverse logical research contributed significantly to the revival of logic that
took place at the end of the 19th century. Peirce’s place in the history of logic justifies by itself
the historical study of his logical theories and the assessment of the contemporary value these
theories have.

In the present report we hope to show the importance of the study of SEG from two distinct
perspectives.

® In the first place we assess the importance of SEG for the the history of
modern logic. As we will point out, SEG constitutes Peirce’s second successful
treatment of classical logic. Furthermore, Peirce himself seems to have de-
scribed SEG as his chef d'oeuvre , thus estimating SEG even more important
than his 1885 contribution. These facts alone make SEG worth studying from a
historical point of view. However, SEG itself constitutes the result of a his-
torical development and we intend to point out some aspects of this process. In
particular, we will see that there is a (literally) Fregean motivation behind
the construction of the formal language of SEG. We will also see that, almost
reminding Jevon's program of mechanical inference, Peirce sought to reduce
inference to simple substitution procedures.

= In the second place we will point out the relevance of Peirce's global infer-
ence rules for the construction of natural logics { i.e. systems of inference,
based directly on grammatical form). We noticed above that SEG embodies
global inference rules different from the local rules of standard systems. This
different approach to inference is worth studying on its own account. Further-
more, this view on inference is a feature SEG shares with systems of natural
logic. These systems rely essentially on the notion of monotonicity. We intend
to show that Peirce's deletion and insertion rules are based on this notion as
well. Moreover, we will stress the fact that Peirce’s copying rule is based on
the semantical notion of conservativity - a principle not exploited yet in the
construction of natural logics.

There remains, however, an aspect of SEG that we will not consider in the present report, al-
though this aspect renders SEG an interesting system for modern readers. [Sowa 1984], a book de-
yoted to cognitive science and artificial intelligence, claims that SEG is more adequate than
standard systems for the representation of knowledge. In particular, Sowa takes SEG as the logical
base for the construction of a theory of conceptual graphs, from the perspective of artificial intel-
ligence research. Readers interested in this aspect of SEG are referred to Sowa's own work.

1. The 1885 system

1.1 The language and the icons

In the 1885 pape1r Peirce tries to develop a system "adequate for all the problems of deductive
logic[CP 3. 364]". In order to deal with these problems Peirce builds up an implicational language
containing the following basic expressions:

. propositional letters:t, t,...;
. implication symbol: —;
. parentheses;

and a formation rule
. If ®,y are propositions, so is (x—y).
In this language Peirce formulates a few primitive expressions which he calls icons:

(1) K= K

(2) (x =2(y = 2= (y -(x— 2));
(3) (x> y) =y 22)> (x = 2));
(50 (= y)—=r) >R

These primitive icons are supplemented with a derived one:
(6) K =y — x).

{Observe that the icons 2,5 and 6 form a sufficient base for the axiomatization of the pure impli-
cational calculus).The fourth icon, intended to cope with negation, is introduced in a less conspic-
uous yray;

e must now again enlarge the notation so as to introduce negationLet b be
such that we can write b — x, whatever x may be. Then b is false.[CP. 3. 361

There is no unanimity among commentators with respect to the exact meaning of the fourth icon.
There are at least three different interpretations of this passage. The most influential one is due to
PriorZ who supposes that Peirce is offering at the same time the definition % = x—f and the icon
f — . [Prior 1958, 135], while others just read either the definition or the icon.

It seems that Prior's view is the most plausible with regard to the spirit of Peirce's treatment
of negation, although it is the least faithful to the letter of the cited passage. For instance, Peirce
likes to stress that the principles of contradiction and of excluded middle are to be treated sepa-
rately (which by the way he identifies with p——""pand " - respectively).:"

By using Modus Ponens (MP) and the definition of negation we can derive ®— 7§ within the
1885 system:

{(p—f)— (p—f)isanicon Hence by (2) and MP, p—{{(p—f) — f). And by
definitionp — 2 —p.

The so-called Peirce’s law is introduced in order to obtain a negation-free equivalent of the
principle of excluded middle:

A fifth icon is required for the principle of excluded middle and other
propositions connected with it. One of the simple formulae of this kind is
{{x = y) =%) — . This is hardly axiomatical. [CP. 3. 384]

But this icon by itself is not sufficient for the derivation of = - p—p. As Prior points out, the
definition of negation and Peirce’s law are not sufficient: an additional axiom is required. [Prior
1962 p. 511

1. ((f = p)of) =1 Peirce's law

2 ap = f 1 and definition of negation
3 f =({(f—-p)—>p) From icons 1,2 and MP

4. Ap—=({(f-p)-p) From 2,3 icon 3 and MP

5. (f—=p)=("p—=p) From 4, icon 2 and MP

By adding the ex falso rule to Peirce's system we get the desired formula.

1.2 Rules of proof

One intriguing aspect of Peirce’s paper is the absence of explicitly formulated rules of proof.4
Peirce states that if X is a true proposition we may write y—x . This can be interpreted as stating

Ri:from I x follows -y — X

But of course this rule cannot be sufficient. For instance, the proof Peirce gives of (6) reveals
that other unstated rules are being used:

“To say that ¥ — % is generally true is to say that it is so in every state of
things, say in that in which y is true; so that we may write y—(x—x), and then
by transposition of antecedents x —(y—x) or from % we may infery — x. [CP.
3.378]

Prior and Berry assert that Peirce’'s system presupposes both substitution and Modus Ponens. But
the expressions used by Peirce have the status of schematic letters:

The letters of applied algebra are usually tokens, but the x,y,z, etc of a general
formula, such as(x + y)z = + %z are blanks to be filled up with tokens, they are
indices of tokens. [CP. 3. 364]

we think ve are allowed to dispense with substitution: the letters Peirce uses are blanks to be
filled with flesh and blood proposition letters.

Given y—(x—x), we know that from (2) and Modus Ponens the desired icon follows. It is jus-
tifiable to add MP to Peirce’s system. As the following passage shavs, Peirce himself would have
accepted the correction:

the moment that a person who has made the incomplete inference "4 therefore
B" is led to reflect upon or criticize this procedure into the slightest degree, he
will recognize the leading principle; If A then B as a premise and thus reform
his inference as follows:

If AthenB

But A

Hence, B.
This form of inference is called Modus Ponens. [CP. 4. 365]

This seems to settle the matter: we can act as if Peirce has forgotten to formulate explicitly
ane of his inference rules. Now we can reconstruct Peirce’s proof of (6) in this way:

1. % — X (1)

2 y = (x—) From 1 by R1

k3 % — {y— ®) From 2 and the adequate choice of {2) by
M.P.

Thus, by using (1), (2), R1 and MP Peirce derives (6). The latter, (3) and (5) form an adequate
basis for the akiomatization of the implicational calculus. If we add to these principles the prin-
ciple ex falso sequitur quodiibet, then Peirce has offered a basis for the axiomatization of classical

propositional logicS

1.3 Rules of inference

However, there is another possible reconstruction of Peirce’s proof. We could say that Peirce
does not use (2) as a step but invokes it in the same way that we invoke Modus Ponens. The most
dramatic explanation would be the suggestion that Peirce is systematically confused between a
logical consequence and a material implication interpretation of his implication symbol. Or,
alternatively, that he intended his symbol to be read ambiguously.E‘These kinds of considerations
may arise in connection with the reading Peirce gives of (6) : y — & follows from x. But there is a
more sanguine (c.q. conservative) course of action. [Peirce 1885] is a revised version of [Peirce
18811 In this earlier paper we read that

the two inferences

X

y and b

. z Ly =z
are of the same validity.[CP. 3. 182]

So Peirce states x,yF z & x F y — 2, akind of postulated Deduction Theorem. ? By applying
this theorem to the primitive icons we obtain new inference rules which are then used in deriva-
tions.

1.4 The Future

Having built his system, Peirce disposes of it by pointing out that "the general formulae given
above are not convenient in practice” and then proceeds to sketch several more flexible approaches.
One of these consists of the acceptance of x— y as necessarily true if it is not possible to find a
counter-example for it, i.e a valuation making x true and y false [CP. 3.387- 391]

Peirce further demolished the i885 system by allowing {multiplication), disjunction{addition)
and negation, instead of material implication, as primitive operations. By adding the equations x
Ax=T;xvx=1t;% At =xand xv f = & to the classical algebraic properties of the Boolean
operators, we could say that a formula x is necessarily true if it resolves into t.

To treat problems of deductive logic, Peirce introduces another device:

To any proposition we have the right to add any expression at pleasure;also to
strike out any factor of any term. The expressions for different propositions
separately now may be multiplied together.[CP. 3. 391]

These last two rules are the basis of Peirce’s future theory of deduction. Eventually he would
assert that

“There must be operations of transformation. In order that these operations
should be as analytically represented as possible, each elementary operation
should be either an insertion or an omission. Operations of commutation, like
%y .- . y% may be dispensed with by not recognizing any order or arrangement as
significant. Associative transformations, like (xy)z . - . x(y2) ... will be dis-
pensed in the same way.” [CP. 4. 374]

The system in which this ideal was achieved is the theme of the next fewpages: the alpha
graphs. In this system the adding and striking out operations did indeed become insertion and
omission rules.

1.5 Qualitative Logic and monotonicity

[Roberts 1973] and [Thibaud 1976] describe how the alpha graphs system grew from Peirce's
interest in diagrammatic representations of logical expressions. In this section we make a distinct
connection between the later graphs and Peirce's early work. This connection has to do with Peirce’s
interest in inference rules. Here we will see the first appearance of a syntactic version of mono-
tonicity rules expressed in a formal language.

The missing link between the graphs and the 1885 system is the so-called Qualitative Logic, a
calculus probably set up in the early nineties. The language of this system contains a special
symbol for material implication(illation) formed from the disjunction symbol joined to a negation
line (streamer):

-

Thus ‘if a, then b’, would be written
atb

[Peirce 1976 IV p. 108]

After the reader has gone through the trouble to learn yet another notation, Peirce shows how
this new symbol can be represented in the standard Boolean frame:

vre first separate the streamer of the sign of illation and in place of
atb

write a v b[Peirce 1976 IV p. 114]

So let us make use of the old symbols. The system also contains two constants, one for verum
and one for falsum and admits the blank as a legal expression. we will use t and f for verum and
falsum respectively; the blank is taken as an equivalent of 1.

Peirce's next step is the construction of a formal calculus.B One of the rules expresses the icon
missing in the 1885 paper. It also gives an independent definition of negation by using f 9

For f which is the symbol of falsity, we have the general formulaf v a
whatever a may be. The falsity of a, usually written —a is really equivalent to
—av f.[1976 1V, p. 109]

Here we have a passage which inclines the balance in favour of Prior's interpretation of the
1885 system.
There is another theme from that earlier paper finding its way intoo this system. Peirce

opens his treatment of the calculus by saying that the inference rules must be instrumental: 10

to prove the tyvo propositions If —7a v b, then if a then b; and If from a follows
b, then —1a ¥ b[1976 IV, p. 107]

And there are also links with the latter systems:

we require that the rules should enable us to dispense yrith all reasoningin our
proofs except the mere substitution of particular expressions in general for-
mulae. [1976 IV, p. 108]

But, after all, Modus Ponens is taken as a primitive inference rule. Then Peirce proceeds to gener-
alize Modus Ponens in the first of three extra rules he formulates:

The general rule of substitution is that if —a v b, then b may be substituted
for a under an even number of negations, while under an odd number a may be
substituted for b[1976 IV, p. 108]

The link with his final approach is clearer in one of the extra rules which Peirce derives :

f may be substituted for any term under an odd number of negations, and t for
any term under an even number[1976 IV, p. 110]

These passages are an unambiguous formulation of the so-called (syntactic) monotonicity rules.
In modern format, these rules can be captured in the following way:

. p — @, Flp) - F(y) where F(1p) is any formula containing the sub-
formula @ positively and F(y) results from it by replacing this occurrence of

@by .

. @ — g, F(y) F F(p) where F(y)} is any formula containing the sub-
formula g negatively and F{¢) results from it by replacing this oc-
currence of Y by @.

Peirce's above cited passage constitutes the first formal expression of these rules we have
been able to find. With the benefit of hindsight (which the present gives about the past), we see
that Peirce did not have a long way to go to arrive at his later deletion/insertion rules. At the end
of 1.4 we quoted two passages from Peirce’s work. In the first one, from the standard period, we
mentioned rules allowing the elimination of conjuncts and the introduction of disjunctions. In the
second one, from the graph period, we quoted the ideal of admitting only insertion and deletion.
From the transition period we saw a passage which states that the rules should be reduced to
operations admitting substitutions.These passages show a certain continuity in Peirce’s thoughts
about inference rules. In particular we can see that the later rules grew from the monotonicity
rules.The connection between Peirce’s insertion/deletion rules and the monotone rules is not only
systematic but historical as well.

Digression

It is worth knowing that the syntactic monotonicity rules have a role in the further develop-
ment of logic. These are for example Dictum de Omniin [Sommers 1982, pp.184],the
Semisubstitutivity of Conditional Rules in [Zeman 1967 p. 484], and Theorem 24 in[Kleene
1967,p.124]. Even some years earlier, the rules were mentioned in [Kleene 1952,p. 154.]. In this
last book e are referred to [Curry's 1939,pp. 290-91] for another version of the rules. Curry, in
turn, refers us to [Herbrand 1930 § 3.2 111 and [Maclane 1934112 Finally, the first post-Fregean
reference to the rules which we have found is [Behmann 1922,pp. 172-174].

In general, these versions of the monotonicity rules diverge in two important ways. There is
the weak version in which the premises of the rules are provable formulas (Behmann,Curry, Her-
brand, Kleene 1967, Zeman). There is also the strong version in which the premises are assump-
tions (Kleene 1952, Maclane, Sommers). Furthermore, there is a version in which the substitution
affects all the occurrences of @ in F{{p) (Herbrand, Maclane) and another in which the substitution
affects only a specified occurence of ¢ (Behmann, Curry, Kleene, 1952, 1967, Sommers, Zeman).

Semantic monotonicity appears in [Lyndon 1959] as a property of first-order sentences A gen-
eralization beyond formal languages is provided by [van Benthem 1986].

1.6 Remarks

In the above pages we have pointed out some features of Peirce’s logic by using a modern ter-
minology. This kind of anachronism is very tempting. Successful theories, like Borges’ successful
writers, create their own past. This self-made past may or may not coincide with the real past.
Likewise, Peirce's paper has been seen as belonging to a tradition leading to the standardization of
logic in the hands of Hilbert's School. Nevertheless the question arises whether or not we are
entitled to attribute to him the full-fledged notion of the concepts involved in this choice of ter-
minology. For instance, ye have noted that

. he sets up an axiomatic system yielding pure implicational logic,

. he used schematic letters in the formulation of his axioms,

. he distinguished several principles governing the behaviour of
negation,

. he has some awareness of the deduction theorem or he has formulated

introduction and elimination rules for the implication symbol.

And of course the most sensible thing to do is to question these remarks In diffuse form and
scattered through the pages and the years all these ideas are present in Peirce’s writings. We can
see these ideas in them because we know where to look and what to expect. It is the future in the
hands of, say, Bernays and Gentzen which makes of this part of the logical past a source of antici-
pations.

2. The Alpha Graphs

2.1 Preliminaries

Peirce sets up the SEG with the intention of giving "a satisfactory logical analysis of the rea-
soning in mathematics”. [CP.4. 424]. Part of this project consists of the construction of an adequate
artificial language in which proofs and inference principles can be represented. The following re-
marks due to Peirce communicates the same spirit permeating Frege's project:

what is requisite is to take really typical mathematical demonstrations, and
state each of them in full, with perfect accuracy, so as not to skip any step, and
then to state the principle of each step so as perfectly to define it, yet making
this principle as general as possible. .. If we attempt to make the statement in
ordinary language, success is practically impossible. .. At all times, the bur-
den of language is felt severely, and leaves the mind with no energy for its
main work. It is necessary to devise a system of expression for the purpose
which shall be competent to express any proposition whatever without being
embarrassed by its complexity, which shall be absolutely free from ambiguity,
perfectly regular in its syntax, free from all disturbing suggestions, and come
as nearer to a clear skeleton diagram of that element of the fact which is per-
tinent to the reasoning as possible. [NM. 3. 406]

The alpha graphs form the propositional basis of Peirce’'s system. The propositional language
uses the blank area on which we write as a symbol for a specific object, namely verum . As symbol
for negation it employs an oval around the proposition to be negated and it uses juxktaposition to
symbolize conjunction. We will see shortly that as a notational variant of propositional logic the
alpha graphs are not perspicuous.!3 Their utility lies somewhere else: within this language Peirce
formulates a few global inference rules which, supplemented with the blank (or t as symbol for
verum) as axiom, yield full propositional logic.

At this point a word of caution is in order. We are not asserting that Peirce himself axioma-

tized propositional logic (on the basis of the blank and his global rules). 1%we doassert that it can
be shown that the alpha graphs contain the basis required for such an axiomatization. As a matter of
fact, it seems more probable that in the construction of the SEG, Peirce is primarily concerned with

the relation of formal deducibility between a set of assumptions and an end formula. 1o

For convenience's sake, in this second part, we will not always follow Peirce’s terminology or
notation. The reader interested in the original formulation of the graphs is referred to [Peirce 1933
IV] or to the richer presentation found in [Roberts 19731

2.1 The language
we use the following language:

. Proposition-letters: Pg, Py, ...
. A sheet of assertion :

taken as a graph representing verum in the sense that each blank part of it stands for a true
expression.
. & box intended to denote the negation of any expression it encloses: I:l

In general we omit the explicit mention of the sheet of assertion considering the areas on which
we write as our temporary sheet, and we will refer to the blank by the expression t.
Graphs:

Each propositional letter P is a graph.
t is a graph.

If p is a graph, so is [E]

If @1 and 2 are graphs so is @1§2.

The “translation” from the usual languages into Peirce graphs is straightforyard:

mip) = p for all propositional 1etters.

(o @)= i E) |

moay)=Tmlgimi{y)
vy = IE

me-sw = [e [w]|

As a tool for immediate use we list translations of some well-known formulas, using @’ as an
abbreviation of Ti(tp) :

1. m(e—=(¢ — @)=

o |w[e]

2 Y =)= (p—y) =

[w]] Lol || | | L] w

3 iy = (W— &N— (g P) 5 (g— &) =

o |[w1« Lol ||e[2]

23 The calculus
Axiom
1. The blank is an axiom

Rules of inference

1. within an even number of boxes any graph (¢ may be deleted.
(Deletion Rule DR)16

2 within an odd number of boxes any graph @ may be
inserted. (Insertion Rule IR)1?

3. The graphs

@ and |[¢]

are mutually interchangeable.
(Double Negation Rule DN)18

4. The graphs (... ¢...); @l . .ey/ ..) are mutually interchangeable.
(Copying Rule CR)19

8. L —]

Py
(Conjunction Rule CNR)Y20
The graphs @y and Y are mutually interchangeable.

{Generalized Commutativity Rule GCRYY

o]

& Examples

The following inferences are examples in standard notation of uses of DR,IR and CR respec-
tively:
(e, Aok {i=1,0).
(2) " (e A)
(A WEEA (pAY); A T(PAPIF A DY

Next, we define the notions of proofin SEG , theorem of SEG and deduction in SEG in the fol-
lowing form:

10

. A proof in SEG is a sequence @, . @, of graphs such that, for each
@y, either pj ist or (pj is a direct consequence of some of the precedings
graphs by virtue of one of the above rules or (; has the form @ j[Pk for some

j k<L
. A theorem of SEG is a graph (@ such that there is a proof with @, = .
. & deduction of @ from {lIJ1, e lpm} in SEG [Notation: Wi W I—tp]

isasequence &, ..., &, of graphs such that ¢ = & and for each &, elther &
istori; isin {L|J1, .. ,q: }oor ¢ isa direct consequence of some of the
precedings graphs by '-nrtue of one nf the above rules ors has the form &. Ek for

some j k< i
& Examples
. Fmip—t)

1. t axiom
2. [] DN
3. o] IR

t axiom

1,
2. [] DN
3 o[] i

4. e[e] CR (applied with y = blank)

. @, e > Ik y
1 p Assumption
2 tp Assumption
3 o |o[w] CNR

4 g CR

5. [w] DR

6. Y DN

Notice that this example proves that the alpha graphs are closed under Modus Ponens. We can
also prove a kind of "implication introduction” in SEG:

pr o=+ |uw[g]

Proof

Let g, ..

11

&, be a deduction of @ from . We show that I tp for 1< i< n. First of

all, 3;1 must be @ or t. Our two first examples take care of these cases.

Assume nowr that tp forall j< 1. Either &, is @, or &; is t, or & follows by R1-R4

from some Ek, or Ei has the form Eksm for same Ek*sm with km<C j In the first two cases,

|—q:

,asinthecasei =1.

In the third case, by inductive hypothesis, || £, || Hence, by applying the rule that

transforms &, into &; once again, - [21,

In the 1ast case, we have by hypothesis:

1. F
2 F
3 +
4 F
5 F
6 F
7 F

(&,

1] Em Then,
T I | I T] - CR
g Ek Em CR
e DN

This completes the proof. The case i = n constitutes the desired result.

2.4 Deductive strength of the alpha graphs
In this subsection we derive some theorems which are needed to prove the following assertion :

The alpha graphs have the same deductive strength as standard propositional login:.z2 It suffices to

prove

s p'H{p—p)
. (" =) (p - gy
. (p - (P> EN'F ((p—) = (p—)Y

since we have already shown that the system is closed under Modus Ponens and that implication
introduction is valid for SEG.

12

. '+ (p — @)
Proof

@' Assumption

1,
2, [¢] DN
3, w[e] i

T3 (o erE{p - gy

Proof

1. @ Assumption
2. @ DN
3 ¢ w] GCA

T4 (p - (p—= ENF ((p—) —{p— &)

Proof

1. @ L|J' Assumption

2 ¢ wit] DN
3 ¢ DN
4. ¢ | o' [w] CR
5, o [w]|e [¢] GCA
6. o[w]| [|e[2] DN

3. The Alpha Rules as Transformations

In the preceding paragraph we have formulated Peirce’s representation system for propositional
inferences. A natural question in this regard concerns the complexity of the alpha representation of
inferences, vis-&-vis the complexity of inferences as codified in standard systems. Partially, this
is a question of linguistic nature. To investigate this matter more closely, we formulate the alpha

13

rules in the formalism of transformational grammars, and compare inferences in this new setting
with inferences in Hilbert-type systems. In this section we claim that in Peirce’s system inference
is to be seen as a (literally) "transformational process” in the linguistic sense. In order to show
this, we will develop the necessary technical means (the reader may skip details at first reading).

Let us start by reminding the reader of the most relevant aspects of (standard) transforma-
tional grammars. A grammar of this type consists of tyo parts. In the first place, a context-free or
context-sensitive part yielding phrase-markers usually represented as parsing -trees (PT). In the
second place, transfarmational rules which are mappings of PT's into PT's. Each such rule contains
tvo parts : a structural analysis(5A) and a structural change(SC} which tells us what the resulting
PT is. The structural analysis is used to determine whether or not the rule applies to a given input.
If the rule will apply to a given input &, then the SA tells us which segments of & will be deleted,
expanded or rearranged.

3.1 The base
As base of the system we use a context-free grammar generating the propositional formulation
in Polish notation

1. 3= A3S
2 =795
3 S = atomic formula (t, p, p’, p",...)

With each of the expressions generated by this grammar we associate a PT.
Below we give the PT of the formulas = —p, 7 Ap™Q:

3
3
- 3
-
p
3.2 Coding and polarity

Observe that in this format, given a formula @ with PT «, the sub-formulas of @ are all the
formulas generated by the sub-trees with tope node labeled 5. Taking the PT of ¢ as stepping-
stone, we can derive a code for all the sub-formulas of .

. Given a formula @ and its PT «, we code the nodes labeled 5 as follows:

(1) The top node is given the code <0>

(2) If a node 1abeled S has code x and branches into the nodes labeled = and S,
then this new 5 is given the code <x,2>.

(3) If a node labeled S has code % and branches into the nodes labeled A, S and
5, then these nev S-nodes get the codes <x,0>, <x,1> respectively.

14

Example
. A node labeled S in a coded PT is called positive if the code of S
contains an even number of 2's. Otherwise it will be called negative.
. A sub-formula W of a formula ¢ is called positive (negative) if the

node labeled S which yields @ is positive (negative).

Example

According to the above coded PT, the positive sub-formulas of 7 Ap—q are the formula itself
and q, whereas the negative sub-formulas are Ap—q, p, g

3.3 Deletion and insertion in the Polish notation

It is evident that in this perspective, the deletion rule can not be applied without a further
proviso. If we delete a positive sub-formula the resulting string may not correspond to a well
formed formula. For instance, by deleting the positive q in Apq, we obtain Ap. The reason is, of
course, that in the Polish notation the blank is not a legal expression. To incorporate Peirce's
deletion rule into our standard 1anguages, we need to decompose this rule into two parts. In the first
place, we allow every positive sub-formula to be replaced by the proposition t. In the second place,
we make explicit the algebraic properties of verum: Apt is interchangeable with p. Hence, given
Apq we derive Atq in the first place and then q. Thus deletion becomes a combination of algebra
and the rule: t may be substituted for any positive formulaBy the same token, insertion can not be
applied without further proviso. Thus, we can't pass from —p into —pq, since this string does not
belong to the Polish 1anguage. Once again, we decompose this global rule into an algebraic and a
substitutional part. The algebraic part remains the same as before. The substitutional part, consists
of the mirror image of the deletion rule: any formula may replace a given negative occurrence of t.
Thus, we derive =1 Apt by algebra and substitute q for t, abtaining = Apg.

3.4 Dominance and c-commanding
We say that each node g in a PT « directly dominates itself and if g branches into the nodes
By 0By then p directly dominates each Bj- Furthermore, if g directly dominates 3 then g domi-

nates y and if g dominates 3 and 3 dominates &, then g dominates & as well.

Now we define the node relation c-commanding and c-domain23:

(i)A node B c-commands a node 3 iff g does not dominate j and the first
branching node that directly dominates g, dominates 3.(ii)The c-domain of a
given 5-node B consists of all the S-nodes 3 such that B c-commands 3.

15

example

02,17
<02,1.2>

The node <0,2,0> c-command the nodes <0,2,1>, <0,2,1,2> since <0,2>, the first branching
node dominating £0,2,0>, dominates the 1ast two S-nodes. On the other hand, <0,2> does not c-
command any of the lowest S-nodes since it dominates them. 4nd <0,2,1,2> does not c-command
€0,2,0%> since the first branching node that dominates this node fail to dominate <0,2,0>.The c-
domain of the nodes <02, <0,2>, €0,2,1,2> is the empty set. The c-domain of <0,2,0> is
{£0,2,1>,€0,2,1,2>} and the c-domain of €0,2,1> is {<0,2,0>}

3.5 c-commanding and the copying rule

In this 1anguage the copying rule can be formulated as follovs:

Al p..) Al .. A@y. .). The abbreviated PT of these formulas are

S <0> S <0>

50,05 S <« 50,05 S <01
A /\ A /\

p A ip LAY

Notice novr that in both trees the nodes dominated by the node <0,1> belong to the c-domain of
the node generating ; in particular the node generating y and A @y belongs to this domain. Thus
yre can view this rule as the permission to copy or eliminate a given formula inside the c-domain
of its top 5- node.

3.6 Transformation rules

The SD of a transformation is a sequence of terms T4, ..., Tn . Each T4 is a node symbol or a
variable (X;) taking values onthe set of strings of node symbols. To see whether a given transfor-
mation applies to a PT «, we examine whether the yield of « can be factorized into a sequence of
strings o4, . .., an such that for terms in Tj which are node symbols, the corresponding substring o
can be traced back to a node with the given label. For terms that are variables, any string (
including g, the empty string) can satisfy the analysis.

16

Example

. >€1 ASSK2 is a structural description since it is a sequence of variables and

node symbols. Given now the PT of the formula = Ap—t, we can see that this
marker satisfies the analysis since it can be factorized into the strings
®q,02,003,04,05 Where 7 =xq, A =x2, p = a3, t=xg,e = xg. Further-
mare, A can be traced back to the node labeled A, and p and 1t can both be
traced back to nodes labeled S.

Occasionally it is necessary to state further restrictions a PT must meet in addition to the
restrictions specified in the SD. In particular, we will find necessary to restrict some
transformations to those nodes which have a positive or negative code. For instance, we state the
SD ¥, 3K ,5¥< and add the condition: the third member must have a positive(negative) code. Fur-

thermore, we will find it necessary to restrict some transformations to those strings in which a
node c-commands some other nodes. For instance, we state the 5D X, X,X< and add the condition:

X2 must c-command x3 .

Before describing the SC part of the transformation rules, let us list some of the operations
which can transform one PT into another.

{1)we can delete a node « of a PT. In this case we remove everything dominated by « and ev-
erything that directly dominates it.

* For instance given the PT

we can delete the highest - node obtaining in this way

3

Now the product of the deletion is not a PT. But we assume that if a hode « does not branch, then
the node below it must have a different 1abel. Each PT not of this form is to be identified with the
PT obtained by identifying such pairs.

Thus, by this standard convention the abave tree is identified with the PT:

3

17

{2) we can replace a part of a PT with a PT. Thus given the following coded PT:

3 <0>
S<0,2>

-
= 3 £0,2,2>

ye can replace the node <0,2> and everything dominated by it with the PT

S
3 3
A 5
p |
t
obtaining in this way
S
S
-
3 3
A)
p |
t

The 5C part of the transformational rules consists of a sequence of natural numbers counting
the members of the SD followed by the symbol "=" . Under the numbers we describe the transfor-
mations as follows:

(i) If there is no change, the number is repeated.

(ii) If there is a deletion, we put the symbol e under the number corresponding
to the term that must be deleted.

(iii) If there is a replacement, we put the bracketed yield of the PT corre-
sponding to the new term under the number of the term we want to replace.

Examples

SC:1234=
1 eed

This description indicates that in the PT with a SD of length 4, the second and third member must
be deleted.

18

SC: 1 2 3 =
1 [Ap2] 3

This description indicates that in the PT with with a SD of length 3, the second member must be
replaced by a PT that yields A @2 where 2 is the P-marker corresponding to the second member of
the original tree.
3.7 Peirce rules

1. Deletion

SD: x1 S x2 ; Condition: 3 is positive.
SC: 1 2 3 =
1 t 3

2. Insertion
5D: X t X5 Condition: 3 is negative.

sc: 1 2 3 =
1 [g]3

3. Double Negation

SD: K1 5 X2
SC:1 2 3=
1[~n2] 3

SD:X1-|-IS>€2
SC: 1 2 345 =
1 e eds

4.1 Copying I

SD: X1 S X2 S >=:3; Condition: 2 c-commands 4
SC:1 2 3 4 5 =

1 2 3 [Aa24] 5
42 Copying I1

".5D:>¢:1 S x2 AS S X3; Condition: 2 c-commands 5 and 2 = 5.

SC:1
1

2 3 4 56 7 =
2 3 e e b6 7

19

5. t-rules

SD: ¥y 5§ X
5C: 1 2 3=
1 [At2] 3

5D: Xy A ts Xo

SC:1 234 5=
1 eed 5

3.7 Derivations with Peirce's rules and derivations in standard systems

Now we shalll compare inferences in this new setting with inferences in Hilbert type sys-
tems.we will say that the formula @ follows from @, ..., @, if there is a sequence

F'1, e Pk of PT such that each Pi is the PT of one of the (pi's or follows from P, (j<< i) in virtue
of one of the transformation rules or is the PT of the form AF'J-F'm {(j.m<i)andP is the PT of @.

As we pointed out earlier on, Peirce’s rules allow us to draw consequences from given premises
without having to resolve them into smaller parts. Sometimes there are no mayor differences be-
tween an alpha inference and a standard one. But a typical example of an interesting case in which
the systems behave differently, is the following:

ApADTAPQF AAPTG
In our system the proof take this form:

L AlpApTIApq can be factorized in the substrings &y = .o"'.(pﬂ.,ot2= p,

Rz= T, Xy= Aos=p, 0g={ and Xo= €. Furthermaore, in the PT of this
formula, the S node to which &, Can be traced back, c-commands the nodes to
which ®s and &g Can be traced back. This means than our formula satisfies the

5A of 4.2 Hence, by the SC of this rule, we derive a PT that yields ApAp—g.
Thus we have the one step derivation from

20

. 0On the other hand, a proof in a Hilbert type system will take more in-
ferential steps, since we need to resolve the premise into small parts:

1. — ApADTTADQAPTIAP] Theorem
2 APADPTIADG Premise

21

3 APTADQ MP 1,2
4 — ApTADGP Theorem
9. p MP 3.4
6. — APTTAPQTADP] Theorem
Ke —TADPq MP 3,6

8 — TApPQ—pTg Theorem
9. —=p7q MP 7,8
10. i MP 5,9
11. —p— QAP Theorem
12 —T1gApTq MP 5,11
13. ApTq MP 10,12
14. — APADTAPQY Theorem
15. @® MP 14,2
16. —=p—=ADTq AQADPT] Theorem
17. — APTqAQAPTQ MP 15,16
18. AlpAPTq MP 13,17

We can see hov that the complexity of Peirce’s rules pay off in the sense that more syntactic
analysis allow us to dispose of piecemeal decomposition of premises into smaller parts. However,
Peirce himself says that SEG is "not intended as a calculus, or apparatus by which conclusions can
be reached and problems solved with greater facility that by more familiar systems of expressions”.
[CP. 4. 424].

Roughly speaking, this lack of computational ease is partially due to the relative complexity of
the global rules. Peirce’s global rules do not apply to formulas simpliciter but to formulas cum
syntactic analysis.This is not the case in usual formulations of propositional logic. For instance, in
ordinary propositional logic, in order to check whether @,, & is a proof of & from @ and y by MP, it
suffices to look with the naked eye at the external form of the formulas, i.e. we test this sequence
by the criteria: ¢ and & are wffs and ¢ = ¢ — & . No further analysis of the formulas is

required.24 Nevertheless, the complexity of Peirce's rules remains manageable. The same procedure
used to determine whether a string constitutes a formula or not, can be used to code the syntactic
infarmation needed as input of the global rules.

Notice by the way that first-order logic has rules demanding a syntactic analysis of given
formulas. A typical example is the familiar rule " ¥xg — y is a axiom if @ is like @ except for
containing y free wherever @ has x free.” In this case it is not enough to check whether ¢ and y are
wff's. We need to look at the syntactical analysis of the formulas, at their parsing tree or formation
sequence, and to check whether the binding pattems satisfies the description. And in this respect
this rule resembles the transformational rules of generative grammars and the global rules of the
existential graphs.

3.8 Remarks

Let us conclude this part by pointing out one important dravback of the system. The system we
have been working is rests essentially based on two connectives. Of course, ye can introduce other
logical operators using the usual definitions. But then the global rules would need to be handled
with care. For instance, q c-commands p in

3
3 S

— 5
P q

But — —pq does not entail — T Apqq. The fact is that in the official tree of the former formula,
q corresponds to a node that does not c-command the node corresponding to p.

Similarly, even if q occurs positively in vpq, we can not delete this formula to obtainpas a
result. All we get is vpt and this expression, as expected, cannot be simplified into p. The moral
of this tiny example is that deletion, in the strict sense, concerns positive conjuncts and not
positive formulas in general. Similarly, the insertion rule allows insertion of conjuncts in negative
contexts and not of arbitrary formulas.Thus, even if we extend the language, we have to take care

22

that the global rules apply only to formulas in primitive notation.29 As a matter of fact, Peirce's
copying rule reveals an important syntactical property of A that it does not share with its mirror
image v.On the other hand, the substitutional part of the deletion rule is a particularization of
Peirce’'s monotonicity rules yre savy before:

The general rule of substitution .. .that if 2a v b, then b may be substituted
for a under an even number of negations, while under an odd number a may be
substituted for b[1976 IV, p. 108]

In this particularization t plays the role of b and the formula v —at is implicitly assumed.

4. Monotonicity, Conservativity and Peirce's Rules

In this section we will be concermed with the logical analysis of the tyo global logical prin-
ciples embodied in SEG:

* monotonicity
conservativity

and we will consider briefly the principle of convexit}gs,closely related to monotonicity:

These notions have been useful in describing and explaining linguistic phenomena; cf. [Barwise
and Cooper 19811, [Zwarts 1986], [Keenan and Falz 1985],[van Benthem 19861, [Westerstahl
19861

In this part we show that Peirce’s propositional rules can be incorporated into a monotonicity
calculus (i.e. a calculus containing the so-called monotonicity rules). It has been observed that
many propositional inferences revolve around monotonicity. A monotonicity calculus gives a direct
explanation of interesting propositional inferences. Examples are Modus Ponens: ¢ — 4, ok @ ;
Modus Tollens @ — @, k"1 ; Syllogism: g—y, Y- p— 2.

Nevertheless a simple monotonicity calculus does not completely match the inferential
strength of propositional logic. Although many propositional inferences rest only on monotonicity,
not all of them do. Examples are inferences which are based on the algebraic properties of the con-
nectives involved and inferences suchasp — q/ p — (pA q). But in many of these cases, there are
tautological formulas which bridge the gap that seems to preclude the use of monotonicity. Thus in
the last inference p — p A p constitutes the desired tautological bridge:

p—q p—pAp
p—(pAQ

An interesting feature of Peirce's graphs is that we can see which principles have to be added
to the monotonicity calculus in order to obtain the full strength of classical logic. We will argue
that a simple monotonicity calculus supplemented with an adequate version of the so-called prin-
ciple of conservativity yields classical propositional logic, modulo two tautologies and double
negation rules.

As a by-product of this approach we will be able to show that Peirce's system is sound: his
deletion and insertion rules are special cases of monotonicity rules. Hence the soundness of the
latter implies the soundness of the former. Furthermore, we will see that the copying rule is a
special case of the provably sound principle of conservativity.

23

4.1 Monotonicity

In the field of formal semantics the notion of monotonicity is used primarily to characterize
the stable behaviour of certain mathematical objects with respect to replacements in their argu-
ments. Thus, given a non-empty set D and a relation R on the power set of D, we call R upward
monotone in its right argument if for any 4 B,C € D, R(A,B), B € C = R(A,C). Similarly, we call R
downward monotone in its right argument if R{(A,B), C € B = R(A,C). This persistency of R with
respect to the "increase” or "decrease” of its right argument can of course be present on its left
argument. For instance, in formal semantics we will say that the binary quantifier ALL is upward
{monotone} in its right and downward (monotone)in its left argument.

But there are at least two interrelated ways in which we assigh monotonicity properties to
syntactical objects as well: specific lexical items and designated positions within natural lan-
guage sentences are also called monotone:

. we say, for instance, that the determiner X is right/left, up-
ward/downyvard monotone if its denotation, the quantifier X, is. Thus the de-
terminers all, each, every will be described as upvard with respect to their

VP and downhyrard with respect to their N. i

. On the other hand we can also say that expressions occurring in the
environment of determiners occur in inferentially ensitive positions and we
can describe these positions in terms of monotonicity. Thus we say that the N
in a sentence of the form Every N ¥P occurs in downward monotone position
and that the ¥P therein occurs in upward monotone position {(more briefly:

upward) 23

The characterization of monotone positions is generalized in the following two inference rules
present in van Benthem 1986:

. CX1 < OYD,.. . %...=...Y...
if Xisupwardin... X...

. [¥D < OYD,...Y...= ... X...
if Yisdownwardin...¥Y...

In this connexion the question arises : which syntactic conditions on .. X... guaranties the up-
yard({downward) monotonicity of X. For first-order languages the ansyrer to this question is con-
tained in Lyndon 1959. In this paper Lyndon defines quite explicitly the notion of upward monotone

{which he calls “increasing”) first-order sentences.30 Essentially, he defines a first-order sen-
tence @(R) as upward monotone in the predicate R whenever

o ¥Rk (R Gry v > 8T (L 0, 0(R) R R(S),
where @(S) is the result of replacing the predicate R by S in @(R).

Subsequently, Lyndon proves that there is a syntactic condition on ¢ and R that implies upward
monotonicity of ¢ with respect to R. Fix a first-order 1anguage with only 3,¥, A,v,7.We say that
a sentence (p is positive in R if every occurrence of R in @ is positive (i.e. occurs under an even
number of negation symbols).

This syntactic characterization motivates the following proposition in Lyndon 1959:

. If @ is positive in R, then @ is increasing in R.

Thus, in the context of formal language of first-order logic, positiveness implies upward
monotonicity. Similarly, negativeness implies downward monotonicity. However, the direct con-

24

verse does not hold, since for instance @ = p A —p is upvard monotone in p but t is not positive in
31

p.

However, the counting of negations is a coarse criteria for monotonicity, even in the context of
a first-order language with all the connectives present.. For instance in p— q, the formula p is
positive in the sense that it occurs under O negations but obviously it is not upward therein. On the
other hand, as we pointed out, man in Every man walks counts as dovrnyrard but there is no negation
dominating this noun. As a matter of fact, the above characterization of positiveness is confined to
formal languages with =,A and v as the only primitives. Thus, if we wish to incorporate — into
the list of primitive symbols, the definition of polarity would take this form:

. R is positive in R.

. If R is positive (negative) in ¢, then R is positive(negative) in
PAWY, PV, P— 1, VX,

. If R is positive (negative) in @, then R is negative(positive) in
SR, p— Y.

In this format, the name positive or negative loses the direct connotation of occurrence under
negations. The idea that emerges is that of expressions occurring under the scope of symbols de-
noting operators with specific monotone properties. By itself, every expression X is upward How-
ever, embedded in a larger syntactical environment, X may retain this monotonicty, or have it
changed into downyvard or lack any form of monotonicity altogether. Examples of the latter are the
antecedent X in the conditional ifX¥, or women in the expression Most women read, or the formula

pinp«q.

4.2 Monotonicity Rules and Alpha Graphs
Consider a propositional language L consisting of proposition letters, the propositional constant
t (verum) and the logical constants —1,A,v,—. Further, assume the standard semantic interpreta-
tion. Let @ be a formula. Assume that & has been associated with a standard parsing tree o. We
specified the subformulas of & by the following coding:

. & gets the code <0>.
If 7ip is a sub-formula of & with code x, then ¢ gets the code <x,2>.
If A W is asub-formula of & with code x, then ¢ gets the code
<x,0>and y the code<x,1>.
If @V yisasub-formula of & with code x, then @ gets the code <x,0>
and y the code<x,1>
If — g is a sub-formula of & with code %, then @ gets the code <x,2>
and y the code <x,0>.

. Suppose that @ is a sub-formula of @ and that a particular occurrence
of @ in & has been specified by the code x (notation: tpx). We call

?, positive(negative) in & if x contains an even number of 2's.
Otherwise it will be called negative.

. we denote @ with a particular specified occurrence of @ in &, by the
expression @(lpx). The result of replacing this specified

subformula ¢ in & by y is denoted by @(wxl

25

Given the above coding, we express Peirce's general substitution rules as follows:

. p—y, B,) - By,) if @, is positive in &.
. p—y, B(yp,) - B, if @, is negative in &.

There are several ways in which we can prove that these rules are sound. The most direct one
consists in resorting to monotonicity:

. p,, is upward in 2(¢p) :=
[ol< Iyl = 2(p,) < 3(y,).

* , isdownwardin B(p,) =
Cel< Iyl =&y) < ().

Consequently we can prove that the syntactic condition of polarity implies monotonicity:

. ®, is positive/negative in &(p,) = @, is upward/downward in
B(p,).

Proof
Induction on the complexity of &g,).

Remark

Observe that the definition of upward differs from Lyndon’s notion of increasing. Increasing is a
property of sentences with respect to subformulas, whereas in the above definition upward is a
property of sentences and subformula occurrences. Thus a given sentence may have an upward
subformula g, without being increasing in it. For example, p — (p A q) is not increasing in p but

Peco 15 1318 upwvard therein. On the other hand, if & is increasing in t, then all the specified oc-

currences of ¢ are upward.

With these two definitions we can show that the soundness of Peirce's deletion and insertion
operations revolve around monotonicity.

Suppose & is a formula in which {p,, occurs positively. Then @, is upward in . Then, since for

all @, Fip—t, we have : 8¢,)k &(t,). Thus, in positive positions any formula may be deleted,

in the sense that it may be replaced by t
Let now @ be a formula in which tx occurs negatively. Then t},< is downward in ®. Hence, since

for all @, Fp—t we have: &(t,)F 2(¢,,).Thus, in negative positions any formula may be intro-
duced, in the sense that any formula may replace t occurring downyrard.

4. 3 Conservativity and the Copying Rule

we pointed out that although many propositional inferences rest directly on monotonicity, not
all of them do. For instance@p— ¢ F ¢ — (@A) remains unaccounted for: @ occurring in a positive
position is replaced by a formula having more chances of being false than g itself In general, this
substitution will not give correct results. It is tp, the formula copied into the consequent which
keeps things straight. By the same token, monotonicity is not enough to distinguishes A from v:
they denote upward monotone functions in both arguments.

The above copying of formulas can be accounted for by appealing to a version of the principle of
conservativity, also known from logical semantics. The notion of conservativity was introduced by
Keenan (1981) to characterize quantifiers. Given the putative assertion Q(A,B), the principle of

26

conservativity is intended to account for the fact that with some quantifiers only the part of B
common to A matters in determining whether Q(A,B) holds or not Hence a binary quantifier Q is

called conservative, whenever Q(A B) iff O(A,A nB) is the case.52

Conservativity, like monotonicity, has been introduced into logical semantics with respect to
the denotations of a specific linguistic category: determiners. We propose the following extension
of the notion of conservativity to the category of connectives: Let A be a binary connective C,

. A is conservative if [PAZ(@,)T = [YAS(@ A y),)1

It is easy to see that conjunction and implication are conservative connectives. 33 For in-
stance:

Iy A §(lpx)ll =1 ¢ [yl=T[2(p)0 = 1. Now, if [l =1 or

Ll =0,L Ay 1 =L ¢ 1.Inboth cases it follows that
Ly A @(tpx)ll = 1. Otherwise, if L y A é((px)] =0,thenf ¢ 1 =0

(and then we are through) or [&(¢,) 1 = 0 and [y1=1. But then as above,
whether (is true or false, [gAY 1 = [1. Thus [y A (¢)1= 0.

Hence, Peirce's copying rules have conservativity of A as their semantical basis; on this se-
mantical property of conjunction rests the soundness of those rules.

Digression

There are weaker principles than monotonicity which have been used in the semantic study of
generalized quantifiers. The notion of Convexity is a case in point. We say that a quantifier 0 is
convex in its first argument if QXY,QZY, XeV<Z entails QVY.Redundantly, we say that a deter-
miner D is convex in its first argument if DAB, DCB, [A1 SLEISICI entails DEB. For instance, the
determiner ONE, which lacks any form of monotonicity, is convex in its two arguments. Thus, from
the sentences One girl sings, and one person sings it follows one female sings

This notion of convexity can be generalized to propositional 1anguages. Let us call the connec-
tive A convex in its first argument if @AY, 2AY, [l L L8] £ [E1 = 0AW. In asimilar way
we call the connective A convex in its second argument if the corresponding entailment holds. Thus
we can easily see that « and Sheffer's operator | are convex in both arguments although they are
not monotone therein.

Let us call a first order sentence & convex in the unary predicate R if the following holds:

&(R), 8(9), ¥x(Rx — Ox), ¥x(Ox — Sx)E&(Q), where (S5) and &(Q) are like &(R) except by
having 5, Q at exactly the same places &(R) has R. By using Peirce’s rules we can show that &(R) is
convex in R if it is equivalent to 8,(R) A &,(R) where R is positive in 2,(R) and negative in & ,(R).

Suppose that (R) = QO(H) A §1(Fi) and that &, is positive in R whereas &, is negative in R. Then,

using using Peirce's monotonicity rules (and completeness), we show that this description of &
constitutes a sufficient condition for its convexity in R.

gR) &(5)

io(Fl) ¥x(Rx — Ox) §1(S) V(0% — 5x)

Peirce’'s rule Peirce's rule

240) 20

&(0)

4.4 A Monotonicity Calculus

We can ask which principles have to be added to the monotonicity rules in order to obtain a
system as strong as classical propositional logic. We conclude this report by answering this

27

question on the basis of the above considerations concerning Peirce’s graphs as well as modern

semantics.

Consider the propositional language L consisting of proposition-letters, the propositional
constant t {verum) and the logical constants —1,A. Let — be defined as usual.
we define a (strengthened) monotonicity calculus as a system of inference rules consisting of:

(0) Fp -t
(1) g Ay — @ (i=01)
(2) if @, is positive in 8(tp,), then @— y, Blp,) By,)
(3 if p,, is negative in (¢,) then y — @, B,) - By,),
(4) AR A B(RAY),).
(5) L pABeAY,) . F L e AB(Y).
where A is A or —.
(6) P R 1 U N /-
(7 U I e] I
Let us show the strength of this calculus by proving that A is commutative, associative and
idempotent.
BFp - @
1. p — t (0)
2. p— At 1 and (4)
3. pAt—1p (1)
4. P 2,3 and (2)
(D= ({p-op)
1. p— (8)
2. p — TP 1 and (7)
3. (A ") > (1)
4. p — {ta D) 2,3 and (3)
5. p — t (0
6. @ — (YA D) 4,5 and (3)
7. p o (P—p) 6 and definition
(10) F @ s {p—(p Ap))
1. p = (p—-1p) (9)
2 o - (p—s{pAre) 1 and (4)
(D FpepAp
1. pAp—> @ (1
2. p— @ (8)
3 p—pAY (4)
4, pepAp from 1,2, (10) and definition.

(12) F{pAW) = (P A @)

1. (pAP)=(p A Y)
2. (pAP)=spAap) AlpAay))
3. (gAY =y

(8)
1and 4
(1)

28

4. (pAY)—> (Y A(pAY)) 2,3 and {2)
5. (pAY)— @ (1)
6. (pAy) = (YA 4,5 and (2)

The other direction can be proved similarly. Hence, by using (10) and the definition of <,

(13) gAY (P A @)

1D FEALYPAE) = (A PIAZ

1. pA(YPAE) > QA(YPAL) (8)

2. pACPALZ) - (ACPAZNA (QATYALZ) 1 and (3}
3. (pAat)-y (1)

4, PALPAE) = (PAWA (QA(PALD 2,3 and (2)
5 pALYPAE) = (PAE) (1)

6. pAlWAZ) > (pAWA(PAL) 4,5and 2
7 pAE—E (1)

8. pA(PAE) (AP AL 6,7 and (2)

The other direction can be proved in similar vway. Hence
(1S) @Al WAL) & (pA WAL

Finally, perhaps laboring the obvious,we show that the derivations of (7 — 2¢g)—(p — @)
and ((p — (p = &)) — (- y)—-(p —&))can be carried out in this new setting

(D FCe—=)=y — @)

1. (o s (mp oY) (8)
2 (ﬂ[p—y—iq,u)-.)—!(-l[p/\ﬂ—up} def
3. (- Ay (e Ay) (6)
4. (">)= (g - @) def

U2 F (= (p—E) - (poyp)a{p—E)

1. (po(p—-8) - (po{p-oi) (8)

2 {(po(Pp—2) - A (pAE) def

3 (p—=(P-2) - pAl{pAE) 2,(6)

4. (p—=(p—oi) - (AT YPAE) 3.(7

5. (po (Y- — pA(D(pATYPIATE) 4,(3)

6. (p—(p—-2) - ((pAYPIA(p ATE)) 5,(13),(15)
7. (p— (@—2)) - ((pATPIAT (P ATED) 6, (7)

8. (p=(yp—o2)) - (poy)-s(p—i) def

The above proofs show that this strengthened monotonicity calculus is equivalent to standard
formulations of classical logic. In this regard, something can be said for considering this system as
simply another formulation of classical logic. But vre can think of at least two reasons in favour of
this system. In the first place, its geography of inference principles is interesting, since it seems
to harmonize better with current ideas in natural language semantics. And in the second place, this
strengthened monotonicity calculus seems less ad hoc than the strengthened version given in
[Sommers 1980]. In this latter work monotonicity - there called distribution- is supplemented
with reductio, elimination and introduction rules for conjunction and algebraic rules.

29

Concluding remarks

In the 1ast section of this report we have compared the propositional part of SEG with recent
generalized quantifiers research. Prima facie this comparison is odd. We would rather expect a
consideration of the predicate logic fragment of SEG in the generalized quantifiers perspective.
However, the study of the predicate logic fragment of the SEG leads to the same conclusions. For
reasons of space, details are omitted here. However, in a later publication we will consider some
special themes arising from Peirce's treatment of predicate logic.

1 References to [Peirce 1931-38] will follow the standard convention of referring first to the
series, then to the volume, and finally to the paragraph. For example [CP 3. 364] means [Peirce
1931-38], volume 3, paragraph 364.

2 The other two commentators are Quine and Berry. Quine sees Peirce as expressing in an
ambiguous yray the definition:

—ix=def Ty (x = ¥) or Tx=def x = Ty y [Quine 1935,pp. 291-292]

On the other hand Berry interprets Peirce as giving a definition of negation in terms of implication
and falsum:

% =def ¥ — f. [Berry 1952 p. 157].

3 “...we have the immediate inference S is true. Hence, the denial of 5 is false. The
statement of the validity of this general inference is termed the principle of contradiction. The
converse of this principle, namely that from the denial of the denial of a proposition the truth of
that proposition follows, is termed the principle of excluded middle. This principle constitutes a
distinct principle concerning negation. " [NM. 4. 373]

4 Peirce's system falls short of constituting a formalization of propositional logic even if we
interpret his icons as axioms. In the absence of proof rules no proof gets off the ground. Similarly,
no deduction of a conclusion from premisses can take place since, officially, we are in the dark
about which steps to this end are legal ones.

5 Later on we will see that the adding of the ex falso principle to the other icons is historically
justifiable.

6 This last is the interpretation proposed in [Dipert 1981].

7 Alternatively, the = direction can been seen as an implication introduction rule as in natural
deduction systems.The converse direction, together with Icon 1, can be used to derive an
implication elimination rule:

s(xmy)o (X y) S XY Xy X0 Y, XFY.

8 "So far, we have a language but still no algebra. For an algebra is a language with a code of
formal rules for the transformation of expressions, by which we are enabled to draw conclusions
without the trouble of attending to the meaning of the language we use." Peirce [1976 IV, p. 107]

9 The third rule contains the application of the truth-table method to test validity. we skip it out,
as we do not havae anything interesting to say about it.

10 Notice that now the connexion between xi y and - x — vy is not postulated but stated as
something which needs proof.

11 Herbrand 1971 p. 78.
12 Maclane 1979 pp. 28-30

13 Peirce was yrell ayvare of this lack of perspicuity, writing that his "system is not intended to
serve as a universal language for mathematicians or other reasoners, like that of Peano.” [CP. 2.
424]. There is an apparent contradiction between this remark and the description of the aims of the

30

SEG quoted above. However, we can consider the SEG as a first attempt to achieve the above
mentioned goals, an attempt open to further modifications.

14 The first published proof of this assertion is to be found in [Roberts 1973].

15 " Part II will develop formal 'rules’ or permissions, by which one graph may be transformed into
another without danger of passing from truth to falsity and without recurring to any interpretation
of the graphs; such transformations being of the nature of immediate inferences." [Peirce IV,
paragraph 423]

16 Within an even finite number (including none) of seps, any graph may be erased; within an odd
number any graph may be inserted.

[Peirce 1933, IV paragraph 492]
17 See footnote 17

18 "Anything can have double enclosures added or taken away, provided there be nothing within one
enclosure but outside the other." [CP.4. 379]

19 "Any graph may be iterated within the same or additional seps, or if iterated, a replica may be
erased, if the erasure leaves another outside the same or additional seps.”

[CP. 4 .492].

In the development of the system an expression of the form is tobe understood as standing
for an arbitrary graph with some particular occurrence of . The expression... /@ ... istobe
understood as the result of replacing that particular occurrence of @ by §.

20 As a matter of fact, this rule does not belong to Peirce's formulation of the system. In his
system writing the graph at one point and the graph y at another means nothing else than @Ay,
whenever they are enclosed by the same number of parentheses. Separated introduction of premises
is not possible. Hence, CNR could not even be expressed in his system. On the other hand, in Peirce's
original system commutativity is an implicit rule.

21 Notice that rules R3 and R4 allow for the substitution of an expression by another in any
context.The other two rules ask for information about the polarity of some expressions . But each

positivelnegative] graph of Zj is positive[negative] in q; .

22 we show that SEG is essentially equivalent with the system P, of [Church 1956].

23 For the linguistic motivation and use of these notions see [Reinhart 19831

24 Nevertheless, it can be shown that Hilbert type proofs considered as a language containing the
propositional language plus a separation marker between proofsteps, is not context free. For
instance, in order to recognize whether or not ¢,g,& form a MP-sequent, we need more powerful
machines than the usual push-down automata. In fact, a t wo-way push down automaton would do the
job.

25 Of course, we can prove the usual inference rules governing these new connectives, but this is
beside the point.

26 In the literature this notion is called "continuity”

27 This means that ALL (A,B) and B @ C entails ALL (A,C) (upwards monotonicity) and ALL (A,B)
and C@ A entails ALL (C,B) { downwards monotonicity).

28 See for instance [Zwarts 1987] for a linguistic use of this characterization of expressions.

29 Note that this characterization intentionally suggests that given a sentence of the form

Every N7 ¥P and the additional information ON2I < ON4L we may conclude that Every N2 VP is
the case. However, a determiner is only one of the factors that determine the monotonicity of given
positions within a sentence: the maonotonicity effects of grammatical construction rules and of
other categories of lexical items have to be taken into consideration.

31

30 Lyndon 1959 pp.144-1403.

31 Up to equivalence, however, Lyndon proves a converse of the above proposition:
If @ is increasing in R, then @ is equivalent to a sentence Y that is
positive inR.

It is worth noticing that deciding whether a sentence ¢ is monotone in R is very difficult.
[Gurevich 1984] proves that its is undecidable whether @ is upward monotone in R. On the other
hand, deciding whether a sentencef is positive in a predicate letter is obviously decidable.

32 We say for example that the quantifier MOST is conservative, since MOST(MEN,LAUGH) iff
MOST(MEN, LAUGH n MEN).

33 Naturally disjunction and co-implication are not: [v $1 = L v (@ A Y)IL;
[p & yI=0p « (A Y]

REFERENCES

Barwise and Cooper 1981

Generalized Quantifiers and Natural Language”, J. Barwise and R. Cooper,
Linguistics and Philosophy 4, 159-2105.

Behmann 1922

"Beitrége zur Algebra der Logik insbesondere zum Entscheidungsproblem”, H. Behmann,
Mathematischen Annalen vol. 86, 162-229.

Berry 1952

"Peirce's contributions to the logic of statements and quantifiers” in Studies in the
Philosophy of Charles Sanders Peirce, ed. P.P. Wiener and F.H. Young.

Church 1956

Introduction to mathematical logic, vol.I. A. Church,
Princenton,N.J. (Princenton Univ. Press).

Curry 1939

" A note on the reduction of Gentzen's calculus LJ", H. Curry, Bulletin of the
American Mathematical Society, vol. 45, pp. 286-93

Dipert 1981
"Peirce’s propositional logic”, R. Dipert, Review of Methaphysics, 34, 569-595.
Herbrand 1930
" Investigations in Proof Theory”, J. Herbrand, reprinted in [Herbrand 1971].
Herbrand 1971
Logical Writings, ed. w. D. Golfarb, Dordrecht-Holland.
Gardner 1958
Logic, Machines and Diagrams, M. Gardner New-York.
Gureyich 1983

“Tovard logic tailored for computational complexity” in Computation and Proof
Theory (M.M. Richter et al,, Eds) pp. 225-251. Springer Lecture Notes in
Mathematics 1104.

kKeenan and Falz 1985

Boolean Semantics for Natural Language, Keenan and Falz
Reidel Dordrecht.

Kneale & Kneale, M. 1962

The Development of Logic, Kneale,w. and Kneale, M. Clarendon Press, Oxford.

Kleene 1952

Introduction to Metamathematics, 5.C. Kleene, North-Holland.
Kleene 1967

Mathematical Logic, S.C. Kleene, New-York.
Lyndon 1959

"Properties preserved under Homomorphim®, R.C. Lyndon in
Pacific Journal of Mathematics, 9, pp.142-154, 1959,

Maclane 1934

Abgeklrzte Beweise im Logikkalkul, 5. Maclane, reprinted in [Maclane 1979]
Maclane 1970

Maclane 1979
Collected Papers, 5. Maclane 1979, Springer, Berlin.
Reinhart 1979

"Syntactic Domains for Semantic Rules”, in Formal Semantics and Pragmatics
for Natural Languages, (eds) Guenthner and Schmidt. Reidel, Dordrecht.

Peirce 1880
“On the Algebra of Logic”, C.5. Peirce, reprinted in[Peirce 1933 1111
Peirce 1885

"On the Algebra of Logic: A Contribution to the Philosophy
of Notation", C.5. Peirce, reprinted in [Peirce 1933 I1I]

Peirce 1933

Collected Papers of Charles Sanders Peirce, Yolumes III-IV, ed. C.
Hartshorme & P. Weiss, Cambridge Harvard University Press.

Peirce 1976

The New Elements of Mathematics by Charles. S. Peirce
i-iv, ed. C. Eisele, Mouton,The Hague-Paris.

Prior 1958

“Peirce’s axioms for Propositional Calculus”, A.N. Prior, Journal of Symbolic
Logic, Vol. 22. pp. 135-6

Prior 1962

Formal Logic, A. N. Prior. Oxford University Press.
First edition 1955.

Prior 1967

"Peirce”, A. N. Prior, The Encyclopedia of Philosophy, New York, Yol. 4. pp.
Quine 1935

"Review of [Peirce 19331", W. 0. Quine, ISIS Vol XXII, pp. 285-97.

Roberts 1973

The Existential Graphs of Charles S. Peirce, D.R. Roberts, Mouton, The
Hague-Paris.

Sowa 1984

Conceptual Structures, JF. Sowa, Reading, Massachusetts.
Thibaud 1975

La logique de Charles Sanders Peirce, P. Thibaud, Provence.
westerstahl 1986

"Quantifiers in Formal and Natural Languages”, D.westerstahl
Center for the Study of Language and Information. Report NO. C5LI-86-55.

Zeman1967

"A System of Implicit Quantification”, J.J. Zeman, Journal of Symbolic Logic,
vol. 32 pp. 480-505.
Zvrarts 1986

Categoriale Grammatica en Algebraische Semantiek,
F.Zwarts, Groningen (Dissertation)

1986 The ITLI Prepublication Series

86-01 The Institute of Language, Logic and Information
86-02 Peter van Emde Boas A Semantical Model for Integration and Modularization of Rules
86-03 Johan van Benthem Categorial Grammar and Lambda Calculus
86-04 Reinhard Muskens A Relational Formulation of the Theory of Types
86-05 Kenneth A. Bowen, Dick de Jongh Some Complete Logics for Branched Time, Part I Well-founded Time,
%.69-086 7Johan van Benthem Logical Syntax Forward looking Operators
87-01 Jeroen Groenendijk, Martin Stokhof Type shifting Rules and the Semantics of Interrogatives
87-02 Renate Bartsch Frame Representations and Discourse Representations
87-03 Jan Willem Klop, Roel de Vrijer Unique Normal Forms for Lambda Calculus with Surjective Pairing
87-04 Johan van Benthem Polyadic quantifiers
87-05 Victor Sdnchez Valencia Traditional Logicians and de Morgan's Example
87-06 Eleonore Oversteegen Temporal Adverbials in the Two Track Theory of Time
87-07 Johan van Benthem Categorial Grammar and Type Theory
87-08 Renate Bartsch The Construction of Properties under Perspectives
87-09 Herman Hendriks Type Change in Semantics: The Scope of (gganliﬁcation and Coordination
1988 Logic, Semantics and Philosophy of Language:
LP-88-01 Michiel van Lambalgen Algorithmic Information Theory
LP-88-02 Yde Venema Expressiveness and Completeness of an Interval Tense Logic
LP-88-03 Year Report 1987
LP-88-04 Reinhard Muskens Going partial in Montague Grammar
LP-88-05 Johan van Benthem Logical Constants across Varying Types
LP-88-06 Johan van Benthem Semantic Parallels in Natural Language and Computation
LP-88-07 Renate Bartsch Tenses, Aspects, and their Scopes in Discourse
LP-88-08 Jeroen Groenendijk, Martin Stokhof Context and Information in Dynamic Semantics
LP-88-09 Theo M.V. Janssen A mathematical model for the CAT framework of Eurotra
LP-88-10 Anneke Kleppe . . A Blissymbolics Translation Program
ML-88-01 Jaap van Oosten Mathematical Logic and Foundations: | jfschitz' Realizabiility
ML-88-02 M.D.G. Swaen The Arithmetical Fragment of Martin L6f's Type Theories with weak Z-elimination
ML.-88-03 Dick de Jongh, Frank Veltman Provability Logics for Relative Interpretability
ML-88-04 A.S. Troelstra On the Early History of Intuitionistic Logic
ML-88-05 A.S. Troelstra Remarks on Intuitionism and the Philosophy of Mathematics
Computation and Complexity Theory:
CT-88-01 Ming Li, Paul M.B.Vitanyi Two Decades of Applied Kolmogorov Complexity
CT-88-02 Michiel H.M. Smid General Lower Bounds for the Partitioning of Range Trees
CT-88-03 Michiel HM. Smid, Mark H. Overmars Maintaining Multiple Representations of
Leen Torenvliet, Peter van Emde Boas Dynamic Data Structures
CT-88-04 Dick de Jongh, Lex Hendriks Computations in Fragments of Intuitionistic Propositional Logic
Gerard R. Renardel de Lavalette
CT-88-05 Peter van Emde Boas Machine Models and Simulations (revised version)
CT-88-06 Michiel H.M. Smid A Data Structure for the Union-find Problem having good Single-Operation Complexity
CT-88-07 Johan van Benthem Time, Logic and Computation

CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas
CT-88-09 Theo M.V. Janssen Towards a Universal Parsing Algorithm for Functional Grammar
CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy
CT-88-11 Sieger van Denneheuvel, Peter van Emde Boas Towards implementing RL

X-88-01 Marc Jumelet Other prepublications: o Solovay's Completeness Theorem

1989 Logic, Semantics and_ Philosophy of Laréguage:

LP-89-01 Johan van Benthem The Fine-Structure of Categorial Semantics

LP-89-02 Jeroen Groenendijk, Martin Stokhof Dynamic Predicate Logic, towards a compositional,
non-representational semantics of discourse

LP-89-03 Yde Venema Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-04 Johan van Benthem Language in Action
LP-89-05 Johan van Benthem Modal Logic as a Theory of Information
LP-89-06 Andreja Prijatelj Intensional Lambek Calculi: Theory and Application
LP-89-07 Heinrich Wansing The Adequacy Problem for Sequential Propositional Logic
LP-89-08 Victor Sdnchez Valencia Peirce's Propositional Logic: From Algebra to Graphs
Mathematical Logic and Foundations:
ML-89-01 Dick de Jongh, Albert Visser Explicit Fixed Points for Interpretability Logic
ML-89-02 Roel de Vrijer Extending the Lambda Calculus with Surjective Pairing is conservative

ML-89-03 Dick de Jongh, Franco Montagna Rosser Orderings and Free Variables
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna On the Proof of Solovay's Theorem

ML-89-05 Rineke Verbrugge Z-completeness and Bounded Arithmetic

ML-89-06 Michiel van Lambalgen The Axiomatization of Randomness

ML-89-07 Dirk Roorda Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
ML-89-08 Dirk Roorda Investigations into Classical Linear Logic

ML-89-09 Alessandra Carbone . Provable Fixed points in 1A¢+£2;

CT-89-01 Michiel HM. Smid Computation and Complexity Theory: Dypamic Deferred Data Structures

CT-89-02 Peter van Emde Boas Machine Models and Simulations

CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvliet, Peter van Emde Boas =~ On Space Efficient Simulations

CT-89-04 Harry Buhrman, Leen Torenvliet A Comparison of Reductions on Nondeterministic Space

CT-89-05 Pieter H. Hartel, Michiel HM. Smid A Parallel Functional Implementation of Range Queries
Leen Torenvliet, Willem G. Vree

CT-89-06 H.W. Lenstra, Jr. Finding Isomorphisms between Finite Fields
CT-89-07 Ming Li, Paul M.B. Vitanyi A Theory of Learning Simple Concepts under Simple Distributions and
Average Case Complexity for the Universal Distrigution (Prel. Version)
CT-89-08 Harry Buhrman, Steven Homer Honest Reductions, Completeness and
en Torenvliet Nondeterminstic Complexity Classes

CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet ~On Adaptive Resource Bounded Computations
X-89-01 Marianne Kalsbeek Other Prepublications: An Orey Sentence for Predicative Arithmetic
X-89-02 G. Wagemakers New Foundations: a Survey of Quine's Set Theory
X-89-03 A.S. Troelstra Index of the Heyting Nachlass

X-89-04 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar, a first sketch

X-89-05 Maarten de Rijke The Modal Theory of Inequality

